1
|
Passemiers A, Tuveri S, Jatsenko T, Vanderstichele A, Busschaert P, Coosemans A, Timmerman D, Tejpar S, Vandenberghe P, Lambrechts D, Raimondi D, Vermeesch JR, Moreau Y. DAGIP: alleviating cell-free DNA sequencing biases with optimal transport. Genome Biol 2025; 26:49. [PMID: 40055826 PMCID: PMC11887355 DOI: 10.1186/s13059-025-03511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/21/2025] [Indexed: 05/13/2025] Open
Abstract
Cell-free DNA (cfDNA) is a rich source of biomarkers for various pathophysiological conditions. Preanalytical variables, such as the library preparation protocol or sequencing platform, are major confounders of cfDNA analysis. We present DAGIP, a novel data correction method that builds on optimal transport theory and deep learning, which explicitly corrects for the effect of such preanalytical variables and can infer technical biases. Our method improves cancer detection and copy number alteration analysis by alleviating the sources of variation that are not of biological origin. It also enhances fragmentomic analysis of cfDNA. DAGIP allows the integration of cohorts from different studies.
Collapse
Affiliation(s)
- Antoine Passemiers
- Dynamical Systems, Signal Processing and Data Analytics (STADIUS), KU Leuven, Leuven, Belgium.
| | - Stefania Tuveri
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tatjana Jatsenko
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Adriaan Vanderstichele
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
- Division of Gynaecological Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Pieter Busschaert
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
- Division of Gynaecological Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer Institute, Leuven, Belgium
| | - Dirk Timmerman
- Department of Gynaecology and Obstetrics, University Hospitals Leuven, Leuven, Belgium
| | - Sabine Tejpar
- Department of Oncology, Molecular Digestive Oncology, KU Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Department of Human Genetics, Laboratory of Genetics of Malignant Diseases, KU Leuven, Leuven, Belgium
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Daniele Raimondi
- Dynamical Systems, Signal Processing and Data Analytics (STADIUS), KU Leuven, Leuven, Belgium
- Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier, Montpellier, France
| | - Joris Robert Vermeesch
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Yves Moreau
- Dynamical Systems, Signal Processing and Data Analytics (STADIUS), KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Stewart DC, Brisson BK, Dekky B, Berger AC, Yen W, Mauldin EA, Loebel C, Gillette D, Assenmacher CA, Quincey C, Stefanovski D, Cristofanilli M, Cukierman E, Burdick JA, Borges VF, Volk SW. Prognostic and therapeutic implications of tumor-restrictive type III collagen in the breast cancer microenvironment. NPJ Breast Cancer 2024; 10:86. [PMID: 39358397 PMCID: PMC11447064 DOI: 10.1038/s41523-024-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and bioinformatic experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in non-invasive and invasive breast cancer cell lines. In human triple-negative breast cancer biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in non-invasive compared to invasive regions. Similarly, bioinformatics analysis of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free, and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces the formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective therapeutic modality to limit recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Daniel C Stewart
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bassil Dekky
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashton C Berger
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Yen
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Deborah Gillette
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corisa Quincey
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Daenekas B, Pérez E, Boniolo F, Stefan S, Benfatto S, Sill M, Sturm D, Jones DTW, Capper D, Zapatka M, Hovestadt V. Conumee 2.0: enhanced copy-number variation analysis from DNA methylation arrays for humans and mice. Bioinformatics 2024; 40:btae029. [PMID: 38244574 PMCID: PMC10868300 DOI: 10.1093/bioinformatics/btae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024] Open
Abstract
MOTIVATION Copy-number variations (CNVs) are common genetic alterations in cancer and their detection may impact tumor classification and therapeutic decisions. However, detection of clinically relevant large and focal CNVs remains challenging when sample material or resources are limited. This has motivated us to create a software tool to infer CNVs from DNA methylation arrays which are often generated as part of clinical routines and in research settings. RESULTS We present our R package, conumee 2.0, that combines tangent normalization, an adjustable genomic binning heuristic, and weighted circular binary segmentation to utilize DNA methylation arrays for CNV analysis and mitigate technical biases and batch effects. Segmentation results were validated in a lung squamous cell carcinoma dataset from TCGA (n = 367 samples) by comparison to segmentations derived from genotyping arrays (Pearson's correlation coefficient of 0.91). We further introduce a segmented block bootstrapping approach to detect focal alternations that achieved 60.9% sensitivity and 98.6% specificity for deletions affecting CDKN2A/B (60.0% and 96.9% for RB1, respectively) in a low-grade glioma cohort from TCGA (n = 239 samples). Finally, our tool provides functionality to detect and summarize CNVs across large sample cohorts. AVAILABILITY AND IMPLEMENTATION Conumee 2.0 is available under open-source license at: https://github.com/hovestadtlab/conumee2.
Collapse
Affiliation(s)
- Bjarne Daenekas
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Eilís Pérez
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Fabio Boniolo
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Sabina Stefan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Salvatore Benfatto
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Martin Sill
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Dominik Sturm
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology & Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - David T W Jones
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Volker Hovestadt
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| |
Collapse
|
4
|
Shih J, Sarmashghi S, Zhakula-Kostadinova N, Zhang S, Georgis Y, Hoyt SH, Cuoco MS, Gao GF, Spurr LF, Berger AC, Ha G, Rendo V, Shen H, Meyerson M, Cherniack AD, Taylor AM, Beroukhim R. Cancer aneuploidies are shaped primarily by effects on tumour fitness. Nature 2023; 619:793-800. [PMID: 37380777 PMCID: PMC10529820 DOI: 10.1038/s41586-023-06266-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
Aneuploidies-whole-chromosome or whole-arm imbalances-are the most prevalent alteration in cancer genomes1,2. However, it is still debated whether their prevalence is due to selection or ease of generation as passenger events1,2. Here we developed a method, BISCUT, that identifies loci subject to fitness advantages or disadvantages by interrogating length distributions of telomere- or centromere-bounded copy-number events. These loci were significantly enriched for known cancer driver genes, including genes not detected through analysis of focal copy-number events, and were often lineage specific. BISCUT identified the helicase-encoding gene WRN as a haploinsufficient tumour-suppressor gene on chromosome 8p, which is supported by several lines of evidence. We also formally quantified the role of selection and mechanical biases in driving aneuploidy, finding that rates of arm-level copy-number alterations are most highly correlated with their effects on cellular fitness1,2. These results provide insight into the driving forces behind aneuploidy and its contribution to tumorigenesis.
Collapse
Affiliation(s)
- Juliann Shih
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, NV, USA
| | - Shahab Sarmashghi
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nadja Zhakula-Kostadinova
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Shu Zhang
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yohanna Georgis
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Stephanie H Hoyt
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael S Cuoco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Galen F Gao
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Liam F Spurr
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ashton C Berger
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gavin Ha
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Veronica Rendo
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Matthew Meyerson
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Andrew D Cherniack
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alison M Taylor
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rameen Beroukhim
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
5
|
Parry EM, Leshchiner I, Guièze R, Johnson C, Tausch E, Parikh SA, Lemvigh C, Broséus J, Hergalant S, Messer C, Utro F, Levovitz C, Rhrissorrakrai K, Li L, Rosebrock D, Yin S, Deng S, Slowik K, Jacobs R, Huang T, Li S, Fell G, Redd R, Lin Z, Knisbacher BA, Livitz D, Schneider C, Ruthen N, Elagina L, Taylor-Weiner A, Persaud B, Martinez A, Fernandes SM, Purroy N, Anandappa AJ, Ma J, Hess J, Rassenti LZ, Kipps TJ, Jain N, Wierda W, Cymbalista F, Feugier P, Kay NE, Livak KJ, Danysh BP, Stewart C, Neuberg D, Davids MS, Brown JR, Parida L, Stilgenbauer S, Getz G, Wu CJ. Evolutionary history of transformation from chronic lymphocytic leukemia to Richter syndrome. Nat Med 2023; 29:158-169. [PMID: 36624313 PMCID: PMC10155825 DOI: 10.1038/s41591-022-02113-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/28/2022] [Indexed: 01/11/2023]
Abstract
Richter syndrome (RS) arising from chronic lymphocytic leukemia (CLL) exemplifies an aggressive malignancy that develops from an indolent neoplasm. To decipher the genetics underlying this transformation, we computationally deconvoluted admixtures of CLL and RS cells from 52 patients with RS, evaluating paired CLL-RS whole-exome sequencing data. We discovered RS-specific somatic driver mutations (including IRF2BP2, SRSF1, B2M, DNMT3A and CCND3), recurrent copy-number alterations beyond del(9p21)(CDKN2A/B), whole-genome duplication and chromothripsis, which were confirmed in 45 independent RS cases and in an external set of RS whole genomes. Through unsupervised clustering, clonally related RS was largely distinct from diffuse large B cell lymphoma. We distinguished pathways that were dysregulated in RS versus CLL, and detected clonal evolution of transformation at single-cell resolution, identifying intermediate cell states. Our study defines distinct molecular subtypes of RS and highlights cell-free DNA analysis as a potential tool for early diagnosis and monitoring.
Collapse
Affiliation(s)
- Erin M Parry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ignaty Leshchiner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Romain Guièze
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- CHU de Clermont-Ferrand, Clermont-Ferrand, France
- Université Clermont Auvergne, EA7453 CHELTER, Clermont-Ferrand, France
| | | | - Eugen Tausch
- Division of CLL, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | | | - Camilla Lemvigh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Julien Broséus
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-GERE), Université de Lorraine, Nancy, France
- Université de Lorraine, CHRU-Nancy, service d'hématologie biologique, pôle laboratoires, Nancy, France
| | - Sébastien Hergalant
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-GERE), Université de Lorraine, Nancy, France
| | - Conor Messer
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Filippo Utro
- IBM Research, Yorktown Heights, New York, NY, USA
| | | | | | - Liang Li
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Shanye Yin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Stephanie Deng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kara Slowik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Raquel Jacobs
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Teddy Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Geoff Fell
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Robert Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ziao Lin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Christof Schneider
- Division of CLL, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Neil Ruthen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Bria Persaud
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aina Martinez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stacey M Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Noelia Purroy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Annabelle J Anandappa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jialin Ma
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julian Hess
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura Z Rassenti
- Moores Cancer Center, Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Thomas J Kipps
- Moores Cancer Center, Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florence Cymbalista
- Laboratoire d'hématologie, Hôpital Avicenne-AP-HP, INSERM U978- Université Sorbonne Paris Nord, Bobigny, France
| | - Pierre Feugier
- Inserm UMRS1256 Nutrition-Génétique et Exposition aux Risques Environnementaux (N-GERE), Université de Lorraine, Nancy, France
- Université de Lorraine, CHRU Nancy, service d'hématologie clinique, Nancy, France
| | - Neil E Kay
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Kenneth J Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Donna Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew S Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Laxmi Parida
- IBM Research, Yorktown Heights, New York, NY, USA
| | - Stephan Stilgenbauer
- Division of CLL, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|