1
|
Aruna AS, Remesh Babu KR, Deepthi K. Autoencoder-based drug-virus association prediction with reliable negative sample selection: A case study with COVID-19. Biophys Chem 2025; 322:107434. [PMID: 40096790 DOI: 10.1016/j.bpc.2025.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
Emergence of viruses cause unprecedented challenges and thus leading to wide-ranging consequences today. The world has faced massive disruptions like COVID-19 and continues to suffer in terms of public health and world economy. Fighting with this emergence of viruses and its reemergence plays a critical role in the health care industry. Identification of novel virus-drug associations is a vital step in drug discovery. Prediction and prioritization of novel virus-drug associations through computational approaches is an alternative and best choice considering the cost and risk of biological experiments. This study proposes a method, KR-AEVDA that relies on k-nearest neighbor based reliable negative sample selection and autoencoder based feature extraction to explore promising virus-drug associations for further experimental validation. The method analyzes complex relationships among drugs and viruses by investigating similarity and association data between drugs and viruses. It generates feature vectors from the similarity data, and reliable negative samples are extracted through an effective distance-based algorithm from the unlabeled samples in the dataset. Then high level features are extracted via an autoencoder and is fed to an ensemble classifier for inferring novel associations. Experimental results on three different datasets showed that KR-AEVDA reliably attained better performance than other state-of-the-art methods. Molecular docking is carried out between the top-predicted drugs and the crystal structure of the SARS-CoV-2's main protease to further validate the predictions. Case studies for SARS-CoV-2 illustrate the effectiveness of KR-AEVDA in identifying potential virus-drug associations.
Collapse
Affiliation(s)
- A S Aruna
- Dept. of Information Technology, Government Engineering College Palakkad, Palakkad-678633, APJ Abdul Kalam Technological University, Kerala, India; Department of Computer Science, College of Engineering Vadakara, Kozhikode 673105, Kerala, India.
| | - K R Remesh Babu
- Dept. of Information Technology, Government Engineering College Palakkad, Palakkad-678633, APJ Abdul Kalam Technological University, Kerala, India.
| | - K Deepthi
- Department of Computer Science, Central University of Kerala (Govt. of India), Kasaragod 671320, Kerala, India.
| |
Collapse
|
2
|
Aruna AS, Babu KRR, Deepthi K. A deep drug prediction framework for viral infectious diseases using an optimizer-based ensemble of convolutional neural network: COVID-19 as a case study. Mol Divers 2025; 29:2473-2487. [PMID: 39379663 DOI: 10.1007/s11030-024-11003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
The SARS-CoV-2 outbreak highlights the persistent vulnerability of humanity to epidemics and emerging microbial threats, emphasizing the lack of time to develop disease-specific treatments. Therefore, it appears beneficial to utilize existing resources and therapies. Computational drug repositioning is an effective strategy that redirects authorized drugs to new therapeutic purposes. This strategy holds significant promise for newly emerging diseases, as drug discovery is a lengthy and expensive process. Through this study, we present an ensemble method based on the convolutional neural network integrated with genetic algorithm and deep forest classifier for virus-drug association prediction (CGDVDA). We generated feature vectors by combining drug chemical structure and virus genomic sequence-based similarities, and extracted prominent deep features by applying the convolutional neural network. The convoluted features are optimized using the genetic algorithm and classified using the ensemble deep forest classifier to predict novel virus-drug associations. The proposed method predicts drugs for COVID-19 and other viral diseases in the dataset. The model could achieve ROC-AUC scores of 0.9159 on fivefold cross-validation. We compared the performance of the model with state-of-the-art approaches and classifiers. The experimental results and case studies illustrate the efficacy of CGDVDA in predicting drugs against viral infectious diseases.
Collapse
Affiliation(s)
- A S Aruna
- Dept. of Information Technology, Government Engineering College Palakkad, APJ Abdul Kalam Technological University, Palakkad, Kerala, 678633, India.
- Department of Computer Science, College of Engineering Vadakara, Kozhikode, Kerala, 673105, India.
| | - K R Remesh Babu
- Dept. of Information Technology, Government Engineering College Palakkad, APJ Abdul Kalam Technological University, Palakkad, Kerala, 678633, India
| | - K Deepthi
- Department of Computer Science, Central University of Kerala (Govt. of India), Kasaragod, Kerala, 671320, India
| |
Collapse
|
3
|
Brahma R, Moon S, Shin JM, Cho KH. AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist. J Cheminform 2025; 17:12. [PMID: 39881398 PMCID: PMC11780767 DOI: 10.1186/s13321-024-00945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening. To address these issues, we introduce AiGPro, a novel multitask model designed to predict small molecule agonists (EC50) and antagonists (IC50) across the 231 human GPCRs, making it a first-in-class solution for large-scale GPCR profiling. Leveraging multi-scale context aggregation and bidirectional multi-head cross-attention mechanisms, our approach demonstrates that ensemble models may not be necessary for predicting complex GPCR states and small molecule interactions. Through extensive validation using stratified tenfold cross-validation, AiGPro achieves robust performance with Pearson's correlation coefficient of 0.91, indicating broad generalizability. This breakthrough sets a new standard in the GPCR studies, outperforming previous studies. Moreover, our first-in-class multi-tasking model can predict agonist and antagonist activities across a wide range of GPCRs, offering a comprehensive perspective on ligand bioactivity within this diverse superfamily. To facilitate easy accessibility, we have deployed a web-based platform for model access at https://aicadd.ssu.ac.kr/AiGPro . Scientific Contribution We introduce a deep learning-based multi-task model to generalize the agonist and antagonist bioactivity prediction for GPCRs accurately. The model is implemented on a user-friendly web server to facilitate rapid screening of small-molecule libraries, expediting GPCR-targeted drug discovery. Covering a diverse set of 231 GPCR targets, the platform delivers a robust, scalable solution for advancing GPCR-focused therapeutic development. The proposed framework incorporates an innovative dual-label prediction strategy, enabling the simultaneous classification of molecules as agonists, antagonists, or both. Each prediction is further accompanied by a confidence score, offering a quantitative measure of activity likelihood. This advancement moves beyond conventional models focusing solely on binding affinity, providing a more comprehensive understanding of ligand-receptor interactions. At the core of our model lies the Bi-Directional Multi-Head Cross-Attention (BMCA) module, a novel architecture that captures forward and backward contextual embeddings of protein and ligand features. By leveraging BMCA, the model effectively integrates structural and sequence-level information, ensuring a precise representation of molecular interactions. Results show that this approach is highly accurate in binding affinity predictions and consistent across diverse GPCR families. By unifying agonist and antagonist bioactivity prediction into a single model architecture, we bridge a critical gap in GPCR modeling. This enhances prediction accuracy and accelerates virtual screening workflows, offering a valuable and innovative solution for advancing GPCR-targeted drug discovery.
Collapse
Affiliation(s)
- Rahul Brahma
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea
| | - Sunghyun Moon
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea
| | - Jae-Min Shin
- AzothBio, Rm. DA724 Hyundai Knowledge Industry Center, Hanam-si, Gyeonggi-do, Republic of Korea.
| | - Kwang-Hwi Cho
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Xia X, Zhu C, Zhong F, Liu L. TransCDR: a deep learning model for enhancing the generalizability of drug activity prediction through transfer learning and multimodal data fusion. BMC Biol 2024; 22:227. [PMID: 39385185 PMCID: PMC11462810 DOI: 10.1186/s12915-024-02023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Accurate and robust drug response prediction is of utmost importance in precision medicine. Although many models have been developed to utilize the representations of drugs and cancer cell lines for predicting cancer drug responses (CDR), their performances can be improved by addressing issues such as insufficient data modality, suboptimal fusion algorithms, and poor generalizability for novel drugs or cell lines. RESULTS We introduce TransCDR, which uses transfer learning to learn drug representations and fuses multi-modality features of drugs and cell lines by a self-attention mechanism, to predict the IC50 values or sensitive states of drugs on cell lines. We are the first to systematically evaluate the generalization of the CDR prediction model to novel (i.e., never-before-seen) compound scaffolds and cell line clusters. TransCDR shows better generalizability than 8 state-of-the-art models. TransCDR outperforms its 5 variants that train drug encoders (i.e., RNN and AttentiveFP) from scratch under various scenarios. The most critical contributors among multiple drug notations and omics profiles are Extended Connectivity Fingerprint and genetic mutation. Additionally, the attention-based fusion module further enhances the predictive performance of TransCDR. TransCDR, trained on the GDSC dataset, demonstrates strong predictive performance on the external testing set CCLE. It is also utilized to predict missing CDRs on GDSC. Moreover, we investigate the biological mechanisms underlying drug response by classifying 7675 patients from TCGA into drug-sensitive or drug-resistant groups, followed by a Gene Set Enrichment Analysis. CONCLUSIONS TransCDR emerges as a potent tool with significant potential in drug response prediction.
Collapse
Affiliation(s)
- Xiaoqiong Xia
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chaoyu Zhu
- Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China
| | - Fan Zhong
- Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China.
| | - Lei Liu
- Intelligent Medicine Institute, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
5
|
Zhao Y, Zhang S, Liang Y. HemoFuse: multi-feature fusion based on multi-head cross-attention for identification of hemolytic peptides. Sci Rep 2024; 14:22518. [PMID: 39342017 PMCID: PMC11438874 DOI: 10.1038/s41598-024-74326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Hemolytic peptides are therapeutic peptides that damage red blood cells. However, therapeutic peptides used in medical treatment must exhibit low toxicity to red blood cells to achieve the desired therapeutic effect. Therefore, accurate prediction of the hemolytic activity of therapeutic peptides is essential for the development of peptide therapies. In this study, a multi-feature cross-fusion model, HemoFuse, for hemolytic peptide identification is proposed. The feature vectors of peptide sequences are transformed by word embedding technique and four hand-crafted feature extraction methods. We apply multi-head cross-attention mechanism to hemolytic peptide identification for the first time. It captures the interaction between word embedding features and hand-crafted features by calculating the attention of all positions in them, so that multiple features can be deeply fused. Moreover, we visualize the features obtained by this module to enhance its interpretability. On the comprehensive integrated dataset, HemoFuse achieves ideal results, with ACC, SP, SN, MCC, F1, AUC, and AP of 0.7575, 0.8814, 0.5793, 0.4909, 0.6620, 0.8387, and 0.7118, respectively. Compared with HemoDL proposed by Yang et al., it is 3.32%, 3.89%, 5.93%, 10.6%, 8.17%, 5.88%, and 2.72% higher. Other ablation experiments also prove that our model is reasonable and efficient. The codes and datasets are accessible at https://github.com/z11code/Hemo .
Collapse
Affiliation(s)
- Ya Zhao
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, P. R. China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, P. R. China.
| | - Yunyun Liang
- School of Science, Xi'an Polytechnic University, Xi'an, 710048, P. R. China
| |
Collapse
|
6
|
Shukla A, Singh A, Tripathi S. Perturbed Lipid Metabolism Transduction Pathways in SARS-CoV-2 Infection and Their Possible Treating Nutraceuticals. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:614-626. [PMID: 38805016 DOI: 10.1080/27697061.2024.2359084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
The coronavirus disease 2019 (COVID-19) epidemic has evolved into an international public health concern. Its causing agent was SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), a lipid bilayer encapsulated virus. Lipids have relevance in the host's viral cycle; additionally; viruses have been speculated to manipulate lipid signaling and production to influence the lipidome of host cells. SARS-CoV-2 engages the host lipid pathways for replication, like fatty acid synthesis activation via upregulation of AKT and SREBP pathway and inhibiting lipid catabolism by AMPK and PPAR deactivation. Consequently, lipoprotein levels are altered in most cases, i.e., raised LDL, TG, VLDL levels and reduced HDL levels like a hyperlipidemic state. Apo lipoproteins, a subsiding structural part of lipoproteins, may also impact viral spike protein binding to host cell receptors. In a few studies conducted on COVID-19 patients, maintaining Apo lipoprotein levels has also shown antiviral activity against SARS-CoV-2 infection. It was speculated that several potent hypolipidemic drugs, such as statins, hydroxychloroquine, and metformin, could be used as add-on treatment in COVID-19 management. Nutraceuticals like Garlic, Fenugreek, and vinegar have the potency to lower the lipid capability acting via these pathways. A link between COVID-19 and post-COVID alteration in lipoprotein levels has not yet been fully understood. In this review, we try to look over the possible modifications in lipid metabolism due to SARS-CoV-2 viral exposure, besides the prospect of focusing on the potential of lipid metabolic processes to interrupt the viral cycle.
Collapse
Affiliation(s)
- Amrita Shukla
- Department of Pharmacology, Rameshwaram Institute of Technology and Management, Lucknow, India
| | - Ankita Singh
- Department of Pharmacology, Rameshwaram Institute of Technology and Management, Lucknow, India
| | - Smriti Tripathi
- Department of Pharmacology, Rameshwaram Institute of Technology and Management, Lucknow, India
| |
Collapse
|
7
|
Bang D, Koo B, Kim S. Transfer learning of condition-specific perturbation in gene interactions improves drug response prediction. Bioinformatics 2024; 40:i130-i139. [PMID: 38940127 PMCID: PMC11256952 DOI: 10.1093/bioinformatics/btae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARY Drug response is conventionally measured at the cell level, often quantified by metrics like IC50. However, to gain a deeper understanding of drug response, cellular outcomes need to be understood in terms of pathway perturbation. This perspective leads us to recognize a challenge posed by the gap between two widely used large-scale databases, LINCS L1000 and GDSC, measuring drug response at different levels-L1000 captures information at the gene expression level, while GDSC operates at the cell line level. Our study aims to bridge this gap by integrating the two databases through transfer learning, focusing on condition-specific perturbations in gene interactions from L1000 to interpret drug response integrating both gene and cell levels in GDSC. This transfer learning strategy involves pretraining on the transcriptomic-level L1000 dataset, with parameter-frozen fine-tuning to cell line-level drug response. Our novel condition-specific gene-gene attention (CSG2A) mechanism dynamically learns gene interactions specific to input conditions, guided by both data and biological network priors. The CSG2A network, equipped with transfer learning strategy, achieves state-of-the-art performance in cell line-level drug response prediction. In two case studies, well-known mechanisms of drugs are well represented in both the learned gene-gene attention and the predicted transcriptomic profiles. This alignment supports the modeling power in terms of interpretability and biological relevance. Furthermore, our model's unique capacity to capture drug response in terms of both pathway perturbation and cell viability extends predictions to the patient level using TCGA data, demonstrating its expressive power obtained from both gene and cell levels. AVAILABILITY AND IMPLEMENTATION The source code for the CSG2A network is available at https://github.com/eugenebang/CSG2A.
Collapse
Affiliation(s)
- Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul, 08758, Republic of Korea
| | - Bonil Koo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul, 08758, Republic of Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul, 08758, Republic of Korea
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
8
|
Lin CX, Guan Y, Li HD. Artificial intelligence approaches for molecular representation in drug response prediction. Curr Opin Struct Biol 2024; 84:102747. [PMID: 38091924 DOI: 10.1016/j.sbi.2023.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 02/09/2024]
Abstract
Drug response prediction is essential for drug development and disease treatment. One key question in predicting drug response is the representation of molecules, which has been greatly advanced by artificial intelligence (AI) techniques in recent years. In this review, we first describe different types of representation methods, pinpointing their key principles and discussing their limitations. Thereafter we discuss potential ways how these methods could be further developed. We expect that this review will provide useful guidance for researchers in the community.
Collapse
Affiliation(s)
- Cui-Xiang Lin
- School of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, Hunan Province, PR China
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Hong-Dong Li
- School of Computer Science and Engineering, Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, Hunan 410083, PR China.
| |
Collapse
|
9
|
Yang Y, Li P. GPDRP: a multimodal framework for drug response prediction with graph transformer. BMC Bioinformatics 2023; 24:484. [PMID: 38105227 PMCID: PMC10726525 DOI: 10.1186/s12859-023-05618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND In the field of computational personalized medicine, drug response prediction (DRP) is a critical issue. However, existing studies often characterize drugs as strings, a representation that does not align with the natural description of molecules. Additionally, they ignore gene pathway-specific combinatorial implication. RESULTS In this study, we propose drug Graph and gene Pathway based Drug response prediction method (GPDRP), a new multimodal deep learning model for predicting drug responses based on drug molecular graphs and gene pathway activity. In GPDRP, drugs are represented by molecular graphs, while cell lines are described by gene pathway activity scores. The model separately learns these two types of data using Graph Neural Networks (GNN) with Graph Transformers and deep neural networks. Predictions are subsequently made through fully connected layers. CONCLUSIONS Our results indicate that Graph Transformer-based model delivers superior performance. We apply GPDRP on hundreds of cancer cell lines' bulk RNA-sequencing data, and it outperforms some recently published models. Furthermore, the generalizability and applicability of GPDRP are demonstrated through its predictions on unknown drug-cell line pairs and xenografts. This underscores the interpretability achieved by incorporating gene pathways.
Collapse
Affiliation(s)
- Yingke Yang
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China
| | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China.
- Longmen Laboratory, Luoyang, 471003, China.
| |
Collapse
|
10
|
Zhang Y, Liu C, Liu M, Liu T, Lin H, Huang CB, Ning L. Attention is all you need: utilizing attention in AI-enabled drug discovery. Brief Bioinform 2023; 25:bbad467. [PMID: 38189543 PMCID: PMC10772984 DOI: 10.1093/bib/bbad467] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, attention mechanism and derived models have gained significant traction in drug development due to their outstanding performance and interpretability in handling complex data structures. This review offers an in-depth exploration of the principles underlying attention-based models and their advantages in drug discovery. We further elaborate on their applications in various aspects of drug development, from molecular screening and target binding to property prediction and molecule generation. Finally, we discuss the current challenges faced in the application of attention mechanisms and Artificial Intelligence technologies, including data quality, model interpretability and computational resource constraints, along with future directions for research. Given the accelerating pace of technological advancement, we believe that attention-based models will have an increasingly prominent role in future drug discovery. We anticipate that these models will usher in revolutionary breakthroughs in the pharmaceutical domain, significantly accelerating the pace of drug development.
Collapse
Affiliation(s)
- Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Mujiexin Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Liu
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, Aba Teachers University, Aba, China
| | - Lin Ning
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| |
Collapse
|