1
|
Jiang W, Pan J, Lin T, Wang Y, Wang Y, Zhang R, Zhou X, Zhang Y. Mutational features of chromids and chromosomes in Pseudoalteromonas provide new insights into the evolution of secondary replicons. Microbiol Spectr 2025; 13:e0212724. [PMID: 40130865 PMCID: PMC12053903 DOI: 10.1128/spectrum.02127-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
The genomes of multi-replicon bacteria are composed of a primary replicon (the chromosome) and secondary replicons (chromids). Currently, there is a lack of understanding of the mutation features and evolutionary patterns of these different replicons. Specifically, in the genus Pseudoalteromonas, the chromids of multi-replicon species exhibit both unidirectional and bidirectional replication. Here, we investigated the similarities and differences between chromosomes and chromids in sequence composition and gene synteny of Pseudoalteromonas species by comparative genomic analysis, as well as the spontaneous mutation features of different replicons by mutation accumulation (MA) experiments combined with whole-genome sequencing strategy (MA-WGS). MA-WGS analysis revealed that there was no significant difference between chromids and chromosomes in the mutation rate or mutation spectrum of P. sp. LC0214 (where the chromid is unidirectional in replication) and P. sp. JCM12884T (where the chromid is bidirectional in replication). In addition, the context-dependence and variation pattern of the base-pair substitutions (BPSs) rates of the entire replicons exhibited differences that may be caused by the different replication directions of the chromids. The results of this study provide a new theoretical foundation for an in-depth understanding of the origin and evolution of chromids in multi-replicon bacterial species and facilitate further exploration of the complex mechanisms of bacterial diversity.IMPORTANCEDe novo mutations are a critical driving force in species evolution. Currently, there is a lack of sufficient research on the influence of replicon types on the occurrence of genomic mutations in bacteria. Moreover, the scarcity in systematic analysis and comparison of spontaneous mutation features between different replicons results in the limited information on the evolutionary dynamics of multi-replicon species. The diversity of replication direction in the multi-replicon species of the genus Pseudoalteromonas provides a unique opportunity for studying the impact of replication direction on the patterns of mutation. In addition to the composition characteristics between chromosomes and chromids, the spontaneous mutation rates in the context-dependence and variation pattern of the base-pair substitutions (BPSs) across different replicons within Pseudoalteromonas species revealed in this study provide valuable insights into the evolutionary dynamics of bacterial secondary replicons.
Collapse
Affiliation(s)
- Wanyue Jiang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Tongtong Lin
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Yanze Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Rongxiao Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Xiaoming Zhou
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
| | - Yu Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong, China
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
2
|
Wang W, Zhang DX. Does metabolic rate influence genome-wide amino acid composition in the course of animal evolution? Evol Lett 2025; 9:137-149. [PMID: 39906584 PMCID: PMC11790228 DOI: 10.1093/evlett/qrae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 02/06/2025] Open
Abstract
Natural selection is believed to shape amino acid usage of the proteome by minimizing the energy cost of protein biosynthesis. Although this hypothesis explains well the amino acid frequency (AAfrequency) difference among the 20 common amino acids within a given genome (species), whether it is applicable to cross-species difference remains to be inspected. Here, we proposed and tested a "metabolic rate hypothesis," which suggests that metabolic rate impacts genome-wide AAfrequency, considering that the energy allocated to protein biosynthesis is under selection pressure due to metabolic rate constraint. We performed integrated phylogenetic comparative analyses on proteomic sequence and metabolic rate data of 166 species covering 130 eumetazoan orders. We showed that resting metabolic rate (RMR) was significantly linked to AAfrequency variation across animal lineages, with a contribution comparable to or greater than genomic traits such as GC content and codon usage bias. Consistent with the metabolic rate hypothesis, low-energy-cost amino acids are observed to be more likely at higher frequency in animal species with high (residual) metabolic rate. Correlated evolution of RMR and AAfrequency was further inferred being driven by adaptation. The relationship between RMR and AAfrequency varied greatly among amino acids, most likely reflecting a trade-off among various interacting factors. Overall, there exists no "one-size-fits-all" predictor for AAfrequency, and integrated investigation of multilevel traits is indispensable for a fuller understanding of AAfrequency variation and evolution in animal.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - De-Xing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Sethi G, Kim YK, Han SC, Hwang JH. Designing a broad-spectrum multi-epitope subunit vaccine against leptospirosis using immunoinformatics and structural approaches. Front Immunol 2025; 15:1503853. [PMID: 39936152 PMCID: PMC11811080 DOI: 10.3389/fimmu.2024.1503853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/26/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction Leptospirosis, caused by Leptospira interrogans, is a neglected zoonotic disease that poses a significant global health risk to both humans and animals. The rise of antimicrobial resistance and the inefficacy of existing vaccines highlight the urgent need for new preventive strategies. Methods An immunoinformatics approach was employed to design a multi-epitope subunit vaccine (MESV) against leptospirosis. B-cell, cytotoxic T lymphocyte (CTL), and helper T lymphocyte (HTL) epitopes were selected from five key Leptospira proteins. These epitopes were fused with a heparin-binding hemagglutinin (HBHA) adjuvant and appropriate linkers to construct the broad-spectrum vaccine. The physicochemical properties of the vaccine were assessed, including antigenicity, immunogenicity, allergenicity, and conservation. The vaccine's 3D structure was modeled, optimized, and validated. Molecular docking, molecular dynamics simulations, and MM-GBSA analysis were performed to assess the vaccine's binding interactions with Toll-like receptors (TLR2 and TLR4). Immune simulations and in silico cloning were also conducted to evaluate the vaccine's immune response and expression potential. Results The MESV demonstrated high antigenicity, immunogenicity, non-allergenicity, and conservation across different Leptospira strains. Population coverage analysis revealed that T-cell epitopes significantly interacted with HLA molecules, covering 95.7% of the global population. Molecular docking showed strong and stable binding with TLR2 and TLR4, with binding energies of -1,357.1 kJ/mol and -1,163.7 kJ/mol, respectively. Molecular dynamics simulations and MM-GBSA analysis confirmed the stability of these interactions and accurately calculated the intermolecular binding free energies. Immune simulations indicated robust B and T cell responses, and in silico cloning demonstrated that the vaccine could be successfully expressed in E. coli. Discussion These findings suggest that MESV is a promising candidate for leptospirosis prevention, providing robust immune responses and broad population coverage. However, further in vivo studies are necessary to validate its efficacy and safety.
Collapse
Affiliation(s)
- Guneswar Sethi
- Animal Model Research Group, Korea Institute of Toxicology, Jeonguep, Jeollabuk-do, Republic of Korea
- Center for Companion Animal New Drug Development, Korea Institute of Toxicology, Jeonguep, Jeollabuk-do, Republic of Korea
| | - Young Kyu Kim
- Animal Model Research Group, Korea Institute of Toxicology, Jeonguep, Jeollabuk-do, Republic of Korea
| | - Su-Cheol Han
- Center for Companion Animal New Drug Development, Korea Institute of Toxicology, Jeonguep, Jeollabuk-do, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, Jeonguep, Jeollabuk-do, Republic of Korea
- Center for Companion Animal New Drug Development, Korea Institute of Toxicology, Jeonguep, Jeollabuk-do, Republic of Korea
| |
Collapse
|
4
|
Arora P, Kumar S, Mukhopadhyay CS, Kaur S. Codon usage analysis in selected virulence genes of Staphylococcal species. Curr Genet 2025; 71:5. [PMID: 39853506 DOI: 10.1007/s00294-025-01308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
The Staphylococcus genus, composed of Gram-positive bacteria, includes several pathogenic species such as Staphylococcus aureus, S. epidermidis, S. haemolyticus, and S. saprophyticus, each implicated in a range of infections. This study investigates the codon usage patterns in key virulence genes, including Autolysin (alt), Elastin Binding protein (EbpS), Lipase, Thermonuclease, Intercellular Adhesion Protein (IcaR), and V8 Protease, across four Staphylococcus species. Using metrics such as the Effective Number of Codons (ENc), Relative Synonymous Codon Usage (RSCU), Codon Adaptation Index (CAI), alongside neutrality and parity plots, we explored the codon preferences and nucleotide composition biases. Our findings revealed a pronounced AT-rich codon preference, with AT-rich genomes likely aiding in energy-efficient translation and bacterial survival in host environments. These insights provide a deeper understanding of the evolutionary adaptations and translational efficiency mechanisms that contribute to the pathogenicity of Staphylococcus species. This knowledge could pave the way for novel therapeutic interventions targeting codon usage to disrupt virulence gene expression.
Collapse
Affiliation(s)
- Pinky Arora
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Shubham Kumar
- School of Pharmaceutical Sciences, Lovely Professional, University, Jalandhar- G.T. Road, Phagwara, Punjab, 144411, India
| | - Chandra Shekhar Mukhopadhyay
- Department of Bioinformatics, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ferozepur G.T. Road, Ludhiana, Punjab, 141004, India
| | - Sandeep Kaur
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| |
Collapse
|
5
|
Konhar R, Das KC, Nongrum A, Samal RR, Sarangi SK, Biswal DK. In silico design of an epitope-based vaccine ensemble for fasliolopsiasis. Front Genet 2025; 15:1451853. [PMID: 39911308 PMCID: PMC11794225 DOI: 10.3389/fgene.2024.1451853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Fasciolopsiasis, a food-borne intestinal disease is most common in Asia and the Indian subcontinent. Pigs are the reservoir host, and fasciolopsiasis is most widespread in locations where pigs are reared and aquatic plants are widely consumed. Human infection has been most commonly documented in China, Bangladesh, Southeast Asia, and parts of India. It predominates in school-age children, and significant worm burdens are not uncommon. The causal organism is Fasciolopsis buski, a giant intestinal fluke that infects humans and causes diarrhoea, fever, ascites, and intestinal blockage. The increasing prevalence of medication resistance and the necessity for an effective vaccination make controlling these diseases challenging. Methods Over the last decade, we have achieved major advances in our understanding of intestinal fluke biology by in-depth interrogation and analysis of evolving F. buski omics datasets. The creation of large omics datasets for F. buski by our group has accelerated the discovery of key molecules involved in intestinal fluke biology, toxicity, and virulence that can be targeted for vaccine development. Finding successful vaccination antigen combinations from these huge number of genes/proteins in the available omics datasets is the key in combating these neglected tropical diseases. In the present study, we developed an in silico workflow to select antigens for composing a chimeric vaccine, which could be a significant technique for developing a fasciolopsiasis vaccine that prevents the parasite from causing serious harm. Results and discussion This chimeric vaccine can now be tested experimentally and compared to other vaccine candidates to determine its potential influence on human health. Although the results are encouraging, additional validation is needed both in vivo and in vitro. Considering the extensive genetic data available for intestinal flukes that has expanded with technological advancements, we may need to reassess our methods and suggest a more sophisticated technique in the future for identifying vaccine molecules.
Collapse
Affiliation(s)
- Ruchishree Konhar
- Informatics and Big Data, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Kanhu Charan Das
- Department of Zoology, North-Eastern Hill University, Shillong, Meghalaya, India
- Bioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Aiboklang Nongrum
- Department of Zoology, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Rohan Raj Samal
- Bioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya, India
| | | | - Devendra Kumar Biswal
- Department of Zoology, North-Eastern Hill University, Shillong, Meghalaya, India
- Bioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
6
|
Monjezi Z, Rooshanfekr HA, Nazari M, Salabi F, Tabandeh MR. Codon optimization of voraxin α sequence enhances the immunogenicity of a recombinant vaccine against Hyalomma anatolicum infestation in rabbits. Vet Immunol Immunopathol 2024; 275:110817. [PMID: 39197300 DOI: 10.1016/j.vetimm.2024.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024]
Abstract
Research has shown that voraxin α derived from male ticks stimulates blood feeding to engorge in female ticks. Whereas, the oviposition rate, egg weight, and body weight of female ticks were reduced in animals vaccinated with recombinant (r-) voraxin α. These data suggest a potential role of r-voraxin α as a functional anti-tick antigen in Rhipicephalus appendiculatus and Amblyomma hebraeum tick infestation. This study investigated the immunogenicity of r-voraxin α protein from Hyalomma anatolicum (H. anatolicum) tick as an anti-tick vaccine in rabbits. The H. anatolicum voraxin α sequence was optimized according to the codon usage in E. coli before being sub-cloned into pQE30. The gene sequence of the voraxin α was synthesized, verified by DNA sequencing, cloned in a pQE30 vector, and transformed into E. coli. Then, the expression of the r-voraxin α protein was confirmed by SDS-PAGE and Western blot analysis. Subsequently, three rabbits were immunized with the r-voraxin α as the vaccinated group, whereas three rabbits without injection were considered the control group. The result indicated the success of cloning of codon-optimized H. anatolicum voraxin α gene. Moreover, the expression of the r-voraxin α protein (approximately 18 kDa) in the bacterial expression system was confirmed by SDS-PAGE and Western blot analysis. The results of this study showed that the mortality rate in vaccine recipients increased compared to the control group (P < 0.01). Also, the egg weight, oviposition rate, and engorgement weight of female ticks fed from vaccinated animals were significantly reduced compared to the control group (P < 0.01). The results confirmed that the codon-optimized H. anatolicum voraxin α gene expressed in the bacterial expression system could be a suitable anti-tick vaccine against H. anatolicum tick infestation.
Collapse
Affiliation(s)
- Zohre Monjezi
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural sciences and Natural Resources University of Khuzestan, Mollasani, Islamic Republic of Iran
| | - Hedaiat Allah Rooshanfekr
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural sciences and Natural Resources University of Khuzestan, Mollasani, Islamic Republic of Iran
| | - Mahmood Nazari
- Department of Animal Science, Faculty of Animal Science and Food Technology, Agricultural sciences and Natural Resources University of Khuzestan, Mollasani, Islamic Republic of Iran.
| | - Fatemeh Salabi
- Department of Venomous Animals and Anti-venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Islamic Republic of Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
| |
Collapse
|
7
|
Arora P, Mukhopadhyay CS, Kaur S. Comparative genome wise analysis of codon usage of Staphylococcus Genus. Curr Genet 2024; 70:10. [PMID: 39083100 DOI: 10.1007/s00294-024-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 12/14/2024]
Abstract
The genus Staphylococcus encompasses a diverse array of bacteria with significant implications for human health, including disreputable pathogens such as Staphylococcus aureus and Staphylococcus epidermidis. Understanding the genetic composition and codon usage patterns of Staphylococcus species is crucial for unraveling their evolutionary dynamics, adaptive strategies, and pathogenic potential. In this study, we conducted a comprehensive analysis of codon usage patterns across 48 species within the Staphylococcus genus. Our findings uncovered variations in genomic G-C content across Staphylococcus species, impacting codon usage preferences, with a notable preference for A/T-rich codons observed in pathogenic strains. This preference for A/T-rich codons suggests an energy-saving strategy in pathogenic organisms. Analysis of dinucleotide pair expression patterns unveiled insights into genomic dynamics, with overrepresented codon pairs reflecting trends in dinucleotide expression across genomes. Additionally, a significant correlation between CAI and genomic G-C content underscored the intricate relationship between codon usage patterns and gene expression strategies. Amino acid usage analysis highlighted preferences for energetically cheaper amino acids, suggesting adaptive strategies promoting energy efficiency. This comprehensive analysis sheds light on the evolutionary dynamics and adaptive mechanisms employed by Staphylococcus species, providing valuable insights into their pathogenic potential and clinical implications. Understanding these genomic features is crucial for devising strategies to combat staphylococcal infections and improve public health outcomes.
Collapse
Affiliation(s)
- Pinky Arora
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Chandra Shekhar Mukhopadhyay
- Department of Bioinformatics, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ferozepur G.T. Road, Ludhiana, Punjab, 141004, India
| | - Sandeep Kaur
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
8
|
Das T, Datta S, Sen A. Revolutionizing Nipah virus vaccinology: insights into subunit vaccine development strategies and immunological advances. In Silico Pharmacol 2024; 12:69. [PMID: 39070666 PMCID: PMC11282045 DOI: 10.1007/s40203-024-00246-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
The Nipah virus (NiV), a zoonotic virus in the Henipavirus genus of the Paramyxoviridae family, emerged in Malaysia in 1998 and later spread globally. Diseased patients may have a 40- 70% chance of fatality depending on the severity and early medication. The recent outbreak of NiV was reported in Kerala (India) by a new strain of MCL-19-H-1134 isolate. Currently, no vaccines are available, highlighting the critical need for a conclusive remedy. Our study aims to develop a subunit vaccine against the NiV by analyzing its proteome. NiV genome and proteome sequences were obtained from the NCBI database. A phylogenetic tree was constructed based on genome alignment. T-cell, helper T-cell, and B-cell epitopes were predicted from the protein sequences using NetCTL-1.2, NetMHCIIPan-4.1, and IEDB servers, respectively. High-affinity epitopes for human receptors were selected to construct a multi-epitope vaccine (MEV). These epitopes' antigenicity, toxicity, and allergenicity were evaluated using VaxiJen, AllergenFP-v.1.0, and AllergenFP algorithms. Molecular interactions with specific receptors were analyzed using PyRx and ClusPro. Amino acid interactions were visualized and analyzed using PyMOL and LigPlot. Immuno-simulation was conducted using C-ImmSim to assess the immune response elicited by the MEV. Finally, the vaccine cDNA was inserted into the pET28a(+) expression vector using SnapGene tool for in silico cloning in an E. coli host. The potential for an imminent outbreak cannot be overlooked. A subunit vaccine is more cost-effective and time-efficient. With additional in vitro and in vivo validation, this vaccine could become a superior preventive measure against NiV disease. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00246-9.
Collapse
Affiliation(s)
- Tapas Das
- Department of Botany, University of North Bengal, Siliguri, India
| | - Sutapa Datta
- Department of Botany, University of North Bengal, Siliguri, India
| | - Arnab Sen
- Department of Botany, University of North Bengal, Siliguri, India
- Bioinformatics Facility Centre, University of North Bengal, Siliguri, India
- Biswa Bangla Genome Centre, University of North Bengal, Siliguri, India
| |
Collapse
|
9
|
Vakirlis N, Kupczok A. Large-scale investigation of species-specific orphan genes in the human gut microbiome elucidates their evolutionary origins. Genome Res 2024; 34:888-903. [PMID: 38977308 PMCID: PMC11293555 DOI: 10.1101/gr.278977.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024]
Abstract
Species-specific genes, also known as orphans, are ubiquitous across life's domains. In prokaryotes, species-specific orphan genes (SSOGs) are mostly thought to originate in external elements such as viruses followed by horizontal gene transfer, whereas the scenario of native origination, through rapid divergence or de novo, is mostly dismissed. However, quantitative evidence supporting either scenario is lacking. Here, we systematically analyzed genomes from 4644 human gut microbiome species and identified more than 600,000 unique SSOGs, representing an average of 2.6% of a given species' pangenome. These sequences are mostly rare within each species yet show signs of purifying selection. Overall, SSOGs use optimal codons less frequently, and their proteins are more disordered than those of conserved genes (i.e., non-SSOGs). Importantly, across species, the GC content of SSOGs closely matches that of conserved ones. In contrast, the ∼5% of SSOGs that share similarity to known viral sequences have distinct characteristics, including lower GC content. Thus, SSOGs with similarity to viruses differ from the remaining SSOGs, contrasting an external origination scenario for most of them. By examining the orthologous genomic region in closely related species, we show that a small subset of SSOGs likely evolved natively de novo and find that these genes also differ in their properties from the remaining SSOGs. Our results challenge the notion that external elements are the dominant source of prokaryotic genetic novelty and will enable future studies into the biological role and relevance of species-specific genes in the human gut.
Collapse
Affiliation(s)
- Nikolaos Vakirlis
- Institute For Fundamental Biomedical Research, B.S.R.C. "Alexander Fleming," Vari 166 72, Greece;
- Institute for General Microbiology, Kiel University, 24118 Kiel, Germany
| | - Anne Kupczok
- Bioinformatics Group, Wageningen University, 6700 PB Wageningen, The Netherlands
| |
Collapse
|
10
|
Sethi G, Varghese RP, Lakra AK, Nayak SS, Krishna R, Hwang JH. Immunoinformatics and structural aided approach to develop multi-epitope based subunit vaccine against Mycobacterium tuberculosis. Sci Rep 2024; 14:15923. [PMID: 38987613 PMCID: PMC11237054 DOI: 10.1038/s41598-024-66858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Tuberculosis is a highly contagious disease caused by Mycobacterium tuberculosis (Mtb), which is one of the prominent reasons for the death of millions worldwide. The bacterium has a substantially higher mortality rate than other bacterial diseases, and the rapid rise of drug-resistant strains only makes the situation more concerning. Currently, the only licensed vaccine BCG (Bacillus Calmette-Guérin) is ineffective in preventing adult pulmonary tuberculosis prophylaxis and latent tuberculosis re-activation. Therefore, there is a pressing need to find novel and safe vaccines that provide robust immune defense and have various applications. Vaccines that combine epitopes from multiple candidate proteins have been shown to boost immunity against Mtb infection. This study applies an immunoinformatic strategy to generate an adequate multi-epitope immunization against Mtb employing five antigenic proteins. Potential B-cell, cytotoxic T lymphocyte, and helper T lymphocyte epitopes were speculated from the intended proteins and coupled with 50 s ribosomal L7/L12 adjuvant, and the vaccine was constructed. The vaccine's physicochemical profile demonstrates antigenic, soluble, and non-allergic. In the meantime, docking, molecular dynamics simulations, and essential dynamics analysis revealed that the multi-epitope vaccine structure interacted strongly with Toll-like receptors (TLR2 and TLR3). MM-PBSA analysis was performed to ascertain the system's intermolecular binding free energies accurately. The immune simulation was applied to the vaccine to forecast its immunogenic profile. Finally, in silico cloning was used to validate the vaccine's efficacy. The immunoinformatics analysis suggests the multi-epitope vaccine could induce specific immune responses, making it a potential candidate against Mtb. However, validation through the in-vivo study of the developed vaccine is essential to assess its efficacy and immunogenicity profile, which will assure active protection against Mtb.
Collapse
Affiliation(s)
- Guneswar Sethi
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, Republic of Korea
- Animal Model Research Group, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea
| | | | - Avinash Kant Lakra
- Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | | | - Ramadas Krishna
- Department of Bioinformatics, Pondicherry University, Puducherry, 605014, India.
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, 30 Baehak 1-gil, Jeonguep, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
11
|
Aktürk Dizman Y. Analysis of codon usage bias of exonuclease genes in invertebrate iridescent viruses. Virology 2024; 593:110030. [PMID: 38402641 DOI: 10.1016/j.virol.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Invertebrate iridescent viruses (IIVs) are double-stranded DNA viruses that belong to the Iridoviridae family. IIVs result diseases that vary in severity from subclinical to lethal in invertebrate hosts. Codon usage bias (CUB) analysis is a versatile method for comprehending the genetic and evolutionary aspects of species. In this study, we analyzed the CUB in 10 invertebrate iridescent viruses exonuclease genes by calculating and comparing the nucleotide contents, effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and others. The results revealed that IIVs exonuclease genes are rich in A/T. The ENC analysis displayed a low codon usage bias in IIVs exonuclease genes. ENC-plot, neutrality plot, and parity rule 2 plot demonstrated that besides mutational pressure, other factors like natural selection, dinucleotide content, and aromaticity also contributed to CUB. The findings could enhance our understanding of the evolution of IIVs exonuclease genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye.
| |
Collapse
|
12
|
Pouresmaeil M, Azizi-Dargahlou S. Investigation of CaMV-host co-evolution through synonymous codon pattern. J Basic Microbiol 2024; 64:e2300664. [PMID: 38436477 DOI: 10.1002/jobm.202300664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/20/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Cauliflower mosaic virus (CaMV) has a double-stranded DNA genome and is globally distributed. The phylogeny tree of 121 CaMV isolates was categorized into two primary groups, with Iranian isolates showing the greatest genetic variations. Nucleotide A demonstrated the highest percentage (36.95%) in the CaMV genome and the dinucleotide odds ratio analysis revealed that TC dinucleotide (1.34 ≥ 1.23) and CG dinucleotide (0.63 ≤ 0.78) are overrepresented and underrepresented, respectively. Relative synonymous codon usage (RSCU) analysis confirmed codon usage bias in CaMV and its hosts. Brassica oleracea and Brassica rapa, among the susceptible hosts of CaMV, showed a codon adaptation index (CAI) value above 0.8. Additionally, relative codon deoptimization index (RCDI) results exhibited the highest degree of deoptimization in Raphanus sativus. These findings suggest that the genes of CaMV underwent codon adaptation with its hosts. Among the CaMV open reading frames (ORFs), genes that produce reverse transcriptase and virus coat proteins showed the highest CAI value of 0.83. These genes are crucial for the creation of new virion particles. The results confirm that CaMV co-evolved with its host to ensure the optimal expression of its genes in the hosts, allowing for easy infection and effective spread. To detect the force behind codon usage bias, an effective number of codons (ENC)-plot and neutrality plot were conducted. The results indicated that natural selection is the primary factor influencing CaMV codon usage bias.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Shahnam Azizi-Dargahlou
- Agricultural Biotechnology, Seed and Plant Certification and Registration Institute, Ardabil Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
13
|
Kaushik R, Kumar N, Yadav P, Sircar S, Shete-Aich A, Singh A, Tomar S, Launey T, Malik YS. Comprehensive Genomics Investigation of Neboviruses Reveals Distinct Codon Usage Patterns and Host Specificity. Microorganisms 2024; 12:696. [PMID: 38674640 PMCID: PMC11052288 DOI: 10.3390/microorganisms12040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Neboviruses (NeVs) from the Caliciviridae family have been linked to enteric diseases in bovines and have been detected worldwide. As viruses rely entirely on the cellular machinery of the host for replication, their ability to thrive in a specific host is greatly impacted by the specific codon usage preferences. Here, we systematically analyzed the codon usage bias in NeVs to explore the genetic and evolutionary patterns. Relative Synonymous Codon Usage and Effective Number of Codon analyses indicated a marginally lower codon usage bias in NeVs, predominantly influenced by the nucleotide compositional constraints. Nonetheless, NeVs showed a higher codon usage bias for codons containing G/C at the third codon position. The neutrality plot analysis revealed natural selection as the primary factor that shaped the codon usage bias in both the VP1 (82%) and VP2 (57%) genes of NeVs. Furthermore, the NeVs showed a highly comparable codon usage pattern to bovines, as reflected through Codon Adaptation Index and Relative Codon Deoptimization Index analyses. Notably, yak NeVs showed considerably different nucleotide compositional constraints and mutational pressure compared to bovine NeVs, which appear to be predominantly host-driven. This study sheds light on the genetic mechanism driving NeVs' adaptability, evolution, and fitness to their host species.
Collapse
Affiliation(s)
- Rahul Kaushik
- Biotechnology Research Center, Technology Innovation Institute, Masdar City, Abu Dhabi P.O. Box 9639, United Arab Emirates;
| | - Naveen Kumar
- Diagnostics and Vaccines Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462021, Madhya Pradesh, India;
| | - Pragya Yadav
- Maximum Containment Facility, ICMR—National Institute of Virology, Pune 411001, Maharashtra, India; (P.Y.); (A.S.-A.)
| | - Shubhankar Sircar
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Anita Shete-Aich
- Maximum Containment Facility, ICMR—National Institute of Virology, Pune 411001, Maharashtra, India; (P.Y.); (A.S.-A.)
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (A.S.); (S.T.)
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (A.S.); (S.T.)
| | - Thomas Launey
- Biotechnology Research Center, Technology Innovation Institute, Masdar City, Abu Dhabi P.O. Box 9639, United Arab Emirates;
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141004, Punjab, India
| |
Collapse
|
14
|
Paremskaia AI, Kogan AA, Murashkina A, Naumova DA, Satish A, Abramov IS, Feoktistova SG, Mityaeva ON, Deviatkin AA, Volchkov PY. Codon-optimization in gene therapy: promises, prospects and challenges. Front Bioeng Biotechnol 2024; 12:1371596. [PMID: 38605988 PMCID: PMC11007035 DOI: 10.3389/fbioe.2024.1371596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Codon optimization has evolved to enhance protein expression efficiency by exploiting the genetic code's redundancy, allowing for multiple codon options for a single amino acid. Initially observed in E. coli, optimal codon usage correlates with high gene expression, which has propelled applications expanding from basic research to biopharmaceuticals and vaccine development. The method is especially valuable for adjusting immune responses in gene therapies and has the potenial to create tissue-specific therapies. However, challenges persist, such as the risk of unintended effects on protein function and the complexity of evaluating optimization effectiveness. Despite these issues, codon optimization is crucial in advancing gene therapeutics. This study provides a comprehensive review of the current metrics for codon-optimization, and its practical usage in research and clinical applications, in the context of gene therapy.
Collapse
Affiliation(s)
- Anastasiia Iu Paremskaia
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Anna A. Kogan
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Anastasiia Murashkina
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Daria A. Naumova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Anakha Satish
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Ivan S. Abramov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
- The MCSC named after A. S. Loginov, Moscow, Russia
| | - Sofya G. Feoktistova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Olga N. Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Andrei A. Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - Pavel Yu Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
- The MCSC named after A. S. Loginov, Moscow, Russia
| |
Collapse
|
15
|
Yang J, Ye Y, Yi R, Bi D, Zhang S, Han S, Kan X. A new perspective on codon usage, selective pressure, and phylogenetic implications of the plastomes in the Telephium clade (Crassulaceae). Gene 2024; 892:147871. [PMID: 37797779 DOI: 10.1016/j.gene.2023.147871] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The Telephium clade of the Crassulaceae family contains many medicinal, ornamental, and ecologically restorative plants. However, the phylogenetic relationships within the clade remain debated, and comprehensive analyses of codon usage and selection pressure in Telephium plastomes are limited. In this study, we assembled and annotated four plastomes and performed extensive analyses. The plastomes exhibited a typical quadripartite structure and high conservation. The lengths ranged from 151,357 bp to 151,641 bp with 134 genes identified. The GC content was the highest within IR, followed by LSC, and lowest in the SSC region. Meanwhile, a unique inversion was observed within the LSC region of Meterostachys sikokianus. Polymorphisms analysis revealed minimum nucleotide diversity in the IR regions, with over ten highly polymorphic regions identified. Phylogenetically, two subclades formed within the monophyletic Telephium clade, with Umbilicus as the sister group to the remaining Hylotelephium subclade members. Notably, no significant positive selection was found among the 79 plastid genes, which showed varying evolutionary patterns. However, 19 genes contained codons under positive selection. The specific functions of these sites require further investigation. Synonymous codon usage was biased and conserved across the tested plastomes, shaped by natural selection, mutations and other factors of varying influence. We also identified 34 taxon-specific codon aversion motifs from 49 plastid genes. Our plastomic analyses elucidate phylogenetic relationships and evolutionary patterns in this medicinal clade, providing a foundation for further research on these ecologically and pharmaceutically important plants.
Collapse
Affiliation(s)
- Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - De Bi
- College of Landscape Engineering, Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
16
|
Kumari R S, Sethi G, Krishna R. Development of multi-epitope based subunit vaccine against Mycobacterium Tuberculosis using immunoinformatics approach. J Biomol Struct Dyn 2023; 42:12365-12384. [PMID: 37880982 DOI: 10.1080/07391102.2023.2270065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023]
Abstract
The etiological agent of tuberculosis (TB), Mycobacterium tuberculosis, is a deadly pathogen that adapts to thrive within the host. Since 2020, the COVID-19 pandemic has had colossal health, societal, and economic consequences, which have affected the reporting of new incidences and mortality cases of TB. As per the WHO 2022 report, 10.6 million people were diagnosed with TB, and 1.6 million died worldwide. The increase in resistant strains of tuberculosis is making it more burdensome to reach the End TB strategy. A reliable and efficient TB vaccine that may avert both primary infection and recurrence of latent TB in adults and adolescents is of the utmost importance. In this study, we used computational techniques to predict the ability of HLA molecules to display epitopes for six TB proteins (PPE68, PE_PGRS17, EspC, LDT4, RpfD, and RpfC) to design the multi-epitope subunit vaccine. From the aimed proteins, the potential B-cell, helper T lymphocyte (HTL), and cytotoxic T lymphocyte (CTL) epitopes were predicted and linked together with LPA adjuvant, and the vaccine was designed. The vaccine's physicochemical analysis demonstrates that it is non-allergic, non-toxic, and antigenic. Then, the vaccine structure was predicted, improved, and verified to yield the optimal structure. The developed vaccine's binding mechanism with distinct immunogenic receptors (Tlr2 and MHC-II) was assessed utilizing molecular docking. The molecular dynamic simulation and MMPBSA analysis were performed to comprehend the complexes' dynamics and stability. The immune simulation was utilized to anticipate the vaccine's immunogenic attributes. In silico cloning was employed to demonstrate the efficient expression of the designed vaccine in E. coli as a host. Moreover, in vitro and in vivo animal testing is required to determine the efficacy of the in silico developed vaccine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Savita Kumari R
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Guneswar Sethi
- Department of Bioinformatics, Pondicherry University, Puducherry, India
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Republic of Korea
| | - Ramadas Krishna
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
17
|
Yao H, Li T, Ma Z, Wang X, Xu L, Zhang Y, Cai Y, Tang Z. Codon usage pattern of the ancestor of green plants revealed through Rhodophyta. BMC Genomics 2023; 24:538. [PMID: 37697255 PMCID: PMC10496412 DOI: 10.1186/s12864-023-09586-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
Rhodophyta are among the closest known relatives of green plants. Studying the codons of their genomes can help us understand the codon usage pattern and characteristics of the ancestor of green plants. By studying the codon usage pattern of all available red algae, it was found that although there are some differences among species, high-bias genes in most red algae prefer codons ending with GC. Correlation analysis, Nc-GC3s plots, parity rule 2 plots, neutrality plot analysis, differential protein region analysis and comparison of the nucleotide content of introns and flanking sequences showed that the bias phenomenon is likely to be influenced by local mutation pressure and natural selection, the latter of which is the dominant factor in terms of translation accuracy and efficiency. It is worth noting that selection on translation accuracy could even be detected in the low-bias genes of individual species. In addition, we identified 15 common optimal codons in seven red algae except for G. sulphuraria for the first time, most of which were found to be complementary and bound to the tRNA genes with the highest copy number. Interestingly, tRNA modification was found for the highly degenerate amino acids of all multicellular red algae and individual unicellular red algae, which indicates that highly biased genes tend to use modified tRNA in translation. Our research not only lays a foundation for exploring the characteristics of codon usage of the red algae as green plant ancestors, but will also facilitate the design and performance of transgenic work in some economic red algae in the future.
Collapse
Affiliation(s)
- Huipeng Yao
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China.
| | - Tingting Li
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Zheng Ma
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xiyuan Wang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Lixiao Xu
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yuxin Zhang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yi Cai
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Zizhong Tang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| |
Collapse
|
18
|
Wienecke AN, Barry ML, Pollard DA. Natural variation in codon bias and mRNA folding strength interact synergistically to modify protein expression in Saccharomyces cerevisiae. Genetics 2023; 224:iyad113. [PMID: 37310925 PMCID: PMC10411576 DOI: 10.1093/genetics/iyad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/10/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Codon bias and mRNA folding strength (mF) are hypothesized molecular mechanisms by which polymorphisms in genes modify protein expression. Natural patterns of codon bias and mF across genes as well as effects of altering codon bias and mF suggest that the influence of these 2 mechanisms may vary depending on the specific location of polymorphisms within a transcript. Despite the central role codon bias and mF may play in natural trait variation within populations, systematic studies of how polymorphic codon bias and mF relate to protein expression variation are lacking. To address this need, we analyzed genomic, transcriptomic, and proteomic data for 22 Saccharomyces cerevisiae isolates, estimated protein accumulation for each allele of 1,620 genes as the log of protein molecules per RNA molecule (logPPR), and built linear mixed-effects models associating allelic variation in codon bias and mF with allelic variation in logPPR. We found that codon bias and mF interact synergistically in a positive association with logPPR, and this interaction explains almost all the effects of codon bias and mF. We examined how the locations of polymorphisms within transcripts influence their effects and found that codon bias primarily acts through polymorphisms in domain-encoding and 3' coding sequences, while mF acts most significantly through coding sequences with weaker effects from untranslated regions. Our results present the most comprehensive characterization to date of how polymorphisms in transcripts influence protein expression.
Collapse
Affiliation(s)
- Anastacia N Wienecke
- Biology Department, Western Washington University, Bellingham, WA 98225, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Margaret L Barry
- Biology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Daniel A Pollard
- Biology Department, Western Washington University, Bellingham, WA 98225, USA
| |
Collapse
|
19
|
Anwar AM, Khodary SM, Ahmed EA, Osama A, Ezzeldin S, Tanios A, Mahgoub S, Magdeldin S. gtAI: an improved species-specific tRNA adaptation index using the genetic algorithm. Front Mol Biosci 2023; 10:1218518. [PMID: 37469707 PMCID: PMC10352787 DOI: 10.3389/fmolb.2023.1218518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
The tRNA adaptation index (tAI) is a translation efficiency metric that considers weighted values (S ij values) for codon-tRNA wobble interaction efficiencies. The initial implementation of the tAI had significant flaws. For instance, generated S ij weights were optimized based on gene expression in Saccharomyces cerevisiae, which is expected to vary among different species. Consequently, a species-specific approach (stAI) was developed to overcome those limitations. However, the stAI method employed a hill climbing algorithm to optimize the S ij weights, which is not ideal for obtaining the best set of S ij weights because it could struggle to find the global maximum given a complex search space, even after using different starting positions. In addition, it did not perform well in computing the tAI of fungal genomes in comparison with the original implementation. We developed a novel approach named genetic tAI (gtAI) implemented as a Python package (https://github.com/AliYoussef96/gtAI), which employs a genetic algorithm to obtain the best set of S ij weights and follows a new codon usage-based workflow that better computes the tAI of genomes from the three domains of life. The gtAI has significantly improved the correlation with the codon adaptation index (CAI) and the prediction of protein abundance (empirical data) compared to the stAI.
Collapse
Affiliation(s)
- Ali Mostafa Anwar
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Saif M. Khodary
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Eman Ali Ahmed
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Shahd Ezzeldin
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Anthony Tanios
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Sebaey Mahgoub
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Basic Research Department, Children’s Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
20
|
Moin AT, Ullah MA, Patil RB, Faruqui NA, Araf Y, Das S, Uddin KMK, Hossain MS, Miah MF, Moni MA, Chowdhury DUS, Islam S. A computational approach to design a polyvalent vaccine against human respiratory syncytial virus. Sci Rep 2023; 13:9702. [PMID: 37322049 PMCID: PMC10272159 DOI: 10.1038/s41598-023-35309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Human Respiratory Syncytial Virus (RSV) is one of the leading causes of lower respiratory tract infections (LRTI), responsible for infecting people from all age groups-a majority of which comprises infants and children. Primarily, severe RSV infections are accountable for multitudes of deaths worldwide, predominantly of children, every year. Despite several efforts to develop a vaccine against RSV as a potential countermeasure, there has been no approved or licensed vaccine available yet, to control the RSV infection effectively. Therefore, through the utilization of immunoinformatics tools, a computational approach was taken in this study, to design a multi-epitope polyvalent vaccine against two major antigenic subtypes of RSV, RSV-A and RSV-B. Potential predictions of the T-cell and B-cell epitopes were followed by extensive tests of antigenicity, allergenicity, toxicity, conservancy, homology to human proteome, transmembrane topology, and cytokine-inducing ability. The peptide vaccine was modeled, refined, and validated. Molecular docking analysis with specific Toll-like receptors (TLRs) revealed excellent interactions with suitable global binding energies. Additionally, molecular dynamics (MD) simulation ensured the stability of the docking interactions between the vaccine and TLRs. Mechanistic approaches to imitate and predict the potential immune response generated by the administration of vaccines were determined through immune simulations. Subsequent mass production of the vaccine peptide was evaluated; however, there remains a necessity for further in vitro and in vivo experiments to validate its efficacy against RSV infections.
Collapse
Affiliation(s)
- Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh.
| | - Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Rajesh B Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society's, Sinhgad College of Pharmacy, Pune, Maharashtra, India
| | - Nairita Ahsan Faruqui
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sowmen Das
- Department of Computer Science and Engineering, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Khaza Md Kapil Uddin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Md Shakhawat Hossain
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Md Faruque Miah
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohammad Ali Moni
- Bone Biology Division, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Artificial Intelligence and Data Science, Faculty of Health and Behavioural Sciences, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Dil Umme Salma Chowdhury
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh.
| | - Saiful Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chattogram, Bangladesh.
| |
Collapse
|
21
|
Das KC, Konhar R, Biswal DK. Fasciola gigantica vaccine construct: an in silico approach towards identification and design of a multi-epitope subunit vaccine using calcium binding EF-hand proteins. BMC Immunol 2023; 24:1. [PMID: 36604615 PMCID: PMC9813462 DOI: 10.1186/s12865-022-00535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
Continuous attempts have been made to pinpoint candidate vaccine molecules and evaluate their effectiveness in order to commercialise such vaccines for the treatment of tropical fascioliasis in livestock. The pathophysiology of fascioliasis can be related to liver damage brought on by immature flukes that migrate and feed, as well as immunological reactions to chemicals produced by the parasites and alarm signals brought on by tissue damage. Future research should, in our opinion, concentrate on the biology of invasive parasites and the resulting immune responses, particularly in the early stages of infection. The goal of the current study was to use the calcium-binding proteins from F. gigantica to create a multi-epitope subunit vaccine. The adjuvant, B-cell epitopes, CTL epitopes, and HTL epitopes that make up the vaccine construct are all connected by certain linkers. The antigenicity, allergenicity, and physiochemical properties of the vaccine construct were examined. The vaccine construct was docked with toll-like receptor 2, and simulations of the molecular dynamics of the complex's stability, interaction, and dynamics were run. After performing in silico cloning and immunosimulation, it was discovered that the construct was suitable for further investigation. New vaccination technologies and adjuvant development are advancing our food safety procedures since vaccines are seen as safe and are accepted by the user community. This research is also applicable to the F. hepatica system.
Collapse
Affiliation(s)
- Kanhu Charan Das
- grid.412227.00000 0001 2173 057XBioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya India
| | - Ruchishree Konhar
- grid.412227.00000 0001 2173 057XBioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya India ,grid.417639.eInformatics and Big Data, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Devendra Kumar Biswal
- grid.412227.00000 0001 2173 057XBioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya India
| |
Collapse
|
22
|
Sethi G, Varghese RP, Krishna R. Identification and design of a multi-epitope subunit vaccine against the opportunistic pathogen Staphylococcus epidermidis: An immunoinformatics approach. J Biomol Struct Dyn 2022; 40:13859-13871. [PMID: 34726118 DOI: 10.1080/07391102.2021.1997819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Staphylococcus epidermidis is one of the major causes of nosocomial infections around the globe that leads to a high rate of mortality and morbidity in both immunocompromised patients and preterm infants. Despite the alarming increase in multi-drug resistance, no promising vaccines are readily available against this pathogen. Thus, the present study is focused on designing a multi-epitope subunit vaccine using five antigenic proteins of S. epidermidis through an immunoinformatics approach. The final vaccine comprised B-cell, HTL, and CTL binding epitopes followed by Lipoprotein LprA adjuvant added at N-terminal to augment the immunogenicity. Physicochemical assessment of the vaccine reveals the antigenic and non-allergic nature. The vaccine structure was designed, refined, validated, and disulfide engineered to obtain the best model. Molecular docking and dynamics simulation of the proposed vaccine with toll-like receptors (TLR-2 and TLR-4) showed strong and stable interactions. MM-PBSA analysis was implemented as an efficient tool to determine the intermolecular binding free energies of the system. The vaccine was subjected to immune simulation to predict its immunogenic profile. In silico cloning suggested that the proposed vaccine can be expressed efficiently in E.coli. Furthermore, in vivo animal experiment is needed to determine the effectiveness of the in silico designed vaccine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Guneswar Sethi
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| | | | - Ramadas Krishna
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
23
|
Sahoo S, Rakshit R. The pattern of coding sequences in the chloroplast genome of Atropa belladonna and a comparative analysis with other related genomes in the nightshade family. Genomics Inform 2022; 20:e43. [PMID: 36617650 PMCID: PMC9847383 DOI: 10.5808/gi.22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
Atropa belladonna is a valuable medicinal plant and a commercial source of tropane alkaloids, which are frequently utilized in therapeutic practice. In this study, bioinformaticmethodologies were used to examine the pattern of coding sequences and the factors thatmight influence codon usage bias in the chloroplast genome of Atropa belladonna andother nightshade genomes. The chloroplast engineering being a promising field in modernbiotechnology, the characterization of chloroplast genome is very important. The resultsrevealed that the chloroplast genomes of Nicotiana tabacum, Solanum lycopersicum, Capsicum frutescens, Datura stramonium, Lyciumbarbarum, Solanum melongena, and Solanumtuberosum exhibited comparable codon usage patterns. In these chloroplast genomes, weobserved a weak codon usage bias. According to the correspondence analysis, the genesisof the codon use bias in these chloroplast genes might be explained by natural selection,directed mutational pressure, and other factors. GC12 and GC3S were shown to have nomeaningful relationship. Further research revealed that natural selection primarily shapedthe codon usage in A. belladonna and other nightshade genomes for translational efficiency. The sequencing properties of these chloroplast genomes were also investigated by investing the occurrences of palindromes and inverted repeats, which would be useful forfuture research on medicinal plants.
Collapse
Affiliation(s)
- Satyabrata Sahoo
- Department of Physics, Dhruba Chand Halder College, Dakshin Barasat 743372, India,*Corresponding author E-mail:
| | - Ria Rakshit
- Department of Botany, Baruipur College, Baruipur 743610, India
| |
Collapse
|
24
|
Almutairi MM, Almotairy HM. Analysis of Heat Shock Proteins Based on Amino Acids for the Tomato Genome. Genes (Basel) 2022; 13:2014. [PMID: 36360251 PMCID: PMC9690137 DOI: 10.3390/genes13112014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 10/28/2023] Open
Abstract
This research aimed to investigate heat shock proteins in the tomato genome through the analysis of amino acids. The highest length among sequences was found in seq19 with 3534 base pairs. This seq19 was reported and contained a family of proteins known as HsfA that have a domain of transcriptional activation for tolerance to heat and other abiotic stresses. The values of the codon adaptation index (CAI) ranged from 0.80 in Seq19 to 0.65 in Seq10, based on the mRNA of heat shock proteins for tomatoes. Asparagine (AAT, AAC), aspartic acid (GAT, GAC), phenylalanine (TTT, TTC), and tyrosine (TAT, TAC) have relative synonymous codon usage (RSCU) values bigger than 0.5. In modified relative codon bias (MRCBS), the high gene expressions of the amino acids under heat stress were histidine, tryptophan, asparagine, aspartic acid, lysine, phenylalanine, isoleucine, cysteine, and threonine. RSCU values that were less than 0.5 were considered rare codons that affected the rate of translation, and thus selection could be effective by reducing the frequency of expressed genes under heat stress. The normal distribution of RSCU shows about 68% of the values drawn from the standard normal distribution were within 0.22 and -0.22 standard deviations that tend to cluster around the mean. The most critical component based on principal component analysis (PCA) was the RSCU. These findings would help plant breeders in the development of growth habits for tomatoes during breeding programs.
Collapse
Affiliation(s)
- Meshal M. Almutairi
- National Center of Agricultural Technology, Sustainability and Environment, King Abdulaziz City for Science and Technology KACST, Box 6086, Riyadh 11442, Saudi Arabia
| | | |
Collapse
|
25
|
Pourseif MM, Masoudi-Sobhanzadeh Y, Azari E, Parvizpour S, Barar J, Ansari R, Omidi Y. Self-amplifying mRNA vaccines: Mode of action, design, development and optimization. Drug Discov Today 2022; 27:103341. [PMID: 35988718 DOI: 10.1016/j.drudis.2022.103341] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
The mRNA-based vaccines are quality-by-design (QbD) immunotherapies that provide safe, tunable, scalable, streamlined and potent treatment possibilities against different types of diseases. The self-amplifying mRNA (saRNA) vaccines, as a highly advantageous class of mRNA vaccines, are inspired by the intracellular self-multiplication nature of some positive-sense RNA viruses. Such vaccine platforms provide a relatively increased expression level of vaccine antigen(s) together with self-adjuvanticity properties. Lined with the QbD saRNA vaccines, essential optimizations improve the stability, safety, and immunogenicity of the vaccine constructs. Here, we elaborate on the concepts and mode-of-action of mRNA and saRNA vaccines, articulate the potential limitations or technical bottlenecks, and explain possible solutions or optimization methods in the process of their design and development.
Collapse
Affiliation(s)
- Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosef Masoudi-Sobhanzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Azari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rais Ansari
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA.
| |
Collapse
|
26
|
Bansal S, Mallikarjuna MG, Balamurugan A, Nayaka SC, Prakash G. Composition and Codon Usage Pattern Results in Divergence of the Zinc Binuclear Cluster ( Zn(II)2Cys6) Sequences among Ascomycetes Plant Pathogenic Fungi. J Fungi (Basel) 2022; 8:1134. [PMID: 36354901 PMCID: PMC9694491 DOI: 10.3390/jof8111134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 07/29/2023] Open
Abstract
Zinc binuclear cluster proteins (ZBC; Zn(II)2Cys6) are unique to the fungi kingdom and associated with a series of functions, viz., the utilization of macromolecules, stress tolerance, and most importantly, host-pathogen interactions by imparting virulence to the pathogen. Codon usage bias (CUB) is the phenomenon of using synonymous codons in a non-uniform fashion during the translation event, which has arisen because of interactions among evolutionary forces. The Zn(II)2Cys6 coding sequences from nine Ascomycetes plant pathogenic species and model system yeast were analysed for compositional and codon usage bias patterns. The clustering analysis diverged the Ascomycetes fungi into two clusters. The nucleotide compositional and relative synonymous codon usage (RSCU) analysis indicated GC biasness toward Ascomycetes fungi compared with the model system S. cerevisiae, which tends to be AT-rich. Further, plant pathogenic Ascomycetes fungi belonging to cluster-2 showed a higher number of GC-rich high-frequency codons than cluster-1 and was exclusively AT-rich in S. cerevisiae. The current investigation also showed the mutual effect of the two evolutionary forces, viz. natural selection and compositional constraints, on the CUB of Zn(II)2Cys6 genes. The perseverance of GC-rich codons of Zn(II)2Cys6 in Ascomycetes could facilitate the invasion process. The findings of the current investigation show the role of CUB and nucleotide composition in the evolutionary divergence of Ascomycetes plant pathogens and paves the way to target specific codons and sequences to modulate host-pathogen interactions through genome editing and functional genomics tools.
Collapse
Affiliation(s)
- Shilpi Bansal
- Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | | | - Alexander Balamurugan
- Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | - S. Chandra Nayaka
- Department of Studies in Applied Botany and Biotechnology, University of Mysore, Mysore 570005, India
| | - Ganesan Prakash
- Division of Plant Pathology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
27
|
Korenskaia AE, Matushkin YG, Lashin SA, Klimenko AI. Bioinformatic Assessment of Factors Affecting the Correlation between Protein Abundance and Elongation Efficiency in Prokaryotes. Int J Mol Sci 2022; 23:11996. [PMID: 36233299 PMCID: PMC9570070 DOI: 10.3390/ijms231911996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Protein abundance is crucial for the majority of genetically regulated cell functions to act properly in prokaryotic organisms. Therefore, developing bioinformatic methods for assessing the efficiency of different stages of gene expression is of great importance for predicting the actual protein abundance. One of these steps is the evaluation of translation elongation efficiency based on mRNA sequence features, such as codon usage bias and mRNA secondary structure properties. In this study, we have evaluated correlation coefficients between experimentally measured protein abundance and predicted elongation efficiency characteristics for 26 prokaryotes, including non-model organisms, belonging to diverse taxonomic groups The algorithm for assessing elongation efficiency takes into account not only codon bias, but also number and energy of secondary structures in mRNA if those demonstrate an impact on predicted elongation efficiency of the ribosomal protein genes. The results show that, for a number of organisms, secondary structures are a better predictor of protein abundance than codon usage bias. The bioinformatic analysis has revealed several factors associated with the value of the correlation coefficient. The first factor is the elongation efficiency optimization type-the organisms whose genomes are optimized for codon usage only have significantly higher correlation coefficients. The second factor is taxonomical identity-bacteria that belong to the class Bacilli tend to have higher correlation coefficients among the analyzed set. The third is growth rate, which is shown to be higher for the organisms with higher correlation coefficients between protein abundance and predicted translation elongation efficiency. The obtained results can be useful for further improvement of methods for protein abundance prediction.
Collapse
Affiliation(s)
- Aleksandra E. Korenskaia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk National Research State University, Pirogova St. 1, 630090 Novosibirsk, Russia
| | - Yury G. Matushkin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk National Research State University, Pirogova St. 1, 630090 Novosibirsk, Russia
| | - Sergey A. Lashin
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk National Research State University, Pirogova St. 1, 630090 Novosibirsk, Russia
| | - Alexandra I. Klimenko
- Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
| |
Collapse
|
28
|
Tamjid N, Eskandari S, Karimi Z, Nezafat N, Negahdaripour M. Vaccinomics strategy to design an epitope peptide vaccine against Helicobacter pylori. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Wang J, Zhao R, Zhang Z. Complete chloroplast genome sequences of Acanthocalyx alba and Acanthocalyx nepalensis subsp. delavayi (Caprifoliaceae). Mitochondrial DNA B Resour 2022; 7:1716-1718. [PMID: 36188667 PMCID: PMC9518610 DOI: 10.1080/23802359.2022.2124824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the chloroplast genomes of Acanthocalyx alba (Hand.-Mazz., 1925) and Acanthocalyx nepalensis subsp. delavayi (Franchet, 1885) were sequenced, and their total lengths were 148,720 bp and 149,253 bp, respectively. The A. alba genome contained two inverted repeat regions (IRs) of 21,849 bp, a large single-copy region (LSC) of 89,084 bp, and a small single-copy region (SSC) of 15,938 bp, whereas A. nepalensis subsp. delavayi contained two IRs of 21,736 bp, one LSC of 89,034 bp, and one SSC of 16,747 bp. The chloroplast genomes of both A. alba and A. nepalensis subsp. delavayi contained 109 genes, including 72 mRNA, 33 tRNA, and four rRNA genes. Phylogenetic analysis suggested that A. alba is in a clade with A. nepalensis subsp. delavayi. This study provides useful data for further phylogenetic studies of A. alba and A. nepalensis subsp. delavayi.
Collapse
Affiliation(s)
- Junjun Wang
- School of Pharmacy, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Chengdu, China
| | - Riza Zhao
- School of Pharmacy, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Chengdu, China
| | - Zhifeng Zhang
- School of Pharmacy, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology Engineering Laboratory, Chengdu, China
| |
Collapse
|
30
|
Dey S, Guchhait KC, Manna T, Panda AK, Patra A, Mondal SK, Ghosh C. Evolutionary and compositional analysis of streptokinase including its interaction with plasminogen: An in silico approach. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Decoding molecular factors shaping human angiotensin converting enzyme 2 receptor usage by spike glycoprotein in lineage B beta-coronaviruses. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166514. [PMID: 35932890 PMCID: PMC9349031 DOI: 10.1016/j.bbadis.2022.166514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
Abstract
Acquiring the human ACE2 receptor usage trait enables the coronaviruses to spill over to humans. However, the origin of the ACE2 usage trait in coronaviruses is poorly understood. Using a multi-disciplinary approach combining evolutionary bioinformatics and molecular dynamics simulation, we decode the principal driving force behind human ACE2 receptor recognition in coronaviruses. Genomic content, evolutionary divergence, and codon usage bias analysis reveal that SARS-CoV2 is evolutionarily divergent from other human ACE2-user CoVs, indicating that SARS-CoV2 originates from a different lineage. Sequence analysis shows that all the human ACE2-user CoVs contain two insertions in the receptor-binding motif (RBM) that directly interact with ACE2. However, the insertion sequences in SARS-CoV2 are divergent from other ACE2-user CoVs, implicating their different recombination origins. The potential of mean force calculations reveals that the high binding affinity of SARS-CoV2 RBD to human ACE2 is primarily attributed to its ability to form a higher number of hydrogen bonds than the other ACE2-user CoVs. The adaptive branch-site random effects likelihood method identifies positive selection bias across the ACE2 user CoVs lineages. Recombination and selection forces shape the spike evolution in human ACE2-using beta-CoVs to optimize the interfacial hydrogen bonds between RBD and ACE2. However, these evolutionary forces work within the constraints of nucleotide composition, ensuring optimum codon adaptation of the spike (S) gene within the host cell.
Collapse
|
32
|
Masłowska-Górnicz A, van den Bosch MRM, Saccenti E, Suarez-Diez M. A large-scale analysis of codon usage bias in 4868 bacterial genomes shows association of codon adaptation index with GC content, protein functional domains and bacterial phenotypes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194826. [PMID: 35605953 DOI: 10.1016/j.bbagrm.2022.194826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Multiple synonymous codons code for the same amino acid, resulting in the degeneracy of the genetic code and in the preferred used of some codons called codon bias usage (CBU). We performed a large-scale analysis of codon usage bias analysing the distribution of the codon adaptation index (CAI) and the codon relative adaptiveness index (RA) in 4868 bacterial genomes. We found that CAI values differ significantly between protein functional domains and part of the protein outside domains and show how CAI, GC content and preferred usage of polymerase III alpha subunits are related. Additionally, we give evidence of the association between CAI and bacterial phenotypes.
Collapse
Affiliation(s)
- Anna Masłowska-Górnicz
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Melanie R M van den Bosch
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
33
|
Wang X, Sun J, Zheng Y, Xie F. Dispersion of synonymous codon usage patterns in hepatitis E virus genomes derived from various hosts. J Basic Microbiol 2022; 62:975-983. [PMID: 35778820 DOI: 10.1002/jobm.202200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/01/2022] [Accepted: 06/11/2022] [Indexed: 11/09/2022]
Abstract
Hepatitis E virus (HEV) is an important zoonotic pathogen infecting a wide range of host species. It has a positive-sense, single-stranded RNA genome encoding three open reading frames (ORFs). Synonymous codon usages of viruses essentially determine their survival and adaptation to susceptible hosts. To better understand the interplay between the ever-expanding host range and synonymous codon usages of HEV, we quantified the dispersion of synonymous codon usages of HEV genomes isolated from different hosts via Vs calculation and information entropy. HEV ORFs show species-specific synonymous codon usage patterns. Ruminant-derived HEV ORFs own the most synonymous codons with stable usage patterns (Vs value <0.1) which leads to the stable overall codon usage patterns (R value being close to zero). Swine-derived HEV ORFs own more concentrated synonymous codons than those from wild boar. Compared with HEV strains isolated from other hosts, the human-derived HEV exhibits a distinct pattern at the overall codon usage (R < 0). Generally, ORF1 contains more synonymous codons with stable usage patterns (Vs < 0.1) than those of ORFs 2 and 3. Moreover, ORF3 contains more synonymous codons with varied patterns (Vs > 1.0) than ORFs 1 and 2. The host factor serving as one of the evolutionary dynamics probably influences synonymous codon usage patterns of the HEV genome. Taken together, synonymous codons with stable usage patterns in ORF1 might help to sustain the infection, while that with varied usage patterns in ORF3 may facilitate cross-species infection and expand the host range.
Collapse
Affiliation(s)
- Xin Wang
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Sun
- Department of Endocrine, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yueyan Zheng
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Fuqiang Xie
- Department of Stomatology, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
34
|
Araf Y, Moin AT, Timofeev VI, Faruqui NA, Saiara SA, Ahmed N, Parvez MSA, Rahaman TI, Sarkar B, Ullah MA, Hosen MJ, Zheng C. Immunoinformatic Design of a Multivalent Peptide Vaccine Against Mucormycosis: Targeting FTR1 Protein of Major Causative Fungi. Front Immunol 2022; 13:863234. [PMID: 35720422 PMCID: PMC9204303 DOI: 10.3389/fimmu.2022.863234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Mucormycosis is a potentially fatal illness that arises in immunocompromised people due to diabetic ketoacidosis, neutropenia, organ transplantation, and elevated serum levels of accessible iron. The sudden spread of mucormycosis in COVID-19 patients engendered massive concern worldwide. Comorbidities including diabetes, cancer, steroid-based medications, long-term ventilation, and increased ferritin serum concentration in COVID-19 patients trigger favorable fungi growth that in turn effectuate mucormycosis. The necessity of FTR1 gene-encoded ferrous permease for host iron acquisition by fungi has been found in different studies recently. Thus, targeting the transit component could be a potential solution. Unfortunately, no appropriate antifungal vaccine has been constructed as of yet. To date, mucormycosis has been treated with antiviral therapy and surgical treatment only. Thus, in this study, the FTR1 protein has been targeted to design a convenient and novel epitope-based vaccine with the help of immunoinformatics against four different virulent fungal species. Furthermore, the vaccine was constructed using 8 CTL, 2 HTL, and 1 LBL epitopes that were found to be highly antigenic, non-allergenic, non-toxic, and fully conserved among the fungi under consideration. The vaccine has very reassuring stability due to its high pI value of 9.97, conclusive of a basic range. The vaccine was then subjected to molecular docking, molecular dynamics, and immune simulation studies to confirm the biological environment’s safety, efficacy, and stability. The vaccine constructs were found to be safe in addition to being effective. Finally, we used in-silico cloning to develop an effective strategy for vaccine mass production. The designed vaccine will be a potential therapeutic not only to control mucormycosis in COVID-19 patients but also be effective in general mucormycosis events. However, further in vitro, and in vivo testing is needed to confirm the vaccine’s safety and efficacy in controlling fungal infections. If successful, this vaccine could provide a low-cost and effective method of preventing the spread of mucormycosis worldwide.
Collapse
Affiliation(s)
- Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh.,Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh
| | - Abu Tayab Moin
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre, Crystallography and Photonics, Russian Academy of Sciences, Moscow, Russia
| | - Nairita Ahsan Faruqui
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Syeda Afra Saiara
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh
| | - Nafisa Ahmed
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Md Sorwer Alam Parvez
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tanjim Ishraq Rahaman
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Bishajit Sarkar
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Md Asad Ullah
- Department of Research and Development, Community of Biotechnology, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Mohammad Jakir Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
35
|
Cope AL, Shah P. Intragenomic variation in non-adaptive nucleotide biases causes underestimation of selection on synonymous codon usage. PLoS Genet 2022; 18:e1010256. [PMID: 35714134 PMCID: PMC9246145 DOI: 10.1371/journal.pgen.1010256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/30/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Patterns of non-uniform usage of synonymous codons vary across genes in an organism and between species across all domains of life. This codon usage bias (CUB) is due to a combination of non-adaptive (e.g. mutation biases) and adaptive (e.g. natural selection for translation efficiency/accuracy) evolutionary forces. Most models quantify the effects of mutation bias and selection on CUB assuming uniform mutational and other non-adaptive forces across the genome. However, non-adaptive nucleotide biases can vary within a genome due to processes such as biased gene conversion (BGC), potentially obfuscating signals of selection on codon usage. Moreover, genome-wide estimates of non-adaptive nucleotide biases are lacking for non-model organisms. We combine an unsupervised learning method with a population genetics model of synonymous coding sequence evolution to assess the impact of intragenomic variation in non-adaptive nucleotide bias on quantification of natural selection on synonymous codon usage across 49 Saccharomycotina yeasts. We find that in the absence of a priori information, unsupervised learning can be used to identify genes evolving under different non-adaptive nucleotide biases. We find that the impact of intragenomic variation in non-adaptive nucleotide bias varies widely, even among closely-related species. We show that the overall strength and direction of translational selection can be underestimated by failing to account for intragenomic variation in non-adaptive nucleotide biases. Interestingly, genes falling into clusters identified by machine learning are also physically clustered across chromosomes. Our results indicate the need for more nuanced models of sequence evolution that systematically incorporate the effects of variable non-adaptive nucleotide biases on codon frequencies.
Collapse
Affiliation(s)
- Alexander L. Cope
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States of America
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
- Human Genetics Institute of New Jersey, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
36
|
Durojaye OA, Sedzro DM, Idris MO, Yekeen AA, Fadahunsi AA, Alakanse OS. Identification of a Potential mRNA-based Vaccine Candidate against the SARS-CoV-2 Spike Glycoprotein: A Reverse Vaccinology Approach. ChemistrySelect 2022; 7:e202103903. [PMID: 35601809 PMCID: PMC9111088 DOI: 10.1002/slct.202103903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
Abstract
The emergence of the novel coronavirus (SARS-CoV-2) in December 2019 has generated a devastating global consequence which makes the development of a rapidly deployable, effective and safe vaccine candidate an imminent global health priority. The design of most vaccine candidates has been directed at the induction of antibody responses against the trimeric spike glycoprotein of SARS-CoV-2, a class I fusion protein that aids ACE2 (angiotensin-converting enzyme 2) receptor binding. A variety of formulations and vaccinology approaches are being pursued for targeting the spike glycoprotein, including simian and human replication-defective adenoviral vaccines, subunit protein vaccines, nucleic acid vaccines and whole-inactivated SARS-CoV-2. Here, we directed a reverse vaccinology approach towards the design of a nucleic acid (mRNA-based) vaccine candidate. The "YLQPRTFLL" peptide sequence (position 269-277) which was predicted to be a B cell epitope and likewise a strong binder of the HLA*A-0201 was selected for the design of the vaccine candidate, having satisfied series of antigenicity assessments. Through the codon optimization protocol, the nucleotide sequence for the vaccine candidate design was generated and targeted at the human toll-like receptor 7 (TLR7). Bioinformatics analyses showed that the sequence "UACCUGCAGCCGCGUACCUUCCUGCUG" exhibited a strong affinity and likewise was bound to a stable cavity in the TLR7 pocket. This study is therefore expected to contribute to the research efforts directed at securing definitive preventive measures against the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular DynamicsHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Department of Chemical SciencesCoal City University, EmeneEnugu StateNigeria
| | - Divine Mensah Sedzro
- MOE Key Laboratory of Membraneless Organelle and Cellular DynamicsHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | | | - Abeeb Abiodun Yekeen
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Adeola Abraham Fadahunsi
- Department of Biomedical EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Oluwaseun Suleiman Alakanse
- School of Life SciencesUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Department of BiochemistryFaculty of Life SciencesUniversity of IlorinIlorinKwara StateNigeria
| |
Collapse
|
37
|
Mostafa Anwar A, Khodary SM, Soudy M, Ahmed EA, Osama A, Ezzeldin S, Tanios A, Mahgoub S, Magdeldin S. WITHDRAWN: Robust method for calculating the tRNA adaptation index utilizing the genetic algorithm. Comput Struct Biotechnol J 2021. [DOI: 10.1016/j.csbj.2021.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
38
|
Abstract
Bacterial genomes often reflect a bias in the usage of codons. These biases are often most notable within highly expressed genes. While deviations in codon usage can be attributed to selection or mutational biases, they can also be functional, for example controlling gene expression or guiding protein structure. Several different metrics have been developed to identify biases in codon usage. Previously we released a database, CBDB: The Codon Bias Database, in which users could retrieve precalculated codon bias data for bacterial RefSeq genomes. With the increase of bacterial genome sequence data since its release a new tool was needed. Here we present the Dynamic Codon Biaser (DCB) tool, a web application that dynamically calculates the codon usage bias statistics of prokaryotic genomes. DCB bases these calculations on 40 different highly expressed genes (HEGs) that are highly conserved across different prokaryotic species. A user can either specify an NCBI accession number or upload their own sequence. DCB returns both the bias statistics and the genome’s HEG sequences. These calculations have several downstream applications, such as evolutionary studies and phage–host predictions. The source code is freely available, and the website is hosted at www.cbdb.info.
Collapse
Affiliation(s)
- Brian Dehlinger
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA
| | - Jared Jurss
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA
| | - Karson Lychuk
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660, USA
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
- Department of Computer Science, Loyola University Chicago, Chicago, IL 60660, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
- *Correspondence: Catherine Putonti,
| |
Collapse
|
39
|
Yousafi Q, Amin H, Bibi S, Rafi R, Khan MS, Ali H, Masroor A. Subtractive Proteomics and Immuno-informatics Approaches for Multi-peptide Vaccine Prediction Against Klebsiella oxytoca and Validation Through In Silico Expression. Int J Pept Res Ther 2021; 27:2685-2701. [PMID: 34566545 PMCID: PMC8452133 DOI: 10.1007/s10989-021-10283-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 11/24/2022]
Abstract
Klebsiella oxytoca is a gram-negative bacterium. It is opportunistic in nature and causes hospital acquired infections. Subtractive proteomics and reverse vaccinology approaches were employed to screen out the best proteins for vaccine designing. Whole proteome of K. oxytoca strain ATCC 8724, consisting of 5483 proteins, was used for designing the vaccine. Total 1670 cytotoxic T lymphocyte (CTL) epitope were predicted through NetCTL while 1270 helper T lymphocyte (HTL) epitopes were predicted through IEDB server. The epitopes were screened for non-toxicity, allergenicity, antigenicity and water solubility. After epitope screening 300 CTL and 250 HTL epitopes were submitted to IFN-γ epitope server to predict their Interferon-γ induction response. The selected IFN-γ positive epitopes were tested for their binding affinity with MHCI-DRB1 by MHCPred. The 15 CTL and 13 HTL epitopes were joined by linkers AAY and GPGPG respectively in vaccine construct. Chain C of Pam3CSK4 (PDB ID; 2Z7X) was linked to the vaccine construct as an adjuvant. A 450aa long vaccine construct was submitted to I-TASSER server for 3D structure prediction. Thirteen Linear B cells were predicted by ABCPred server and 10 sets of discontinues epitopes for 3D vaccine structure were predicted by DiscoTope server. The modeled 3D vaccine construct was docked with human Toll-like receptor 2 (PDB ID: 6NIG) by PatchDock. The docked complexes were refined by FireDock. The selected docked complex showed five hydrogen bonds and one salt bridge. The vaccine sequence was reverse transcribed to get nucleotide sequence for In silico cloning. The reverse transcribed sequence strand was cloned in pET28a(+) expression vector. A clone containing 6586 bp was constructed including the 450 bp of query gene sequence.
Collapse
Affiliation(s)
- Qudsia Yousafi
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Humaira Amin
- COMSATS University Islamabad, Islamabad Campus, Islamabad, Pakistan
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 Yunnan China
| | - Rafea Rafi
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Muhammad S Khan
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Hamza Ali
- COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Ashir Masroor
- University of Agriculture Faisalabad, Sub Campus Burewala-Vehari, Burewala, Pakistan
| |
Collapse
|
40
|
Analysis of Codon Usage Patterns in Giardia duodenalis Based on Transcriptome Data from GiardiaDB. Genes (Basel) 2021; 12:genes12081169. [PMID: 34440343 PMCID: PMC8393687 DOI: 10.3390/genes12081169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022] Open
Abstract
Giardia duodenalis, a flagellated parasitic protozoan, the most common cause of parasite-induced diarrheal diseases worldwide. Codon usage bias (CUB) is an important evolutionary character in most species. However, G. duodenalis CUB remains unclear. Thus, this study analyzes codon usage patterns to assess the restriction factors and obtain useful information in shaping G. duodenalis CUB. The neutrality analysis result indicates that G. duodenalis has a wide GC3 distribution, which significantly correlates with GC12. ENC-plot result—suggesting that most genes were close to the expected curve with only a few strayed away points. This indicates that mutational pressure and natural selection played an important role in the development of CUB. The Parity Rule 2 plot (PR2) result demonstrates that the usage of GC and AT was out of proportion. Interestingly, we identified 26 optimal codons in the G. duodenalis genome, ending with G or C. In addition, GC content, gene expression, and protein size also influence G. duodenalis CUB formation. This study systematically analyzes G. duodenalis codon usage pattern and clarifies the mechanisms of G. duodenalis CUB. These results will be very useful to identify new genes, molecular genetic manipulation, and study of G. duodenalis evolution.
Collapse
|
41
|
Solanki V, Tiwari M, Tiwari V. Subtractive proteomic analysis of antigenic extracellular proteins and design a multi-epitope vaccine against Staphylococcus aureus. Microbiol Immunol 2021; 65:302-316. [PMID: 33368661 DOI: 10.1111/1348-0421.12870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023]
Abstract
Staphylococcus aureus is a versatile Gram's positive bacterium that can reside as an asymptomatic colonizer, which can cause a wide range of skin, soft-tissue, and nosocomial infections. A vaccine against multi-drug resistant S. aureus, therefore, is urgently needed. Subtractive proteomics and reverse vaccinology are newly emerging techniques to design multiepitope-based vaccines. The analysis of 7290 proteomes (sensitive and resistant strains), five potent nonhuman homologous vaccine targets [(UNIPORT ID Q2FZL3 (Staphopain B), Q2G2R8 (Staphopain A), Q2FWP0 (uncharacterized leukocidin-like protein 1), Q2G1S6 (uncharacterized protein), and Q2FWV3 (Staphylokinase, putative)] were selected. These proteins were absent in the gut microbiome, which further enhances the significance of these proteins in vaccine design. These five virulence-associated proteins mainly have a role in the invasion mechanism in the host phagocyte cells. MHC I, MHC II, and B cell epitopes were identified in these five proteins. Finalized epitopes were examined by different online servers to screen suitable epitopes for multi-epitope based vaccine design. Shortlisted antigenic and nonallergenic associated epitopes were joined with linkers to design 30 variants (VSA1-VSA30) of multi-epitope vaccine conjugates. The antigenicity and allergenicity of all the 30 vaccine constructs were identified, and VSA30 was found to have the highest antigenicity and lowest allergenicity, and hence was selected for further study. Accordingly, VSA30 was docked with different HLA allelic variants, and the best-docked complex (VSA30-1SYS) was further analyzed by molecular dynamics simulation (MDS). The MDS result confirms the interaction of VSA30 with MHC (HLA-allelic variant). Thus, the final vaccine construct was in silico cloned in the pET28a vector for suitable expression in a heterologous system. Therefore, the designed vaccine construct VSA-30 can be developed as an appropriate vaccine to target S. aureus infection. VSA-30 still needs experimental validation to assure the antigenic and immunogenic properties.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
42
|
Ata G, Wang H, Bai H, Yao X, Tao S. Edging on Mutational Bias, Induced Natural Selection From Host and Natural Reservoirs Predominates Codon Usage Evolution in Hantaan Virus. Front Microbiol 2021; 12:699788. [PMID: 34276633 PMCID: PMC8283416 DOI: 10.3389/fmicb.2021.699788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
The molecular evolutionary dynamics that shape hantaviruses’ evolution are poorly understood even now, besides the contribution of virus-host interaction to their evolution remains an open question. Our study aimed to investigate these two aspects in Hantaan virus (HTNV)—the prototype of hantaviruses and an emerging zoonotic pathogen that infects humans, causing hemorrhagic fever with renal syndrome (HFRS): endemic in Far East Russia, China, and South Korea—via a comprehensive, phylogenetic-dependent codon usage analysis. We found that host- and natural reservoir-induced natural selection is the primary determinant of its biased codon choices, exceeding the mutational bias effect. The phylogenetic analysis of HTNV strains resulted in three distinct clades: South Korean, Russian, and Chinese. An effective number of codon (ENC) analysis showed a slightly biased codon usage in HTNV genomes. Nucleotide composition and RSCU analyses revealed a significant bias toward A/U nucleotides and A/U-ended codons, indicating the potential influence of mutational bias on the codon usage patterns of HTNV. Via ENC-plot, Parity Rule 2 (PR2), and neutrality plot analyses, we would conclude the presence of both mutation pressure and natural selection effect in shaping the codon usage patterns of HTNV; however, natural selection is the dominant factor influencing its codon usage bias. Codon adaptation index (CAI), Relative codon deoptimization index (RCDI), and Similarity Index (SiD) analyses uncovered the intense selection pressure from the host (Human) and natural reservoirs (Striped field mouse and Chinese white-bellied rat) in shaping HTNV biased codon choices. Our study clearly revealed the evolutionary processes in HTNV and the role of virus-host interaction in its evolution. Moreover, it opens the door for a more comprehensive codon usage analysis for all hantaviruses species to determine their molecular evolutionary dynamics and adaptability to several hosts and environments. We believe that our research will help in a better and deep understanding of HTNV evolution that will serve its future basic research and aid live attenuated vaccines design.
Collapse
Affiliation(s)
- Galal Ata
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Haoxiang Bai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang, China
| |
Collapse
|
43
|
Zrimec J, Buric F, Kokina M, Garcia V, Zelezniak A. Learning the Regulatory Code of Gene Expression. Front Mol Biosci 2021; 8:673363. [PMID: 34179082 PMCID: PMC8223075 DOI: 10.3389/fmolb.2021.673363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Data-driven machine learning is the method of choice for predicting molecular phenotypes from nucleotide sequence, modeling gene expression events including protein-DNA binding, chromatin states as well as mRNA and protein levels. Deep neural networks automatically learn informative sequence representations and interpreting them enables us to improve our understanding of the regulatory code governing gene expression. Here, we review the latest developments that apply shallow or deep learning to quantify molecular phenotypes and decode the cis-regulatory grammar from prokaryotic and eukaryotic sequencing data. Our approach is to build from the ground up, first focusing on the initiating protein-DNA interactions, then specific coding and non-coding regions, and finally on advances that combine multiple parts of the gene and mRNA regulatory structures, achieving unprecedented performance. We thus provide a quantitative view of gene expression regulation from nucleotide sequence, concluding with an information-centric overview of the central dogma of molecular biology.
Collapse
Affiliation(s)
- Jan Zrimec
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Filip Buric
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mariia Kokina
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Victor Garcia
- School of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Aleksej Zelezniak
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
44
|
Wang L, Li Y, Guo Z, Yi Y, Zhang H, Shangguan H, Huang C, Ge J. Genetic changes and evolutionary analysis of canine circovirus. Arch Virol 2021; 166:2235-2247. [PMID: 34104994 DOI: 10.1007/s00705-021-05125-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/15/2021] [Indexed: 11/28/2022]
Abstract
Canine circovirus (canineCV) has been found to be associated with vasculitis, hemorrhage, hemorrhagic enteritis, and diarrhea of canines. CanineCV, like other circoviruses, may also be associated with lymphoid depletion and immunosuppression. This circovirus has been detected worldwide in different countries and species. Recombination and mutation events in the canineCV genome have been described, indicating that the virus is continuing to evolve. However, the origin, codon usage patterns, and host adaptation of canineCV remain to be studied. Here, the coding sequences of 93 canineCV sequences available in the GenBank database were used for analysis. The results showed that canineCV sequences could be classified into five genotypes, as confirmed by phylogenetic and principal component analysis (PCA). Maximum clade credibility (MCC) and maximum-likelihood (ML) trees suggested that canineCV originated from bat circovirus. G/T and A/C nucleotide biases were observed in ORF1 and ORF2, respectively, and a low codon usage bias (CUB) was found in canineCV using an effective number of codon (ENC) analysis. Correlation analysis, ENC plot analysis and neutrality plot analysis indicated that the codon usage pattern was mainly shaped by natural selection. Codon adaptation index (CAI) analysis, relative codon deoptimization index (RCDI) analysis, and similarity index (SiD) analysis revealed a better adaption to Vulpes vulpes than to Canis familiaris. Furthermore, a cross-species transmission hypothesis that canineCV may have evolved from bats (origin analysis) and subsequently adapted to wolves, arctic foxes, dogs, and red foxes, was proposed. This study contributes to our understanding of the factors related to canineCV evolution and host adaption.
Collapse
Affiliation(s)
- Lin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yifan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Yi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Han Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haikun Shangguan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chengshi Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China. .,Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, 150030, China.
| |
Collapse
|
45
|
Yang J, Ding H, Kan X. Codon usage patterns and evolution of HSP60 in birds. Int J Biol Macromol 2021; 183:1002-1012. [PMID: 33971236 DOI: 10.1016/j.ijbiomac.2021.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022]
Abstract
Heat shock protein 60 (HSP60) is highly conserved from prokaryotic to eukaryotic organisms, acting as molecular chaperone and other vital biological functions. In spite of increasing knowledge of HSP60, its evolutionary mechanism on functional adaption is still far from completely understood. Moreover, analysis of codon usage bias (CUB) is a powerful tool to understand evolutionary association studies. However, so far, as we know, no scientific work on CUB of HSP60 in birds has been reported. In this study, we provide a comprehensive analysis on the codon usage and molecular evolution of HSP60 across birds. The results indicated that HSP60 had a weak codon usage bias with high ENC values (range from 52.66 to 61), low RSCU, and A/T-ending codons were mostly preferred. Meanwhile, it was considered that mutation, natural selection, and genetic drift combined to shape codon usage patterns with different strength proportions among various birds for HSP60. Then, the LRT tests suggested that different lineages of birds might be under similar selective pressures. Besides, the two positive selection sites (151 and 131) were detected and might undergo radical changes. These findings would contribute to understand function diversity and molecular evolution of HSP60 in birds.
Collapse
Affiliation(s)
- Jianke Yang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Hengwu Ding
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu, Anhui, China
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu, Anhui, China.
| |
Collapse
|
46
|
Almutairi MM. Analysis of chromosomes and nucleotides in rice to predict gene expression through codon usage pattern. Saudi J Biol Sci 2021; 28:4569-4574. [PMID: 34354442 PMCID: PMC8325026 DOI: 10.1016/j.sjbs.2021.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 11/03/2022] Open
Abstract
Amino acids are essential measurements for the potential growth stage because of connecting to protein structures and functions. The objective of this paper was to analyze chromosomes feature at plastid region of rice represented by nucleotide, synonymous codon, and amino acid usage to predict gene expression through codon usage pattern. The results showed that the values of the codon adaption index ranged from 0.733 in chromosome 9 to 0.631 in chromosome 8 with full length of these two chromosomes were 3738 and 1635 respectively. The higher value of guanine and cytosine content was 60% in chromosomes 9 while the lower values was 37% in chromosomes 11. Eight chromosomes (ch1, ch2, ch3, ch5, ch7, ch8, ch10, and ch12) were greater value of modified relative codon bias than threshold (threshold: 0.66) especially in cysteine for ch1, ch2, ch5, ch10, and ch12. While other remaining chromosomes were less than the threshold. Relative synonymous codon usage found that the over-represented of amino acids were asparagine, aspartate, cysteine, glutamate, and phenylalanine across all 12 chromosomes. These results would establish a platform for more and further projects concerning rice breeding and genetics and codon optimization in the amino acids for developing varieties. These results also will help breeders to select desirable genes through the genome for improve target traits.
Collapse
Affiliation(s)
- Meshal M Almutairi
- National Center of Agricultural and Technology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| |
Collapse
|
47
|
Bahiri-Elitzur S, Tuller T. Codon-based indices for modeling gene expression and transcript evolution. Comput Struct Biotechnol J 2021; 19:2646-2663. [PMID: 34025951 PMCID: PMC8122159 DOI: 10.1016/j.csbj.2021.04.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 11/21/2022] Open
Abstract
Codon usage bias (CUB) refers to the phenomena that synonymous codons are used in different frequencies in most genes and organisms. The general assumption is that codon biases reflect a balance between mutational biases and natural selection. Today we understand that the codon content is related and can affect all gene expression steps. Starting from the 1980s, codon-based indices have been used for answering different questions in all biomedical fields, including systems biology, agriculture, medicine, and biotechnology. In general, codon usage bias indices weigh each codon or a small set of codons to estimate the fitting of a certain coding sequence to a certain phenomenon (e.g., bias in codons, adaptation to the tRNA pool, frequencies of certain codons, transcription elongation speed, etc.) and are usually easy to implement. Today there are dozens of such indices; thus, this paper aims to review and compare the different codon usage bias indices, their applications, and advantages. In addition, we perform analysis that demonstrates that most indices tend to correlate even though they aim to capture different aspects. Due to the centrality of codon usage bias on different gene expression steps, it is important to keep developing new indices that can capture additional aspects that are not modeled with the current indices.
Collapse
Affiliation(s)
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel-Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
48
|
Almutairi MM, Alrajhi AA. Prediction of gene expression under drought stress in spring wheat using codon usage pattern. Saudi J Biol Sci 2021; 28:4000-4004. [PMID: 34220257 PMCID: PMC8241893 DOI: 10.1016/j.sjbs.2021.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Spring wheat (Triticum aestivum) is a staple food providing sources of essential proteins for human. In fact, gene expressions of wheat play an important role in growth and productivity that are affected by drought stress. The objective of this work focused on analysis gene feature on spring wheat represented by nucleotide and gene expressions under drought stress. It was found that the higher codon adaptation index was in both wheat root and L-galactono-1, 4-lactone dehydrogenase. It was also found that guanine and cytosine content were high (55.56%) in wheat root. Whereas, guanine and cytosine content were low (41.28%) in L-galactono-1, 4-lactone dehydrogenase. Moreover, the higher relative synonymous codon usage value was observed in codon CAA (1.20), GAA (1.33), GAT (1.00), and ATG (1.00) in wheat root and thus about 62.95% of the total variation in relative synonymous codon was explained by principal component analysis. Additionally, high averages frequency number of codon were (above 15.76) in Met, Lys, Ala, Gly, Phe, Asp, Glu, His, and Tyr; whereas, low averages were in remaining amino acids and majority (90%) of modified relative codon bias values was between 0.40 and 0.90. Shortly, calculations and analysis of codon usage pattern under drought stress would help for genetic engineering, molecular evolution, and gene prediction in wheat studies for developing varieties that associate with drought tolerance.
Collapse
Affiliation(s)
- Meshal M Almutairi
- National Center of Agricultural Technology, King Abdulaziz City for Science and Technology KACST, Box 6086, Riyadh 11442, Saudi Arabia
| | - Abdullah A Alrajhi
- National Center of Agricultural Technology, King Abdulaziz City for Science and Technology KACST, Box 6086, Riyadh 11442, Saudi Arabia
| |
Collapse
|
49
|
Ge Q, Liu R, Cobine PA, Potnis N, De La Fuente L. Phenotypic and Phylogenetic Characterization of Cu Homeostasis among Xylella fastidiosa Strains. Pathogens 2021; 10:pathogens10040495. [PMID: 33924015 PMCID: PMC8073393 DOI: 10.3390/pathogens10040495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022] Open
Abstract
Xylella fastidiosa is a bacterial pathogen causing severe diseases and asymptomatic colonization in more than 600 plants worldwide. Copper (Cu) is a widely used antimicrobial treatment for various plant diseases, including those affecting X. fastidiosa hosts. Cu homeostasis among X. fastidiosa strains from different geographical locations and host species has not been characterized. Here, we assessed minimum inhibitory concentration (MIC) of Cu for 54 X. fastidiosa strains. We observed strain-level variation in MIC values within each subspecies. We hypothesized that these differences could be explained by sequence variation in Cu homeostasis genes. Phylogenies based on copA, copB, copL, and cutC were created using 74 genomes (including 43 strains used in vitro) of X. fastidiosa, showing that the phylogenetic clustering of Cu homeostasis associated with clustering was based on core genome phylogenies, rather than on pattern of MIC. No association was found among Cu MIC, subspecies classification, and host and location of isolation, probably due to uneven and limited group of strains whose genomes are available. Further analysis focused on a subgroup of isolates from Georgia’s vineyards that shared similar Cu-related phenotypes. Further research is needed to better understand the distribution of Cu homeostasis for this pathogen.
Collapse
Affiliation(s)
- Qing Ge
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Q.G.); (R.L.); (N.P.)
| | - Ranlin Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Q.G.); (R.L.); (N.P.)
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA;
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Q.G.); (R.L.); (N.P.)
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Q.G.); (R.L.); (N.P.)
- Correspondence: ; Tel.: +1-334-844-2582
| |
Collapse
|
50
|
Malik YS, Ansari MI, Kattoor JJ, Kaushik R, Sircar S, Subbaiyan A, Tiwari R, Dhama K, Ghosh S, Tomar S, Zhang KYJ. Evolutionary and codon usage preference insights into spike glycoprotein of SARS-CoV-2. Brief Bioinform 2021; 22:1006-1022. [PMID: 33377145 PMCID: PMC7953982 DOI: 10.1093/bib/bbaa383] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Interaction of SARS-CoV-2 spike glycoprotein with the ACE2 cell receptor is very crucial for virus attachment to human cells. Selected mutations in SARS-CoV-2 S-protein are reported to strengthen its binding affinity to mammalian ACE2. The N501T mutation in SARS-CoV-2-CTD furnishes better support to hotspot 353 in comparison with SARS-CoV and shows higher affinity for receptor binding. Recombination analysis exhibited higher recombination events in SARS-CoV-2 strains, irrespective of their geographical origin or hosts. Investigation further supports a common origin among SARS-CoV-2 and its predecessors, SARS-CoV and bat-SARS-like-CoV. The recombination events suggest a constant exchange of genetic material among the co-infecting viruses in possible reservoirs and human hosts before SARS-CoV-2 emerged. Furthermore, a comprehensive analysis of codon usage bias (CUB) in SARS-CoV-2 revealed significant CUB among the S-genes of different beta-coronaviruses governed majorly by natural selection and mutation pressure. Various indices of codon usage of S-genes helped in quantifying its adaptability in other animal hosts. These findings might help in identifying potential experimental animal models for investigating pathogenicity for drugs and vaccine development experiments.
Collapse
Affiliation(s)
| | | | | | - Rahul Kaushik
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, Japan
| | | | | | - Ruchi Tiwari
- Department of Vet erinary Microbiology, DUVASU, Mathura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Souvik Ghosh
- Health Center for Zoonoses and Tropical Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | | | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Japan
| |
Collapse
|