1
|
Pavan F, Lacoste E, Castric V, Legrand S. Scenarios for the emergence of new microRNA genes in the plant Arabidopsis halleri. PLANT & CELL PHYSIOLOGY 2025; 66:542-553. [PMID: 39820477 DOI: 10.1093/pcp/pcaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/08/2024] [Accepted: 01/11/2025] [Indexed: 01/19/2025]
Abstract
MicroRNAs (miRNAs) are central players in the regulation of gene expression in eukaryotes. The repertoires of miRNA genes vary drastically even among closely related species, indicating that they are evolutionarily labile. However, the processes by which they originate over the course of evolution and the nature of their progenitors across the genome remain poorly understood. Here, we analyzed miRNA genes in Arabidopsis halleri, a plant species where we recently documented a large number of species-specific miRNA genes, likely to represent recent events of emergence. Analysis of sequence homology across the genome indicates that a diversity of sources contributes to the emergence of new miRNA genes, including inverted duplications from protein-coding genes, rearrangements of transposable element (TE) sequences, and duplications of preexisting miRNA genes. Our observations indicate that the origin from protein-coding genes was less common than was previously considered. In contrast, we estimate that almost half of the new miRNA genes likely emerged from TEs. Miniature inverted-repeat TEs (MITEs) seem to be particularly important contributors to new miRNA genes, with the Harbinger and Mariner TE superfamilies representing disproportionate sources for their emergence. We further analyzed the recent expansion of a miRNA family derived from MuDR elements and the duplication of miRNA genes formed by two hAT transposons. Overall, our results illustrate the rapid pace at which new regulatory elements can arise from the modification of preexisting sequences in a genome and highlight the central role of certain categories of TEs in this process.
Collapse
Affiliation(s)
- Flavia Pavan
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Eléanore Lacoste
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Vincent Castric
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Sylvain Legrand
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| |
Collapse
|
2
|
Wu L, Wang J, Shen S, Yang Z, Hu X. Transcriptomic analysis of two Chinese wheat landraces with contrasting Fusarium head blight resistance reveals miRNA-mediated defense mechanisms. FRONTIERS IN PLANT SCIENCE 2025; 16:1537605. [PMID: 40093609 PMCID: PMC11906714 DOI: 10.3389/fpls.2025.1537605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
Introduction Fusarium head blight (FHB), caused primarily by Fusarium graminearum (Fg), poses a significant threat to wheat production. It is necessary to deeply understand the molecular mechanisms underlying FHB resistance in wheat breeding. Methods In this study, the transcriptomic responses of two Chinese wheat landraces-Wuyangmai (WY, resistant) and Chinese Spring (CS, susceptible)-to F. graminearum infection were examined using RNA sequencing (RNA-seq). Differential expression of mRNAs, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) was analyzed at 3 and 5 days post-Fg inoculation (dpi). Results The results showed that WY exhibited a targeted miRNA response, primarily modulating defense-related pathways such as glutathione metabolism and phenylpropanoid biosynthesis, which are crucial for oxidative stress regulation and pathogen defense response. In contrast, CS displayed a broader transcriptional response, largely linked to general metabolic processes rather than immune activation. Notably, the up-regulation of genes involved in oxidative stress and immune defense in WY confirmed its enhanced resistance to FHB. The integrated analysis of miRNA-mRNA interactions highlighted miRNAs as central regulators of defense mechanisms in WY, particularly at later stages of infection. These miRNAs targeted genes involved in immune responses, while lncRNAs and circRNAs played a more limited role in the regulation of defense responses. The GO and KEGG pathway enrichment analyses further revealed that WY enriched for plant-pathogen interaction and secondary metabolite biosynthesis pathways, which are crucial for pathogen resistance. In contrast, CS prioritized metabolic homeostasis, suggesting a less effective defense strategy. Discussion Overall, this study underscores the critical role of miRNA-mediated regulation in FHB resistance in WY. These insights into miRNA-mediated regulatory mechanisms provide a molecular basis for breeding FHB-resistant wheat varieties and highlight miRNA-mRNA interactions as promising targets for enhancing disease resilience.
Collapse
Affiliation(s)
- Lijuan Wu
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junqiang Wang
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| | - Shian Shen
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| | - Zaijun Yang
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Xinkun Hu
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
3
|
Martínez Fajardo C, López-Jiménez AJ, López-López S, Morote L, Moreno-Giménez E, Diretto G, Díaz-Guerra MJM, Rubio-Moraga Á, Ahrazem O, Gómez-Gómez L. Characterization of Exosome-like Nanoparticles from Saffron Tepals and Their Immunostimulatory Activity. BIOLOGY 2025; 14:215. [PMID: 40001983 PMCID: PMC11851917 DOI: 10.3390/biology14020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Plant exosomes exhibit high stability and easy absorption, and have emerged as promising bioactive tools due to their potential health benefits and biomedical applications. Saffron tepals contain abundant metabolites with potential therapeutic properties and were used for exosome extraction by ultracentrifugation and gradient purification. The exosomes showed an average particle size of 151.5 ± 79.6 nm and exhibited a spherical morphology. Five well-conserved miRNAs-miR157, miR166, miR168, miR396, and miR398-were identified in the exosomes, which are involved in the coordination of growth and physiological plant responses with endogenous and environmental abiotic and biotic signals, and their potential targets in mammals are upregulated in specific cancer types and associated with inflammation. Proteome analysis revealed an enrichment of proteasome proteins, ribosomal proteins, and proteins involved in the cytoskeleton, transport across the membrane (ABC transporters), and vesicle trafficking (RAB GTPases, TM9SF and Coatomer subunits). Metabolite analyses showed mainly anthocyanins. The exosomes have selective stimulatory activity on macrophages, increasing the expression of surface molecules (CD80 and CD86), and cytokines (IL-1β, IL-6, and TNF-α), but not the levels of IL-10. Overall, these results indicated that saffron flowers are an effective and abundant source of exosomes as new nanomedicines for human health.
Collapse
Affiliation(s)
- Cristian Martínez Fajardo
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (C.M.F.); (A.J.L.-J.); (L.M.); (E.M.-G.); (Á.R.-M.); (O.A.)
| | - Alberto J. López-Jiménez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (C.M.F.); (A.J.L.-J.); (L.M.); (E.M.-G.); (Á.R.-M.); (O.A.)
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Susana López-López
- Unidad de Investigación, Complejo Hospitalario Universitario de Albacete, C/Laurel, s/n, 02008 Albacete, Spain;
- Facultad de Medicina, Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain;
| | - Lucía Morote
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (C.M.F.); (A.J.L.-J.); (L.M.); (E.M.-G.); (Á.R.-M.); (O.A.)
| | - Elena Moreno-Giménez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (C.M.F.); (A.J.L.-J.); (L.M.); (E.M.-G.); (Á.R.-M.); (O.A.)
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy;
| | - María José M. Díaz-Guerra
- Facultad de Medicina, Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain;
| | - Ángela Rubio-Moraga
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (C.M.F.); (A.J.L.-J.); (L.M.); (E.M.-G.); (Á.R.-M.); (O.A.)
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (C.M.F.); (A.J.L.-J.); (L.M.); (E.M.-G.); (Á.R.-M.); (O.A.)
- Escuela Técnica Superior de Ingenieros Agrónomos, Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (C.M.F.); (A.J.L.-J.); (L.M.); (E.M.-G.); (Á.R.-M.); (O.A.)
- Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| |
Collapse
|
4
|
Palani T, Selvakumar D, Nathan B, Shanmugam V, Duraisamy K, Mannu J. Deciphering the impact of microRNAs in plant biology: a review of computational insights and experimental validation. Mol Biol Rep 2025; 52:209. [PMID: 39913060 DOI: 10.1007/s11033-025-10273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025]
Abstract
Exploring the complex world of microRNA (miRNA) biogenesis and functions in plants is essential for understanding their diverse regulatory mechanisms. This review highlights the processes involved in miRNA biogenesis and their crucial roles in growth and development of plant, stress responses, and nutrient homeostasis. miRNAs play a central role in various developmental processes, including the transition from the juvenile to adult stage, the growth of shoot apical meristem, leaf and floral morphogenesis, and the determination of flowering time. By presenting the current state of research, we focus on the vital role of computational tools and databases in deciphering the regulatory networks controlled by miRNAs, which helps us navigate the intricate world of plant biology. Furthermore, it stresses the importance of experimental validation techniques in confirming computational predictions, ensuring that miRNA research is reliable and robust. As the field continues to grow, this review emphasizes the urgent need for integrated approaches, to deepen our knowledge of plant miRNA biology and its implications. These insights will pave the way for advancements in crop improvement, stress resilience, and biotechnological innovations.
Collapse
Affiliation(s)
- Tamilarasi Palani
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Divya Selvakumar
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Bharathi Nathan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Varanavasiappan Shanmugam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kavithamani Duraisamy
- Department of Millets, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
5
|
Li Y, Kong L, Mu H, Wang J, Li F, Kuang Y, Duan W, Fan P, Yuan L, Liang Z, Wang L. Transcriptome analysis and functional identification of transfer RNA-derived fragments in grape leaves exposed to UV-C radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109425. [PMID: 39718286 DOI: 10.1016/j.plaphy.2024.109425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Transfer RNA-derived fragments (tRFs) are noncoding small RNAs derived from transfer RNAs (tRNAs) in microorganisms, animals and plants. In plants, tRFs are known to respond to environmental stimuli, including heat, oxidative stress and UV radiation; however, their specific functions in horticultural plants, such as grapevine, remain poorly understood. In this study, we used RNA-seq to identify differentially expressed genes (DEGs) in grape leaves exposed to UV-C radiation. A total of 1329 and 8055 of genes were differentially expression after 1 and 6 h of UV-C treatment, respectively. We identified a large number of secondary metabolism-related genes in the DEGs, including genes involved in stilbene and flavonoid biosynthesis. Noticeably, the stilbene biosynthesis-related gene was induced earlier than the other genes in the phenylalanine metabolic pathway. We also conducted small RNA-seq and identified differentially expressed (DE) miRNAs and their targets. To explore whether the tRFs involved in UV-C response, further analysis of the small RNA-seq data revealed 23 down-regulated and 41 up-regulated DE tRFs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that the target genes of these tRFs are involved in multiple biological processing, including hormone signal transduction and metabolite synthesis. To validate the function of tRFs, tRF39 and tRF45 were selected and overexpressed in tobacco leaves, and the expression levels of their target genes were inhibited. Our study suggests that the tRFs may regulate multiple biological processes in response to UV-C exposure in grapevine. Our findings provide a foundation for further elucidating the regulatory mechanisms of tRFs in horticultural crops.
Collapse
Affiliation(s)
- Yang Li
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Lingchao Kong
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Huayuan Mu
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Jiayu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Furui Li
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Yangfu Kuang
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Kentucky, 40546, USA.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| | - Lijun Wang
- Beijing Key Laboratory of Grape Science and Enology and State Key Laboratory of Plant Diversity and Specilaty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Chinese National Botany Garden, Beijing, 100093, China.
| |
Collapse
|
6
|
Jing F, Shi Y, Jiang D, Li X, Sun J, Guo Q. Circ_0001944 Targets the miR-1292-5p/FBLN2 Axis to Facilitate Sorafenib Resistance in Hepatocellular Carcinoma by Impeding Ferroptosis. Immunotargets Ther 2024; 13:643-659. [PMID: 39624827 PMCID: PMC11611519 DOI: 10.2147/itt.s463556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/30/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Sorafenib, an orally active potent tyrosine kinase inhibitor (TKI), represented a primary treatment in patients with advanced hepatocellular carcinoma (HCC). Unfortunately, sorafenib resistance was regarded as a huge obstacle for HCC treatment. METHODS RNA-sequencing including circRNA Sequencing (circRNA-Seq) for circular RNAs (circRNAs), miRNA Sequencing (miRNA-Seq) for microRNAs (miRNAs), as well as mRNA Sequencing (mRNA-Seq) for mRNAs in sorafenib-resistant HCC cells vs sorafenib-sensitive HCC cells, were performed. Then, interaction correlation analysis between differentially expressed circRNAs and miRNAs and their target genes in Huh7/SOR and SMMC7721/SOR cells was exhibited. The "circRNA-miRNA-mRNA" network was constructed through the Cytoscape software application, Circular RNA Interactome and Targetscan prediction, RNA binding protein immunoprecipitation (RIP), RNA pull-down, and Dual luciferase reporter assay. Furthermore, mRNA-Seq, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for the downstream genes involved in the "circRNA-miRNA-mRNA" network was implemented. Iron detection assay, Lipid peroxidation quantification assay, ROS measurement assay, CCK-8 assay, and tumor challenge in vivo were used to determine the mechanisms promoting sorafenib resistance in HCC, where the "circRNA-miRNA-mRNA" network is clearly involved in. RESULTS circ_0001944 and circ_0078607 with upregulation and 2 downregulated expressed circRNAs (circ_0002874 and circ_0069981), as well as 11 upregulated miRNAs including miR-193a-5p, miR-197-3p, miR-27a-5p, miR-551b-5p, miR-335-3p, miR-767-3p, miR-767-5p, miR-92a-1-5p, miR-92a-3p, miR-3940-3p, and miR-664b-3p and 3 downregulated expressed miRNAs (miR-1292-5p, let-7c-5p, and miR-99a-5p) in sorafenib-resistant HCC cells were determined. Among these non-coding RNAs (ncRNAs), circ_0001944 and miR-1292-5p should not be drop out of sight; circ_0001944 has been proved to target miR-1292-5p to inhibit its expression in HCC. Subsequent findings also raise that miR-1292-5p directly targeted the 3'-noncoding region (3'-UTR) of Fibulin 2 (FBLN2) mRNA. Furthermore, circ_0001944 targets the miR-1292-5p/FBLN2 axis to inhibit cell ferroptosis in which the indicated regulators associated with iron overload and lipid peroxidation were "rearranged". Most importantly, circ_0001944 advanced sorafenib resistance in HCC through mitigating ferroptosis, where the miR-1292-5p/FBLN2 axis cannot be left unrecognized. CONCLUSION Circ_0001944 is a putative target for reversing sorafenib resistance in HCC. Our findings are expected to provide new targets and new directions for sorafenib sensitization in the treatment of HCC.
Collapse
Affiliation(s)
- FanJing Jing
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People’s Republic of China
| | - YunYan Shi
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People’s Republic of China
| | - Dong Jiang
- Navy Qingdao Special Service Rehabilitation Center, Qingdao, Shandong, 266003, People’s Republic of China
| | - Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People’s Republic of China
| | - JiaLin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People’s Republic of China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People’s Republic of China
| |
Collapse
|
7
|
Wu H, Yu H, Zhang Y, Yang B, Sun W, Ren L, Li Y, Li Q, Liu B, Ding Y, Zhang H. Unveiling RNA structure-mediated regulations of RNA stability in wheat. Nat Commun 2024; 15:10042. [PMID: 39567481 PMCID: PMC11579497 DOI: 10.1038/s41467-024-54172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Despite the critical role of mRNA stability in post-transcriptional gene regulation, research on this topic in wheat, a vital agricultural crop, remains unclear. Our study investigated the mRNA decay landscape of durum wheat (Triticum turgidum L. ssp. durum, BBAA), revealing subgenomic asymmetry in mRNA stability and its impact on steady-state mRNA abundance. Our findings indicate that the 3' UTR structure and homoeolog preference for RNA structural motifs can influence mRNA stability, leading to subgenomic RNA decay imbalance. Furthermore, single-nucleotide variations (SNVs) selected for RNA structural motifs during domestication can cause variations in subgenomic mRNA stability and subsequent changes in steady-state expression levels. Our research on the transcriptome stability of polyploid wheat highlights the regulatory role of non-coding region structures in mRNA stability, and how domestication shaped RNA structure, altering subgenomic mRNA stability. These results illustrate the importance of RNA structure-mediated post-transcriptional gene regulation in wheat and pave the way for its potential use in crop improvement.
Collapse
Affiliation(s)
- Haidan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Haopeng Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Yueying Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Bibo Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Wenqing Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Lanying Ren
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Yuchen Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Qianqian Li
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China.
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China.
| |
Collapse
|
8
|
Khuu A, Verreault M, Colin P, Tran H, Idbaih A. Clinical Applications of Antisense Oligonucleotides in Cancer: A Focus on Glioblastoma. Cells 2024; 13:1869. [PMID: 39594617 PMCID: PMC11592788 DOI: 10.3390/cells13221869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Antisense oligonucleotides (ASOs) are promising drugs capable of modulating the protein expression of virtually any target with high specificity and high affinity through complementary base pairing. However, this requires a deep understanding of the target sequence and significant effort in designing the correct complementary drug. In addition, ASOs have been demonstrated to be well tolerated during their clinical use. Indeed, they are already used in many diseases due to pathogenic RNAs of known sequences and in several neurodegenerative diseases and metabolic diseases, for which they were given marketing authorizations (MAs) in Europe and the United States. Their use in oncology is gaining momentum with several identified targets, promising preclinical and clinical results, and recent market authorizations in the US. However, many challenges remain for their clinical use in cancer. It seems necessary to take a step back and review our knowledge of ASOs and their therapeutic uses in oncology. The objectives of this review are (i) to summarize the current state of the art of ASOs; (ii) to discuss the therapeutic use of ASOs in cancer; and (iii) to focus on ASO usage in glioblastoma, the challenges, and the perspective ahead.
Collapse
Affiliation(s)
- Alexandre Khuu
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Maïté Verreault
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
| | - Philippe Colin
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Helene Tran
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Ahmed Idbaih
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
| |
Collapse
|
9
|
Guo Y, Wang T, Lu X, Li W, Lv X, Peng Q, Zhang J, Gao J, Hu M. Comparative genome-wide analysis of circular RNAs in Brassica napus L.: target-site versus non-target-site resistance to herbicide stress. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:176. [PMID: 38969812 DOI: 10.1007/s00122-024-04678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/15/2024] [Indexed: 07/07/2024]
Abstract
Circular RNAs (circRNAs), a class of non-coding RNA molecules, are recognized for their unique functions; however, their responses to herbicide stress in Brassica napus remain unclear. In this study, the role of circRNAs in response to herbicide treatment was investigated in two rapeseed cultivars: MH33, which confers non-target-site resistance (NTSR), and EM28, which exhibits target-site resistance (TSR). The genome-wide circRNA profiles of herbicide-stressed and non-stressed seedlings were analyzed. The findings indicate that NTSR seedlings exhibited a greater abundance of circRNAs, shorter lengths of circRNAs and their parent genes, and more diverse functions of parent genes compared with TSR seedlings. Compared to normal-growth plants, the herbicide-stressed group exhibited similar trends in the number of circRNAs, functions of parent genes, and differentially expressed circRNAs as observed in NTSR seedlings. In addition, a greater number of circRNAs that function as competing microRNA (miRNA) sponges were identified in the herbicide stress and NTSR groups compared to the normal-growth and TSR groups, respectively. The differentially expressed circRNAs were validated by qPCR. The differntially expressed circRNA-miRNA networks were predicted, and the mRNAs targeted by these miRNAs were annotated. Our results suggest that circRNAs play a crucial role in responding to herbicide stress, exhibiting distinct responses between NTSR and TSR in rapeseed. These findings offer valuable insights into the mechanisms underlying herbicide resistance in rapeseed.
Collapse
Affiliation(s)
- Yue Guo
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ting Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xinyu Lu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weilong Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xinlei Lv
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qi Peng
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiefu Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianqin Gao
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maolong Hu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
10
|
Xiao F, Zhao Y, Wang X, Jian X, Zhou H. Analysis of differential mRNA and miRNA expression induced by heterogeneous grafting in Gleditsia sinensis. Int J Biol Macromol 2024; 270:132235. [PMID: 38734341 DOI: 10.1016/j.ijbiomac.2024.132235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Gleditsia sinensis Lam. is a multifaceted plant with medicinal, edible, chemical, timber, and ornamental applications. However, the effect of rootstocks on scions after grafting is still unclear. This study examined the mRNA and miRNA transcriptome among homografts, heterografts, and seedlings. GO enrichment analysis between seedlings and homograft/heterograft combinations revealed that biosynthesis, degradation, and transport were enriched. The KEGG enrichment results showed that plant hormone signal transduction and the plant MAPK signaling pathway were enriched in both seedlings and heterograft combinations. Through weighted correlation network analysis (WGCNA), the hub genes related to the content of plant hormones were obtained. Taking G. sinensis as the scion, there were 4594, 2887, 3429, and 5959 mRNAs that were specifically expressed in the grafted plants of G. sinensis/G. fera, G. sinensis/G. delavayi, G. sinensis/G. microphylla, and G. sinensis/G. japonica, respectively. The specifically expressed mRNA genes may participate in such processes and pathways as the rhythmic process, circadian rhythm, gibberellic-acid-mediated signaling pathway, and peptide-based amino acid modification. Additionally, 3, 16, 2, and 15 specifically expressed miRNAs were identified. This study examines the impact of grafting on gene expression in Gleditsia plants and establishes a foundation for the development of new resources and rootstock breeding.
Collapse
Affiliation(s)
- Feng Xiao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Xiurong Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xueyan Jian
- College of Continuing Education, Yanbian University, Yanji 133002, Jilin, China
| | - Heying Zhou
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
11
|
Wang L, Chen H, Zhuang Y, Chen K, Zhang C, Cai T, Yang Q, Fu H, Chen X, Chitkineni A, Wang X, Varshney RK, Zhuang W. Multiple strategies, including 6mA methylation, affecting plant alternative splicing in allopolyploid peanut. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1681-1702. [PMID: 38294334 PMCID: PMC11123434 DOI: 10.1111/pbi.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/28/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Alternative splicing (AS), an important post-transcriptional regulation mechanism in eukaryotes, can significantly increase transcript diversity and contribute to gene expression regulation and many other complicated developmental processes. While plant gene AS events are well described, few studies have investigated the comprehensive regulation machinery of plant AS. Here, we use multi-omics to analyse peanut AS events. Using long-read isoform sequencing, 146 464 full-length non-chimeric transcripts were obtained, resulting in annotation corrections for 1782 genes and the identification of 4653 new loci. Using Iso-Seq RNA sequences, 271 776 unique splice junctions were identified, 82.49% of which were supported by transcriptome data. We characterized 50 977 polyadenylation sites for 23 262 genes, 12 369 of which had alternative polyadenylation sites. AS allows differential regulation of the same gene by miRNAs at the isoform level coupled with polyadenylation. In addition, we identified many long non-coding RNAs and fusion transcripts. There is a suppressed effect of 6mA on AS and gene expression. By analysis of chromatin structures, the genes located in the boundaries of topologically associated domains, proximal chromosomal telomere regions, inter- or intra-chromosomal loops were found to have more unique splice isoforms, higher expression, lower 6mA and more transposable elements (TEs) in their gene bodies than the other genes, indicating that chromatin interaction, 6mA and TEs play important roles in AS and gene expression. These results greatly refine the peanut genome annotation and contribute to the study of gene expression and regulation in peanuts. This work also showed AS is associated with multiple strategies for gene regulation.
Collapse
Affiliation(s)
- Lihui Wang
- Center for Legume Plant Genetics and System Biology, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Hua Chen
- Center for Legume Plant Genetics and System Biology, College of AgronomyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yuhui Zhuang
- Center for Legume Plant Genetics and System Biology, College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Kun Chen
- Center for Legume Plant Genetics and System Biology, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Chong Zhang
- Center for Legume Plant Genetics and System Biology, College of AgronomyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Tiecheng Cai
- Center for Legume Plant Genetics and System Biology, College of AgronomyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Qiang Yang
- Center for Legume Plant Genetics and System Biology, College of AgronomyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Huiwen Fu
- Center for Legume Plant Genetics and System Biology, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Xiangyu Chen
- Crop Research InstituteFujian Academy of Agricultural SciencesFuzhouFujianChina
| | - Annapurna Chitkineni
- Centre for Crop & Food Innovation, State Agricultural Biotechnology CentreFood Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - Xiyin Wang
- North China University of Science and TechnologyTangshanChina
| | - Rajeev K. Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology CentreFood Futures Institute, Murdoch UniversityMurdochWestern AustraliaAustralia
| | - Weijian Zhuang
- Center for Legume Plant Genetics and System Biology, College of AgronomyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| |
Collapse
|
12
|
Wang J, Wang X, Wang L, Nazir MF, Fu G, Peng Z, Chen B, Xing A, Zhu M, Ma X, Wang X, Jia Y, Pan Z, Wang L, Xia Y, He S, Du X. Exploring the regulatory role of non-coding RNAs in fiber development and direct regulation of GhKCR2 in the fatty acid metabolic pathway in upland cotton. Int J Biol Macromol 2024; 266:131345. [PMID: 38574935 DOI: 10.1016/j.ijbiomac.2024.131345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Cotton fiber holds immense importance as the primary raw material for the textile industry. Consequently, comprehending the regulatory mechanisms governing fiber development is pivotal for enhancing fiber quality. Our study aimed to construct a regulatory network of competing endogenous RNAs (ceRNAs) and assess the impact of non-coding RNAs on gene expression throughout fiber development. Through whole transcriptome data analysis, we identified differentially expressed genes (DEGs) regulated by non-coding RNA (ncRNA) that were predominantly enriched in phenylpropanoid biosynthesis and the fatty acid elongation pathway. This analysis involved two contrasting phenotypic materials (J02-508 and ZRI015) at five stages of fiber development. Additionally, we conducted a detailed analysis of genes involved in fatty acid elongation, including KCS, KCR, HACD, ECR, and ACOT, to unveil the factors contributing to the variation in fatty acid elongation between J02-508 and ZRI015. Through the integration of histochemical GUS staining, dual luciferase assay experiments, and correlation analysis of expression levels during fiber development stages for lncRNA MSTRG.44818.23 (MST23) and GhKCR2, we elucidated that MST23 positively regulates GhKCR2 expression in the fatty acid elongation pathway. This identification provides valuable insights into the molecular mechanisms underlying fiber development, emphasizing the intricate interplay between non-coding RNAs and protein-coding genes.
Collapse
Affiliation(s)
- Jingjing Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyang Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liyuan Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Mian Faisal Nazir
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Guoyong Fu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Baojun Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Aishuang Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Mengchen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xinli Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Xiuxiu Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yinhua Jia
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Zhaoe Pan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liru Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yingying Xia
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 455001, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China.
| |
Collapse
|
13
|
Jing F, Shi Y, Jiang D, Li X, Sun J, Zhang X, Guo Q. Deciphering the role of non-coding RNAs involved in sorafenib resistance. Heliyon 2024; 10:e29374. [PMID: 38644890 PMCID: PMC11031791 DOI: 10.1016/j.heliyon.2024.e29374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
Sorafenib is an important treatment strategy for advanced hepatocellular carcinoma (HCC). Unfortunately, drug resistance has become a major obstacle in sorafenib application. In this study, whole transcriptome sequencing (WTS) was conducted to compare the paired differences between non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs, in sorafenib-resistant and parental cells. The overlap of differentially expressed ncRNAs (DENs) between the SMMC7721/S and Huh7/S cells and their parental cells was determined. 2 upregulated and 3 downregulated lncRNAs, 2 upregulated and 1 downregulated circRNAs, as well as 10 upregulated and 2 downregulated miRNAs, in both SMMC7721/S and Huh7/S cells, attracted more attention. The target genes of these DENs were then identified as the overlaps between the differentially expressed mRNAs achieved using the WTS analysis and the predicted genes of DENs obtained using the "co-localization" or "co-expression," miRanda, and RNAhybrid analysis. Consequently, the potential regulatory network between overlapping DENs and their target genes in both SMMC7721/S and Huh7/S cells was explored. The "lncRNA-miRNA-mRNA" and "circRNA-miRNA-mRNA" networks were constructed based on the competitive endogenous RNA (ceRNA) theory using the Cytoscape software. In particular, lncRNA MED17-203-miRNA (miR-193a-5p, miR-197-3p, miR-27a-5p, miR-320b, miR-767-3p, miR-767-5p, miR-92a-3p, let-7c-5p)-mRNA," "circ_0002874-miR-27a-5p-mRNA" and "circ_0078607-miR-320b-mRNA" networks were first introduced in sorafenib-resistant HCC. Furthermore, these networks were most probably connected to the process of metabolic reprogramming, where the activation of the PPAR, HIF-1, Hippo, and TGF-β signaling pathways is governed. Alternatively, the network "circ_0002874-miR-27a-5p-mRNA" was also involved in the regulation of the activation of TGF-β signaling pathways, thus advancing Epithelial-mesenchymal transition (EMT). These findings provide a theoretical basis for exploring the mechanisms underlying sorafenib resistance mediated by metabolic reprogramming and EMT in HCC.
Collapse
Affiliation(s)
- FanJing Jing
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, PR China
| | - YunYan Shi
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, PR China
| | - Dong Jiang
- Navy Qingdao Special Service Rehabilitation Center, 266743, Qingdao, Shandong, 266003, PR China
| | - Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, PR China
| | - JiaLin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, PR China
| | - XiaoLei Zhang
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, PR China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, PR China
| |
Collapse
|
14
|
Wang H, Jia Y, Bai X, Wang J, Liu G, Wang H, Wu Y, Xin J, Ma H, Liu Z, Zou D, Zhao H. Whole-transcriptome profiling and identification of cold tolerance-related ceRNA networks in japonica rice varieties. FRONTIERS IN PLANT SCIENCE 2024; 15:1260591. [PMID: 38567126 PMCID: PMC10985246 DOI: 10.3389/fpls.2024.1260591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/02/2024] [Indexed: 04/04/2024]
Abstract
Introduction Low-temperature stress negatively impacts rice yield, posing a significant risk to food security. While previous studies have explored the physiological and linear gene expression alterations in rice under low-temperature conditions, the changes in competing endogenous RNA (ceRNA) networks remain largely unexamined. Methods We conducted RNA sequencing on two japonica rice varieties with differing cold-tolerance capabilities to establish ceRNA networks. This enabled us to investigate the transcriptional regulatory network and molecular mechanisms that rice employs in response to low-temperature stress. Results We identified 364 differentially expressed circular RNAs (circRNAs), 224 differentially expressed microRNAs (miRNAs), and 12,183 differentially expressed messenger RNAs (mRNAs). WRKY family was the most prominent transcription factor family involved in cold tolerance. Based on the expression patterns and targeted relationships of these differentially expressed RNAs, we discerned five potential ceRNA networks related to low-temperature stress in rice: osa-miR166j-5p from the miR166 family was associated with cold tolerance; osa-miR528-3p and osa-miR156j-3p were linked to stress response; and osa-miR156j-3p was involved in the antioxidant system. In addition, Os03g0152000 in the antioxidant system, as well as Os12g0491800 and Os05g0381400, correlated with the corresponding stress response and circRNAs in the network. A gene sequence difference analysis and phenotypic validation of Os11g0685700 (OsWRKY61) within the WRKY family suggested its potential role in regulating cold tolerance in rice. Discussion and conclusion We identified Os11g0685700 (OsWRKY61) as a promising candidate gene for enhancing cold tolerance in japonica rice. The candidate miRNAs, mRNAs, and circRNAs uncovered in this study are valuable targets for researchers and breeders. Our findings will facilitate the development of cold-tolerant rice varieties from multiple angles and provide critical directions for future research into the functions of cold-tolerance-related miRNAs, mRNAs, and circRNAs in rice.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yan Jia
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xu Bai
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jin Wang
- Bei Da Huang Kenfeng Seed Limited Company, Research and Breeding Center, Harbin, China
| | - Ge Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Haixing Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yulong Wu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Junying Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Huimiao Ma
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhenyu Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hongwei Zhao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Wang R, Zhang M, Wang H, Chen L, Zhang X, Guo L, Qi T, Tang H, Shahzad K, Wang H, Qiao X, Wu J, Xing C. Identification and characterization of circular RNAs involved in the fertility stability of cotton CMS-D2 restorer line under heat stress. BMC PLANT BIOLOGY 2024; 24:32. [PMID: 38183049 PMCID: PMC10768462 DOI: 10.1186/s12870-023-04706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND As a vital type of noncoding RNAs, circular RNAs (circRNAs) play important roles in plant growth and development and stress response. However, little is known about the biological roles of circRNAs in regulating the stability of male fertility restoration for cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) cotton under high-temperature (HT) stress. RESULTS In this study, RNA-sequencing and bioinformatics analysis were performed on pollen grains of isonuclear alloplasmic near-isogenic restorer lines NH [N(Rf1rf1)] and SH [S(Rf1rf1)] with obvious differences in fertility stability under HT stress at two environments. A total of 967 circRNAs were identified, with 250 differentially expressed under HT stress. We confirmed the back-splicing sites of eight selected circRNAs using divergent primers and Sanger sequencing. Tissue-specific expression patterns of five differentially expressed circRNAs (DECs) were also verified by RT-PCR and qRT-PCR. Functional enrichment and metabolic pathway analysis revealed that the parental genes of DECs were significantly enriched in fertility-related biological processes such as pollen tube guidance and cell wall organization, as well as the Pentose and glucuronate interconversions, Steroid biosynthesis, and N-Glycan biosynthesis pathways. Moreover, we also constructed a putative circRNA-mediated competing endogenous RNA (ceRNA) network consisting of 21 DECs, eight predicted circRNA-binding miRNAs, and their corresponding 22 mRNA targets, especially the two ceRNA modules circRNA346-miR159a-MYB33 and circRNA484-miR319e-MYB33, which might play important biological roles in regulating pollen fertility stability of cotton CMS-D2 restorer line under HT stress. CONCLUSIONS Through systematic analysis of the abundance, characteristics and expression patterns of circRNAs, as well as the potential functions of their parent genes, our findings suggested that circRNAs and their mediated ceRNA networks acted vital biological roles in cotton pollen development, and might be also essential regulators for fertility stability of CMS-D2 restorer line under heat stress. This study will open a new door for further unlocking complex regulatory mechanisms underpinning the fertility restoration stability for CMS-D2 in cotton.
Collapse
Affiliation(s)
- Ruijie Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Meng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Hui Wang
- Xiangyang Vocational and Technical College, Xiangyang, 441050, Hubei, China
| | - Liangliang Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Kashif Shahzad
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
16
|
Yang K, Huang Y, Li Z, Zeng Q, Dai X, Lv J, Zong X, Deng K, Zhang J. Overexpression of Nta-miR6155 confers resistance to Phytophthora nicotianae and regulates growth in tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1281373. [PMID: 38053762 PMCID: PMC10694243 DOI: 10.3389/fpls.2023.1281373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
Tobacco black shank induced by Phytophthora nicotianae causes significant yield losses in tobacco plants. MicroRNAs (miRNAs) play a pivotal role in plant biotic stress responses and have great potential in tobacco breeding for disease resistance. However, the roles of miRNAs in tobacco plants in response to P. nicotianae infection has not been well characterized. In this study, we found that Nta-miR6155, a miRNA specific to Solanaceae crops, was significantly induced in P. nicotianae infected tobacco. Some of predicted target genes of Nta-miR6155 were also observed to be involved in disease resistance. To further investigate the function of miR6155 in tobacco during P. nicotianae infection, Nta-miR6155 overexpression plants (miR6155-OE) were generated in the Honghua Dajinyuan tobacco variety (HD, the main cultivated tobacco variety in China). We found that the Nta-miR6155 overexpression enhanced the resistance in tobacco towards P. nicotianae infections. The level of reactive oxygen species (ROS) was significantly lower and antioxidant enzyme activities were significantly higher in miR6155-OE plants than those in control HD plants during P. nicotianae infection. In addition, we found that the accumulation of salicylic acid and the expression of salicylic acid biosynthesis and signal transduction-related genes is significantly higher in miR6155-OE plants in comparison to the control HD plants. Furthermore, we found that Nta-miR6155 cleaved target genes NtCIPK18 to modulate resistance towards P. nicotianae in tobacco plants. Additionally, phenotypic analysis of miR6155-OE plants showed that Nta-miR6155 could inhibit the growth of tobacco by suppressing nitrogen uptake and photosynthesis. In conclusion, our findings indicated that miR6155 plays a crucial role in the regulation of growth and resistance against P. nicotianae infections in tobacco plants.
Collapse
Affiliation(s)
- Kaiyue Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yuanyuan Huang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zexuan Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Qian Zeng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiumei Dai
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Jun Lv
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Xuefeng Zong
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kexuan Deng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
- Chongqing Tobacco Science Research Institute, Chongqing, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
- Chongqing Tobacco Science Research Institute, Chongqing, China
| |
Collapse
|
17
|
Zhang M, Zhang X, Wang R, Zang R, Guo L, Qi T, Tang H, Chen L, Wang H, Qiao X, Wu J, Xing C. Heat-responsive microRNAs participate in regulating the pollen fertility stability of CMS-D2 restorer line under high-temperature stress. Biol Res 2023; 56:58. [PMID: 37941013 PMCID: PMC10634144 DOI: 10.1186/s40659-023-00465-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Anther development and pollen fertility of cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) restorer lines are susceptible to continuous high-temperature (HT) stress in summer, which seriously hinders the large-scale application of "three-line" hybrids in production. Here, integrated small RNA, transcriptome, degradome, and hormone profiling was performed to explore the roles of microRNAs (miRNAs) in regulating fertility stability in mature pollens of isonuclear alloplasmic near-isogenic restorer lines NH and SH under HT stress at two environments. A total of 211 known and 248 novel miRNAs were identified, of which 159 were differentially expressed miRNAs (DEMs). Additionally, 45 DEMs in 39 miRNA clusters (PmCs) were also identified, and most highly expressed miRNAs were significantly induced in SH under extreme HT, especially four MIR482 and six MIR6300 family miRNAs. PmC28 was located in the fine-mapped interval of the Rf1 gene and contained two DEMs, gra-miR482_L-2R + 2 and gma-miR2118a-3p_R + 1_1ss18TG. Transcriptome sequencing identified 6281 differentially expressed genes, of which heat shock protein (HSP)-related genes, such as HSP70, HSP22, HSP18.5-C, HSP18.2 and HSP17.3-B, presented significantly reduced expression levels in SH under HT stress. Through integrating multi-omics data, we constructed a comprehensive molecular network of miRNA-mRNA-gene-KEGG containing 35 pairs of miRNA/target genes involved in regulating the pollen development in response to HT, among which the mtr-miR167a_R + 1, tcc-miR167c and ghr-miR390a, tcc-miR396c_L-1 and ghr-MIR169b-p3_1ss6AG regulated the pollen fertility by influencing ARF8 responsible for the auxin signal transduction, ascorbate and aldarate metabolism, and the sugar and lipid metabolism and transport pathways, respectively. Further combination with hormone analysis revealed that HT-induced jasmonic acid signaling could activate the expression of downstream auxin synthesis-related genes and cause excessive auxin accumulation, followed by a cascade of auxin signal transduction, ultimately resulting in pollen abortion. The results provide a new understanding of how heat-responsive miRNAs regulate the stability of fertility restoration for CMS-D2 cotton under heat stress.
Collapse
Affiliation(s)
- Meng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Ruijie Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Rong Zang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liangliang Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
18
|
Quan Y, Ping H, Wang M, Zhang X. RNA-Sequencing Analysis Indicates That N-Cadherin Promotes Prostate Cancer Progression by the Epigenetic Modification of Key Genes. DNA Cell Biol 2023; 42:563-577. [PMID: 37540080 DOI: 10.1089/dna.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
N-cadherin (cadherin-2 [CDH2]) is widely known as the promoter of prostate cancer (PCa) invasion and castration resistance. However, the biological mechanism of N-cadherin in PCa progression is unclear. In this study, we overexpressed N-cadherin in LNCaP cells and downregulated N-cadherin in PC3 cells by lentiviral transduction. Then, differentially expressed genes (DEGs) and dysregulated biological functions were investigated through RNA sequencing (RNA-seq) analyses. We found 13 long noncoding RNA (lncRNA) transcripts, 72 messenger RNA (mRNA) transcripts, and 3 integrated genes were dysregulated by N-cadherin. In the disease enrichment, bone cancer, and neurodegenerative and nervous system diseases were associated with N-cadherin in the circular RNA (circRNA; PC3 versus [vs.,/] LNCaP [PC3/LNCaP] comparison) and DEG analysis (LNCaP_oe_CDH2 vs. LNCaP_oe_NC [LNCaP_oe_CDH2/NC] comparison). Epigenetic reprogramming, such as nucleic acid binding, and chromatin and histone modifications, was enriched in Gene Ontology (GO) analysis (DEGs in LNCaP_oe_CDH2/NC and PC3_sh_NC/CDH2, and host genes of circRNA in PC3/LNCaP). Transcriptional misregulation in cancer, post-translational protein modification, gene expression, and generic transcription pathways were dysregulated in the pathway enrichment analysis (host genes of circRNA in PC3/LNCaP, and DEGs in LNCaP_oe_CDH2/NC and PC3_sh_NC/CDH2). Verifying DEGs through TCGA-PRAD dataset revealed six oncogenes (ARHGEF1, GRAMD1A, GTF2H4, MAPK8IP3, POLD1, and PTBP1) that were commonly upregulated by N-cadherin and in advanced PCa stages. In summary, we identified several oncogenes and biological functions associated with N-cadherin expression in PCa cells. N-cadherin may trigger epigenetic reprogramming in PCa cells to promote tumor progression.
Collapse
Affiliation(s)
- Yongjun Quan
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hao Ping
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Mingdong Wang
- Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Liu C, Jiang Y, Yun Z, Zhang K, Zhao M, Wang Y, Zhang M, Tian Z, Wang K. Small RNA-Seq to Unveil the miRNA Expression Patterns and Identify the Target Genes in Panax ginseng. PLANTS (BASEL, SWITZERLAND) 2023; 12:3070. [PMID: 37687317 PMCID: PMC10490192 DOI: 10.3390/plants12173070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Panax ginseng, renowned for its medicinal properties, relies on adventitious roots and hairy roots as crucial sources for the production of ginsenosides. Despite the widespread utilization of ginseng, investigations into its miRNAs have remained scarce. To address this gap, two samples of ginseng adventitious roots and ginseng hairy roots were collected, and subsequent construction and sequencing of small RNA libraries of ginseng adventitious roots and hairy roots were performed using the Illumina HiSeq X Ten platform. The analysis of the sequencing data unveiled total miRNAs 2432. The miR166 and miR396 were the most highly expressed miRNA families in ginseng. The miRNA expression analysis results were used to validate the qRT-PCR. Target genes of miRNA were predicted and GO function annotation and KEGG pathway analysis were performed on target genes. It was found that miRNAs are mainly involved in synthetic pathways and biological processes in plants, which include metabolic and bioregulatory processes. The plant miRNAs enriched KEGG pathways are associated with some metabolism, especially amino acid metabolism and carbohydrate metabolism. These results provide valuable insights miRNAs and their roles in metabolic processes in ginseng.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (Y.J.); (Z.Y.); (K.Z.); (M.Z.); (Y.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yang Jiang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (Y.J.); (Z.Y.); (K.Z.); (M.Z.); (Y.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Ziyi Yun
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (Y.J.); (Z.Y.); (K.Z.); (M.Z.); (Y.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Kexin Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (Y.J.); (Z.Y.); (K.Z.); (M.Z.); (Y.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (Y.J.); (Z.Y.); (K.Z.); (M.Z.); (Y.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (Y.J.); (Z.Y.); (K.Z.); (M.Z.); (Y.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (Y.J.); (Z.Y.); (K.Z.); (M.Z.); (Y.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Zhuo Tian
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (Y.J.); (Z.Y.); (K.Z.); (M.Z.); (Y.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| |
Collapse
|
20
|
DeSouza NR, Quaranto D, Carnazza M, Jarboe T, Tiwari RK, Geliebter J. Interactome of Long Non-Coding RNAs: Transcriptomic Expression Patterns and Shaping Cancer Cell Phenotypes. Int J Mol Sci 2023; 24:9914. [PMID: 37373059 PMCID: PMC10298192 DOI: 10.3390/ijms24129914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
RNA biology has gained extensive recognition in the last two decades due to the identification of novel transcriptomic elements and molecular functions. Cancer arises, in part, due to the accumulation of mutations that greatly contribute to genomic instability. However, the identification of differential gene expression patterns of wild-type loci has exceeded the boundaries of mutational study and has significantly contributed to the identification of molecular mechanisms that drive carcinogenic transformation. Non-coding RNA molecules have provided a novel avenue of exploration, providing additional routes for evaluating genomic and epigenomic regulation. Of particular focus, long non-coding RNA molecule expression has been demonstrated to govern and direct cellular activity, thus evidencing a correlation between aberrant long non-coding RNA expression and the pathological transformation of cells. lncRNA classification, structure, function, and therapeutic utilization have expanded cancer studies and molecular targeting, and understanding the lncRNA interactome aids in defining the unique transcriptomic signatures of cancer cell phenotypes.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10591, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10591, USA
| |
Collapse
|
21
|
Zhang R, Zhang S, Li J, Gao J, Song G, Li W, Geng S, Liu C, Lin Y, Li Y, Li G. CRISPR/Cas9-targeted mutagenesis of TaDCL4, TaDCL5 and TaRDR6 induces male sterility in common wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:839-853. [PMID: 36597709 PMCID: PMC10037139 DOI: 10.1111/pbi.14000] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Phased, small interfering RNAs (phasiRNAs) are important for plant anther development, especially for male sterility. PhasiRNA biogenesis is dependent on genes like RNA polymerase 6 (RDR6), DICER-LIKE 4 (DCL4), or DCL5 to produce 21- or 24 nucleotide (nt) double-strand small RNAs. Here, we generated mutants of DCL4, DCL5 and RDR6 using CRISPR/Cas9 system and studied their effects on plant reproductive development and phasiRNA production in wheat. We found that RDR6 mutation caused sever consequence throughout plant development starting from seed germination and the dcl4 mutants grew weaker with thorough male sterility, while dcl5 plants developed normally but exhibited male sterility. Correspondingly, DCL4 and DCL5, respectively, specified 21- and 24-nt phasiRNA biogenesis, while RDR6 contributed to both. Also, the three key genes evolved differently in wheat, with TaDCL5-A/B becoming non-functioning and TaRDR6-A being lost after polyploidization. Furthermore, we found that PHAS genes (phasiRNA precursors) identified via phasiRNAs diverged rapidly among sub-genomes of polyploid wheat. Despite no similarity being found among phasiRNAs of grasses, their targets were enriched for similar biological functions. In light of the important roles of phasiRNA pathways in gametophyte development, genetic dissection of the function of key genes may help generate male sterile lines suitable for hybrid wheat breeding.
Collapse
Affiliation(s)
- Rongzhi Zhang
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of Agriculture, Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Research Center for Wheat and MaizeJinanChina
| | - Shujuan Zhang
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of Agriculture, Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Research Center for Wheat and MaizeJinanChina
| | - Jihu Li
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of Agriculture, Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Research Center for Wheat and MaizeJinanChina
| | - Jie Gao
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of Agriculture, Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Research Center for Wheat and MaizeJinanChina
| | - Guoqi Song
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of Agriculture, Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Research Center for Wheat and MaizeJinanChina
| | - Wei Li
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of Agriculture, Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Research Center for Wheat and MaizeJinanChina
| | - Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Cheng Liu
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of Agriculture, Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Research Center for Wheat and MaizeJinanChina
| | - Yanxiang Lin
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of Agriculture, Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Research Center for Wheat and MaizeJinanChina
| | - Yulian Li
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of Agriculture, Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Research Center for Wheat and MaizeJinanChina
| | - Genying Li
- Crop Research InstituteShandong Academy of Agricultural SciencesJinanChina
- Ministry of Agriculture, Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River ValleyJinanChina
- National Engineering Research Center for Wheat and MaizeJinanChina
| |
Collapse
|
22
|
Rego ECS, Pinheiro TDM, Fonseca FCDA, Gomes TG, Costa EDC, Bastos LS, Alves GSC, Cotta MG, Amorim EP, Ferreira CF, Togawa RC, Costa MMDC, Grynberg P, Miller RNG. Characterization of microRNAs and Target Genes in Musa acuminata subsp. burmannicoides, var. Calcutta 4 during Interaction with Pseudocercospora musae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1473. [PMID: 37050099 PMCID: PMC10097032 DOI: 10.3390/plants12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Endogenous microRNAs (miRNAs) are small non-coding RNAs that perform post-transcriptional regulatory roles across diverse cellular processes, including defence responses to biotic stresses. Pseudocercospora musae, the causal agent of Sigatoka leaf spot disease in banana (Musa spp.), is an important fungal pathogen of the plant. Illumina HiSeq 2500 sequencing of small RNA libraries derived from leaf material in Musa acuminata subsp. burmannicoides, var. Calcutta 4 (resistant) after inoculation with fungal conidiospores and equivalent non-inoculated controls revealed 202 conserved miRNAs from 30 miR-families together with 24 predicted novel miRNAs. Conserved members included those from families miRNA156, miRNA166, miRNA171, miRNA396, miRNA167, miRNA172, miRNA160, miRNA164, miRNA168, miRNA159, miRNA169, miRNA393, miRNA535, miRNA482, miRNA2118, and miRNA397, all known to be involved in plant immune responses. Gene ontology (GO) analysis of gene targets indicated molecular activity terms related to defence responses that included nucleotide binding, oxidoreductase activity, and protein kinase activity. Biological process terms associated with defence included response to hormone and response to oxidative stress. DNA binding and transcription factor activity also indicated the involvement of miRNA target genes in the regulation of gene expression during defence responses. sRNA-seq expression data for miRNAs and RNAseq data for target genes were validated using stem-loop quantitative real-time PCR (qRT-PCR). For the 11 conserved miRNAs selected based on family abundance and known involvement in plant defence responses, the data revealed a frequent negative correlation of expression between miRNAs and target host genes. This examination provides novel information on miRNA-mediated host defence responses, applicable in genetic engineering for the control of Sigatoka leaf spot disease.
Collapse
Affiliation(s)
| | | | | | - Taísa Godoy Gomes
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Erica de Castro Costa
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Lucas Santos Bastos
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | | | - Michelle Guitton Cotta
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | | | | | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, Brasília 70770-917, DF, Brazil
| | - Marcos Mota Do Carmo Costa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, Brasília 70770-917, DF, Brazil
| | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, Brasília 70770-917, DF, Brazil
| | | |
Collapse
|
23
|
Shi F, Zhao Z, Jiang Y, Liu S, Tan C, Liu C, Ye X, Liu Z. Whole transcriptome analysis and construction of a ceRNA regulatory network related to leaf and petiole development in Chinese cabbage (Brassica campestris L. ssp. pekinensis). BMC Genomics 2023; 24:144. [PMID: 36964498 PMCID: PMC10039531 DOI: 10.1186/s12864-023-09239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND The growth and development of leaves and petioles have a significant effect on photosynthesis. Understanding the molecular mechanisms underlying leaf and petiole development is necessary for improving photosynthetic efficiency, cultivating varieties with high photosynthetic efficiency, and improving the yield of crops of which the leaves are foodstuffs. This study aimed to identify the mRNAs, long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) related to leaf and petiole development in Chinese cabbage (Brassica campestris L. ssp. pekinensis). The data were used to construct a competitive endogenous RNA (ceRNA) network to obtain insights into the mechanisms underlying leaf and petiole development. RESULTS The leaves and petioles of the 'PHL' inbred line of Chinese cabbage were used as research materials for whole transcriptome sequencing. A total of 10,646 differentially expressed (DE) mRNAs, 303 DElncRNAs, 7 DEcircRNAs, and 195 DEmiRNAs were identified between leaves and petioles. Transcription factors and proteins that play important roles in leaf and petiole development were identified, including xyloglucan endotransglucosylase/hydrolase, expansion proteins and their precursors, transcription factors TCP15 and bHLH, lateral organ boundary domain protein, cellulose synthase, MOR1-like protein, and proteins related to plant hormone biosynthesis. A ceRNA regulatory network related to leaf and petiole development was constructed, and 85 pairs of ceRNA relationships were identified, including 71 DEmiRNA-DEmRNA, 12 DEmiRNA-DElncRNA, and 2 DEmiRNA-DEcircRNA pairs. Three LSH genes (BrLSH1, BrLSH2 and BrLSH3) with significant differential expression between leaves and petioles were screened from transcriptome data, and their functions were explored through subcellular localization analysis and transgenic overexpression verification. BrLSH1, BrLSH2 and BrLSH3 were nuclear proteins, and BrLSH2 inhibited the growth and development of Arabidopsis thaliana. CONCLUSIONS This study identifies mRNAs and non-coding RNAs that may be involved in the development of leaves and petioles in Chinese cabbage, and establishes a ceRNA regulatory network related to development of the leaves and petioles, providing valuable genomic resources for further research on the molecular mechanisms underlying leaf and petiole development in this crop species.
Collapse
Affiliation(s)
- Fengyan Shi
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
- Vegetable Research Institute of Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Zifan Zhao
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Yang Jiang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Song Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Chong Tan
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Chuanhong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Xueling Ye
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| |
Collapse
|
24
|
Zhu C, Yuan T, Yang K, Liu Y, Li Y, Gao Z. Identification and characterization of CircRNA-associated CeRNA networks in moso bamboo under nitrogen stress. BMC PLANT BIOLOGY 2023; 23:142. [PMID: 36918810 PMCID: PMC10012455 DOI: 10.1186/s12870-023-04155-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Nitrogen is a macronutrient element for plant growth and development. Circular RNAs (circRNAs) serve as pivotal regulators for the coordination between nutrient supply and plant demand. Moso bamboo (Phyllostachys edulis) is an excellent plant with fast growth, and the mechanism of the circRNA-target module in response to nitrogen remains unclear. RESULTS Deep small RNA sequencing results of moso bamboo seedlings under different concentrations of KNO3 (N0 = 0 mM, N6 = 6 mM, N18 = 18 mM) were used to identify circRNAs. A total of 549 circRNAs were obtained, of which 309 were generated from corresponding parental coding genes including 66 new ones. A total of 536 circRNA-parent genes were unevenly distributed in 24 scaffolds and were associated with root growth and development. Furthermore, 52 differentially expressed circRNAs (DECs) were obtained, including 24, 33 and 15 DECs from three comparisons of N0 vs. N6, N0 vs. N18 and N6 vs. N18, respectively. Based on integrative analyses of the identified DECs, differentially expressed mRNAs (DEGs), and miRNAs (DEMs), a competitive endogenous RNA (ceRNA) network was constructed, including five DECs, eight DEMs and 32 DEGs. A regulatory module of PeSca_6:12,316,320|12,372,905-novel_miR156-PH02Gene35622 was further verified by qPCR and dual-luciferase reporter assays. CONCLUSION The results indicated that circRNAs could participate in multiple biological processes as miRNA sponges, including organ nitrogen compound biosynthesis and metabolic process regulation in moso bamboo. Our results provide valuable information for further study of circRNAs in moso bamboo under fluctuating nitrogen conditions.
Collapse
Affiliation(s)
- Chenglei Zhu
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Tingting Yuan
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Kebin Yang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Yan Liu
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Ying Li
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Zhimin Gao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China.
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China.
| |
Collapse
|
25
|
Loganathan T, Doss C GP. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 2023; 23:33. [PMID: 36625940 PMCID: PMC9838419 DOI: 10.1007/s10142-022-00947-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
26
|
Piombo E, Kelbessa BG, Sundararajan P, Whisson SC, Vetukuri RR, Dubey M. RNA silencing proteins and small RNAs in oomycete plant pathogens and biocontrol agents. Front Microbiol 2023; 14:1076522. [PMID: 37032886 PMCID: PMC10080066 DOI: 10.3389/fmicb.2023.1076522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Oomycetes cause several damaging diseases of plants and animals, and some species also act as biocontrol agents on insects, fungi, and other oomycetes. RNA silencing is increasingly being shown to play a role in the pathogenicity of Phytophthora species, either through trans-boundary movement of small RNAs (sRNAs) or through expression regulation of infection promoting effectors. Methods To gain a wider understanding of RNA silencing in oomycete species with more diverse hosts, we mined genome assemblies for Dicer-like (DCL), Argonaute (AGO), and RNA dependent RNA polymerase (RDRP) proteins from Phytophthora plurivora, Ph. cactorum, Ph. colocasiae, Pythium oligandrum, Py. periplocum, and Lagenidium giganteum. Moreover, we sequenced small RNAs from the mycelium stage in each of these species. Results and discussion Each of the species possessed a single DCL protein, but they differed in the number and sequence of AGOs and RDRPs. SRNAs of 21nt, 25nt, and 26nt were prevalent in all oomycetes analyzed, but the relative abundance and 5' base preference of these classes differed markedly between genera. Most sRNAs mapped to transposons and other repeats, signifying that the major role for RNA silencing in oomycetes is to limit the expansion of these elements. We also found that sRNAs may act to regulate the expression of duplicated genes. Other sRNAs mapped to several gene families, and this number was higher in Pythium spp., suggesting a role of RNA silencing in regulating gene expression. Genes for most effector classes were the source of sRNAs of variable size, but some gene families showed a preference for specific classes of sRNAs, such as 25/26 nt sRNAs targeting RxLR effector genes in Phytophthora species. Novel miRNA-like RNAs (milRNAs) were discovered in all species, and two were predicted to target transcripts for RxLR effectors in Ph. plurivora and Ph. cactorum, indicating a putative role in regulating infection. Moreover, milRNAs from the biocontrol Pythium species had matches in the predicted transcriptome of Phytophthora infestans and Botrytis cinerea, and L. giganteum milRNAs matched candidate genes in the mosquito Aedes aegypti. This suggests that trans-boundary RNA silencing may have a role in the biocontrol action of these oomycetes.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bekele Gelena Kelbessa
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Poorva Sundararajan
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Stephen C. Whisson
- Department of Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
- *Correspondence: Ramesh Raju Vetukuri, ; Mukesh Dubey,
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Ramesh Raju Vetukuri, ; Mukesh Dubey,
| |
Collapse
|
27
|
Ding Y, Zou LH, Wu J, Ramakrishnan M, Gao Y, Zhao L, Zhou M. The pattern of DNA methylation alteration, and its association with the expression changes of non-coding RNAs and mRNAs in Moso bamboo under abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111451. [PMID: 36075278 DOI: 10.1016/j.plantsci.2022.111451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic changes play an important role in plant growth and development and in stress response. However, DNA methylation pattern and its relationship with the expression changes of non-coding RNAs and mRNAs of Moso bamboo in response to abiotic stress is still largely unknown. In this work, we used whole-genome bisulfite sequencing in combination with whole-transcriptome sequencing to analyze the DNA methylation and transcription patterns of mRNAs and non-coding RNAs in Moso bamboo under abiotic stresses such as cold, heat, ultraviolet (UV) and salinity. We found that CHH methylation in the promoter region was positively correlated with gene expression, while CHG and CHH methylations in the gene body regions were negatively associated with gene expression. Moreover, CG and CHG methylations in the promoter regions were negatively correlated with the transcript abundance of long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs). Similarly, the methylation levels of three contexts in the genic regions were negatively correlated with the transcript abundance of lncRNAs and miRNAs but positively correlated with that of circRNAs. In addition, we suggested that the reduction of 21-nt and 24-nt small interfering RNA (siRNA) expression tended to increase methylation levels in the genic regions. We found that stress-responsive genes such as CRPK1, HSFB2A and CIPK were differentially methylated and expressed. Our results also proposed that DNA methylation may regulate the expression of the transcription factors (TFs) and plant hormone signalling genes such as IAA9, MYC2 and ERF110 in response to abiotic stress. This study firstly reports the abiotic stress-responsive DNA methylation pattern and its involvement of expression of coding RNAs and non-coding RNAs in Moso bamboo. The results expand the knowledge of epigenetic mechanisms in Moso bamboo under abiotic stress and support in-depth deciphering of the function of specific non-coding RNAs in future studies.
Collapse
Affiliation(s)
- Yiqian Ding
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Long-Hai Zou
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| | - Jiajun Wu
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Muthusamy Ramakrishnan
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yubang Gao
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Liangzhen Zhao
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China; Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingbing Zhou
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| |
Collapse
|
28
|
Yang Y, Gao Y, Li Y, Li X. Identification and differential analysis of noncoding RNAs in response to drought in Phyllostachys aureosulcata f. spectabilis. FRONTIERS IN PLANT SCIENCE 2022; 13:1040470. [PMID: 36438105 PMCID: PMC9686404 DOI: 10.3389/fpls.2022.1040470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The role of noncoding RNAs (ncRNAs) in plant resistance to abiotic stresses is increasingly being discovered. Drought stress is one of the most common stresses that affecting plant growth, and high intensity drought has a significant impact on the normal growth of plants. In this study, a high-throughput sequencing was performed on plant tissue samples of Phyllostachys aureosulcata f. spectabilis C. D. Chu et C. S. Chao by drought treatment for 0, 2, 4 and 6 days. The sequencing results were analysed bioinformatically. We detected 336,946 RNAs among all 12 samples, including 192,098 message RNAs (mRNAs), 142,761 long noncoding RNAs (lncRNAs), 1,670 circular RNAs (circRNAs), and 417 microRNAs (miRNAs). We detected 2,419 differentially expressed (DE) ncRNAs, including 213 DE circRNAs, 2,088 DE lncRNAs and 118 DE miRNAs. Then, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to functionally predict DE ncRNAs. The results showed that most DE ncRNAs are involved in the response to drought stress, mainly in biochemical reactions involved in some metabolites, as well as in organelle activities. In addition, we validated two random circRNAs and demonstrated their circularity. We also found a stable internal reference gene available for Phyllostachys aureosulcata f. spectabilis and validated the accuracy of this experiment by quantitative real-time polymerase chain reaction (qRT-PCR).
Collapse
|
29
|
De Serres-Bérard T, Ait Benichou S, Jauvin D, Boutjdir M, Puymirat J, Chahine M. Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:13359. [PMID: 36362145 PMCID: PMC9657934 DOI: 10.3390/ijms232113359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a dominant genetic disease in which the expansion of long CTG trinucleotides in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene results in toxic RNA gain-of-function and gene mis-splicing affecting mainly the muscles, the heart, and the brain. The CUG-expanded transcripts are a suitable target for the development of antisense oligonucleotide (ASO) therapies. Various chemical modifications of the sugar-phosphate backbone have been reported to significantly enhance the affinity of ASOs for RNA and their resistance to nucleases, making it possible to reverse DM1-like symptoms following systemic administration in different transgenic mouse models. However, specific tissue delivery remains to be improved to achieve significant clinical outcomes in humans. Several strategies, including ASO conjugation to cell-penetrating peptides, fatty acids, or monoclonal antibodies, have recently been shown to improve potency in muscle and cardiac tissues in mice. Moreover, intrathecal administration of ASOs may be an advantageous complementary administration route to bypass the blood-brain barrier and correct defects of the central nervous system in DM1. This review describes the evolution of the chemical design of antisense oligonucleotides targeting CUG-expanded mRNAs and how recent advances in the field may be game-changing by forwarding laboratory findings into clinical research and treatments for DM1 and other microsatellite diseases.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Siham Ait Benichou
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada
| | - Dominic Jauvin
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Science University, New York, NY 11203, USA
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Mohamed Chahine
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
30
|
Yang G, Pan W, Cao R, Guo Q, Cheng Y, Zhao Q, Cui L, Nie X. Multi-omics reveals the key and specific miRNA-mRNA modules underlying salt tolerance in wild emmer wheat (Triticum dicoccoides L.). BMC Genomics 2022; 23:724. [PMID: 36284277 PMCID: PMC9597961 DOI: 10.1186/s12864-022-08945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background Salt stress is one of the most destructive environmental factors limiting crop growth and development. MicroRNAs (miRNAs) are a class of conserved endogenous small non-coding RNAs, playing the crucial role in regulating salt response and tolerance in plants. However, the miRNAs in wild emmer wheat, especially the key and specific salt-responsive miRNAs are not well studied. Results Here, we performed small RNA, transcriptome, and degradome sequencing of both of salt-tolerance (ST) and salt-sensitive (SS) wild emmer genotypes to identify the miRNA-mRNA modules associating with salt tolerance. Totally, 775 miRNAs, including 361 conserved known miRNAs and 414 novel miRNAs were detected. Differential expression analysis identified 93 salt-responsive miRNAs under salt stress. Combined with RNA-seq and degradome sequencing analysis, 224 miRNA-mRNA modules displayed the complete opposite expression trends between ST and SS genotypes, most of which functionally enriched into ROS homeostasis maintaining, osmotic pressure modulating, and root growth and development. Finally, the qRT-PCR and a large-scale yeast functional screening were also performed to initially validate the expression pattern and function of candidate genes. Conclusions This study reported the key and specific miRNA-mRNA modules associated with salt tolerance in wild emmer, which lay the foundation for improving the salt tolerance in cultivated emmer and bread wheat through miRNA engineering approach. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08945-3.
Collapse
Affiliation(s)
- Guang Yang
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Wenqiu Pan
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Rui Cao
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Qifan Guo
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Yue Cheng
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Qinlong Zhao
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Licao Cui
- grid.411859.00000 0004 1808 3238College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Xiaojun Nie
- grid.144022.10000 0004 1760 4150State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| |
Collapse
|
31
|
Liu J, Wang K, Ji H, Zhang G, Chen S, Zhang S, Lu F, Hu C. Integrated analysis of competitive endogenous ribose nucleic acids (ceRNAs)-related regulatory networks in invasive and non-invasive non-functioning pituitary adenomas (NFPAs). Front Surg 2022; 9:983958. [PMID: 36248377 PMCID: PMC9556953 DOI: 10.3389/fsurg.2022.983958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThis study aims to identify the differentially expressed (DE) non-coding ribose nucleic acids (ncRNAs), messenger RNA (mRNA) expression profiles, and competitive endogenous RNA (ceRNA)-related regulatory networks in invasive and non-invasive nonfunctioning pituitary adenomas (NFPAs).MethodsA full-transcriptome sequencing of invasive and non-invasive NFPAs is carried out to evaluate the expression profiles of circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNA expression profiles.ResultsThe screening criteria resulted in 118 DEcircRNAs (88 up-regulated and 30 down-regulated), 105 DElncRNAs (68 up-regulated and 37 down-regulated), 43 DEmiRNAs (22 up-regulated and 21 down-regulated), and 268 DEmRNAs (194 up-regulated and 74 down-regulated). Accordingly, a ceRNA regulatory network related to invasive NFPA is constructed. Further, the Gene Ontology and Kyoto Encylopedia of Genes and Genomes analyses showed that circRNAs and lncRNAs in the network are related to chromatin remodeling, participating in the Janus kinase/signal transducer and activator of transcription (JAK-STAT) and calcium signaling pathways. Hsa-miR-1248 showed exceptional connectivity in the ceRNA regulatory network, which could be closely related to the invasiveness of NFPAs.ConclusionsTogether, these findings clarified the regulatory mechanisms of invasive and non-invasive NFPAs, providing innovative research avenues and therapeutic targets for invasive NFPAs.
Collapse
Affiliation(s)
- Jiangtao Liu
- Department of Neurosurgery, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
| | - Kaixuan Wang
- Department of Neurosurgery, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
| | - Hongming Ji
- Department of Neurosurgery, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
| | - Gangli Zhang
- Department of Neurosurgery, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
| | - Shengli Chen
- Department of Neurosurgery, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
| | - Shiyuan Zhang
- Department of Neurosurgery, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
| | - Fake Lu
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, United States
- Correspondence: Changchen Hu Fake Lu
| | - Changchen Hu
- Department of Neurosurgery, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, China
- Department of Neurosurgery, Shuozhou People’s Hospital, Shuozhou, China
- Correspondence: Changchen Hu Fake Lu
| |
Collapse
|
32
|
Han X, Zhang YW, Liu JY, Zuo JF, Zhang ZC, Guo L, Zhang YM. 4D genetic networks reveal the genetic basis of metabolites and seed oil-related traits in 398 soybean RILs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:92. [PMID: 36076247 PMCID: PMC9461130 DOI: 10.1186/s13068-022-02191-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022]
Abstract
Background The yield and quality of soybean oil are determined by seed oil-related traits, and metabolites/lipids act as bridges between genes and traits. Although there are many studies on the mode of inheritance of metabolites or traits, studies on multi-dimensional genetic network (MDGN) are limited. Results In this study, six seed oil-related traits, 59 metabolites, and 107 lipids in 398 recombinant inbred lines, along with their candidate genes and miRNAs, were used to construct an MDGN in soybean. Around 175 quantitative trait loci (QTLs), 36 QTL-by-environment interactions, and 302 metabolic QTL clusters, 70 and 181 candidate genes, including 46 and 70 known homologs, were previously reported to be associated with the traits and metabolites, respectively. Gene regulatory networks were constructed using co-expression, protein–protein interaction, and transcription factor binding site and miRNA target predictions between candidate genes and 26 key miRNAs. Using modern statistical methods, 463 metabolite–lipid, 62 trait–metabolite, and 89 trait–lipid associations were found to be significant. Integrating these associations into the above networks, an MDGN was constructed, and 128 sub-networks were extracted. Among these sub-networks, the gene–trait or gene–metabolite relationships in 38 sub-networks were in agreement with previous studies, e.g., oleic acid (trait)–GmSEI–GmDGAT1a–triacylglycerol (16:0/18:2/18:3), gene and metabolite in each of 64 sub-networks were predicted to be in the same pathway, e.g., oleic acid (trait)–GmPHS–d-glucose, and others were new, e.g., triacylglycerol (16:0/18:1/18:2)–GmbZIP123–GmHD-ZIPIII-10–miR166s–oil content. Conclusions This study showed the advantages of MGDN in dissecting the genetic relationships between complex traits and metabolites. Using sub-networks in MGDN, 3D genetic sub-networks including pyruvate/threonine/citric acid revealed genetic relationships between carbohydrates, oil, and protein content, and 4D genetic sub-networks including PLDs revealed the relationships between oil-related traits and phospholipid metabolism likely influenced by the environment. This study will be helpful in soybean quality improvement and molecular biological research. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02191-1.
Collapse
|
33
|
Zhang C, Zhang K, Chai Z, Song Y, Wang X, Duan Y, Zhang M. Identification of miRNAs and Target Genes at Key Stages of Sexual Differentiation in Androdioecious Osmanthus fragrans. Int J Mol Sci 2022; 23:ijms231810386. [PMID: 36142310 PMCID: PMC9499476 DOI: 10.3390/ijms231810386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Androdioecy is the crucial transition state in the evolutionary direction of hermaphroditism to dioecy, however, the molecular mechanisms underlying the formation of this sex system remain unclear. While popular in China for its ornamental and cultural value, Osmanthus fragrans has an extremely rare androdioecy breeding system, meaning that there are both male and hermaphroditic plants in a population. To unravel the mechanisms underlying the formation of androdioecy, we performed small RNA sequencing studies on male and hermaphroditic O. fragrans. A total of 334 miRNAs were identified, of which 59 were differentially expressed. Functional categorization revealed that the target genes of differentially expressed miRNAs were mainly involved in the biological processes of reproductive development and the hormone signal transduction pathway. We speculated that the miRNA160, miRNA167, miRNA393 and miRNA396 families may influence the sex differentiation in O. fragrans. Overall, our study is the first exploration of miRNAs in the growth and development process of O. fragrans, and is also the first study of androdioecious plants from the miRNA sequencing perspective. The analysis of miRNAs and target genes that may be involved in the sex differentiation process lay a foundation for the ultimate discovery of the androdioecious molecular mechanism in O. fragrans.
Collapse
|
34
|
Research progress about microRNAs involved in plant secondary metabolism. Int J Biol Macromol 2022; 216:820-829. [DOI: 10.1016/j.ijbiomac.2022.07.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
|
35
|
A Combination of a Genome-Wide Association Study and a Transcriptome Analysis Reveals circRNAs as New Regulators Involved in the Response to Salt Stress in Maize. Int J Mol Sci 2022; 23:ijms23179755. [PMID: 36077153 PMCID: PMC9456493 DOI: 10.3390/ijms23179755] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Salinization seriously threatens the normal growth of maize, especially at the seedling stage. Recent studies have demonstrated that circular RNAs (circRNAs) play vital roles in the regulation of plant stress resistance. Here, we performed a genome-wide association study (GWAS) on the survival rate of 300 maize accessions under a salt stress treatment. A total of 5 trait-associated SNPs and 86 candidate genes were obtained by the GWAS. We performed RNA sequencing for 28 transcriptome libraries derived from 2 maize lines with contrasting salt tolerance under normal and salt treatment conditions. A total of 1217 highly expressed circRNAs were identified, of which 371 were responsive to a salt treatment. Using PCR and Sanger sequencing, we verified the reliability of these differentially expressed circRNAs. An integration of the GWAS and RNA-Seq analyses uncovered two differentially expressed hub genes (Zm00001eb013650 and Zm00001eb198930), which were regulated by four circRNAs. Based on these results, we constructed a regulation model of circRNA/miRNA/mRNA that mediated salt stress tolerance in maize. By conducting hub gene-based association analyses, we detected a favorable haplotype in Zm00001eb198930, which was responsible for high salt tolerance. These results help to clarify the regulatory relationship between circRNAs and their target genes as well as to develop salt-tolerant lines for maize breeding.
Collapse
|
36
|
Wang L, Li H, Li J, Li G, Zahid MS, Li D, Ma C, Xu W, Song S, Li X, Wang S. Transcriptome analysis revealed the expression levels of genes related to abscisic acid and auxin biosynthesis in grapevine ( Vitis vinifera L.) under root restriction. FRONTIERS IN PLANT SCIENCE 2022; 13:959693. [PMID: 36092429 PMCID: PMC9449541 DOI: 10.3389/fpls.2022.959693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The root system is essential for the stable growth of plants. Roots help anchor plants in the soil and play a crucial role in water uptake, mineral nutrient absorption and endogenous phytohormone formation. Root-restriction (RR) cultivation, a powerful technique, confines plant roots to a specific soil space. In the present study, roots of one-year-old "Muscat Hamburg" grapevine under RR and control (nR) treatments harvested at 70 and 125 days after planting were used for transcriptome sequencing, and in total, 2031 (nR7 vs. nR12), 1445 (RR7 vs. RR12), 1532 (nR7 vs. RR7), and 2799 (nR12 vs. RR12) differentially expressed genes (DEGs) were identified. Gene Ontology (GO) enrichment analysis demonstrated that there were several genes involved in the response to different phytohormones, including abscisic acid (ABA), auxin (IAA), ethylene (ETH), gibberellins (GAs), and cytokinins (CTKs). Among them, multiple genes, such as PIN2 and ERF113, are involved in regulating vital plant movements by various phytohormone pathways. Moreover, following RR cultivation, DEGs were enriched in the biological processes of plant-type secondary cell wall biosynthesis, the defense response, programmed cell death involved in cell development, and the oxalate metabolic process. Furthermore, through a combined analysis of the transcriptome and previously published microRNA (miRNA) sequencing results, we found that multiple differentially expressed miRNAs (DEMs) and DEG combinations in different comparison groups exhibited opposite trends, indicating that the expression levels of miRNAs and their target genes were negatively correlated. Furthermore, RR treatment indeed significantly increased the ABA content at 125 days after planting and significantly decreased the IAA content at 70 days after planting. Under RR cultivation, most ABA biosynthesis-related genes were upregulated, while most IAA biosynthesis-related genes were downregulated. These findings lay a solid foundation for further establishing the network through which miRNAs regulate grapevine root development through target genes and for further exploring the molecular mechanism through which endogenous ABA and IAA regulate root architecture development in grapevine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Xiong C, Pei H, Zhang Y, Ren W, Ma Z, Tang Y, Huang J. Integrative analysis of transcriptome and miRNAome reveals molecular mechanisms regulating pericarp thickness in sweet corn during kernel development. FRONTIERS IN PLANT SCIENCE 2022; 13:945379. [PMID: 35958194 PMCID: PMC9361504 DOI: 10.3389/fpls.2022.945379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 06/18/2023]
Abstract
Pericarp thickness affects the edible quality of sweet corn (Zea mays L. saccharata Sturt.). Therefore, breeding varieties with a thin pericarp is important for the quality breeding of sweet corn. However, the molecular mechanisms underlying the pericarp development remain largely unclear. We performed an integrative analysis of mRNA and miRNA sequencing to elucidate the genetic mechanism regulating pericarp thickness during kernel development (at 15 days, 19 days, and 23 days after pollination) of two sweet corn inbred lines with different pericarp thicknesses (M03, with a thinner pericarp and M08, with a thicker pericarp). A total of 2,443 and 1,409 differentially expressed genes (DEGs) were identified in M03 and M08, respectively. Our results indicate that phytohormone-mediated programmed cell death (PCD) may play a critical role in determining pericarp thickness in sweet corn. Auxin (AUX), gibberellin (GA), and brassinosteroid (BR) signal transduction may indirectly mediate PCD to regulate pericarp thickness in M03 (the thin pericarp variety). In contrast, abscisic acid (ABA), cytokinin (CK), and ethylene (ETH) signaling may be the key regulators of pericarp PCD in M08 (the thick pericarp variety). Furthermore, 110 differentially expressed microRNAs (DEMIs) and 478 differentially expressed target genes were identified. miRNA164-, miRNA167-, and miRNA156-mediated miRNA-mRNA pairs may participate in regulating pericarp thickness. The expression results of DEGs were validated by quantitative real-time PCR. These findings provide insights into the molecular mechanisms regulating pericarp thickness and propose the objective of breeding sweet corn varieties with a thin pericarp.
Collapse
|
38
|
Key regulatory pathways, microRNAs, and target genes participate in adventitious root formation of Acer rubrum L. Sci Rep 2022; 12:12057. [PMID: 35835811 PMCID: PMC9283533 DOI: 10.1038/s41598-022-16255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
Red maple (Acer rubrum L.) is a type of colorful ornamental tree with great economic value. Because this tree is difficult to root under natural conditions and the seedling survival rate is low, vegetative propagation methods are often used. Because the formation of adventitious roots (ARs) is essential for the asexual propagation of A. rubrum, it is necessary to investigate the molecular regulatory mechanisms of AR formation in A. rubrum. To address this knowledge gap, we sequenced the transcriptome and small RNAs (sRNAs) of the A. rubrum variety ‘Autumn Fantasy’ using high-throughput sequencing and explored changes in gene and microRNA (miRNA) expression in response to exogenous auxin treatment. We identified 82,468 differentially expressed genes (DEGs) between the treated and untreated ARs, as well as 48 known and 95 novel miRNAs. We also identified 172 target genes of the known miRNAs using degradome sequencing. Two key regulatory pathways (ubiquitin mediated proteolysis and plant hormone signal transduction), Ar-miR160a and the target gene auxin response factor 10 (ArARF10) were selected based on KEGG pathway and cluster analyses. We further investigated the expression patterns and regulatory roles of ArARF10 through subcellular localization, transcriptional activation, plant transformation, qRT-PCR analysis, and GUS staining. Experiments overexpressing ArARF10 and Ar-miR160a, indicated that ArARF10 promoted AR formation, while Ar-miR160a inhibited AR formation. Transcription factors (TFs) and miRNAs related to auxin regulation that promote AR formation in A. rubrum were identified. Differential expression patterns indicated the Ar-miR160a-ArARF10 interaction might play a significant role in the regulation of AR formation in A. rubrum. Our study provided new insights into mechanisms underlying the regulation of AR formation in A. rubrum.
Collapse
|
39
|
Lin F, Chen SP, Lin KH, Chen C, Yao F, Zhong L, Chen W, Kuo YW. Integrated small RNA profiling and degradome analysis of Anthurium andraeanum cultivars with different-colored spathes. JOURNAL OF PLANT RESEARCH 2022; 135:609-626. [PMID: 35534649 DOI: 10.1007/s10265-022-01394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) are known to play vital roles in coloration of leaves, flowers, and fruits in plants. However, their functions in spathe coloration are poorly known. Anthurium andraeanum is a popular ornamental plant with various spathe colors. In this study, small RNA and degradome libraries from three A. andraeanum cultivars with different-colored spathes were constructed and sequenced. Illumina sequencing resulted in 94 conserved miRNAs, and 34 novel miRNAs in total were then identified based on precursor sequences and hairpin structures. Differential expression analysis showed that 52, 51, and 49 miRNAs were differentially expressed in comparisons of orange- versus white-colored spathe, purple- versus white-colored spathe, and purple- versus orange-colored spathe, respectively. The expression patterns of miRNAs and their corresponding targets involved in spathe coloration were further analyzed, and displayed that miR156b and miR529 were highly abundant in the spathes with higher anthocyanin content. These two miRNAs co-targeted a gene encoding SPL17, which may function as a negative regulator in anthocyanin accumulation. In addition, miR408 was also abundantly expressed in purple- and orange-colored spathes, and its typical targets were also identified. This comprehensive integrated analysis provides insight into the miRNA-mediated genetic regulation in spathe coloration of A. andraeanum.
Collapse
Affiliation(s)
- Fazhuang Lin
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Shi-Peng Chen
- Institute of Dryland Crops, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Changming Chen
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Fengqin Yao
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Linshan Zhong
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Weiting Chen
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Yun-Wei Kuo
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China.
| |
Collapse
|
40
|
Comparative Small RNA and Degradome Sequencing Provides Insights into Antagonistic Interactions in the Biocontrol Fungus Clonostachys rosea. Appl Environ Microbiol 2022; 88:e0064322. [PMID: 35695572 PMCID: PMC9275246 DOI: 10.1128/aem.00643-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Necrotrophic mycoparasitism is an intricate process involving recognition, physical mycelial contact, and killing of host fungi (mycohosts). During such interactions, mycoparasites undergo a complex developmental process involving massive regulatory changes of gene expression to produce a range of chemical compounds and proteins that contribute to the parasitism of the mycohosts. Small RNAs (sRNAs) are vital components of posttranscriptional gene regulation, although their role in gene expression regulation during mycoparasitisms remain understudied. Here, we investigated the role of sRNA-mediated gene regulation in mycoparasitism by performing sRNA and degradome tag sequencing of the mycoparasitic fungus Clonostachys rosea interacting with the plant-pathogenic mycohosts Botrytis cinerea and Fusarium graminearum at two time points. The majority of differentially expressed sRNAs were downregulated during the interactions with the mycohosts compared to a C. rosea self-interaction control, thus allowing desuppression (upregulation) of mycohost-responsive genes. Degradome analysis showed a positive correlation between high degradome counts and antisense sRNA mapping and led to the identification of 201 sRNA-mediated potential gene targets for 282 differentially expressed sRNAs. Analysis of sRNA potential gene targets revealed that the regulation of genes coding for membrane proteins was a common response against both mycohosts. The regulation of genes involved in oxidative stress tolerance and cellular metabolic and biosynthetic processes was exclusive against F. graminearum, highlighting common and mycohost-specific gene regulation of C. rosea. By combining these results with transcriptome data collected during a previous study, we expand the understanding of the role of sRNA in regulating interspecific fungal interactions and mycoparasitism. IMPORTANCE Small RNAs (sRNAs) are emerging as key players in pathogenic and mutualistic fungus-plant interactions; however, their role in fungus-fungus interactions remains elusive. In this study, we employed the necrotrophic mycoparasite Clonostachys rosea and the plant-pathogenic mycohosts Botrytis cinerea and Fusarium graminearum and investigated the sRNA-mediated gene regulation in mycoparasitic interactions. The combined approach of sRNA and degradome tag sequencing identified 201 sRNA-mediated putative gene targets for 282 differentially expressed sRNAs, highlighting the role of sRNA-mediated regulation of mycoparasitism in C. rosea. We also identified 36 known and 13 novel microRNAs (miRNAs) and their potential gene targets at the endogenous level and at a cross-species level in B. cinerea and F. graminearum, indicating a role of cross-species RNA interference (RNAi) in mycoparasitism, representing a novel mechanism in biocontrol interactions. Furthermore, we showed that C. rosea adapts its transcriptional response, and thereby its interaction mechanisms, based on the interaction stages and identity of the mycohost.
Collapse
|
41
|
Chang H, Zhang H, Zhang T, Su L, Qin QM, Li G, Li X, Wang L, Zhao T, Zhao E, Zhao H, Liu Y, Stacey G, Xu D. A Multi-Level Iterative Bi-Clustering Method for Discovering miRNA Co-regulation Network of Abiotic Stress Tolerance in Soybeans. FRONTIERS IN PLANT SCIENCE 2022; 13:860791. [PMID: 35463453 PMCID: PMC9021755 DOI: 10.3389/fpls.2022.860791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Although growing evidence shows that microRNA (miRNA) regulates plant growth and development, miRNA regulatory networks in plants are not well understood. Current experimental studies cannot characterize miRNA regulatory networks on a large scale. This information gap provides an excellent opportunity to employ computational methods for global analysis and generate valuable models and hypotheses. To address this opportunity, we collected miRNA-target interactions (MTIs) and used MTIs from Arabidopsis thaliana and Medicago truncatula to predict homologous MTIs in soybeans, resulting in 80,235 soybean MTIs in total. A multi-level iterative bi-clustering method was developed to identify 483 soybean miRNA-target regulatory modules (MTRMs). Furthermore, we collected soybean miRNA expression data and corresponding gene expression data in response to abiotic stresses. By clustering these data, 37 MTRMs related to abiotic stresses were identified, including stress-specific MTRMs and shared MTRMs. These MTRMs have gene ontology (GO) enrichment in resistance response, iron transport, positive growth regulation, etc. Our study predicts soybean MTRMs and miRNA-GO networks under different stresses, and provides miRNA targeting hypotheses for experimental analyses. The method can be applied to other biological processes and other plants to elucidate miRNA co-regulation mechanisms.
Collapse
Affiliation(s)
- Haowu Chang
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Hao Zhang
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Tianyue Zhang
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Lingtao Su
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Qing-Ming Qin
- College of Plant Sciences and Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Jilin, China
| | - Guihua Li
- College of Plant Sciences and Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Jilin, China
| | - Xueqing Li
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Li Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Tianheng Zhao
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Enshuang Zhao
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Hengyi Zhao
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
| | - Yuanning Liu
- Key Laboratory of Symbol Computation and Knowledge Engineering, College of Computer Science and Technology, Ministry of Education, Jilin University, Jilin, China
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Gary Stacey
- Division of Plant Sciences and Technology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Dong Xu
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
42
|
Xu M, Li G, Guo Y, Gao Y, Zhu L, Liu Z, Tian R, Gao C, Han P, Wang N, Guo F, Bao J, Jia C, Feng H, Huang L. A fungal microRNA-like RNA subverts host immunity and facilitates pathogen infection by silencing two host receptor-like kinase genes. THE NEW PHYTOLOGIST 2022; 233:2503-2519. [PMID: 34981514 DOI: 10.1111/nph.17945] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Small RNAs (sRNAs) play important roles in various biological processes by silencing their corresponding target genes in most eukaryotes. However, cross-kingdom regulation mediated by fungal microRNA-like RNAs (milRNAs) in plant-pathogen interactions is still largely unknown. Using molecular, genetic, histological, and biochemical approaches, we found that the apple tree Valsa canker pathogen Valsa mali milRNA Vm-milR1 could suppress the host immunity by silencing two host receptor-like kinase genes, MdRLKT1 and MdRLKT2. Vm-milR1 was highly induced during V. mali infection. Deletion of Vm-milR1 precursor abolished the generation of Vm-milR1 and reduced the virulence of V. mali. Inoculation of Vm-milR1 deletion mutants induced the host defence responses, including reactive oxygen species (ROS) accumulation, callose deposition, and high expression of defence-related genes. Furthermore, Vm-milR1 was confirmed to be able to suppress the expression of MdRLKT1 and MdRLKT2 in a sequence-specific manner. Moreover, overexpression of either MdRLKT1 or MdRLKT2 enhanced apple resistance to V. mali by activating the host defence responses. Furthermore, knockdown of MdRLKT1 or MdRLKT2 compromised the host resistance to V. mali. Our study revealed that V. mali was equipped with Vm-milR1 as an sRNA effector to silence host receptor-like kinase genes, suppress the host defence responses, and facilitate pathogen infection.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangyao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuqi Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lihua Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaoyang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengliang Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feiran Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiyuan Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Conghui Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
43
|
Identification and Comparative Analysis of Genes and MicroRNAs Involved in the Floral Transition of the Xinjiang Early-Flowering Walnut (Juglans regia L.). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For tree crops, shortening the juvenile phase is a vital strategy to advance fruit bearing and enhance the breeding efficiency. Walnut (Juglans regia L.) seedlings usually take at least eight to 10 years to flower, but early-flowering (EF) types can flower one or two years after planting. In this study, RNA sequencing (RNA-Seq) and microRNA sequencing (miRNA-Seq) were used for a transcriptome-wide analysis of gene and miRNA expression in hybrids of the Xinjiang EF walnut variety ‘Xinwen 81’ and later-flowering (LF) walnut. Based on a high-quality chromosome-scale reference genome, a total of 3009 differentially expressed genes (DEGs) were identified, of which 933 were upregulated (accounting for 31%) and 2076 were downregulated (accounting for 69%). DEGs were functionally annotated, and the flowering-related genes FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), and LEAFY (LFY) showed remarkable upregulation in EF compared with in the LF walnut. In addition, miRNAs associated with floral transition were screened as candidates for flowering time regulation in the walnut. This work provides new insights into walnut floral transition, which may ultimately contribute to genetic improvement of the walnut.
Collapse
|
44
|
Quemener AM, Centomo ML, Sax SL, Panella R. Small Drugs, Huge Impact: The Extraordinary Impact of Antisense Oligonucleotides in Research and Drug Development. Molecules 2022; 27:536. [PMID: 35056851 PMCID: PMC8781596 DOI: 10.3390/molecules27020536] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 01/27/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are an increasingly represented class of drugs. These small sequences of nucleotides are designed to precisely target other oligonucleotides, usually RNA species, and are modified to protect them from degradation by nucleases. Their specificity is due to their sequence, so it is possible to target any RNA sequence that is already known. These molecules are very versatile and adaptable given that their sequence and chemistry can be custom manufactured. Based on the chemistry being used, their activity may significantly change and their effects on cell function and phenotypes can differ dramatically. While some will cause the target RNA to decay, others will only bind to the target and act as a steric blocker. Their incredible versatility is the key to manipulating several aspects of nucleic acid function as well as their process, and alter the transcriptome profile of a specific cell type or tissue. For example, they can be used to modify splicing or mask specific sites on a target. The entire design rather than just the sequence is essential to ensuring the specificity of the ASO to its target. Thus, it is vitally important to ensure that the complete process of drug design and testing is taken into account. ASOs' adaptability is a considerable advantage, and over the past decades has allowed multiple new drugs to be approved. This, in turn, has had a significant and positive impact on patient lives. Given current challenges presented by the COVID-19 pandemic, it is necessary to find new therapeutic strategies that would complement the vaccination efforts being used across the globe. ASOs may be a very powerful tool that can be used to target the virus RNA and provide a therapeutic paradigm. The proof of the efficacy of ASOs as an anti-viral agent is long-standing, yet no molecule currently has FDA approval. The emergence and widespread use of RNA vaccines during this health crisis might provide an ideal opportunity to develop the first anti-viral ASOs on the market. In this review, we describe the story of ASOs, the different characteristics of their chemistry, and how their characteristics translate into research and as a clinical tool.
Collapse
Affiliation(s)
- Anais M. Quemener
- University Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes)-UMR 6290, F-35000 Rennes, France;
| | - Maria Laura Centomo
- Department of Oncology, University of Turin, 10124 Turin, Italy;
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| | - Scott L. Sax
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| | - Riccardo Panella
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA;
| |
Collapse
|
45
|
Luo X, Luo S, Fu Y, Kong C, Wang K, Sun D, Li M, Yan Z, Shi Q, Zhang Y. Genome-Wide Identification and Comparative Profiling of MicroRNAs Reveal Flavonoid Biosynthesis in Two Contrasting Flower Color Cultivars of Tree Peony. FRONTIERS IN PLANT SCIENCE 2022; 12:797799. [PMID: 35058956 PMCID: PMC8763678 DOI: 10.3389/fpls.2021.797799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/19/2021] [Indexed: 05/08/2023]
Abstract
MicroRNA (miRNA)-mediated gene regulation is involved in various physiological processes in plants. Flower color is one of the vital ornamental traits of tree peony (Paeonia suffruticosa Andr.). However, the yellow-flowered tree peony cultivars are particularly rare. To elucidate the miRNA-mediated gene regulatory mechanism underlying yellow pigmentation in tree peony, we combined pigment assessment, miRNA identification, expression analysis, and gene functional verification in two contrasting flower color cultivars "High Noon" and "Roufurong." Flavones/flavonols and anthocyanins were found to be the main contributors to the coloration of "High Noon" and "Roufurong" petals, respectively. Subsequently, miRNA analysis based on available genome data identified 9 differentially expressed miRNAs and 12 relevant target genes implicated in flavonoid biosynthesis. Their dynamic expression patterns determined the key role of mdm-miR156b-PsSPL2 module in yellow pigmentation of tree peony flowers. The sequence analysis and subcellular localization validated that PsSPL2 might function as a nuclear-localized transcription factor. Overexpression of PsSPL2 in tobacco resulted in a decrease of anthocyanin content and down-regulation of NtF3'H and NtDFR transcripts. PsSPL2-silenced petals exhibited lighter yellow color, and the contents of THC, Ap, and Ch decreased significantly. Meanwhile, expression levels of PsCHS, PsCHI, and PsF3H were significantly decreased in the petals with PsSPL2 silencing, while those of PsF3'H and PsDFR were remarkably increased. This study offers a novel insight into yellow pigmentation-related miRNA regulation network in tree peony, and further provides the valuable information on physiological changes during yellow coloring process of tree peony.
Collapse
Affiliation(s)
- Xiaoning Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Sha Luo
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yaqi Fu
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Chen Kong
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Kai Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Daoyang Sun
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Mengchen Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Zhenguo Yan
- Academy of Agricultural Planning and Engineering, MARA, Beijing, China
| | - Qianqian Shi
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yanlong Zhang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| |
Collapse
|
46
|
Dong W, He F, Jiang H, Liu L, Qiu Z. Comparative Transcriptome Sequencing of Taro Corm Development With a Focus on the Starch and Sucrose Metabolism Pathway. Front Genet 2021; 12:771081. [PMID: 34858484 PMCID: PMC8630585 DOI: 10.3389/fgene.2021.771081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/11/2021] [Indexed: 11/15/2022] Open
Abstract
Taro (Colocasia esculenta) is an important tuber crop and staple food. Taro corms have higher nutritional value and starch contents as compared to most of the other root/tuber crops. However, the growth and development of the taro rhizome have not been critically examined in terms of transcriptomic signatures in general or specific to carbohydrates (starch and sucrose) accumulation. In current study, we have conducted a comprehensive survey of transcripts in taro corms aged 1, 2, 3, 4, 5, and 8 months. In this context, we have employed a whole transcriptome sequencing approach for identification of mRNAs, CircRNAs, and miRNAs in corms and performed functional enrichment analysis of the screened differentially expressed RNAs. A total of 11,203 mRNAs, 245 CircRNAs, and 299 miRNAs were obtained from six developmental stages. The mRNAs included 139 DEGs associated with 24 important enzymes of starch and sucrose metabolism. The expression of genes encoding key enzymes of starch and sucrose metabolism pathway (GBSS, AGPase, UGPase, SP, SSS, βFRUCT and SuSy) demonstrated significant variations at the stage of 4 months (S4). A total of 191 CircRNAs were differentially expressed between the studied comparisons of growth stages and 99 of these were associated with those miRNA (or target genes) that were enriched in starch and sucrose metabolism pathway. We also identified 205 miRNAs including 46 miRNAs targeting DEGs enriched in starch and sucrose biosynthesis pathway. The results of current study provide valuable resources for future exploration of the molecular mechanisms involved in the starch properties of Taro.
Collapse
Affiliation(s)
- Weiqing Dong
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Fanglian He
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huiping Jiang
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Lili Liu
- Lipu Municipal Bureau of Agriculture and Rural Affairs, Lipu, China
| | - Zuyang Qiu
- Lipu Municipal Bureau of Agriculture and Rural Affairs, Lipu, China
| |
Collapse
|
47
|
Tr-milRNA1 Contributes to Lignocellulase Secretion under Heat Stress by Regulating the Lectin-Type Cargo Receptor Gene Trvip36 in Trichoderma guizhouence NJAU 4742. J Fungi (Basel) 2021; 7:jof7120997. [PMID: 34946980 PMCID: PMC8704016 DOI: 10.3390/jof7120997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background: MicroRNA plays an important role in multifarious biological processes by regulating their corresponding target genes. However, the biological function and regulatory mechanism of fungal microRNA-like RNAs (milRNAs) remain poorly understood. Methods: In this study, combined with deep sequencing and bioinformatics analysis, milRNAs and their targets from Trichoderma guizhouence NJAU 4742 were isolated and identified under solid-state fermentation (SSF) by using rice straw as the sole carbon source at 28 °C and 37 °C, respectively. Results: A critical milRNA, TGA1_S04_31828 (Tr-milRNA1), was highly expressed under heat stress (37 °C) and adaptively regulated lignocellulase secretion. Overexpression of Tr-milRNA1 (OE-Tr-milRNA1) did not affect vegetative growth, but significantly increased lignocellulose utilization under heat stress. Based on the bioinformatics analysis and qPCR validation, a target of Tr-milRNA1 was identified as Trvip36, a lectin-type cargo receptor. The expression of Tr-milRNA1 and Trvip36 showed a divergent trend under SSF when the temperature was increased from 28 °C to 37 °C. In addition, the expression of Trvip36 was suppressed significantly in Tr-milRNA1 overexpression strain (OE-Tr-milRNA1). Compared with the wild type, deletion of Trvip36 (ΔTrvip36) significantly improved the secretion of lignocellulases by reducing the retention of lignocellulases in the ER under heat stress. Conclusions: Tr-milRNA1 from NJAU 4742 improved lignocellulose utilization under heat stress by regulating the expression of the corresponding target gene Trvip36. These findings might open avenues for exploring the mechanism of lignocellulase secretion in filamentous fungi.
Collapse
|
48
|
Ding Y, Mao Y, Cen Y, Hu L, Su Y, Ma X, Long L, Hu H, Hao C, Luo J. Small RNA sequencing reveals various microRNAs involved in piperine biosynthesis in black pepper (Piper nigrum L.). BMC Genomics 2021; 22:838. [PMID: 34794378 PMCID: PMC8603596 DOI: 10.1186/s12864-021-08154-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background Black pepper (Piper nigrum L.), an important and long-cultivated spice crop, is native to South India and grown in the tropics. Piperine is the main pungent and bioactive alkaloid in the berries of black pepper, but the molecular mechanism for piperine biosynthesis has not been determined. MicroRNAs (miRNAs), which are classical endogenous noncoding small RNAs, play important roles in regulating secondary metabolism in many species, but less is known regarding black pepper or piperine biosynthesis. Results To dissect the functions of miRNAs in secondary metabolism especially in piperine biosynthesis, 110 known miRNAs, 18 novel miRNAs and 1007 individual targets were identified from different tissues of black pepper by small RNA sequencing. qRT-PCR and 5′-RLM-RACE experiments were conducted to validate the reliability of the sequencing data and predicted targets. We found 3 miRNAs along with their targets including miR166-4CL, miR396-PER and miR397-CCR modules that are involved in piperine biosynthesis. Conclusion MiRNA regulation of secondary metabolism is a common phenomenon in plants. Our study revealed new miRNAs that regulate piperine biosynthesis, which are special alkaloids in the piper genus, and they might be useful for future piperine genetic improvement of black pepper. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08154-4.
Collapse
Affiliation(s)
- Yuanhao Ding
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yuyuan Mao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yi Cen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China.,Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
| | - Lisong Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China.,Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Wanning, 571533, Hainan, China
| | - Yuefeng Su
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China.,Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
| | - Xuemin Ma
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004, Henan, China
| | - Haiyan Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China.
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China. .,Ministry of Agriculture Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Wanning, 571533, Hainan, China. .,Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops, Wanning, 571533, Hainan, China.
| | - Jie Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Tropical Crops, Hainan University, Haikou, 570228, China.
| |
Collapse
|
49
|
Yan C, Zhang N, Wang Q, Fu Y, Wang F, Su Y, Xue B, Zhou L, Liao H. The Effect of Low Temperature Stress on the Leaves and MicroRNA Expression of Potato Seedlings. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.727081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In recent years, with the wanton destruction of the ecological environment by humans and the frequent occurrence of extreme bad weather, many places that should have been warm and blooming in spring have instead experienced the phenomenon of the “April blizzard,” which has seriously affected China's crops, especially spring potato production in most areas. Potato cultivars, especially potato seedlings, are sensitive to frost, and low temperature frost has become one of the most important abiotic stresses affecting potato production. Potato cold tolerance is regulated by a complex gene network. Although some low temperature resistant microRNAs have been identified, little is known about the role of miRNAs in response to low temperature stress in potato. Therefore, the objective of this study is to clarify the influence of low temperature stress on the miRNA expression of potato by comparing the expression differences of miRNA in potato which was treated with different low temperatures. For the study, 307 known miRNAs belonging to 73 small RNA families and 211 novel miRNAs were obtained. When the temperature decreased, the number of both known and novel miRNA decreased, and the minimum temperature was −2°C. Most of the miRNAs respond to low temperature, drought, and disease stress; some conserved miRNAs were first found to respond to low temperature stress in potato, such as stu-miR530, stu-miR156d, and stu-miR167b. The Gene Ontology, Kyoto Encyclopedia of Genes, and Genomes pathway enrichment analysis of 442 different expression miRNAs target genes indicated that there existed diversified low temperature responsive pathways, but Abscisic Acid was found likely to play a central coordinating role in response to low temperature stress in many metabolism pathways. Quantitative real-time PCR assays indicated that the related targets were negatively regulated by the tested different expression miRNAs during low temperature stress. The results indicated that miRNAs may play an important coordination role in response to low temperature stress in many metabolic pathways by regulating abscisic acid and gibberellin, which provided insight into the roles of miRNAs during low temperature stress and would be helpful for alleviating low temperature stress and promoting low temperature resistant breeding in potatoes.
Collapse
|
50
|
Wang W, Zhang F, Cui J, Chen D, Liu Z, Hou J, Zhang R, Liu T. Identification of microRNA-like RNAs from Trichoderma asperellum DQ-1 during its interaction with tomato roots using bioinformatic analysis and high-throughput sequencing. PLoS One 2021; 16:e0254808. [PMID: 34293017 PMCID: PMC8297844 DOI: 10.1371/journal.pone.0254808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/04/2021] [Indexed: 11/19/2022] Open
Abstract
MicroRNA-like small RNAs (milRNAs) and their regulatory roles in the interaction between plant and fungus have recently aroused keen interest of plant pathologists. Trichoderma spp., one of the widespread biocontrol fungi, can promote plant growth and induce plant disease resistance. To investigate milRNAs potentially involved in the interaction between Trichoderma and tomato roots, a small RNA (sRNA) library expressed during the interaction of T. asperellum DQ-1 and tomato roots was constructed and sequenced using the Illumina HiSeqTM 2500 sequencing platform. From 13,464,142 sRNA reads, we identified 21 milRNA candidates that were similar to other known microRNAs in the miRBase database and 22 novel milRNA candidates that possessed a stable microRNA precursor hairpin structure. Among them, three milRNA candidates showed different expression level in the interaction according to the result of stem-loop RT-PCR indicating that these milRNAs may play a distinct regulatory role in the interaction between Trichoderma and tomato roots. The potential transboundary milRNAs from T. asperellum and their target genes in tomato were predicted by bioinformatics analysis. The results revealed that several interesting proteins involved in plant growth and development, disease resistance, seed maturation, and osmotic stress signal transduction might be regulated by the transboundary milRNAs. To our knowledge, this is the first report of milRNAs taking part in the process of interaction of T. asperellum and tomato roots and associated with plant promotion and disease resistance. The results might be useful to unravel the mechanism of interaction between Trichoderma and tomato.
Collapse
Affiliation(s)
- Weiwei Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
- Key Laboratory of Germplasm Resources of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Haikou, Hainan, PR China
| | - Fengtao Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
| | - Jia Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
| | - Di Chen
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
| | - Zhen Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
| | - Jumei Hou
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
| | - Rongyi Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
| | - Tong Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan, PR China
- * E-mail:
| |
Collapse
|