1
|
Jia H, Dantuluri S, Margulies S, Smith V, Lever R, Allers T, Koh J, Chen S, Maupin-Furlow JA. RecJ3/4-aRNase J form a Ubl-associated nuclease complex functioning in survival against DNA damage in Haloferax volcanii. mBio 2023; 14:e0085223. [PMID: 37458473 PMCID: PMC10470531 DOI: 10.1128/mbio.00852-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/02/2023] [Indexed: 09/02/2023] Open
Abstract
Nucleases are strictly regulated and often localized in the cell to avoid the uncontrolled degradation of DNA and RNA. Here, a new type of nuclease complex, composed of RecJ3, RecJ4, and aRNase J, was identified through its ATP-dependent association with the ubiquitin-like SAMP1 and AAA-ATPase Cdc48a. The complex was discovered in Haloferax volcanii, an archaeon lacking an RNA exosome. Genetic analysis revealed aRNase J to be essential and RecJ3, RecJ4, and Cdc48a to function in the recovery from DNA damage including genotoxic agents that generate double-strand breaks. The RecJ3:RecJ4:aRNase J complex (isolated in 2:2:1 stoichiometry) functioned primarily as a 3'-5' exonuclease in hydrolyzing RNA and ssDNA, with the mechanism non-processive for ssDNA. aRNase J could also be purified as a homodimer that catalyzed endoribonuclease activity and, thus, was not restricted to the 5'-3' exonuclease activity typical of aRNase J homologs. Moreover, RecJ3 and RecJ4 could be purified as a 560-kDa subcomplex in equimolar subunit ratio with nuclease activities mirroring the full RecJ3/4-aRNase J complex. These findings prompted reconstitution assays that suggested RecJ3/4 could suppress, alter, and/or outcompete the nuclease activities of aRNase J. Based on the phenotypic results, this control mechanism of aRNase J by RecJ3/4 is not necessary for cell growth but instead appears important for DNA repair. IMPORTANCE Nucleases are critical for various cellular processes including DNA replication and repair. Here, a dynamic type of nuclease complex is newly identified in the archaeon Haloferax volcanii, which is missing the canonical RNA exosome. The complex, composed of RecJ3, RecJ4, and aRNase J, functions primarily as a 3'-5' exonuclease and was discovered through its ATP-dependent association with the ubiquitin-like SAMP1 and Cdc48a. aRNase J alone forms a homodimer that has endonuclease function and, thus, is not restricted to 5'-3' exonuclease activity typical of other aRNase J enzymes. RecJ3/4 appears to suppress, alter, and/or outcompete the nuclease activities of aRNase J. While aRNase J is essential for growth, RecJ3/4, Cdc48a, and SAMPs are important for recovery against DNA damage. These biological distinctions may correlate with the regulated nuclease activity of aRNase J in the RecJ3/4-aRNaseJ complex.
Collapse
Affiliation(s)
- Huiyong Jia
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Swathi Dantuluri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Shae Margulies
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Victoria Smith
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Rebecca Lever
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, USA
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Prado LCDS, Giacchetto Felice A, Rodrigues TCV, Tiwari S, Andrade BS, Kato RB, Oliveira CJF, Silva MV, Barh D, Azevedo VADC, Jaiswal AK, Soares SDC. New putative therapeutic targets against Serratia marcescens using reverse vaccinology and subtractive genomics. J Biomol Struct Dyn 2022; 40:10106-10121. [PMID: 34192477 DOI: 10.1080/07391102.2021.1942211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Gram-negative bacillus Serratia marcescens, a member of Enterobacteriaceae family, is an opportunistic nosocomial pathogen commonly found in hospital outbreaks that can cause infections in the urinary tract, bloodstream, central nervous system and pneumonia. Because S. marcescens strains are resistant to several antibiotics, it is critical the need for effective treatments, including new drugs and vaccines. Here, we applied reverse vaccinology and subtractive genomic approaches for the in silico prediction of potential vaccine and drug targets against 59 strains of S. marcescens. We found 759 core non-host homologous proteins, of which 87 are putative surface-exposed proteins, 183 secreted proteins, and 80 membrane proteins. From these proteins, we predicted seven candidates vaccine targets: a sn-glycerol-3-phosphate-binding periplasmic protein UgpB, a vitamin B12 TonB-dependent receptor, a ferrichrome porin FhuA, a divisome-associated lipoprotein YraP, a membrane-bound lytic murein transglycosylase A, a peptidoglycan lytic exotransglycosylase, and a DUF481 domain-containing protein. We also predicted two drug targets: a N(4)-acetylcytidine amidohydrolase, and a DUF1428 family protein. Using the molecular docking approach for each drug target, we identified and selected ZINC04259491 and ZINC04235390 molecules as the most favorable interactions with the target active site residues. Our findings may contribute to the development of vaccines and new drug targets against S. marcescens. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ligia Carolina da Silva Prado
- Inter-unit Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andrei Giacchetto Felice
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Thaís Cristina Vilela Rodrigues
- Inter-unit Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sandeep Tiwari
- Inter-unit Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruno Silva Andrade
- Laboratory of Bioinformatics and Computational Chemistry, State University of Southwest of Bahia, Bahia, Brazil
| | - Rodrigo Bentes Kato
- Inter-unit Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlo José Freire Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marcos Vinicius Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, West Bengal, India
| | - Vasco Ariston de Carvalho Azevedo
- Inter-unit Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Arun Kumar Jaiswal
- Inter-unit Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Siomar de Castro Soares
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
3
|
Jia H, Couto-Rodriguez RL, Gal D, Mondragon P, Wassel PC, Yu D, Maupin-Furlow JA. Expression and tandem affinity purification of 20S proteasomes and other multisubunit complexes in Haloferax volcanii. Methods Enzymol 2021; 659:315-326. [PMID: 34752292 DOI: 10.1016/bs.mie.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tandem affinity purification is a useful strategy to isolate multisubunit complexes of high yield and purity but can be limited when working with halophilic proteins that are not properly expressed in Escherichia coli. Halophilic proteins are desirable for bioindustrial applications as they are often stable and active in organic solvents; however, these proteins can be difficult to express, fold, and purify by traditional technologies. Haloarchaea provide a useful alternative for expression of halophilic proteins. These microorganisms use a salt-in strategy to maintain homeostasis and express most of their proteins with halophilic properties and low pI. Here, we provide detailed protocols for the genetic modification, expression and tandem affinity purification of "salt-loving" multisubunit complexes from the haloarchaeon Haloferax volcanii. The strategy for isolation of affinity tagged 20S proteasomes that form cylindrical proteolytic nanomachines of α1, α2 and β subunits is described.
Collapse
Affiliation(s)
- Huiyong Jia
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Ricardo L Couto-Rodriguez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Daniel Gal
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Paula Mondragon
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Paul C Wassel
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - David Yu
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States; Genetics Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
4
|
Abstract
Methanobactins (MBs) are small (<1,300-Da) posttranslationally modified copper-binding peptides and represent the extracellular component of a copper acquisition system in some methanotrophs. Interestingly, MBs can bind a range of metal ions, with some being reduced after binding, e.g., Cu2+ reduced to Cu+. Other metal ions, however, are bound but not reduced, e.g., K+. The source of electrons for selective metal ion reduction has been speculated to be water but never empirically shown. Here, using H218O, we show that when MBs from Methylocystis sp. strain SB2 (MB-SB2) and Methylosinus trichosporium OB3b (MB-OB3) were incubated in the presence of either Au3+, Cu2, or Ag+, 18,18O2 and free protons were released. No 18,18O2 production was observed in the presence of either MB-SB2 or MB-OB3b alone, gold alone, copper alone, or silver alone or when K+ or Mo2+ was incubated with MB-SB2. In contrast to MB-OB3b, MB-SB2 binds Fe3+ with an N2S2 coordination and will also reduce Fe3+ to Fe2+. Iron reduction was also found to be coupled to the oxidation of 2H2O and the generation of O2. MB-SB2 will also couple Hg2+, Ni2+, and Co2+ reduction to the oxidation of 2H2O and the generation of O2, but MB-OB3b will not, ostensibly as MB-OB3b binds but does not reduce these metal ions. To determine if the O2 generated during metal ion reduction by MB could be coupled to methane oxidation, 13CH4 oxidation by Methylosinus trichosporium OB3b was monitored under anoxic conditions. The results demonstrate that O2 generation from metal ion reduction by MB-OB3b can support methane oxidation. IMPORTANCE The discovery that MB will couple the oxidation of H2O to metal ion reduction and the release of O2 suggests that methanotrophs expressing MB may be able to maintain their activity under hypoxic/anoxic conditions through the “self-generation” of dioxygen required for the initial oxidation of methane to methanol. Such an ability may be an important factor in enabling methanotrophs to not only colonize the oxic-anoxic interface where methane concentrations are highest but also tolerate significant temporal fluctuations of this interface. Given that genomic surveys often show evidence of aerobic methanotrophs within anoxic zones, the ability to express MB (and thereby generate dioxygen) may be an important parameter in facilitating their ability to remove methane, a potent greenhouse gas, before it enters the atmosphere.
Collapse
|
5
|
Haque RU, Paradisi F, Allers T. Haloferax volcanii for biotechnology applications: challenges, current state and perspectives. Appl Microbiol Biotechnol 2019; 104:1371-1382. [PMID: 31863144 PMCID: PMC6985049 DOI: 10.1007/s00253-019-10314-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023]
Abstract
Haloferax volcanii is an obligate halophilic archaeon with its origin in the Dead Sea. Simple laboratory culture conditions and a wide range of genetic tools have made it a model organism for studying haloarchaeal cell biology. Halophilic enzymes of potential interest to biotechnology have opened up the application of this organism in biocatalysis, bioremediation, nanobiotechnology, bioplastics and the biofuel industry. Functionally active halophilic proteins can be easily expressed in a halophilic environment, and an extensive genetic toolkit with options for regulated protein overexpression has allowed the purification of biotechnologically important enzymes from different halophiles in H. volcanii. However, corrosion mediated damage caused to stainless-steel bioreactors by high salt concentrations and a tendency to form biofilms when cultured in high volume are some of the challenges of applying H. volcanii in biotechnology. The ability to employ expressed active proteins in immobilized cells within a porous biocompatible matrix offers new avenues for exploiting H. volcanii in biotechnology. This review critically evaluates the various application potentials, challenges and toolkits available for using this extreme halophilic organism in biotechnology.
Collapse
Affiliation(s)
- R U Haque
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.,School of Chemistry, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.,Warwick Integrative Synthetic Biology Centre, School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - F Paradisi
- School of Chemistry, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.,Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - T Allers
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
6
|
The 3-D structure of VNG0258H/RosR - A haloarchaeal DNA-binding protein in its ionic shell. J Struct Biol 2018; 204:191-198. [PMID: 30110657 DOI: 10.1016/j.jsb.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 11/21/2022]
Abstract
Protein-DNA interactions are highly dependent on salt concentration. To gain insight into how such interactions are maintained in the highly saline cytoplasm of halophilic archaea, we determined the 3-D structure of VNG0258H/RosR, the first haloarchaeal DNA-binding protein from the extreme halophilic archaeon Halobactrium salinarum. It is a dimeric winged-helix-turn-helix (wHTH) protein with unique features due to adaptation to the halophilic environment. As ions are major players in DNA binding processes, particularly in halophilic environments, we investigated the solution structure of the ionic envelope and located anions in the first shell around the protein in the crystal using anomalous scattering. Anions that were found to be tightly bound to residues in the positively charged DNA-binding site would probably be released upon DNA binding and will thus make significant contribution to the driving force of the binding process. Unexpectedly, ions were also found in a buried internal cavity connected to the external medium by a tunnel. Our structure lays a solid groundwork for future structural, computational and biochemical studies on complexes of the protein with cognate DNA sequences, with implications to protein-DNA interactions in hyper-saline environments.
Collapse
|
7
|
Méheust R, Watson AK, Lapointe FJ, Papke RT, Lopez P, Bapteste E. Hundreds of novel composite genes and chimeric genes with bacterial origins contributed to haloarchaeal evolution. Genome Biol 2018; 19:75. [PMID: 29880023 PMCID: PMC5992828 DOI: 10.1186/s13059-018-1454-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/16/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Haloarchaea, a major group of archaea, are able to metabolize sugars and to live in oxygenated salty environments. Their physiology and lifestyle strongly contrast with that of their archaeal ancestors. Amino acid optimizations, which lowered the isoelectric point of haloarchaeal proteins, and abundant lateral gene transfers from bacteria have been invoked to explain this deep evolutionary transition. We use network analyses to show that the evolution of novel genes exclusive to Haloarchaea also contributed to the evolution of this group. RESULTS We report the creation of 320 novel composite genes, both early in the evolution of Haloarchaea during haloarchaeal genesis and later in diverged haloarchaeal groups. One hundred and twenty-six of these novel composite genes derived from genetic material from bacterial genomes. These latter genes, largely involved in metabolic functions but also in oxygenic lifestyle, constitute a different gene pool from the laterally acquired bacterial genes formerly identified. These novel composite genes were likely advantageous for their hosts, since they show significant residence times in haloarchaeal genomes-consistent with a long phylogenetic history involving vertical descent and lateral gene transfer-and encode proteins with optimized isoelectric points. CONCLUSIONS Overall, our work encourages a systematic search for composite genes across all archaeal major groups, in order to better understand the origins of novel prokaryotic genes, and in order to test to what extent archaea might have adjusted their lifestyles by incorporating and recycling laterally acquired bacterial genetic fragments into new archaeal genes.
Collapse
Affiliation(s)
- Raphaël Méheust
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7138 Evolution Paris Seine, 75005, Paris, France
| | - Andrew K Watson
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7138 Evolution Paris Seine, 75005, Paris, France
| | | | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Philippe Lopez
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7138 Evolution Paris Seine, 75005, Paris, France
| | - Eric Bapteste
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7138 Evolution Paris Seine, 75005, Paris, France.
| |
Collapse
|
8
|
Kosugi N, Araki T, Fujita J, Tanaka S, Fujiwara T. Growth phenotype analysis of heme synthetic enzymes in a halophilic archaeon, Haloferax volcanii. PLoS One 2017; 12:e0189913. [PMID: 29284023 PMCID: PMC5746218 DOI: 10.1371/journal.pone.0189913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Halophilic euryarchaea lack many of the genes necessary for the protoporphyrin-dependent heme biosynthesis pathway previously identified in animals and plants. Bioinformatic analysis suggested the presence of two heme biosynthetic processes, an Fe-coproporphyrinogen III (coproheme) decarboxylase (ChdC) pathway and an alternative heme biosynthesis (Ahb) pathway, in Haloferax volcanii. PitA is specific to the halophilic archaea and has a unique molecular structure in which the ChdC domain is joined to the antibiotics biosynthesis monooxygenase (ABM)-like domain by a histidine-rich linker sequence. The pitA gene deletion variant of H. volcanii showed a phenotype with a significant reduction of aerobic growth. Addition of a protoheme complemented the phenotype, supporting the assumption that PitA participates in the aerobic heme biosynthesis. Deletion of the ahbD gene caused a significant reduction of only anaerobic growth by denitrification or dimethylsulfoxide (DMSO) respiration, and the growth was also complemented by addition of a protoheme. The experimental results suggest that the two heme biosynthesis pathways are utilized selectively under aerobic and anaerobic conditions in H. volcanii. The molecular structure and physiological function of PitA are also discussed on the basis of the limited proteolysis and sequence analysis.
Collapse
Affiliation(s)
- Naoki Kosugi
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Takuma Araki
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Junpei Fujita
- Department of Biological Sciences, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Satoru Tanaka
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Taketomo Fujiwara
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
9
|
Elharar Y, Podilapu AR, Guan Z, Kulkarni SS, Eichler J. Assembling Glycan-Charged Dolichol Phosphates: Chemoenzymatic Synthesis of a Haloferax volcanii N-Glycosylation Pathway Intermediate. Bioconjug Chem 2017; 28:2461-2470. [PMID: 28809486 DOI: 10.1021/acs.bioconjchem.7b00436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-glycosylation, the covalent attachment of glycans to select protein target Asn residues, is a post-translational modification performed by all three domains of life. In the halophilic archaea Haloferax volcanii, in which understanding of this universal protein-processing event is relatively well-advanced, genes encoding the components of the archaeal glycosylation (Agl) pathway responsible for the assembly and attachment of an N-linked pentasaccharide have been identified. As elsewhere, the N-linked glycan is assembled on phosphodolichol carriers before transfer to target Asn residues. However, as little is presently known of the Hfx. volcanii Agl pathway at the protein level, the seemingly unique ability of Archaea to use dolichol phosphate (DolP) as the glycan lipid carrier, rather than dolichol pyrophosphate used by eukaryotes, remains poorly understood. With this in mind, a chemoenzymatic approach was taken to biochemically study AglG, one of the five glycosyltransferases of the pathway. Accordingly, a novel regio- and stereoselective reduction of naturally isolated polyprenol gave facile access to S-dolichol via asymmetric transfer hydrogenation under very mild conditions. This compound was used to generate glucose-charged DolP, a precursor of the N-linked pentasaccharide, as well as DolP-glucose-glucuronic acid and DolP-glucuronic acid. AglG, purified from Hfx. volcanii membranes in hypersaline conditions, like those encountered in situ, was subsequently combined with uridine diphosphate (UDP)-glucuronic acid and DolP-glucose to yield DolP-glucose-glucuronic acid. The in vitro system for the study of AglG activity developed here represents the first such tool for studying halophilic glycosyltransferases and will allow for a detailed understanding of archaeal N-glycosylation.
Collapse
Affiliation(s)
- Yifat Elharar
- Department of Life Sciences, Ben Gurion University of the Negev , Beersheva 8410501, Israel
| | - Ananda Rao Podilapu
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076, India
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev , Beersheva 8410501, Israel
| |
Collapse
|
10
|
Hofbauer S, Hagmüller A, Schaffner I, Mlynek G, Krutzler M, Stadlmayr G, Pirker KF, Obinger C, Daims H, Djinović-Carugo K, Furtmüller PG. Structure and heme-binding properties of HemQ (chlorite dismutase-like protein) from Listeria monocytogenes. Arch Biochem Biophys 2015; 574:36-48. [PMID: 25602700 PMCID: PMC4420033 DOI: 10.1016/j.abb.2015.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 11/17/2022]
Abstract
Chlorite dismutase-like proteins are structurally closely related to functional chlorite dismutases which are heme b-dependent oxidoreductases capable of reducing chlorite to chloride with simultaneous production of dioxygen. Chlorite dismutase-like proteins are incapable of performing this reaction and their biological role is still under discussion. Recently, members of this large protein family were shown to be involved in heme biosynthesis in Gram-positive bacteria, and thus the protein was renamed HemQ in these organisms. In the present work the structural and heme binding properties of the chlorite dismutase-like protein from the Gram-positive pathogen Listeria monocytogenes (LmCld) were analyzed in order to evaluate its potential role as a regulatory heme sensing protein. The homopentameric crystal structure (2.0Å) shows high similarity to chlorite-degrading chlorite dismutases with an important difference in the structure of the putative substrate and heme entrance channel. In solution LmCld is a stable hexamer able to bind the low-spin ligand cyanide. Heme binding is reversible with KD-values determined to be 7.2μM (circular dichroism spectroscopy) and 16.8μM (isothermal titration calorimetry) at pH 7.0. Both acidic and alkaline conditions promote heme release. Presented biochemical and structural data reveal that the chlorite dismutase-like protein from L. monocytogenes could act as a potential regulatory heme sensing and storage protein within heme biosynthesis.
Collapse
Affiliation(s)
- Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Andreas Hagmüller
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Irene Schaffner
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Georg Mlynek
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Michael Krutzler
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Gerhard Stadlmayr
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Katharina F Pirker
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Holger Daims
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, A-1090 Vienna, Austria
| | - Kristina Djinović-Carugo
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria; Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
11
|
Dailey HA, Gerdes S. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria. Arch Biochem Biophys 2015; 574:27-35. [PMID: 25711532 DOI: 10.1016/j.abb.2015.02.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 02/05/2023]
Abstract
Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are iron-coproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. The heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Thus, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.
Collapse
Affiliation(s)
- Harry A Dailey
- Biomedical and Health Sciences Institute, Department of Microbiology and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | - Svetlana Gerdes
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
12
|
Martínez-Espinosa RM, Richardson DJ, Bonete MJ. Characterisation of chlorate reduction in the haloarchaeon Haloferax mediterranei. Biochim Biophys Acta Gen Subj 2014; 1850:587-94. [PMID: 25512066 DOI: 10.1016/j.bbagen.2014.12.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 12/06/2014] [Accepted: 12/08/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Haloferax mediterranei is a denitrifying haloarchaeon using nitrate as a respiratory electron acceptor under anaerobic conditions in a reaction catalysed by pNarGH. Other ions such as bromate, perchlorate and chlorate can also be reduced. METHODS Hfx. mediterranei cells were grown anaerobically with nitrate as electron acceptor and chlorate reductase activity measured in whole cells and purified nitrate reductase. RESULTS No genes encoding (per)chlorate reductases have been detected either in the Hfx. mediterranei genome or in other haloarchaea. However, a gene encoding a chlorite dismutase that is predicted to be exported across the cytoplasmic membrane has been identified in Hfx. mediterranei genome. Cells did not grow anaerobically in presence of chlorate as the unique electron acceptor. However, cells anaerobically grown with nitrate and then transferred to chlorate-containing growth medium can grow a few generations. Chlorate reduction by the whole cells, as well as by pure pNarGH, has been characterised. No clear chlorite dismutase activity could be detected. CONCLUSIONS Hfx. mediterranei pNarGH has its active site on the outer-face of the cytoplasmic membrane and reacts with chlorate and perchlorate. Biochemical characterisation of this enzymatic activity suggests that Hfx. mediterranei or its pure pNarGH could be of great interest for waste water treatments or to better understand biological chlorate reduction in early Earth or Martian environments. GENERAL SIGNIFICANCE Some archaea species reduce (per)chlorate. However, results here presented as well as those recently reported by Liebensteiner and co-workers [1] suggest that complete perchlorate reduction in archaea follows different rules in terms of biological reactions.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain.
| | - David J Richardson
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK
| | - María José Bonete
- División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
13
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
14
|
Hofbauer S, Schaffner I, Furtmüller PG, Obinger C. Chlorite dismutases - a heme enzyme family for use in bioremediation and generation of molecular oxygen. Biotechnol J 2014; 9:461-73. [PMID: 24519858 PMCID: PMC4162996 DOI: 10.1002/biot.201300210] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/06/2013] [Accepted: 01/14/2014] [Indexed: 11/09/2022]
Abstract
Chlorite is a serious environmental concern, as rising concentrations of this harmful anthropogenic compound have been detected in groundwater, drinking water, and soil. Chlorite dismutases (Clds) are therefore important molecules in bioremediation as Clds catalyze the degradation of chlorite to chloride and molecular oxygen. Clds are heme b-containing oxidoreductases present in numerous bacterial and archaeal phyla. This review presents the phylogeny of functional Clds and Cld-like proteins, and demonstrates the close relationship of this novel enzyme family to the recently discovered dye-decolorizing peroxidases. The available X-ray structures, biophysical and enzymatic properties, as well as a proposed reaction mechanism, are presented and critically discussed. Open questions about structure-function relationships are addressed, including the nature of the catalytically relevant redox and reaction intermediates and the mechanism of inactivation of Clds during turnover. Based on analysis of currently available data, chlorite dismutase from "Candidatus Nitrospira defluvii" is suggested as a model Cld for future application in biotechnology and bioremediation. Additionally, Clds can be used in various applications as local generators of molecular oxygen, a reactivity already exploited by microbes that must perform aerobic metabolic pathways in the absence of molecular oxygen. For biotechnologists in the field of chemical engineering and bioremediation, this review provides the biochemical and biophysical background of the Cld enzyme family as well as critically assesses Cld's technological potential.
Collapse
Affiliation(s)
- Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | |
Collapse
|
15
|
Mayfield JA, Hammer ND, Kurker RC, Chen TK, Ojha S, Skaar EP, DuBois JL. The chlorite dismutase (HemQ) from Staphylococcus aureus has a redox-sensitive heme and is associated with the small colony variant phenotype. J Biol Chem 2013; 288:23488-504. [PMID: 23737523 PMCID: PMC5395028 DOI: 10.1074/jbc.m112.442335] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 05/23/2013] [Indexed: 01/17/2023] Open
Abstract
The chlorite dismutases (C-family proteins) are a widespread family of heme-binding proteins for which chemical and biological roles remain unclear. An association of the gene with heme biosynthesis in Gram-positive bacteria was previously demonstrated by experiments involving introduction of genes from two Gram-positive species into heme biosynthesis mutant strains of Escherichia coli, leading to the gene being renamed hemQ. To assess the gene product's biological role more directly, a Staphylococcus aureus strain with an inactivated hemQ gene was generated and shown to be a slow growing small colony variant under aerobic but not anaerobic conditions. The small colony variant phenotype is rescued by the addition of exogenous heme despite an otherwise wild type heme biosynthetic pathway. The ΔhemQ mutant accumulates coproporphyrin specifically under aerobic conditions. Although its sequence is highly similar to functional chlorite dismutases, the HemQ protein has no steady state reactivity with chlorite, very modest reactivity with H2O2 or peracetic acid, and no observable transient intermediates. HemQ's equilibrium affinity for heme is in the low micromolar range. Holo-HemQ reconstituted with heme exhibits heme lysis after <50 turnovers with peroxide and <10 turnovers with chlorite. The heme-free apoprotein aggregates or unfolds over time. IsdG-like proteins and antibiotic biosynthesis monooxygenases are close sequence and structural relatives of HemQ that use heme or porphyrin-like organic molecules as substrates. The genetic and biochemical data suggest a similar substrate role for heme or porphyrin, with possible sensor-regulator functions for the protein. HemQ heme could serve as the means by which S. aureus reversibly adopts an SCV phenotype in response to redox stress.
Collapse
Affiliation(s)
- Jeffrey A. Mayfield
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Neal D. Hammer
- the Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Richard C. Kurker
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Thomas K. Chen
- the Division of Biological Sciences, SRI International, Harrisonburg, Virginia 22802, and
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718
| | - Sunil Ojha
- the Division of Biological Sciences, SRI International, Harrisonburg, Virginia 22802, and
| | - Eric P. Skaar
- the Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jennifer L. DuBois
- the Division of Biological Sciences, SRI International, Harrisonburg, Virginia 22802, and
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718
| |
Collapse
|
16
|
Tavlaridou S, Faist K, Weitzel K, Pfeifer F. Effect of an overproduction of accessory Gvp proteins on gas vesicle formation in Haloferax volcanii. Extremophiles 2013; 17:277-87. [PMID: 23338749 DOI: 10.1007/s00792-013-0515-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/04/2013] [Indexed: 11/29/2022]
Abstract
Gas vesicle formation in haloarchaea requires the expression of the p-vac region consisting of 14 genes, gvpACNO and gvpDEFGHIJKLM. Expression of gvpFGHIJKLM leads to essential accessory proteins formed in minor amounts. An overexpression of gvpG, gvpH or gvpM in addition to p-vac inhibited gas vesicle formation, whereas large amounts of all other Gvp proteins did not disturb the synthesis. The unbalanced expression and in particular an aggregation of the overproduced Gvp with other accessory Gvp derived from p-vac could be a reason for the inhibition. Western analyses demonstrated that the hydrophobic GvpM (and GvpJ) indeed form multimers. Fluorescent dots of GvpM-GFP were seen in cells in vivo underlining an aggregation of GvpM. In search for proteins neutralizing the inhibitory effect in case of GvpM, p-vac +pGM(ex), +pHM(ex), +pJM(ex), and +pLM(ex) transformants were constructed. The inhibitory effect of GvpM on gas vesicle formation was suppressed by GvpH, GvpJ or GvpL, but not by GvpG. Western analyses demonstrated that pHM(ex) and pJM(ex) transformants contained additional larger protein bands when probed with an antiserum raised against GvpH or GvpJ, implying interactions. The balanced amount of GvpM-GvpH and GvpM-GvpJ appears to be important during gas vesicle genesis.
Collapse
Affiliation(s)
- Stella Tavlaridou
- Mikrobiologie und Archaea, Fachbereich Biologie, Technische Universität Darmstadt, Schnittspahnstrasse 10, Darmstadt, Germany
| | | | | | | |
Collapse
|
17
|
Promponas VJ, Ouzounis CA, Iliopoulos I. Experimental evidence validating the computational inference of functional associations from gene fusion events: a critical survey. Brief Bioinform 2012; 15:443-54. [PMID: 23220349 PMCID: PMC4017328 DOI: 10.1093/bib/bbs072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
More than a decade ago, a number of methods were proposed for the inference of protein interactions, using whole-genome information from gene clusters, gene fusions and phylogenetic profiles. This structural and evolutionary view of entire genomes has provided a valuable approach for the functional characterization of proteins, especially those without sequence similarity to proteins of known function. Furthermore, this view has raised the real possibility to detect functional associations of genes and their corresponding proteins for any entire genome sequence. Yet, despite these exciting developments, there have been relatively few cases of real use of these methods outside the computational biology field, as reflected from citation analysis. These methods have the potential to be used in high-throughput experimental settings in functional genomics and proteomics to validate results with very high accuracy and good coverage. In this critical survey, we provide a comprehensive overview of 30 most prominent examples of single pairwise protein interaction cases in small-scale studies, where protein interactions have either been detected by gene fusion or yielded additional, corroborating evidence from biochemical observations. Our conclusion is that with the derivation of a validated gold-standard corpus and better data integration with big experiments, gene fusion detection can truly become a valuable tool for large-scale experimental biology.
Collapse
Affiliation(s)
- Vasilis J Promponas
- Institute of Agrobiotechnology, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece.
| | | | | |
Collapse
|
18
|
Ettwig KF, Speth DR, Reimann J, Wu ML, Jetten MSM, Keltjens JT. Bacterial oxygen production in the dark. Front Microbiol 2012; 3:273. [PMID: 22891064 PMCID: PMC3413370 DOI: 10.3389/fmicb.2012.00273] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/10/2012] [Indexed: 11/13/2022] Open
Abstract
Nitric oxide (NO) and nitrous oxide (N(2)O) are among nature's most powerful electron acceptors. In recent years it became clear that microorganisms can take advantage of the oxidizing power of these compounds to degrade aliphatic and aromatic hydrocarbons. For two unrelated bacterial species, the "NC10" phylum bacterium "Candidatus Methylomirabilis oxyfera" and the γ-proteobacterial strain HdN1 it has been suggested that under anoxic conditions with nitrate and/or nitrite, monooxygenases are used for methane and hexadecane oxidation, respectively. No degradation was observed with nitrous oxide only. Similarly, "aerobic" pathways for hydrocarbon degradation are employed by (per)chlorate-reducing bacteria, which are known to produce oxygen from chlorite [Formula: see text]. In the anaerobic methanotroph M. oxyfera, which lacks identifiable enzymes for nitrogen formation, substrate activation in the presence of nitrite was directly associated with both oxygen and nitrogen formation. These findings strongly argue for the role of NO, or an oxygen species derived from it, in the activation reaction of methane. Although oxygen generation elegantly explains the utilization of "aerobic" pathways under anoxic conditions, the underlying mechanism is still elusive. In this perspective, we review the current knowledge about intra-aerobic pathways, their potential presence in other organisms, and identify candidate enzymes related to quinol-dependent NO reductases (qNORs) that might be involved in the formation of oxygen.
Collapse
Affiliation(s)
- Katharina F Ettwig
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Bleiholder A, Frommherz R, Teufel K, Pfeifer F. Expression of multiple tfb genes in different Halobacterium salinarum strains and interaction of TFB with transcriptional activator GvpE. Arch Microbiol 2011; 194:269-79. [PMID: 21969032 DOI: 10.1007/s00203-011-0756-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/19/2011] [Accepted: 09/10/2011] [Indexed: 01/19/2023]
Abstract
Halobacterium salinarum NRC-1 contains multiple TBP and TFB proteins required for the recruitment of RNA polymerase for transcription initiation. The presence and the expression of genes encoding TFB were investigated in the two Hbt. salinarum strains NRC-1 and PHH1 and the mutant strain PHH4. The plasmid-encoded tfbC and tfbE genes of NRC-1 were lacking in PHH1 and PHH4. The 5'-end of the tfbF transcript was determined and contained a 5'-untranslated region of 39 nucleotides able to form a stem-loop structure. The expression of these tfb genes was studied in cultures growing at 15, 37°C and under heat shock conditions. Cold temperatures reduced growth and except for tfbF also the amounts of all tfb transcripts. However, the formation of gas vesicles increased in PHH1 and NRC-1. Heat shock reduced growth of PHH1 and NRC-1, but PHH4 was not affected. A 100-fold increase in tfbA and tfbB mRNA was observed in PHH1 and PHH4, whereas NRC-1 reduced the amounts of these transcripts and increased the expression of tfbG. All TFB proteins tested were able to interact with the transcription activator GvpE involved in gas vesicle formation that thus is able to recruit TFB to the gvp promoter.
Collapse
Affiliation(s)
- Anne Bleiholder
- Mikrobiologie und Genetik, Technische Universität Darmstadt, Germany
| | | | | | | |
Collapse
|
20
|
Goblirsch B, Kurker RC, Streit BR, Wilmot CM, DuBois JL. Chlorite dismutases, DyPs, and EfeB: 3 microbial heme enzyme families comprise the CDE structural superfamily. J Mol Biol 2011; 408:379-98. [PMID: 21354424 PMCID: PMC3075325 DOI: 10.1016/j.jmb.2011.02.047] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 11/28/2022]
Abstract
Heme proteins are extremely diverse, widespread, and versatile biocatalysts, sensors, and molecular transporters. The chlorite dismutase family of hemoproteins received its name due to the ability of the first-isolated members to detoxify anthropogenic ClO(2)(-), a function believed to have evolved only in the last few decades. Family members have since been found in 15 bacterial and archaeal genera, suggesting ancient roots. A structure- and sequence-based examination of the family is presented, in which key sequence and structural motifs are identified, and possible functions for family proteins are proposed. Newly identified structural homologies moreover demonstrate clear connections to two other large, ancient, and functionally mysterious protein families. We propose calling them collectively the CDE superfamily of heme proteins.
Collapse
Affiliation(s)
- Brandon Goblirsch
- Department of Biochemistry, Molecular Biology and Biophysics, 6-155 Jackson Hall, 321 Church St. SE, University of Minnesota, Minnesota 55455, USA
| | - Richard C. Kurker
- Department of Chemistry and Biochemistry, 251 Nieuwland Hall, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - Bennett R. Streit
- Department of Chemistry and Biochemistry, 251 Nieuwland Hall, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - Carrie M. Wilmot
- Department of Biochemistry, Molecular Biology and Biophysics, 6-155 Jackson Hall, 321 Church St. SE, University of Minnesota, Minnesota 55455, USA
| | - Jennifer L. DuBois
- Department of Chemistry and Biochemistry, 251 Nieuwland Hall, University of Notre Dame, Notre Dame, Indiana 46556 USA
| |
Collapse
|
21
|
Bardiya N, Bae JH. Dissimilatory perchlorate reduction: a review. Microbiol Res 2011; 166:237-54. [PMID: 21242067 DOI: 10.1016/j.micres.2010.11.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 11/23/2010] [Accepted: 11/27/2010] [Indexed: 10/18/2022]
Abstract
In the United States anthropogenic activities are mainly responsible for the wide spread perchlorate contamination of drinking water, surface water, groundwater, and soil. Even at microgram levels, perchlorate causes toxicity to flora and fauna and affects growth, metabolism and reproduction in humans and animals. Reports of antithyroid effects of perchlorate and its detection in common food items have raised serious public health concerns, leading to extensive decontamination efforts in recent years. Several physico-chemical removal and biological decontamination processes are being developed. Although promising, ion exchange is a non-selective and incomplete process as it merely transfers perchlorate from water to the resin. The perchlorate-laden spent resins (perchlorate 200-500 mg L(-1)) require regeneration resulting in production of concentrated brine (6-12% NaCl) or caustic waste streams. On the contrary, biological reduction completely degrades perchlorate into O(2) and innocuous Cl(-). High reduction potential of ClO(4)(-)/Cl(-) (E° =∼ 1.28 V) and ClO(3)(-)/Cl(-) pairs (E° =1.03 V) makes these contaminants thermodynamically ideal e(-) acceptors for microbial reduction. In recent years unique dissimilatory perchlorate reducing bacteria have been isolated and detailed studies pertaining to their microbiological, biochemical, genetics and phylogenetic aspects have been undertaken which is the subject of this review article while the various physico-chemical removal and biological reduction processes have been reviewed by others.
Collapse
Affiliation(s)
- Nirmala Bardiya
- Department of Civil and Environmental Engineering, Inha University, Inchon 402-751, South Korea.
| | | |
Collapse
|
22
|
Towards a systems approach in the genetic analysis of archaea: Accelerating mutant construction and phenotypic analysis in Haloferax volcanii. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010:426239. [PMID: 21234384 PMCID: PMC3017900 DOI: 10.1155/2010/426239] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/24/2010] [Indexed: 01/17/2023]
Abstract
With the availability of a genome sequence and increasingly sophisticated genetic tools, Haloferax volcanii is becoming a model for both Archaea and halophiles. In order for H. volcanii to reach a status equivalent to Escherichia coli, Bacillus subtilis, or Saccharomyces cerevisiae, a gene knockout collection needs to be constructed in order to identify the archaeal essential gene set and enable systematic phenotype screens. A streamlined gene-deletion protocol adapted for potential automation was implemented and used to generate 22 H. volcanii deletion strains and identify several potentially essential genes. These gene deletion mutants, generated in this and previous studies, were then analyzed in a high-throughput fashion to measure growth rates in different media and temperature conditions. We conclude that these high-throughput methods are suitable for a rapid investigation of an H. volcanii mutant library and suggest that they should form the basis of a larger genome-wide experiment.
Collapse
|
23
|
Allers T. Overexpression and purification of halophilic proteins in Haloferax volcanii. Bioeng Bugs 2010; 1:288-90. [PMID: 21327063 DOI: 10.4161/bbug.1.4.11794] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 11/19/2022] Open
Abstract
Halophilic enzymes function optimally at high salt concentrations and are active at low water availability. Such conditions are encountered at elevated concentrations of solutes such as salts and sugars, and at high concentrations of organic solvents. However, expression in heterologous hosts such as Escherichia coli can cause problems, since halophilic proteins typically misfold and aggregate in conditions of low ionic strength. We have harnessed the sophisticated genetic tools available for the haloarchaeon Haloferax volcanii, to develop a system for the overexpression and purification of halophilic proteins under native conditions.
Collapse
Affiliation(s)
- Thorsten Allers
- Institute of Genetics, School of Biology, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| |
Collapse
|
24
|
Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 2010; 464:543-8. [DOI: 10.1038/nature08883] [Citation(s) in RCA: 1222] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 02/05/2010] [Indexed: 11/09/2022]
|
25
|
Improved strains and plasmid vectors for conditional overexpression of His-tagged proteins in Haloferax volcanii. Appl Environ Microbiol 2010; 76:1759-69. [PMID: 20097827 DOI: 10.1128/aem.02670-09] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Research into archaea will not achieve its full potential until systems are in place to carry out genetics and biochemistry in the same species. Haloferax volcanii is widely regarded as the best-equipped organism for archaeal genetics, but the development of tools for the expression and purification of H. volcanii proteins has been neglected. We have developed a series of plasmid vectors and host strains for conditional overexpression of halophilic proteins in H. volcanii. The plasmids feature the tryptophan-inducible p.tnaA promoter and a 6xHis tag for protein purification by metal affinity chromatography. Purification is facilitated by host strains, where pitA is replaced by the ortholog from Natronomonas pharaonis. The latter lacks the histidine-rich linker region found in H. volcanii PitA and does not copurify with His-tagged recombinant proteins. We also deleted the mrr restriction endonuclease gene, thereby allowing direct transformation without the need to passage DNA through an Escherichia coli dam mutant.
Collapse
|
26
|
The N-terminal penultimate residue of 20S proteasome alpha1 influences its N(alpha) acetylation and protein levels as well as growth rate and stress responses of Haloferax volcanii. J Bacteriol 2009; 191:3794-803. [PMID: 19376868 DOI: 10.1128/jb.00090-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteasomes are energy-dependent proteolytic machines. We elaborate here on the previously observed N(alpha) acetylation of the initiator methionine of the alpha1 protein of 20S core particles (CPs) of Haloferax volcanii proteasomes. Quantitative mass spectrometry revealed this was the dominant N-terminal form of alpha1 in H. volcanii cells. To further examine this, alpha1 proteins with substitutions in the N-terminal penultimate residue as well as deletion of the CP "gate" formed by the alpha1 N terminus were examined for their N(alpha) acetylation. Both the "gate" deletion and Q2A substitution completely altered the N(alpha)-acetylation pattern of alpha1, with the deletion rendering alpha1 unavailable for N(alpha) acetylation and the Q2A modification apparently enhancing cleavage of alpha1 by methionine aminopeptidase (MAP), resulting in acetylation of the N-terminal alanine. Cells expressing these two alpha1 variants were less tolerant of hypoosmotic stress than the wild type and produced CPs with enhanced peptidase activity. Although alpha1 proteins with Q2D, Q2P, and Q2T substitutions were N(alpha) acetylated in CPs similar to the wild type, cells expressing these variants accumulated unusually high levels of alpha1 as rings in N(alpha)-acetylated, unmodified, and/or MAP-cleaved forms. More detailed examination of this group revealed that while CP peptidase activity was not impaired, cells expressing these alpha1 variants displayed higher growth rates and were more tolerant of hypoosmotic and high-temperature stress than the wild type. Overall, these results suggest that N(alpha) acetylation of alpha1 is important in CP assembly and activity, high levels of alpha1 rings enhance cell proliferation and stress tolerance, and unregulated opening of the CP "gate" impairs the ability of cells to overcome salt stress.
Collapse
|
27
|
Maixner F, Wagner M, Lücker S, Pelletier E, Schmitz-Esser S, Hace K, Spieck E, Konrat R, Le Paslier D, Daims H. Environmental genomics reveals a functional chlorite dismutase in the nitrite-oxidizing bacterium ‘CandidatusNitrospira defluvii’. Environ Microbiol 2008; 10:3043-56. [DOI: 10.1111/j.1462-2920.2008.01646.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Regulation of gvp genes encoding gas vesicle proteins in halophilic Archaea. Arch Microbiol 2008; 190:333-9. [PMID: 18385982 DOI: 10.1007/s00203-008-0362-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 02/27/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
Abstract
Three gas vesicle gene clusters derived from Halobacterium salinarum (p-vac and c-vac) and Haloferax mediterranei (mc-vac) are used as model systems to study gene regulation in Archaea. An unusual pair of regulatory proteins is involved here, with GvpE acting as transcription activator and GvpD exhibiting a repressing function. Both regulators are able to interact leading to the loss of GvpE and the repression (or turnoff) of the gas vesicle formation. The latter function of GvpD requires a p-loop motif and an arginine-rich region, bR1. Both regulator proteins are differentially expressed from the same gvp transcript in Hfx. mediterranei and Hbt. salinarum PHH4. GvpE appears to recognize a 20-nucleotide activator sequence (UAS) located upstream and adjacent to the TFB-recognition element BRE of the two promoters driving the transcription of the divergently oriented gvpACNO and gvpDEFGHIJKLM gene clusters. The BRE elements of these two promoters are separated by 35 nucleotides only, and the distal portions of the two GvpE-UAS overlap considerably in the center of this region. Mutations here negatively affect the GvpE-induced activities of both gvp promoters, whereas alterations in the proximal UAS portions only affect the activity of the promoter located close by.
Collapse
|
29
|
Bonamore A, Attili A, Arenghi F, Catacchio B, Chiancone E, Morea V, Boffi A. A novel chimera: the "truncated hemoglobin-antibiotic monooxygenase" from Streptomyces avermitilis. Gene 2007; 398:52-61. [PMID: 17574781 DOI: 10.1016/j.gene.2007.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 01/24/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
Novel chimeric proteins made of a globin domain fused with a "cofactor free" monooxygenase domain have been identified within the Streptomyces avermitilis and Frankia sp. genomes by means of bioinformatics methods. Structure based sequence alignments show that the globin domains of both proteins can be unambiguously assigned to the truncated hemoglobin family, in view of the striking similarity to the truncated hemoglobins from Mycobacterium tuberculosis, Thermobifida fusca and Bacillus subtilis. In turn, the non-heme domains belong to a family of small (about 100 aminoacids) homodimeric proteins annotated as antibiotic biosynthesis monooxygenases, despite the lack of a cofactor (e.g., a metal, a flavin or a heme) necessary for oxygen activation. The chimeric protein from S. avermitilis has been cloned, expressed and characterized. The protein is a stable dimer in solution based on analytical ultracentrifugation experiments. The heme ligand binding properties with oxygen and carbonmonoxide resemble those of other Group II truncated hemoglobins. In addition, an oxygen dependent redox activity has been demonstrated towards easily oxidizable substrates such as menadiol and p-aminophenol. These findings suggest novel functional roles of truncated hemoglobins, which might represent a vast class of multipurpose oxygen activating/scavenging proteins whose catalytic action is mediated by the interaction with cofactor free monooxygenases.
Collapse
Affiliation(s)
- Alessandra Bonamore
- Department of Biochemical Sciences, University of Rome La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Humbard MA, Stevens SM, Maupin-Furlow JA. Posttranslational modification of the 20S proteasomal proteins of the archaeon Haloferax volcanii. J Bacteriol 2006; 188:7521-30. [PMID: 16950923 PMCID: PMC1636277 DOI: 10.1128/jb.00943-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
20S proteasomes are large, multicatalytic proteases that play an important role in intracellular protein degradation. The barrel-like architecture of 20S proteasomes, formed by the stacking of four heptameric protein rings, is highly conserved from archaea to eukaryotes. The outer two rings are composed of alpha-type subunits, and the inner two rings are composed of beta-type subunits. The halophilic archaeon Haloferax volcanii synthesizes two different alpha-type proteins, alpha1 and alpha2, and one beta-type protein that assemble into at least two 20S proteasome subtypes. In this study, we demonstrate that all three of these 20S proteasomal proteins (alpha1, alpha2, and beta) are modified either post- or cotranslationally. Using electrospray ionization quadrupole time-of-flight mass spectrometry, a phosphorylation site of the beta subunit was identified at Ser129 of the deduced protein sequence. In addition, alpha1 and alpha2 contained N-terminal acetyl groups. These findings represent the first evidence of acetylation and phosphorylation of archaeal proteasomes and are one of the limited examples of post- and/or cotranslational modification of proteins in this unusual group of organisms.
Collapse
Affiliation(s)
- Matthew A Humbard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, 32611-0700, USA
| | | | | |
Collapse
|