1
|
Leventhal L, Ruffley M, Exposito-Alonso M. Planting Genomes in the Wild: Arabidopsis from Genetics History to the Ecology and Evolutionary Genomics Era. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:605-635. [PMID: 39971350 DOI: 10.1146/annurev-arplant-071123-095146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The genetics model system Arabidopsis thaliana (L.) Heynh. lives across a vast geographic range with contrasting climates, in response to which it has evolved diverse life histories and phenotypic adaptations. In the last decade, the cataloging of worldwide populations, DNA sequencing of whole genomes, and conducting of outdoor field experiments have transformed it into a powerful evolutionary ecology system to understand the genomic basis of adaptation. Here, we summarize new insights on Arabidopsis following the coordinated efforts of the 1001 Genomes Project, the latest reconstruction of biogeographic and demographic history, and the systematic genomic mapping of trait natural variation through 15 years of genome-wide association studies. We then put this in the context of local adaptation across climates by summarizing insights from 73 Arabidopsis outdoor common garden experiments conducted to date. We conclude by highlighting how molecular and genomic knowledge of adaptation can help us to understand species' (mal)adaptation under ongoing climate change.
Collapse
Affiliation(s)
- Laura Leventhal
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Megan Ruffley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA;
| |
Collapse
|
2
|
Identification of Postharvest Senescence Regulators Through Map-Based Cloning Using Detached Arabidopsis Inflorescences as a Model Tissue. Methods Mol Biol 2018; 1744:195-220. [PMID: 29392668 DOI: 10.1007/978-1-4939-7672-0_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Postharvest deterioration of fruits and vegetables can be accelerated by biological, environmental, and physiological stresses. Fully understanding tissue response to harvest will provide new opportunities for limiting postharvest losses during handling and storage. The model plant Arabidopsis thaliana (Arabidopsis) has many attributes that make it excellent for studying the underlying control of postharvest responses. It is also one of the best resourced plants with numerous web-based bioinformatic programs and large numbers of mutant collections. Here we introduce a novel assay system called AIDA (the Arabidopsis Inflorescence Degreening Assay) that we developed for understanding postharvest response of immature tissues. We also demonstrate how the high-throughput screening capability of AIDA can be used with mapping technologies (high-resolution melting [HRM] and needle in the k-stack [NIKS]) to identify regulators of postharvest senescence in ethyl methanesulfonate (EMS) mutagenized plant populations. Whether it is best to use HRM or NIKS or both technologies will depend on your laboratory facilities and computing capabilities.
Collapse
|
3
|
Alhajturki D, Muralidharan S, Nurmi M, Rowan BA, Lunn JE, Boldt H, Salem MA, Alseekh S, Jorzig C, Feil R, Giavalisco P, Fernie AR, Weigel D, Laitinen RAE. Dose-dependent interactions between two loci trigger altered shoot growth in BG-5 × Krotzenburg-0 (Kro-0) hybrids of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2018; 217:392-406. [PMID: 28906562 DOI: 10.1111/nph.14781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Hybrids occasionally exhibit genetic interactions resulting in reduced fitness in comparison to their parents. Studies of Arabidopsis thaliana have highlighted the role of immune conflicts, but less is known about the role of other factors in hybrid incompatibility in plants. Here, we present a new hybrid incompatibility phenomenon in this species. We have characterized a new case of F1 hybrid incompatibility from a cross between the A. thaliana accessions Krotzenburg-0 (Kro-0) and BG-5, by conducting transcript, metabolite and hormone analyses, and identified the causal loci through genetic mapping. The F1 hybrids showed arrested growth of the main stem, altered shoot architecture, and altered concentrations of hormones in comparison to parents. The F1 phenotype could be rescued in a developmental-stage-dependent manner by shifting to a higher growth temperature. These F1 phenotypes were linked to two loci, one on chromosome 2 and one on chromosome 3. The F2 generation segregated plants with more severe phenotypes which were linked to the same loci as those in the F1 . This study provides novel insights into how previously unknown mechanisms controlling shoot branching and stem growth can result in hybrid incompatibility.
Collapse
Affiliation(s)
- Dema Alhajturki
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | | | - Markus Nurmi
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Beth A Rowan
- Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Helena Boldt
- Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Mohamed A Salem
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Christian Jorzig
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Roosa A E Laitinen
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| |
Collapse
|
4
|
Schwartz CJ, Lee J, Amasino R. Variation in shade-induced flowering in Arabidopsis thaliana results from FLOWERING LOCUS T allelic variation. PLoS One 2017; 12:e0187768. [PMID: 29117199 PMCID: PMC5695581 DOI: 10.1371/journal.pone.0187768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022] Open
Abstract
Plants have evolved developmental mechanisms to ensure reproduction when in sub-optimal local environments. The shade-avoidance syndrome is one such mechanism that causes plants to elongate and accelerate flowering. Plants sense shade via the decreased red:far-red (R:FR) ratio that occurs in shade. We explored natural variation in flowering behavior caused by a decrease in the R:FR ratio of Arabidopsis thaliana accessions. A survey of accessions revealed that most exhibit a vigorous rapid-flowering response in a FR-enriched environment. However, a subset of accessions appeared to be compromised in the accelerated-flowering component of the shade-avoidance response. The genetic basis of the muted response to FR enrichment was studied in three accessions (Fl-1, Hau-0, and Mir-0). For all three accessions, the reduced FR flowering-time effect mapped to the FLOWERING LOCUS T (FT) region, and the FT alleles from these accessions are expressed at a lower level in FR-enriched light compared to alleles from accessions that respond robustly to FR enrichment. In the Mir-0 accession, a second genomic region, which includes CONSTANTS (CO), also influenced flowering in FR-enriched conditions. We have demonstrated that variation in the degree of precocious flowering in shaded conditions (low R:FR ratio) results from allelic variation at FT.
Collapse
Affiliation(s)
- C. J. Schwartz
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (CS); (RA)
| | - Joohyun Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Richard Amasino
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (CS); (RA)
| |
Collapse
|
5
|
Rajarammohan S, Kumar A, Gupta V, Pental D, Pradhan AK, Kaur J. Genetic Architecture of Resistance to Alternaria brassicae in Arabidopsis thaliana: QTL Mapping Reveals Two Major Resistance-Conferring Loci. FRONTIERS IN PLANT SCIENCE 2017; 8:260. [PMID: 28286515 PMCID: PMC5323384 DOI: 10.3389/fpls.2017.00260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/13/2017] [Indexed: 05/19/2023]
Abstract
Alternaria brassicae, a necrotrophic fungal pathogen, causes Alternaria blight, one of the most important diseases of oleiferous Brassica crops. The current study utilized Arabidopsis as a model to decipher the genetic architecture of defense against A. brassicae. Significant phenotypic variation that was largely genetically determined was observed among Arabidopsis accessions in response to pathogen challenge. Three biparental mapping populations were developed from three resistant accessions viz. CIBC-5, Ei-2, and Cvi-0 and two susceptible accessions - Gre-0 and Zdr-1 (commonly crossed to CIBC-5 and Ei-2). A total of six quantitative trait locus (QTLs) governing resistance to A. brassicae were identified, five of which were population-specific while one QTL was common between all the three mapping populations. Interestingly, the common QTL had varying phenotypic contributions in different populations, which can be attributed to the genetic background of the parental accessions. The presence of both common and population-specific QTLs indicate that resistance to A. brassicae is quantitative, and that different genes may mediate resistance to the pathogen in different accessions. Two of the QTLs had moderate-to-large effects, one of which explained nearly 50% of the variation. The large effect QTLs may therefore contain genes that could play a significant role in conferring resistance even in heterologous hosts.
Collapse
Affiliation(s)
| | - Amarendra Kumar
- Department of Genetics, University of Delhi South CampusNew Delhi, India
| | - Vibha Gupta
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South CampusNew Delhi, India
| | - Deepak Pental
- Department of Genetics, University of Delhi South CampusNew Delhi, India
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South CampusNew Delhi, India
| | - Akshay K. Pradhan
- Department of Genetics, University of Delhi South CampusNew Delhi, India
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South CampusNew Delhi, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi South CampusNew Delhi, India
- *Correspondence: Jagreet Kaur,
| |
Collapse
|
6
|
Jibran R, Sullivan KL, Crowhurst R, Erridge ZA, Chagné D, McLachlan ARG, Brummell DA, Dijkwel PP, Hunter DA. Staying green postharvest: how three mutations in the Arabidopsis chlorophyll b reductase gene NYC1 delay degreening by distinct mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6849-6862. [PMID: 26261268 DOI: 10.1093/jxb/erv390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Stresses such as energy deprivation, wounding and water-supply disruption often contribute to rapid deterioration of harvested tissues. To uncover the genetic regulation behind such stresses, a simple assessment system was used to detect senescence mutants in conjunction with two rapid mapping techniques to identify the causal mutations. To demonstrate the power of this approach, immature inflorescences of Arabidopsis plants that contained ethyl methanesulfonate-induced lesions were detached and screened for altered timing of dark-induced senescence. Numerous mutant lines displaying accelerated or delayed timing of senescence relative to wild type were discovered. The underlying mutations in three of these were identified using High Resolution Melting analysis to map to a chromosomal arm followed by a whole-genome sequencing-based mapping method, termed 'Needle in the K-Stack', to identify the causal lesions. All three mutations were single base pair changes and occurred in the same gene, NON-YELLOW COLORING1 (NYC1), a chlorophyll b reductase of the short-chain dehydrogenase/reductase (SDR) superfamily. This was consistent with the mutants preferentially retaining chlorophyll b, although substantial amounts of chlorophyll b were still lost. The single base pair mutations disrupted NYC1 function by three distinct mechanisms, one by producing a termination codon, the second by interfering with correct intron splicing and the third by replacing a highly conserved proline with a non-equivalent serine residue. This non-synonymous amino acid change, which occurred in the NADPH binding domain of NYC1, is the first example of such a mutation in an SDR protein inhibiting a physiological response in plants.
Collapse
Affiliation(s)
- Rubina Jibran
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Kerry L Sullivan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Ross Crowhurst
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Zoe A Erridge
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Andrew R G McLachlan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Paul P Dijkwel
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Donald A Hunter
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| |
Collapse
|
7
|
Analysis of a plant complex resistance gene locus underlying immune-related hybrid incompatibility and its occurrence in nature. PLoS Genet 2014; 10:e1004848. [PMID: 25503786 PMCID: PMC4263378 DOI: 10.1371/journal.pgen.1004848] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 10/23/2014] [Indexed: 01/28/2023] Open
Abstract
Mechanisms underlying speciation in plants include detrimental (incompatible) genetic interactions between parental alleles that incur a fitness cost in hybrids. We reported on recessive hybrid incompatibility between an Arabidopsis thaliana strain from Poland, Landsberg erecta (Ler), and many Central Asian A. thaliana strains. The incompatible interaction is determined by a polymorphic cluster of Toll/interleukin-1 receptor-nucleotide binding-leucine rich repeat (TNL) RPP1 (Recognition of Peronospora parasitica1)-like genes in Ler and alleles of the receptor-like kinase Strubbelig Receptor Family 3 (SRF3) in Central Asian strains Kas-2 or Kond, causing temperature-dependent autoimmunity and loss of growth and reproductive fitness. Here, we genetically dissected the RPP1-like Ler locus to determine contributions of individual RPP1-like Ler (R1–R8) genes to the incompatibility. In a neutral background, expression of most RPP1-like Ler genes, except R3, has no effect on growth or pathogen resistance. Incompatibility involves increased R3 expression and engineered R3 overexpression in a neutral background induces dwarfism and sterility. However, no individual RPP1-like Ler gene is sufficient for incompatibility between Ler and Kas-2 or Kond, suggesting that co-action of at least two RPP1-like members underlies this epistatic interaction. We find that the RPP1-like Ler haplotype is frequent and occurs with other Ler RPP1-like alleles in a local population in Gorzów Wielkopolski (Poland). Only Gorzów individuals carrying the RPP1-like Ler haplotype are incompatible with Kas-2 and Kond, whereas other RPP1-like alleles in the population are compatible. Therefore, the RPP1-like Ler haplotype has been maintained in genetically different individuals at a single site, allowing exploration of forces shaping the evolution of RPP1-like genes at local and regional population scales. In plants, naturally evolving disease resistance (R) genes can cause autoimmunity when combined with different genetic backgrounds. This phenomenon, called immune-related hybrid incompatibility (HI), leads to growth inhibition and fitness loss due to inappropriate activation of defense. HI likely reflects different evolutionary paths of immune-related genes in nature. We have examined the genetic architecture of a complex R locus present in a Central European accession (Ler) which underlies HI with Central Asian accessions of Arabidopsis. We show that expression of one gene (R3) within the Ler cluster of eight tandem R genes (R1–R8) controls the balance between growth and defense but that R3 needs at least one other co-acting member within the R locus to condition HI. We traced the R1–R8 haplotype to a local population of Ler relatives in Poland where it also underlies HI with Central Asian accessions. Occurrence of the incompatible haplotype in ∼30% of genetically diverse local individuals, suggests that it has not arisen recently and has been maintained through selection or drift. Co-occurrence in the same population of individuals containing different R genes that do not cause HI provides a basis for determining genetic and environmental forces influencing how plant immunity genes evolve and diversify.
Collapse
|
8
|
Todesco M, Kim ST, Chae E, Bomblies K, Zaidem M, Smith LM, Weigel D, Laitinen RAE. Activation of the Arabidopsis thaliana immune system by combinations of common ACD6 alleles. PLoS Genet 2014; 10:e1004459. [PMID: 25010663 PMCID: PMC4091793 DOI: 10.1371/journal.pgen.1004459] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/09/2014] [Indexed: 11/23/2022] Open
Abstract
A fundamental question in biology is how multicellular organisms distinguish self and non-self. The ability to make this distinction allows animals and plants to detect and respond to pathogens without triggering immune reactions directed against their own cells. In plants, inappropriate self-recognition results in the autonomous activation of the immune system, causing affected individuals to grow less well. These plants also suffer from spontaneous cell death, but are at the same time more resistant to pathogens. Known causes for such autonomous activation of the immune system are hyperactive alleles of immune regulators, or epistatic interactions between immune regulators and unlinked genes. We have discovered a third class, in which the Arabidopsis thaliana immune system is activated by interactions between natural alleles at a single locus, ACCELERATED CELL DEATH 6 (ACD6). There are two main types of these interacting alleles, one of which has evolved recently by partial resurrection of a pseudogene, and each type includes multiple functional variants. Most previously studies hybrid necrosis cases involve rare alleles found in geographically unrelated populations. These two types of ACD6 alleles instead occur at low frequency throughout the range of the species, and have risen to high frequency in the Northeast of Spain, suggesting a role in local adaptation. In addition, such hybrids occur in these populations in the wild. The extensive functional variation among ACD6 alleles points to a central role of this locus in fine-tuning pathogen defenses in natural populations. Plants and their pathogens are engaged in an endless evolutionary battle. The invention of new strategies by pathogens pushes plants to continuously update their defenses. This in turn leads the pathogens to circumvent these new defenses, and so on. Given the abundance of potential enemies, it is therefore not surprising that genes involved in defense against pathogens are among the most variable in plants. A drawback of this extreme variation in pathogen-recognition mechanisms is that at times the plant mistakes itself for an enemy, leading to autonomous activation of defense responses in the absence of pathogens. Conventional models for this phenomenon, called hybrid necrosis, require the interaction between two different genes. Here we show instead that hybrid necrosis can be triggered by interactions between variants of a single gene, ACD6 (ACCELERATED CELL DEATH 6). Several of these variants are common in natural Arabidopsis thaliana populations and can interact to give different levels of activation of the immune system. Our results provide important information into the evolution and operation of the plant defense system. Moreover, the abundant presence of ACD6 functional variation suggests a major role for this gene in modulating plant defenses in nature.
Collapse
Affiliation(s)
- Marco Todesco
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Kirsten Bomblies
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lisa M. Smith
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| | - Roosa A. E. Laitinen
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
9
|
Häffner E, Karlovsky P, Splivallo R, Traczewska A, Diederichsen E. ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum. BMC PLANT BIOLOGY 2014; 14:85. [PMID: 24690463 PMCID: PMC4021371 DOI: 10.1186/1471-2229-14-85] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/13/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Verticillium longisporum is a soil-borne vascular pathogen infecting cruciferous hosts such as oilseed rape. Quantitative disease resistance (QDR) is the major control means, but its molecular basis is poorly understood so far. Quantitative trait locus (QTL) mapping was performed using a new (Bur×Ler) recombinant inbred line (RIL) population of Arabidopsis thaliana. Phytohormone measurements and analyses in defined mutants and near-isogenic lines (NILs) were used to identify genes and signalling pathways that underlie different resistance QTL. RESULTS QTL for resistance to V. longisporum-induced stunting, systemic colonization by the fungus and for V. longisporum-induced chlorosis were identified. Stunting resistance QTL were contributed by both parents. The strongest stunting resistance QTL was shown to be identical with Erecta. A functional Erecta pathway, which was present in Bur, conferred partial resistance to V. longisporum-induced stunting. Bur showed severe stunting susceptibility in winter. Three stunting resistance QTL of Ler origin, two co-localising with wall-associated kinase-like (Wakl)-genes, were detected in winter. Furthermore, Bur showed a much stronger induction of salicylic acid (SA) by V. longisporum than Ler. Systemic colonization was controlled independently of stunting. The vec1 QTL on chromosome 2 had the strongest effect on systemic colonization. The same chromosomal region controlled the level of abscisic acid (ABA) and jasmonic acid (JA) in response to V. longisporum: The level of ABA was higher in colonization-susceptible Ler than in colonization-resistant Bur after V. longisporum infection. JA was down-regulated in Bur after infection, but not in Ler. These differences were also demonstrated in NILs, varying only in the region containing vec1. All phytohormone responses were shown to be independent of Erecta. CONCLUSIONS Signalling systems with a hitherto unknown role in the QDR of A. thaliana against V. longisporum were identified: Erecta mediated resistance against V. longisporum-induced stunting. Independent of Erecta, stunting was caused in a light-dependent manner with possible participation of SA and Wakl genes. ABA and JA showed a genotype-specific response that corresponded with systemic colonization by the fungus. Understanding the biological basis of phenotypic variation in A. thaliana with respect to V. longisporum resistance will provide new approaches for implementing durable resistance in cruciferous crops.
Collapse
Affiliation(s)
- Eva Häffner
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Petr Karlovsky
- Department of Crop Sciences, Georg-August-Universität Göttingen, Molecular Phytopathology and Mycotoxin Research Section, Grisebachstraße 6, 37077 Göttingen, Germany
| | - Richard Splivallo
- Department of Crop Sciences, Georg-August-Universität Göttingen, Molecular Phytopathology and Mycotoxin Research Section, Grisebachstraße 6, 37077 Göttingen, Germany
| | - Anna Traczewska
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Elke Diederichsen
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| |
Collapse
|
10
|
Brennan AC, Méndez-Vigo B, Haddioui A, Martínez-Zapater JM, Picó FX, Alonso-Blanco C. The genetic structure of Arabidopsis thaliana in the south-western Mediterranean range reveals a shared history between North Africa and southern Europe. BMC PLANT BIOLOGY 2014; 14:17. [PMID: 24411008 PMCID: PMC3890648 DOI: 10.1186/1471-2229-14-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 01/05/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND Deciphering the genetic structure of Arabidopsis thaliana diversity across its geographic range provides the bases for elucidating the demographic history of this model plant. Despite the unique A. thaliana genomic resources currently available, its history in North Africa, the extreme southern limit in the biodiversity hotspot of the Mediterranean Basin, remains virtually unknown. RESULTS To approach A. thaliana evolutionary history in North Africa, we have analysed the genetic diversity and structure of 151 individuals collected from 20 populations distributed across Morocco. Genotyping of 249 genome-wide SNPs indicated that Morocco contains substantially lower diversity than most analyzed world regions. However, IBD, STRUCTURE and PCA clustering analyses showed that genetic variation is strongly geographically structured. We also determined the genetic relationships between Morocco and the closest European region, the Iberian Peninsula, by analyses of 201 populations from both regions genotyped with the same SNPs. These analyses detected four genetic groups, but all Moroccan accessions belonged to a common Iberian/Moroccan cluster that appeared highly differentiated from the remaining groups. Thus, we identified a genetic lineage with an isolated demographic history in the south-western Mediterranean region. The existence of this lineage was further supported by the study of several flowering genes and traits, which also found Moroccan accessions similar to the same Iberian group. Nevertheless, genetic diversity for neutral SNPs and flowering genes was higher in Moroccan than in Iberian populations of this lineage. Furthermore, we analyzed the genetic relationships between Morocco and other world regions by joint analyses of a worldwide collection of 337 accessions, which detected an additional weak relationship between North Africa and Asia. CONCLUSIONS The patterns of genetic diversity and structure of A. thaliana in Morocco show that North Africa is part of the species native range and support the occurrence of a glacial refugium in the Atlas Mountains. In addition, the identification of a genetic lineage specific of Morocco and the Iberian Peninsula indicates that the Strait of Gibraltar has been an A. thaliana migration route between Europe and Africa. Finally, the genetic relationship between Morocco and Asia suggests another migration route connecting north-western Africa and Asia.
Collapse
Affiliation(s)
- Adrian C Brennan
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Belén Méndez-Vigo
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Abdelmajid Haddioui
- Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, Beni Mellal, Morocco
| | - José M Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| | - F Xavier Picó
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Carlos Alonso-Blanco
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
11
|
Meissner M, Orsini E, Ruschhaupt M, Melchinger AE, Hincha DK, Heyer AG. Mapping quantitative trait loci for freezing tolerance in a recombinant inbred line population of Arabidopsis thaliana accessions Tenela and C24 reveals REVEILLE1 as negative regulator of cold acclimation. PLANT, CELL & ENVIRONMENT 2013; 36:1256-67. [PMID: 23240770 DOI: 10.1111/pce.12054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/06/2012] [Indexed: 05/23/2023]
Abstract
The ability to increase freezing tolerance when exposed to low temperatures is a property of many plant species from temperate climates and involves a wide array of metabolic adjustments and changes in gene expression. In Arabidopsis thaliana, natural accessions show high variation in their acclimation capacity, and freezing tolerance correlates with natural habitat temperatures. To investigate the genetic basis of this variation, a recombinant inbred line population from reciprocal crosses between the accessions C24 and Tenela (Te), showing large variation in tolerance, was established. Over 250 recombinant inbred lines were genotyped for 69 single nucleotide polymorphism markers in a linkage map with 391.9 centimorgans (cM) and phenotyped for their freezing tolerance using the electrolyte leakage method that reports cell damage after a freeze-thaw cycle. Mapping of quantitative trait loci (QTL) for acclimated plants revealed three QTL regions on chromosomes 2, 4 and 5. Based on gene expression data, QTL regions were screened for genes differentially responding to low temperature in C24 and Te. Among the candidate genes, the Myb family transcription factor REVEILLE1 (At5g17300) on chromosome 5 was identified as a novel negative regulator of freezing tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Meike Meissner
- Department of Plant Biotechnology, Institute of Biology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Elena Orsini
- Department of Plant Breeding, Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
| | - Moritz Ruschhaupt
- Department of Plant Biotechnology, Institute of Biology, University of Stuttgart, D-70569, Stuttgart, Germany
| | - Albrecht E Melchinger
- Department of Plant Breeding, Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Arnd G Heyer
- Department of Plant Biotechnology, Institute of Biology, University of Stuttgart, D-70569, Stuttgart, Germany
| |
Collapse
|
12
|
Co-variation between seed dormancy, growth rate and flowering time changes with latitude in Arabidopsis thaliana. PLoS One 2013; 8:e61075. [PMID: 23717385 PMCID: PMC3662791 DOI: 10.1371/journal.pone.0061075] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/05/2013] [Indexed: 01/20/2023] Open
Abstract
Life-history traits controlling the duration and timing of developmental phases in the life cycle jointly determine fitness. Therefore, life-history traits studied in isolation provide an incomplete view on the relevance of life-cycle variation for adaptation. In this study, we examine genetic variation in traits covering the major life history events of the annual species Arabidopsis thaliana: seed dormancy, vegetative growth rate and flowering time. In a sample of 112 genotypes collected throughout the European range of the species, both seed dormancy and flowering time follow a latitudinal gradient independent of the major population structure gradient. This finding confirms previous studies reporting the adaptive evolution of these two traits. Here, however, we further analyze patterns of co-variation among traits. We observe that co-variation between primary dormancy, vegetative growth rate and flowering time also follows a latitudinal cline. At higher latitudes, vegetative growth rate is positively correlated with primary dormancy and negatively with flowering time. In the South, this trend disappears. Patterns of trait co-variation change, presumably because major environmental gradients shift with latitude. This pattern appears unrelated to population structure, suggesting that changes in the coordinated evolution of major life history traits is adaptive. Our data suggest that A. thaliana provides a good model for the evolution of trade-offs and their genetic basis.
Collapse
|
13
|
Méndez-Vigo B, Gomaa NH, Alonso-Blanco C, Xavier Picó F. Among- and within-population variation in flowering time of Iberian Arabidopsis thaliana estimated in field and glasshouse conditions. THE NEW PHYTOLOGIST 2013; 197:1332-1343. [PMID: 23252608 DOI: 10.1111/nph.12082] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/05/2012] [Indexed: 05/08/2023]
Abstract
The study of the evolutionary and population genetics of quantitative traits requires the assessment of within- and among-population patterns of variation. We carried out experiments including eight Iberian Arabidopsis thaliana populations (10 individuals per population) in glasshouse and field conditions. We quantified among- and within-population variation for flowering time and for several field life-history traits. Individuals were genotyped with microsatellites, single nucleotide polymorphisms and four well-known flowering genes (FRI, FLC, CRY2 and PHYC). Phenotypic and genotypic data were used to conduct Q(ST)-F(ST) comparisons. Life-history traits varied significantly among- and within-populations. Flowering time also showed substantial within- and among-population variation as well as significant genotype × environment interactions among the various conditions. Individuals bearing FRI truncations exhibited reduced recruitment in field conditions and differential flowering time behavior across experimental conditions, suggesting that FRI contributes to the observed significant genotype × environment interactions. Flowering time estimated in field conditions was the only trait showing significantly higher quantitative genetic differentiation than neutral genetic differentiation values. Overall, our results show that these A. thaliana populations are genetically more differentiated for flowering time than for neutral markers, suggesting that flowering time is likely to be under divergent selection.
Collapse
Affiliation(s)
- Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Nasr H Gomaa
- Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), 41092, Sevilla, Spain
| |
Collapse
|
14
|
Kopischke M, Westphal L, Schneeberger K, Clark R, Ossowski S, Wewer V, Fuchs R, Landtag J, Hause G, Dörmann P, Lipka V, Weigel D, Schulze-Lefert P, Scheel D, Rosahl S. Impaired sterol ester synthesis alters the response of Arabidopsis thaliana to Phytophthora infestans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:456-68. [PMID: 23072470 DOI: 10.1111/tpj.12046] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 05/06/2023]
Abstract
Non-host resistance of Arabidopsis thaliana against Phytophthora infestans, the causal agent of late blight disease of potato, depends on efficient extracellular pre- and post-invasive resistance responses. Pre-invasive resistance against P. infestans requires the myrosinase PEN2. To identify additional genes involved in non-host resistance to P. infestans, a genetic screen was performed by re-mutagenesis of pen2 plants. Fourteen independent mutants were isolated that displayed an enhanced response to Phytophthora (erp) phenotype. Upon inoculation with P. infestans, two mutants, pen2-1 erp1-3 and pen2-1 erp1-4, showed an enhanced rate of mesophyll cell death and produced excessive callose deposits in the mesophyll cell layer. ERP1 encodes a phospholipid:sterol acyltransferase (PSAT1) that catalyzes the formation of sterol esters. Consistent with this, the tested T-DNA insertion lines of PSAT1 are phenocopies of erp1 plants. Sterol ester levels are highly reduced in all erp1/psat1 mutants, whereas sterol glycoside levels are increased twofold. Excessive callose deposition occurred independently of PMR4/GSL5 activity, a known pathogen-inducible callose synthase. A similar formation of aberrant callose deposits was triggered by the inoculation of erp1 psat1 plants with powdery mildew. These results suggest a role for sterol conjugates in cell non-autonomous defense responses against invasive filamentous pathogens.
Collapse
Affiliation(s)
- Michaela Kopischke
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sánchez-Bermejo E, Méndez-Vigo B, Picó FX, Martínez-Zapater JM, Alonso-Blanco C. Novel natural alleles at FLC and LVR loci account for enhanced vernalization responses in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2012; 35:1672-84. [PMID: 22494398 DOI: 10.1111/j.1365-3040.2012.02518.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Vernalization, the induction of flowering by low winter temperatures, is likely to be involved in plant climatic adaptation. However, the genetic, molecular and ecological bases underlying the quantitative variation that tunes vernalization sensitivity to natural environments are largely unknown. To address these questions, we have studied the enhanced vernalization response shown by the Ll-0 accession of Arabidopsis thaliana. Quantitative trait locus (QTL) mapping for several flowering initiation traits in relation to vernalization, in a new Ler × Ll-0 recombinant inbred line (RIL) population, identified large effect alleles at FRI, FLC and HUA2, together with two small effect loci named as Llagostera vernalization response (LVR) 1 and 2. Phenotypic analyses of near isogenic lines validated LVR1 effect on flowering vernalization responses. To further characterize the FLC allele from Ll-0, we carried out genetic association analyses using a regional collection of wild genotypes. FLC-Ll-0 appeared as a low-frequency allele that is distinguished by polymorphism Del(-57), a 50-bp-deletion in the 5'-UTR. Del(-57) was significantly associated with enhanced vernalization responses and FLC RNA expression, as well as with altitude and minimum temperatures. These results are consistent with Del(-57) acting as a novel cis-regulatory FLC polymorphism that may confer climatic adaptation by increasing vernalization sensitivity.
Collapse
Affiliation(s)
- Eduardo Sánchez-Bermejo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Salomé PA, Bomblies K, Fitz J, Laitinen RAE, Warthmann N, Yant L, Weigel D. The recombination landscape in Arabidopsis thaliana F2 populations. Heredity (Edinb) 2012; 108:447-55. [PMID: 22072068 PMCID: PMC3313057 DOI: 10.1038/hdy.2011.95] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/29/2011] [Accepted: 08/27/2011] [Indexed: 12/20/2022] Open
Abstract
Recombination during meiosis shapes the complement of alleles segregating in the progeny of hybrids, and has important consequences for phenotypic variation. We examined allele frequencies, as well as crossover (XO) locations and frequencies in over 7000 plants from 17 F(2) populations derived from crosses between 18 Arabidopsis thaliana accessions. We observed segregation distortion between parental alleles in over half of our populations. The potential causes of distortion include variation in seed dormancy and lethal epistatic interactions. Such a high occurrence of distortion was only detected here because of the large sample size of each population and the number of populations characterized. Most plants carry only one or two XOs per chromosome pair, and therefore inherit very large, non-recombined genomic fragments from each parent. Recombination frequencies vary between populations but consistently increase adjacent to the centromeres. Importantly, recombination rates do not correlate with whole-genome sequence differences between parental accessions, suggesting that sequence diversity within A. thaliana does not normally reach levels that are high enough to exert a major influence on the formation of XOs. A global knowledge of the patterns of recombination in F(2) populations is crucial to better understand the segregation of phenotypic traits in hybrids, in the laboratory or in the wild.
Collapse
Affiliation(s)
- P A Salomé
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - K Bomblies
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - J Fitz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - R A E Laitinen
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - N Warthmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - L Yant
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - D Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
17
|
Wijnker E, van Dun K, de Snoo CB, Lelivelt CLC, Keurentjes JJB, Naharudin NS, Ravi M, Chan SWL, de Jong H, Dirks R. Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant. Nat Genet 2012; 44:467-70. [PMID: 22406643 DOI: 10.1038/ng.2203] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/27/2012] [Indexed: 11/09/2022]
Abstract
Traditionally, hybrid seeds are produced by crossing selected inbred lines. Here we provide a proof of concept for reverse breeding, a new approach that simplifies meiosis such that homozygous parental lines can be generated from a vigorous hybrid individual. We silenced DMC1, which encodes the meiotic recombination protein DISRUPTED MEIOTIC cDNA1, in hybrids of A. thaliana, so that non-recombined parental chromosomes segregate during meiosis. We then converted the resulting gametes into adult haploid plants, and subsequently into homozygous diploids, so that each contained half the genome of the original hybrid. From 36 homozygous lines, we selected 3 (out of 6) complementing parental pairs that allowed us to recreate the original hybrid by intercrossing. In addition, this approach resulted in a complete set of chromosome-substitution lines. Our method allows the selection of a single choice offspring from a segregating population and preservation of its heterozygous genotype by generating homozygous founder lines.
Collapse
Affiliation(s)
- Erik Wijnker
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Simon M, Simon A, Martins F, Botran L, Tisné S, Granier F, Loudet O, Camilleri C. DNA fingerprinting and new tools for fine-scale discrimination of Arabidopsis thaliana accessions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:1094-1101. [PMID: 22077701 DOI: 10.1111/j.1365-313x.2011.04852.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
One of the main strengths of Arabidopsis thaliana as a model species is the impressive number of public resources available to the scientific community. Exploring species genetic diversity--and therefore adaptation--relies on collections of individuals from natural populations taken from diverse environments. Nevertheless, due to a few mislabeling events or genotype mixtures, some variants available in stock centers have been misidentified, causing inconsistencies and limiting the potential of genetic analyses. To improve the identification of natural accessions, we genotyped 1311 seed stocks from our Versailles Arabidopsis Stock Center and from other collections to determine their molecular profiles at 341 single nucleotide polymorphism markers. These profiles were used to compare genotypes at both the intra- and inter-accession levels. We confirmed previously described inconsistencies and revealed new ones, and suggest likely identities for accessions whose lineage had been lost. We also developed two new tools: a minimal fingerprint computation to quickly verify the identity of an accession, and an optimized marker set to assist in the identification of unknown or mixed accessions. These tools are available on a dedicated web interface called ANATool (https://www.versailles.inra.fr/ijpb/crb/anatool) that provides a simple and efficient means to verify or determine the identity of A. thaliana accessions in any laboratory, without the need for any specific or expensive technology.
Collapse
Affiliation(s)
- Matthieu Simon
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, F-78000 Versailles, France.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
GOMAA NASRH, MONTESINOS-NAVARRO ALICIA, ALONSO-BLANCO CARLOS, PICÓ FXAVIER. Temporal variation in genetic diversity and effective population size of Mediterranean and subalpine Arabidopsis thaliana populations. Mol Ecol 2011; 20:3540-54. [DOI: 10.1111/j.1365-294x.2011.05193.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
O'Neill CM, Morgan C, Hattori C, Brennan M, Rosas U, Tschoep H, Deng PX, Baker D, Wells R, Bancroft I. Towards the genetic architecture of seed lipid biosynthesis and accumulation in Arabidopsis thaliana. Heredity (Edinb) 2011; 108:115-23. [PMID: 21731053 PMCID: PMC3262871 DOI: 10.1038/hdy.2011.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We report the quantitative genetic analysis of seed oil quality and quantity in six Arabidopsis thaliana recombinant inbred populations, in which the parent accessions were from diverse geographical origins, and were selected on the basis of variation for seed oil content and lipid composition. Although most of the biochemical steps involved in lipid biosynthesis are known and the key genes have been identified, the regulation of the processes that results in the final oil composition and total amount is not understood. By using physically anchored markers it was possible to compare results across populations. A total of 219 quantitative trait loci (QTLs) were identified, of which 81 were significant at P<0.001. Some of these colocalise with QTLs identified previously, but many novel QTLs were also identified. The results highlight the importance of studying traits in multiple populations, which will lead to a better understanding of the contribution that natural variation makes to the genetic architecture of a phenotype.
Collapse
Affiliation(s)
- C M O'Neill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Variation in seed dormancy quantitative trait loci in Arabidopsis thaliana originating from one site. PLoS One 2011; 6:e20886. [PMID: 21738591 PMCID: PMC3127951 DOI: 10.1371/journal.pone.0020886] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/11/2011] [Indexed: 11/19/2022] Open
Abstract
A Quantitative Trait Locus (QTL) analysis was performed using two novel Recombinant Inbred Line (RIL) populations, derived from the progeny between two Arabidopsis thaliana genotypes collected at the same site in Kyoto (Japan) crossed with the reference laboratory strain Landsberg erecta (Ler). We used these two RIL populations to determine the genetic basis of seed dormancy and flowering time, which are assumed to be the main traits controlling life history variation in Arabidopsis. The analysis revealed quantitative variation for seed dormancy that is associated with allelic variation at the seed dormancy QTL DOG1 (for Delay Of Germination 1) in one population and at DOG6 in both. These DOG QTL have been previously identified using mapping populations derived from accessions collected at different sites around the world. Genetic variation within a population may enhance its ability to respond accurately to variation within and between seasons. In contrast, variation for flowering time, which also segregated within each mapping population, is mainly governed by the same QTL.
Collapse
|
22
|
Strange A, Li P, Lister C, Anderson J, Warthmann N, Shindo C, Irwin J, Nordborg M, Dean C. Major-effect alleles at relatively few loci underlie distinct vernalization and flowering variation in Arabidopsis accessions. PLoS One 2011; 6:e19949. [PMID: 21625501 PMCID: PMC3098857 DOI: 10.1371/journal.pone.0019949] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/07/2011] [Indexed: 12/31/2022] Open
Abstract
We have explored the genetic basis of variation in vernalization requirement and
response in Arabidopsis accessions, selected on the basis of their phenotypic
distinctiveness. Phenotyping of F2 populations in different environments, plus
fine mapping, indicated possible causative genes. Our data support the
identification of FRI and FLC as candidates
for the major-effect QTL underlying variation in vernalization response, and
identify a weak FLC allele, caused by a Mutator-like
transposon, contributing to flowering time variation in two N. American
accessions. They also reveal a number of additional QTL that contribute to
flowering time variation after saturating vernalization. One of these was the
result of expression variation at the FT locus. Overall, our
data suggest that distinct phenotypic variation in the vernalization and
flowering response of Arabidopsis accessions is accounted for by variation that
has arisen independently at relatively few major-effect loci.
Collapse
Affiliation(s)
- Amy Strange
- Department of Cell and Developmental Biology, John Innes Centre, Norwich,
England, United Kingdom
| | - Peijin Li
- Department of Cell and Developmental Biology, John Innes Centre, Norwich,
England, United Kingdom
| | - Clare Lister
- Department of Cell and Developmental Biology, John Innes Centre, Norwich,
England, United Kingdom
| | - Jillian Anderson
- Department of Cell and Developmental Biology, John Innes Centre, Norwich,
England, United Kingdom
| | - Norman Warthmann
- Department of Molecular Biology, Max Planck Institute for Developmental
Biology, Tübingen, Germany
| | - Chikako Shindo
- Department of Cell and Developmental Biology, John Innes Centre, Norwich,
England, United Kingdom
| | - Judith Irwin
- Department of Cell and Developmental Biology, John Innes Centre, Norwich,
England, United Kingdom
| | - Magnus Nordborg
- Department of Molecular and Computational Biology, University of Southern
California, Los Angeles, California, United States of America
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich,
England, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Bentsink L, Koornneef M. Identification and characterization of quantitative trait loci that control seed dormancy in Arabidopsis. Methods Mol Biol 2011; 773:165-184. [PMID: 21898256 DOI: 10.1007/978-1-61779-231-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Seed dormancy is a trait that is under multigenic control and affected strongly by environmental factors. Thus, seed dormancy is a typical quantitative trait. Natural accessions of Arabidopsis thaliana exhibit a great deal of genetic variation for seed dormancy. This natural variation can be used to identify genes controlling this trait by means of quantitative trait loci (QTL) mapping. In this chapter, we describe how QTL mapping for seed dormancy in Arabidopsis thaliana can be performed and how QTL analyses can be used to eventually identify the causal gene. Methods and recourses available specifically for Arabidopsis are described or referred to.
Collapse
Affiliation(s)
- Leónie Bentsink
- Department of Molecular Plant Physiology, Utrecht University, CH, Utrecht, The Netherlands
| | | |
Collapse
|
24
|
Häffner E, Karlovsky P, Diederichsen E. Genetic and environmental control of the Verticillium syndrome in Arabidopsis thaliana. BMC PLANT BIOLOGY 2010; 10:235. [PMID: 21044310 PMCID: PMC3017855 DOI: 10.1186/1471-2229-10-235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/02/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND Verticillium spp. are major pathogens of dicotyledonous plants such as cotton, tomato, olive or oilseed rape. Verticillium symptoms are often ambiguous and influenced by development and environment. The aim of the present study was to define disease and resistance traits of the complex Verticillium longisporum syndrome in Arabidopsis thaliana (L.) Heynh. A genetic approach was used to determine genetic, developmental and environmental factors controlling specific disease and resistance traits and to study their interrelations. RESULTS A segregating F2/F3 population originating from ecotypes 'Burren' (Bur) and 'Landsberg erecta' (Ler) was established. Plants were root-dip inoculated and tested under greenhouse conditions. The Verticillium syndrome was dissected into components like systemic spread, stunting, development time and axillary branching. Systemic spread of V. longisporum via colonisation of the shoot was extensive in Ler; Bur showed a high degree of resistance against systemic spread. Fungal colonisation of the shoot apex was determined by (a) determining the percentage of plants from which the fungus could be re-isolated and (b) measuring fungal DNA content with quantitative real-time PCR (qPCR). Four quantitative trait loci (QTL) controlling systemic spread were identified for the percentage of plants showing fungal outgrowth, two of these QTL were confirmed with qPCR data. The degree of colonisation by V. longisporum was negatively correlated with development time. QTL controlling development time showed some overlap with QTL for resistance to systemic spread. Stunting depended on host genotype, development time and seasonal effects. Five QTL controlling this trait were identified which did not co-localize with QTL controlling systemic spread. V. longisporum induced increased axillary branching in Bur; two QTL controlling this reaction were found. CONCLUSIONS Systemic spread of V. longisporum in the host as well as resistance to this major disease trait are described for the first time in natural A. thaliana accessions. This creates the possibility to study a major resistance mechanism against vascular pathogens in this model plant and to clone relevant genes of the involved pathways. Stunting resistance and resistance to systemic spread were controlled by different QTL and should be treated as separate traits. Developmental and environmental effects on pathogenesis and resistance need to be considered when designing and interpreting experiments in research and breeding.
Collapse
Affiliation(s)
- Eva Häffner
- Freie Universität Berlin, Institut für Biologie - Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Petr Karlovsky
- Georg-August-Universität Göttingen, Department of Crop Science, Molecular Phytopathology and Mycotoxin Research Unit, Grisebachstraße 6, 37077 Göttingen, Germany
| | - Elke Diederichsen
- Freie Universität Berlin, Institut für Biologie - Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| |
Collapse
|
25
|
Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 2010; 465:632-6. [PMID: 20520716 PMCID: PMC3055268 DOI: 10.1038/nature09083] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 04/14/2010] [Indexed: 11/08/2022]
Abstract
Plants can defend themselves against a wide array of enemies, yet one of the most striking observations is the variability in the effectiveness of such defences, both within and between species. Some of this variation can be explained by conflicting pressures from pathogens with different modes of attack1. A second explanation comes from an evolutionary tug of war, in which pathogens adapt to evade detection, until the plant has evolved new recognition capabilities for pathogen invasion2-5. If selection is, however, sufficiently strong, susceptible hosts should remain rare. That this is not the case is best justified by costs incurred from constitutive defences in a pest free environment6-11. Using a combination of forward genetics and genome-wide association analyses, we demonstrate that allelic diversity at a single locus, ACCELERATED CELL DEATH 6 (ACD6)12,13, underpins dramatic pleiotropic differences in both vegetative growth and resistance to microbial infection and herbivory among natural Arabidopsis thaliana strains. A hyperactive ACD6 allele, compared to the reference allele, strongly enhances resistance to a broad range of pathogens from different phyla, but at the same time slows the production of new leaves and greatly reduces the biomass of mature leaves. This allele segregates at intermediate frequency both throughout the worldwide range of A. thaliana and within local populations, consistent with this allele providing substantial fitness benefits despite its drastic impact on growth.
Collapse
|
26
|
Kronholm I, Loudet O, de Meaux J. Influence of mutation rate on estimators of genetic differentiation--lessons from Arabidopsis thaliana. BMC Genet 2010; 11:33. [PMID: 20433762 PMCID: PMC2888750 DOI: 10.1186/1471-2156-11-33] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 05/01/2010] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The analysis of molecular variation within and between populations is crucial to establish strategies for conservation as well as to detect the footprint of spatially heterogeneous selection. The traditional estimator of genetic differentiation (F(ST)) has been shown to be misleading if genetic diversity is high. Alternative estimators of F(ST) have been proposed, but their robustness to variation in mutation rate is not clearly established. We first investigated the effect of mutation and migration rate using computer simulations and examined their joint influence on Q(ST), a measure of genetic differentiation for quantitative traits. We further used experimental data in natural populations of Arabidopsis thaliana to characterize the effect of mutation rate on various estimates of population differentiation. Since natural species exhibit various degrees of self-fertilisation, we also investigated the effect of mating system on the different estimators. RESULTS If mutation rate is high and migration rate low, classical measures of genetic differentiation are misleading. Only Phi(ST), an estimator that takes the mutational distances between alleles into account, is independent of mutation rate, for all migration rates. However, the performance of Phi(ST) depends on the underlying mutation model and departures from this model cause its performance to degrade. We further show that Q(ST) has the same bias. We provide evidence that, in A. thaliana, microsatellite variation correlates with mutation rate. We thereby demonstrate that our results on estimators of genetic differentiation have important implications, even for species that are well established models in population genetics and molecular biology. CONCLUSIONS We find that alternative measures of differentiation like F'(ST) and D are not suitable for estimating effective migration rate and should not be used in studies of local adaptation. Genetic differentiation should instead be measured using an estimator that takes mutation rate into account, such as Phi(ST). Furthermore, in systems where migration between populations is low, such as A. thaliana, Q(ST) < F(ST) cannot be taken as evidence for homogenising selection as has been traditionally thought.
Collapse
Affiliation(s)
- Ilkka Kronholm
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, F-78000 Versailles, France
| | - Juliette de Meaux
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
27
|
Bomblies K, Yant L, Laitinen RA, Kim ST, Hollister JD, Warthmann N, Fitz J, Weigel D. Local-scale patterns of genetic variability, outcrossing, and spatial structure in natural stands of Arabidopsis thaliana. PLoS Genet 2010; 6:e1000890. [PMID: 20361058 PMCID: PMC2845663 DOI: 10.1371/journal.pgen.1000890] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 03/01/2010] [Indexed: 11/19/2022] Open
Abstract
As Arabidopsis thaliana is increasingly employed in evolutionary and ecological studies, it is essential to understand patterns of natural genetic variation and the forces that shape them. Previous work focusing mostly on global and regional scales has demonstrated the importance of historical events such as long-distance migration and colonization. Far less is known about the role of contemporary factors or environmental heterogeneity in generating diversity patterns at local scales. We sampled 1,005 individuals from 77 closely spaced stands in diverse settings around Tübingen, Germany. A set of 436 SNP markers was used to characterize genome-wide patterns of relatedness and recombination. Neighboring genotypes often shared mosaic blocks of alternating marker identity and divergence. We detected recent outcrossing as well as stretches of residual heterozygosity in largely homozygous recombinants. As has been observed for several other selfing species, there was considerable heterogeneity among sites in diversity and outcrossing, with rural stands exhibiting greater diversity and heterozygosity than urban stands. Fine-scale spatial structure was evident as well. Within stands, spatial structure correlated negatively with observed heterozygosity, suggesting that the high homozygosity of natural A. thaliana may be partially attributable to nearest-neighbor mating of related individuals. The large number of markers and extensive local sampling employed here afforded unusual power to characterize local genetic patterns. Contemporary processes such as ongoing outcrossing play an important role in determining distribution of genetic diversity at this scale. Local "outcrossing hotspots" appear to reshuffle genetic information at surprising rates, while other stands contribute comparatively little. Our findings have important implications for sampling and interpreting diversity among A. thaliana accessions.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Levi Yant
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Roosa A. Laitinen
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jesse D. Hollister
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Norman Warthmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Joffrey Fitz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
28
|
The scale of population structure in Arabidopsis thaliana. PLoS Genet 2010; 6:e1000843. [PMID: 20169178 PMCID: PMC2820523 DOI: 10.1371/journal.pgen.1000843] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 01/12/2010] [Indexed: 12/04/2022] Open
Abstract
The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene flow. This paper examines the detailed global population structure of Arabidopsis thaliana. Using a set of 5,707 plants collected from around the globe and genotyped at 149 SNPs, we show that while A. thaliana as a species self-fertilizes 97% of the time, there is considerable variation among local groups. This level of outcrossing greatly limits observed heterozygosity but is sufficient to generate considerable local haplotypic diversity. We also find that in its native Eurasian range A. thaliana exhibits continuous isolation by distance at every geographic scale without natural breaks corresponding to classical notions of populations. By contrast, in North America, where it exists as an exotic species, A. thaliana exhibits little or no population structure at a continental scale but local isolation by distance that extends hundreds of km. This suggests a pattern for the development of isolation by distance that can establish itself shortly after an organism fills a new habitat range. It also raises questions about the general applicability of many standard population genetics models. Any model based on discrete clusters of interchangeable individuals will be an uneasy fit to organisms like A. thaliana which exhibit continuous isolation by distance on many scales. Much of the modern field of population genetics is premised on particular models of what an organism's population structure is and how it behaves. The classic models generally start with the idea of a single randomly mating population that has reached an evolutionary equilibrium. Many models relax some of these assumptions, allowing for phenomena such as assortative mating, discrete sub-populations with migration, self-fertilization, and sex-ratio distortion. Virtually all models, however, have as their core premise the notion that there exist classes of exchangeable individuals each of which represents an identical, independent sample from that class' distribution. For certain organisms, such as Drosophila melanogaster, these models do an excellent job of describing how populations work. For other organisms, such as humans, these models can be reasonable approximations but require a great deal of care in assembling samples and can begin to break down as sampling becomes locally dense. For the vast majority of organisms the applicability of these models has never been investigated.
Collapse
|
29
|
Sulpice R, Pyl ET, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques MC, Von Korff M, Steinhauser MC, Keurentjes JJB, Guenther M, Hoehne M, Selbig J, Fernie AR, Altmann T, Stitt M. Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci U S A 2009; 106:10348-53. [PMID: 19506259 PMCID: PMC2693182 DOI: 10.1073/pnas.0903478106] [Citation(s) in RCA: 348] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Indexed: 11/18/2022] Open
Abstract
Rising demand for food and bioenergy makes it imperative to breed for increased crop yield. Vegetative plant growth could be driven by resource acquisition or developmental programs. Metabolite profiling in 94 Arabidopsis accessions revealed that biomass correlates negatively with many metabolites, especially starch. Starch accumulates in the light and is degraded at night to provide a sustained supply of carbon for growth. Multivariate analysis revealed that starch is an integrator of the overall metabolic response. We hypothesized that this reflects variation in a regulatory network that balances growth with the carbon supply. Transcript profiling in 21 accessions revealed coordinated changes of transcripts of more than 70 carbon-regulated genes and identified 2 genes (myo-inositol-1-phosphate synthase, a Kelch-domain protein) whose transcripts correlate with biomass. The impact of allelic variation at these 2 loci was shown by association mapping, identifying them as candidate lead genes with the potential to increase biomass production.
Collapse
Affiliation(s)
- Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Eva-Theresa Pyl
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Sandra Trenkamp
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Hanna Witucka-Wall
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24–25, 14476 Potsdam, Germany
| | - Yves Gibon
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Björn Usadel
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Fabien Poree
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Maria Conceição Piques
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Maria Von Korff
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24–25, 14476 Potsdam, Germany
| | | | - Joost J. B. Keurentjes
- Genetics Laboratory and Laboratory of Plant Physiology, Wageningen University and Research Centre, NL-6703 BD Wageningen, The Netherlands; and
- Centre for BioSystems Genomics, NL-6708 PB Wageningen, The Netherlands
| | - Manuela Guenther
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Melanie Hoehne
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Thomas Altmann
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24–25, 14476 Potsdam, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
30
|
Field HI, Scollen SA, Luccarini C, Baynes C, Morrison J, Dunning AM, Easton DF, Pharoah PDP. Seq4SNPs: new software for retrieval of multiple, accurately annotated DNA sequences, ready formatted for SNP assay design. BMC Bioinformatics 2009; 10:180. [PMID: 19523221 PMCID: PMC2711078 DOI: 10.1186/1471-2105-10-180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 06/12/2009] [Indexed: 11/11/2022] Open
Abstract
Background In moderate-throughput SNP genotyping there was a gap in the workflow, between choosing a set of SNPs and submitting their sequences to proprietary assay design software, which was not met by existing software. Retrieval and formatting of sequences flanking each SNP, prior to assay design, becomes rate-limiting for more than about ten SNPs, especially if annotated for repetitive regions and adjacent variations. We routinely process up to 50 SNPs at once. Implementation We created Seq4SNPs, a web-based, walk-away software that can process one to several hundred SNPs given rs numbers as input. It outputs a file of fully annotated sequences formatted for one of three proprietary design softwares: TaqMan's Primer-By-Design FileBuilder, Sequenom's iPLEX or SNPstream's Autoprimer, as well as unannotated fasta sequences. We found genotyping assays to be inhibited by repetitive sequences or the presence of additional variations flanking the SNP under test, and in multiplexes, repetitive sequence flanking one SNP adversely affects multiple assays. Assay design software programs avoid such regions if the input sequences are appropriately annotated, so we used Seq4SNPs to provide suitably annotated input sequences, and improved our genotyping success rate. Adjacent SNPs can also be avoided, by annotating sequences used as input for primer design. Conclusion The accuracy of annotation by Seq4SNPs is significantly better than manual annotation (P < 1e-5). Using Seq4SNPs to incorporate all annotation for additional SNPs and repetitive elements into sequences, for genotyping assay designer software, minimizes assay failure at the design stage, reducing the cost of genotyping. Seq4SNPs provides a rapid route for replacement of poor test SNP sequences. We routinely use this software for assay sequence preparation. Seq4SNPs is available as a service at and , currently for human SNPs, but easily extended to include any species in dbSNP.
Collapse
Affiliation(s)
- Helen I Field
- Department of Oncology, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Plantegenet S, Weber J, Goldstein DR, Zeller G, Nussbaumer C, Thomas J, Weigel D, Harshman K, Hardtke CS. Comprehensive analysis of Arabidopsis expression level polymorphisms with simple inheritance. Mol Syst Biol 2009; 5:242. [PMID: 19225455 PMCID: PMC2657532 DOI: 10.1038/msb.2008.79] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 12/18/2008] [Indexed: 11/09/2022] Open
Abstract
In Arabidopsis thaliana, gene expression level polymorphisms (ELPs) between natural accessions that exhibit simple, single locus inheritance are promising quantitative trait locus (QTL) candidates to explain phenotypic variability. It is assumed that such ELPs overwhelmingly represent regulatory element polymorphisms. However, comprehensive genome-wide analyses linking expression level, regulatory sequence and gene structure variation are missing, preventing definite verification of this assumption. Here, we analyzed ELPs observed between the Eil-0 and Lc-0 accessions. Compared with non-variable controls, 5' regulatory sequence variation in the corresponding genes is indeed increased. However, approximately 42% of all the ELP genes also carry major transcription unit deletions in one parent as revealed by genome tiling arrays, representing a >4-fold enrichment over controls. Within the subset of ELPs with simple inheritance, this proportion is even higher and deletions are generally more severe. Similar results were obtained from analyses of the Bay-0 and Sha accessions, using alternative technical approaches. Collectively, our results suggest that drastic structural changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed indel preponderance in cloned Arabidopsis QTL.
Collapse
Affiliation(s)
- Stephanie Plantegenet
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Balasubramanian S, Schwartz C, Singh A, Warthmann N, Kim MC, Maloof JN, Loudet O, Trainer GT, Dabi T, Borevitz JO, Chory J, Weigel D. QTL mapping in new Arabidopsis thaliana advanced intercross-recombinant inbred lines. PLoS One 2009; 4:e4318. [PMID: 19183806 PMCID: PMC2629843 DOI: 10.1371/journal.pone.0004318] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 12/22/2008] [Indexed: 12/30/2022] Open
Abstract
Background Even when phenotypic differences are large between natural or domesticated strains, the underlying genetic basis is often complex, and causal genomic regions need to be identified by quantitative trait locus (QTL) mapping. Unfortunately, QTL positions typically have large confidence intervals, which can, for example, lead to one QTL being masked by another, when two closely linked loci are detected as a single QTL. One strategy to increase the power of precisely localizing small effect QTL, is the use of an intercross approach before inbreeding to produce Advanced Intercross RILs (AI-RILs). Methodology/Principal Findings We present two new AI-RIL populations of Arabidopsis thaliana genotyped with an average intermarker distance of 600 kb. The advanced intercrossing design led to expansion of the genetic map in the two populations, which contain recombination events corresponding to 50 kb/cM in an F2 population. We used the AI-RILs to map QTL for light response and flowering time, and to identify segregation distortion in one of the AI-RIL populations due to a negative epistatic interaction between two genomic regions. Conclusions/Significance The two new AI-RIL populations, EstC and KendC, derived from crosses of Columbia (Col) to Estland (Est-1) and Kendallville (Kend-L) provide an excellent resource for high precision QTL mapping. Moreover, because they have been genotyped with over 100 common markers, they are also excellent material for comparative QTL mapping.
Collapse
Affiliation(s)
- Sureshkumar Balasubramanian
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- School of Biological Sciences, The University of Queensland, St. Lucia, Australia
| | - Christopher Schwartz
- Plant Biology Laboratory, The Salk Institute for Biological Sciences, La Jolla, California, United States of America
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Anandita Singh
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Norman Warthmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Plant Biology Laboratory, The Salk Institute for Biological Sciences, La Jolla, California, United States of America
| | - Min Chul Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Julin N. Maloof
- Plant Biology Laboratory, The Salk Institute for Biological Sciences, La Jolla, California, United States of America
- Section of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Olivier Loudet
- Plant Biology Laboratory, The Salk Institute for Biological Sciences, La Jolla, California, United States of America
- INRA, Genetics and plant breeding - SGAP, Versailles, France
| | - Gabriel T. Trainer
- Plant Biology Laboratory, The Salk Institute for Biological Sciences, La Jolla, California, United States of America
| | - Tsegaye Dabi
- Plant Biology Laboratory, The Salk Institute for Biological Sciences, La Jolla, California, United States of America
| | - Justin O. Borevitz
- Plant Biology Laboratory, The Salk Institute for Biological Sciences, La Jolla, California, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute for Biological Sciences, La Jolla, California, United States of America
- Howard Hughes Medical Institute, The Salk Institute for Biological Sciences, La Jolla, California, United States of America
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Plant Biology Laboratory, The Salk Institute for Biological Sciences, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Lu Y, Last RL. Web-based Arabidopsis functional and structural genomics resources. THE ARABIDOPSIS BOOK 2008; 6:e0118. [PMID: 22303243 PMCID: PMC3243351 DOI: 10.1199/tab.0118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
As plant research moves to a "post-genomic" era, many diverse internet resources become available to the international research community. Arabidopsis thaliana, because of its small size, rapid life cycle and simple genome, has been a model system for decades, with much research funding and many projects devoted to creation of functional and structural genomics resources. Different types of data, including genome, transcriptome, proteome, phenome, metabolome and ionome are stored in these resources. In this chapter, a variety of genomics resources are introduced, with simple descriptions of how some can be accessed by laboratory researchers via the internet.
Collapse
Affiliation(s)
- Yan Lu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824
- Department of Plant Biology, Michigan State University, East Lansing MI 48824
| |
Collapse
|
34
|
Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D. Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 2008; 18:2024-33. [PMID: 18818371 DOI: 10.1101/gr.080200.108] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Whole-genome hybridization studies have suggested that the nuclear genomes of accessions (natural strains) of Arabidopsis thaliana can differ by several percent of their sequence. To examine this variation, and as a first step in the 1001 Genomes Project for this species, we produced 15- to 25-fold coverage in Illumina sequencing-by-synthesis (SBS) reads for the reference accession, Col-0, and two divergent strains, Bur-0 and Tsu-1. We aligned reads to the reference genome sequence to assess data quality metrics and to detect polymorphisms. Alignments revealed 823,325 unique single nucleotide polymorphisms (SNPs) and 79,961 unique 1- to 3-bp indels in the divergent accessions at a specificity of >99%, and over 2000 potential errors in the reference genome sequence. We also identified >3.4 Mb of the Bur-0 and Tsu-1 genomes as being either extremely dissimilar, deleted, or duplicated relative to the reference genome. To obtain sequences for these regions, we incorporated the Velvet assembler into a targeted de novo assembly method. This approach yielded 10,921 high-confidence contigs that were anchored to flanking sequences and harbored indels as large as 641 bp. Our methods are broadly applicable for polymorphism discovery in moderate to large genomes even at highly diverged loci, and we established by subsampling the Illumina SBS coverage depth required to inform a broad range of functional and evolutionary studies. Our pipeline for aligning reads and predicting SNPs and indels, SHORE, is available for download at http://1001genomes.org.
Collapse
Affiliation(s)
- Stephan Ossowski
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Shindo C, Bernasconi G, Hardtke CS. Intraspecific competition reveals conditional fitness effects of single gene polymorphism at the Arabidopsis root growth regulator BRX. THE NEW PHYTOLOGIST 2008; 180:71-80. [PMID: 18627499 DOI: 10.1111/j.1469-8137.2008.02553.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Intraspecific genetic variation for morphological traits is observed in many organisms. In Arabidopsis thaliana, alleles responsible for intraspecific morphological variation are increasingly being identified. However, the fitness consequences remain unclear in most cases. Here, the fitness effects of alleles of the BRX gene are investigated. A brx loss-of-function allele, which was found in a natural accession, results in a highly branched but poorly elongated root system. Comparison between the control accession Sav-0 and an introgression of brx into this background (brxS) indicated that, surprisingly, brx loss of function did not negatively affect fitness in pure stands. However, in mixed, well-watered stands brxS performance and reproductive output decreased significantly, as the proportion of Sav-0 neighbors increased. Additional comparisons between brxS and a brxS line that was complemented by a BRX transgene confirmed a direct effect of the loss-of-function allele on plant performance, as indicated by restored competitive ability of the transgenic genotype. Further, because plant height was very similar across genotypes and because the experimental setup largely excluded shading effects, the impaired competitiveness of the brx loss-of-function genotype likely reflects below-ground competition. In summary, these data reveal conditional fitness effects of a single gene polymorphism in response to intraspecific competition in Arabidopsis.
Collapse
Affiliation(s)
- Chikako Shindo
- Department of Plant Molecular Biology; and
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Giorgina Bernasconi
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|