1
|
Chen L, Yang H, Fang Y, Guo W, Chen H, Zhang X, Dai W, Chen S, Hao Q, Yuan S, Zhang C, Huang Y, Shan Z, Yang Z, Qiu D, Liu X, Tran LP, Zhou X, Cao D. Overexpression of GmMYB14 improves high-density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:702-716. [PMID: 33098207 PMCID: PMC8051608 DOI: 10.1111/pbi.13496] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/18/2020] [Indexed: 05/06/2023]
Abstract
MYB transcription factors (TFs) have been reported to regulate the biosynthesis of secondary metabolites, as well as to mediate plant adaption to abiotic stresses, including drought. However, the roles of MYB TFs in regulating plant architecture and yield potential remain poorly understood. Here, we studied the roles of the dehydration-inducible GmMYB14 gene in regulating plant architecture, high-density yield and drought tolerance through the brassinosteroid (BR) pathway in soybean. GmMYB14 was shown to localize to nucleus and has a transactivation activity. Stable GmMYB14-overexpressing (GmMYB14-OX) transgenic soybean plants displayed a semi-dwarfism and compact plant architecture associated with decreased cell size, resulting in a decrease in plant height, internode length, leaf area, leaf petiole length and leaf petiole angle, and improved yield in high density under field conditions. Results of the transcriptome sequencing suggested the involvement of BRs in regulating GmMYB14-OX plant architecture. Indeed, GmMYB14-OX plants showed reduced endogenous BR contents, while exogenous application of brassinolide could partly rescue the phenotype of GmMYB14-OX plants. Furthermore, GmMYB14 was shown to directly bind to the promoter of GmBEN1 and up-regulate its expression, leading to reduced BR content in GmMYB14-OX plants. GmMYB14-OX plants also displayed improved drought tolerance under field conditions. GmBEN1 expression was also up-regulated in the leaves of GmMYB14-OX plants under polyethylene glycol treatment, indicating that the GmBEN1-mediated reduction in BR level under stress also contributed to drought/osmotic stress tolerance of the transgenic plants. Our findings provided a strategy for stably increasing high-density yield and drought tolerance in soybean using a single TF-encoding gene.
Collapse
Affiliation(s)
- Limiao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Yisheng Fang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Xiaojuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Wenjun Dai
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Qingnan Hao
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Dezhen Qiu
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Xiaorong Liu
- The Industrial Crop InstituteShanxi Academy of Agricultural SciencesTaiyuanChina
| | - Lam‐Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress ToleranceDepartment of Plant and Soil ScienceTexas Tech UniversityLubbockTXUSA
- Stress Adaptation Research UnitRIKEN Center for Sustainable Resource ScienceTsurumiYokohamaJapan
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of Agriculture and Rural AffairsOil Crops Research InstituteChinese Academy of Agricultural SciencesWuhanChina
| |
Collapse
|
2
|
Varotto S, Tani E, Abraham E, Krugman T, Kapazoglou A, Melzer R, Radanović A, Miladinović D. Epigenetics: possible applications in climate-smart crop breeding. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5223-5236. [PMID: 32279074 PMCID: PMC7475248 DOI: 10.1093/jxb/eraa188] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/09/2020] [Indexed: 05/23/2023]
Abstract
To better adapt transiently or lastingly to stimuli from the surrounding environment, the chromatin states in plant cells vary to allow the cells to fine-tune their transcriptional profiles. Modifications of chromatin states involve a wide range of post-transcriptional histone modifications, histone variants, DNA methylation, and activity of non-coding RNAs, which can epigenetically determine specific transcriptional outputs. Recent advances in the area of '-omics' of major crops have facilitated identification of epigenetic marks and their effect on plant response to environmental stresses. As most epigenetic mechanisms are known from studies in model plants, we summarize in this review recent epigenetic studies that may be important for improvement of crop adaptation and resilience to environmental changes, ultimately leading to the generation of stable climate-smart crops. This has paved the way for exploitation of epigenetic variation in crop breeding.
Collapse
Affiliation(s)
- Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals, and the Environment, University of Padova, Agripolis, Viale dell’Università, Padova, Italy
| | - Eleni Tani
- Department of Crop Science, Laboratory of Plant Breeding and Biometry, Agricultural University of Athens, Athens, Greece
| | - Eleni Abraham
- Laboratory of Range Science, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Aliki Kapazoglou
- Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Department of Vitis, Hellenic Agricultural Organization-Demeter (HAO-Demeter), Lykovrysi, Greece
| | - Rainer Melzer
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | | | | |
Collapse
|
3
|
Ramesh SV, Govindasamy V, Rajesh MK, Sabana AA, Praveen S. Stress-responsive miRNAome of Glycine max (L.) Merrill: molecular insights and way forward. PLANTA 2019; 249:1267-1284. [PMID: 30798358 DOI: 10.1007/s00425-019-03114-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Analysis of stress-associated miRNAs of Glycine max (L.) Merrill reveals wider ramifications of small RNA-mediated (conserved and legume-specific miRNAs) gene regulatory foot prints in molecular adaptive responses. MicroRNAs (miRNAs) are indispensable components of gene regulatory mechanism of plants. Soybean is a crop of immense commercial potential grown worldwide for its edible oil and soy meal. Intensive research efforts, using the next generation sequencing and bioinformatics techniques, have led to the identification and characterization of numerous small RNAs, especially microRNAs (miRNAs), in soybean. Furthermore, studies have unequivocally demonstrated the significance of miRNAs during the developmental processes and various stresses in soybean. In this review, we summarize the current state of understanding of miRNA-based abiotic and biotic stress responses in soybean. In addition, the molecular insights gained from the stress-related soybean miRNAs have been compared to the miRNAs of other crops, especially legumes, and the core commonalities have been highlighted, though differences among them were not ignored. Nature of response of soybean-derived conserved miRNAs during various stresses was also analyzed to gain deeper insights regarding sRNAome-based defense responses. This review further provides way forward in legume small RNA transcriptomics based on the adaptive responses of soybean and other legume-derived miRNAs.
Collapse
Affiliation(s)
- S V Ramesh
- ICAR-Indian Institute of Soybean Research (ICAR-IISR), Indore, Madhya Pradesh, 452001, India.
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India.
| | - V Govindasamy
- ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110012, India
| | - M K Rajesh
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India
| | - A A Sabana
- ICAR-Central Plantation Crops Research Institute (ICAR-CPCRI), Kasaragod, Kerala, 671124, India
| | - Shelly Praveen
- ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, 110012, India
| |
Collapse
|
4
|
Subba P, Narayana Kotimoole C, Prasad TSK. Plant Proteome Databases and Bioinformatic Tools: An Expert Review and Comparative Insights. ACTA ACUST UNITED AC 2019; 23:190-206. [PMID: 31009332 DOI: 10.1089/omi.2019.0024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| |
Collapse
|
5
|
Ogita S, Nomura T, Kato Y, Uehara-Yamaguchi Y, Inoue K, Yoshida T, Sakurai T, Shinozaki K, Mochida K. Transcriptional alterations during proliferation and lignification in Phyllostachys nigra cells. Sci Rep 2018; 8:11347. [PMID: 30054534 PMCID: PMC6063902 DOI: 10.1038/s41598-018-29645-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/16/2018] [Indexed: 01/24/2023] Open
Abstract
Highly-lignified culms of bamboo show distinctive anatomical and mechanical properties compared with the culms of other grass species. A cell culture system for Phyllostachys nigra has enabled investigating the alterations in cellular states associated with secondary cell wall formation during its proliferation and lignification in woody bamboos. To reveal transcriptional changes related to lignification in bamboo, we analyzed transcriptome in P. nigra cells treated with the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) and the synthetic cytokinin benzylaminopurine (BA) by RNA-seq analysis. We found that some genes putatively involved in cell wall biogenesis and cell division were up-regulated in response to the 2,4-D treatment, and the induction of lignification by the BA treatment was correlated with up-regulation of genes involved in the shikimate pathway. We also found that genes encoding MYB transcription factors (TFs) show correlated expression patterns with those encoding cinnamyl alcohol dehydrogenase (CAD), suggesting that MYB TFs presumably regulate secondary cell wall formation in the bamboo cells. These findings suggest that cytokinin signaling may regulate lignification in P. nigra cells through coordinated transcriptional regulation and metabolic alterations. Our results have also produced a useful resource for better understanding of secondary cell wall formation in bamboo plants.
Collapse
Affiliation(s)
- Shinjiro Ogita
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 5562 Nanatuka, Shobara, Hiroshima, 727-0023, Japan. .,Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| | - Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yukiko Uehara-Yamaguchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Komaki Inoue
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takuhiro Yoshida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Interdisciplinary Science Unit, Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. .,RIKEN, Baton Zone Program, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan. .,Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
6
|
|
7
|
Proust H, Hartmann C, Crespi M, Lelandais-Brière C. Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics. Methods Mol Biol 2018; 1822:205-239. [PMID: 30043307 DOI: 10.1007/978-1-4939-8633-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This decade introduced "omics" approaches, such as genomics, transcriptomics, proteomics, and metabolomics in association with reverse and forward genetic approaches, developed earlier, to try to identify molecular pathways involved in the development or in the response to environmental conditions as well as in animals and plants. This review summarizes studies that utilized "omics" strategies to unravel the root development in the model legume Medicago truncatula and how external factors such as soil mineral status or the presence of bacteria and fungi affect root system architecture in this species. We also compare these "omics" data to the knowledges concerning the Arabidopsis thaliana root development, nowadays considered as the model of allorhiz root systems. However, unlike legumes, this species is unable to interact with soil nitrogen-fixing rhizobia and arbuscular-mycorrhizal (AM) fungi to develop novel root-derived symbiotic structures. Differences in root organization, development, and regulatory pathways between these two model species have been highlighted.
Collapse
Affiliation(s)
- Hélène Proust
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Caroline Hartmann
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Christine Lelandais-Brière
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France.
| |
Collapse
|
8
|
Stress2TF: a manually curated database of TF regulation in plant response to stress. Gene 2017; 638:36-40. [PMID: 28974472 DOI: 10.1016/j.gene.2017.09.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 09/14/2017] [Accepted: 09/29/2017] [Indexed: 01/17/2023]
Abstract
Considerable studies demonstrate that plant transcription factors (TFs) play key regulatory roles in abiotic/biotic stress conditions, such as drought and pathogen attack. However, there is no effort dedicated to curate experimentally validated stress-TF regulatory relationships from these individual reports into a central database, which put an obstacle in the exploration of stress-TF regulations in plants. To address this issue, we presented a literature-curated database 'Stress2TF' that currently documented 1533 regulatory relationships between 71 abiotic/biotic stresses and 558 TFs in 47 plant species. Each entry in Stress2TF contains detailed information about a stress-TF relationship such as plant name, stress name, TF and brief description of stress-TF relationship. Stress2TF provided a user-friendly interface for entry browse, search and download. In addition, a submission page and several useful tools (e.g., BLAST, network visualization) were integrated. Stress2TF may be a valuable resource for the research of stress-TF regulatory mechanisms in plants. Stress2TF is available at http://csgenomics.ahau.edu.cn/Stress2TF.
Collapse
|
9
|
Verma S, Gazara RK, Verma PK. Transcription Factor Repertoire of Necrotrophic Fungal Phytopathogen Ascochyta rabiei: Predominance of MYB Transcription Factors As Potential Regulators of Secretome. FRONTIERS IN PLANT SCIENCE 2017; 8:1037. [PMID: 28659964 PMCID: PMC5470089 DOI: 10.3389/fpls.2017.01037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/30/2017] [Indexed: 06/02/2023]
Abstract
Transcription factors (TFs) are the key players in gene expression and their study is highly significant for shedding light on the molecular mechanisms and evolutionary history of organisms. During host-pathogen interaction, extensive reprogramming of gene expression facilitated by TFs is likely to occur in both host and pathogen. To date, the knowledge about TF repertoire in filamentous fungi is in infancy. The necrotrophic fungus Ascochyta rabiei, that causes destructive Ascochyta blight (AB) disease of chickpea (Cicer arietinum), demands more comprehensive study for better understanding of Ascochyta-legume pathosystem. In the present study, we performed the genome-wide identification and analysis of TFs in A. rabiei. Taking advantage of A. rabiei genome sequence, we used a bioinformatic approach to predict the TF repertoire of A. rabiei. For identification and classification of A. rabiei TFs, we designed a comprehensive pipeline using a combination of BLAST and InterProScan software. A total of 381 A. rabiei TFs were predicted and divided into 32 fungal specific families of TFs. The gene structure, domain organization and phylogenetic analysis of abundant families of A. rabiei TFs were also carried out. Comparative study of A. rabiei TFs with that of other necrotrophic, biotrophic, hemibiotrophic, symbiotic, and saprotrophic fungi was performed. It suggested presence of both conserved as well as unique features among them. Moreover, cis-acting elements on promoter sequences of earlier predicted A. rabiei secretome were also identified. With the help of published A. rabiei transcriptome data, the differential expression of TF and secretory protein coding genes was analyzed. Furthermore, comprehensive expression analysis of few selected A. rabiei TFs using quantitative real-time polymerase chain reaction revealed variety of expression patterns during host colonization. These genes were expressed in at least one of the time points tested post infection. Overall, this study illustrates the first genome-wide identification and analysis of TF repertoire of A. rabiei. This work would provide the basis for further studies to dissect role of TFs in the molecular mechanisms during A. rabiei-chickpea interactions.
Collapse
Affiliation(s)
| | | | - Praveen K. Verma
- Plant Immunity Laboratory, National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
10
|
Mochida K, Sakurai T, Seki H, Yoshida T, Takahagi K, Sawai S, Uchiyama H, Muranaka T, Saito K. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:181-194. [PMID: 27775193 DOI: 10.1111/tpj.13385] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/08/2016] [Accepted: 09/26/2016] [Indexed: 05/21/2023]
Abstract
Chinese liquorice/licorice (Glycyrrhiza uralensis) is a leguminous plant species whose roots and rhizomes have been widely used as a herbal medicine and natural sweetener. Whole-genome sequencing is essential for gene discovery studies and molecular breeding in liquorice. Here, we report a draft assembly of the approximately 379-Mb whole-genome sequence of strain 308-19 of G. uralensis; this assembly contains 34 445 predicted protein-coding genes. Comparative analyses suggested well-conserved genomic components and collinearity of gene loci (synteny) between the genome of liquorice and those of other legumes such as Medicago and chickpea. We observed that three genes involved in isoflavonoid biosynthesis, namely, 2-hydroxyisoflavanone synthase (CYP93C), 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferase/isoflavone 4'-O-methyltransferase (HI4OMT) and isoflavone-7-O-methyltransferase (7-IOMT) formed a cluster on the scaffold of the liquorice genome and showed conserved microsynteny with Medicago and chickpea. Based on the liquorice genome annotation, we predicted genes in the P450 and UDP-dependent glycosyltransferase (UGT) superfamilies, some of which are involved in triterpenoid saponin biosynthesis, and characterised their gene expression with the reference genome sequence. The genome sequencing and its annotations provide an essential resource for liquorice improvement through molecular breeding and the discovery of useful genes for engineering bioactive components through synthetic biology approaches.
Collapse
Affiliation(s)
- Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Hikaru Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuhiro Yoshida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kotaro Takahagi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Satoru Sawai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Uchiyama
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, Japan
| | - Toshiya Muranaka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
11
|
Gahlaut V, Jaiswal V, Kumar A, Gupta PK. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2019-2042. [PMID: 27738714 DOI: 10.1007/s00122-016-2794-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 09/15/2016] [Indexed: 05/26/2023]
Abstract
TFs involved in drought tolerance in plants may be utilized in future for developing drought tolerant cultivars of wheat and some other crops. Plants have developed a fairly complex stress response system to deal with drought and other abiotic stresses. These response systems often make use of transcription factors (TFs); a gene encoding a specific TF together with -its target genes constitute a regulon, and take part in signal transduction to activate/silence genes involved in response to drought. Since, five specific families of TFs (out of >80 known families of TFs) have gained widespread attention on account of their significant role in drought tolerance in plants, TFs and regulons belonging to these five multi-gene families (AP2/EREBP, bZIP, MYB/MYC, NAC and WRKY) have been described and their role in improving drought tolerance discussed in this brief review. These TFs often undergo reversible phosphorylation to perform their function, and are also involved in complex networks. Therefore, some details about reversible phosphorylation of TFs by different protein kinases/phosphatases and the co-regulatory networks, which involve either only TFs or TFs with miRNAs, have also been discussed. Literature on transgenics involving genes encoding TFs and that on QTLs and markers associated with TF genes involved in drought tolerance has also been reviewed. Throughout the review, there is a major emphasis on wheat as an important crop, although examples from the model cereal rice (sometimes maize also), and the model plant Arabidopsis have also been used. This knowledge base may eventually allow the use of TF genes for development of drought tolerant cultivars, particularly in wheat.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Vandana Jaiswal
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Plant Molecular Biology and Genetic Engineering, CSIR-National Botanical Research Institute, Lucknow, India
| | - Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology, Dehradun, India
| | | |
Collapse
|
12
|
Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 2016; 45:D1040-D1045. [PMID: 27924042 PMCID: PMC5210657 DOI: 10.1093/nar/gkw982] [Citation(s) in RCA: 1307] [Impact Index Per Article: 145.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022] Open
Abstract
With the goal of providing a comprehensive, high-quality resource for both plant transcription factors (TFs) and their regulatory interactions with target genes, we upgraded plant TF database PlantTFDB to version 4.0 (http://planttfdb.cbi.pku.edu.cn/). In the new version, we identified 320 370 TFs from 165 species, presenting a more comprehensive genomic TF repertoires of green plants. Besides updating the pre-existing abundant functional and evolutionary annotation for identified TFs, we generated three new types of annotation which provide more directly clues to investigate functional mechanisms underlying: (i) a set of high-quality, non-redundant TF binding motifs derived from experiments; (ii) multiple types of regulatory elements identified from high-throughput sequencing data; (iii) regulatory interactions curated from literature and inferred by combining TF binding motifs and regulatory elements. In addition, we upgraded previous TF prediction server, and set up four novel tools for regulation prediction and functional enrichment analyses. Finally, we set up a novel companion portal PlantRegMap (http://plantregmap.cbi.pku.edu.cn) for users to access the regulation resource and analysis tools conveniently.
Collapse
Affiliation(s)
- Jinpu Jin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Beijing 100871, P.R. China
| | - Feng Tian
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Beijing 100871, P.R. China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P.R. China
| | - De-Chang Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Beijing 100871, P.R. China
| | - Yu-Qi Meng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Beijing 100871, P.R. China
| | - Lei Kong
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Beijing 100871, P.R. China
| | - Jingchu Luo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Beijing 100871, P.R. China
| | - Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Center for Bioinformatics, Beijing 100871, P.R. China
| |
Collapse
|
13
|
Martin K, Singh J, Hill JH, Whitham SA, Cannon SB. Dynamic transcriptome profiling of Bean Common Mosaic Virus (BCMV) infection in Common Bean (Phaseolus vulgaris L.). BMC Genomics 2016; 17:613. [PMID: 27515794 PMCID: PMC4982238 DOI: 10.1186/s12864-016-2976-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bean common mosaic virus (BCMV) is widespread, with Phaseolus species as the primary host plants. Numerous BCMV strains have been identified on the basis of a panel of bean varieties that distinguish the pathogenicity types with respect to the viral strains. The molecular responses in Phaseolus to BCMV infection have not yet been well characterized. RESULTS We report the transcriptional responses of a widely susceptible variety of common bean (Phaseolus vulgaris L., cultivar 'Stringless green refugee') to two BCMV strains, in a time-course experiment. We also report the genome sequence of a previously unreported BCMV strain. The interaction with the known strain NL1-Iowa causes moderate symptoms and large transcriptional responses, and the newly identified strain (Strain 2 or S2) causes severe symptoms and moderate transcriptional responses. The transcriptional profiles of host plants infected with the two isolates are distinct, and involve numerous differences in splice forms in particular genes, and pathway specific expression patterns. CONCLUSIONS We identified differential host transcriptome response after infection of two different strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris L.). Virus infection initiated a suite of changes in gene expression level and patterns in the host plants. Pathways related to defense, gene regulation, metabolic processes, photosynthesis were specifically altered after virus infection. Results presented in this study can increase the understanding of host-pathogen interactions and provide resources for further investigations of the biological mechanisms in BCMV infection and defense.
Collapse
Affiliation(s)
- Kathleen Martin
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506 USA
| | - Jugpreet Singh
- ORISE Fellow, USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - John H. Hill
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, 50011 USA
| | - Steven A. Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, 50011 USA
| | - Steven B. Cannon
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Crop Genome Informatics Laboratory, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
14
|
Quach TN, Nguyen HTM, Valliyodan B, Joshi T, Xu D, Nguyen HT. Genome-wide expression analysis of soybean NF-Y genes reveals potential function in development and drought response. Mol Genet Genomics 2015; 290:1095-115. [PMID: 25542200 PMCID: PMC4435856 DOI: 10.1007/s00438-014-0978-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 12/10/2014] [Indexed: 11/30/2022]
Abstract
Nuclear factor-Y (NF-Y), a heterotrimeric transcription factor, is composed of NF-YA, NF-YB and NF-YC proteins. In plants, there are usually more than 10 genes for each family and their members have been identified to be key regulators in many developmental and physiological processes controlling gametogenesis, embryogenesis, nodule development, seed development, abscisic acid (ABA) signaling, flowering time, primary root elongation, blue light responses, endoplasmic reticulum (ER) stress response and drought tolerance. Taking the advantages of the recent soybean genome draft and information on functional characterizations of nuclear factor Y (NF-Y) transcription factor family in plants, we identified 21 GmNF-YA, 32 GmNF-YB, and 15 GmNF-YC genes in the soybean (Glycine max) genome. Phylogenetic analyses show that soybean's proteins share strong homology to Arabidopsis and many of them are closely related to functionally characterized NF-Y in plants. Expression analysis in various tissues of flower, leaf, root, seeds of different developmental stages, root hairs under rhizobium inoculation, and drought-treated roots and leaves revealed that certain groups of soybean NF-Y are likely involved in specific developmental and stress responses. This study provides extensive evaluation of the soybean NF-Y family and is particularly useful for further functional characterization of GmNF-Y proteins in seed development, nodulation and drought adaptation of soybean.
Collapse
Affiliation(s)
- Truyen N. Quach
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211 USA
- Present Address: Field Crop Research Institute, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Hanh T. M. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211 USA
- Present Address: The Center for Plant Science Innovation, University of Nebraska, Lincoln, NE USA
| | - Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211 USA
| | - Trupti Joshi
- Department of Computer Science, Christopher S. Bond Life Sciences Center, National Center for Soybean Biotechnology and Informatics Institute, University of Missouri, Columbia, MO USA
| | - Dong Xu
- Department of Computer Science, Christopher S. Bond Life Sciences Center, National Center for Soybean Biotechnology and Informatics Institute, University of Missouri, Columbia, MO USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
15
|
Liu W, Jia X, Liu Z, Zhang Z, Wang Y, Liu Z, Xie W. Development and Characterization of Transcription Factor Gene-Derived Microsatellite (TFGM) Markers in Medicago truncatula and Their Transferability in Leguminous and Non-Leguminous Species. Molecules 2015; 20:8759-71. [PMID: 25988608 PMCID: PMC6272326 DOI: 10.3390/molecules20058759] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022] Open
Abstract
Transcription factors (TFs) are critical adaptor molecules that regulate many plant processes by controlling gene expression. The recent increase in the availability of TF data has made TFs a valuable resource for genic functional microsatellite marker development. In the present study, we developed TF gene-derived microsatellite (TFGM) markers for Medicago truncatula and assessed their cross-species transferability. A total of 203 SSRs were identified from 1467 M. truncatula TF coding sequences, 87.68% of which were trinucleotide repeats, followed by mono- (4.93%) and hexanucleotide repeats (1.48%). Further, 142 TFGM markers showed a high level of transferability to the leguminous (55.63%-85.21%) and non-leguminous (28.17%-50.00%) species. Polymorphisms of 27 TFGM markers were evaluated in 44 alfalfa accessions. The allele number per marker ranged from two to eight with an average of 4.41, and the PIC values ranged from 0.08 to 0.84 with an average of 0.60. Considering the high polymorphism, these TFGM markers developed in our study will be valuable for genetic relationship assessments, marker-assisted selection and comparative genomic studies in leguminous and non-leguminous species.
Collapse
Affiliation(s)
- Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xitao Jia
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Zhimin Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Zhengshe Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wengang Xie
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
16
|
Li J, Xu RF, Qin RY, Ma H, Li H, Zhang YP, Li L, Wei PC, Yang JB. Isolation and functional characterization of a novel rice constitutive promoter. PLANT CELL REPORTS 2014; 33:1651-60. [PMID: 24980160 DOI: 10.1007/s00299-014-1644-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/15/2014] [Accepted: 06/05/2014] [Indexed: 05/06/2023]
Abstract
A novel rice constitutive promoter (P OsCon1 ) was isolated. The molecular mechanism of the promoter activity was investigated. P OsCon1 could be used as an alternative constitutive promoter for crop transgenic engineering. Monocot constitutive promoter is an important resource for crop transgenic engineering. In this report, we isolated a novel promoter, Oscon1 promoter (P OsCon1 ), from the 5' upstream region of a constitutively expressed rice gene OsDHAR1. In P OsCon1 ::GUS transgenic rice, we showed that P OsCon1 had a broad expression spectrum in all tested tissues. The expression of the promoter was further analyzed in comparison with the previously characterized strong constitutive promoters. P OsCon1 exhibited comparable activity to OsCc1, OsAct1 or ZmUbi promoters in most tissues, and more active than 35S promoter in roots, seeds, and calli. Further quantitative assays indicated that P OsCon1 activity was not affected by developmental stages or by environmental factors. Further, 5'-deletions analysis indicated that the distinct regions might contribute to the strong expression of P OsCon1 in different tissues. Overall, our results suggest that P OsCon1 is a novel constitutive promoter, which could potentially use in transgenic crop development.
Collapse
Affiliation(s)
- Juan Li
- Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, Hefei, 230031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Thu NBA, Hoang XLT, Doan H, Nguyen TH, Bui D, Thao NP, Tran LSP. Differential expression analysis of a subset of GmNAC genes in shoots of two contrasting drought-responsive soybean cultivars DT51 and MTD720 under normal and drought conditions. Mol Biol Rep 2014; 41:5563-9. [PMID: 24985975 DOI: 10.1007/s11033-014-3507-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
Abstract
NAC transcription factors are known to be involved in regulation of plant responses to drought stress. In this study, the expression of 23 drought-responsive GmNAC genes was assessed in the shoot tissues of DT51 and MTD720, the two soybean varieties with contrasting drought-responsive phenotypes, by real-time quantitative PCR (RT-qPCR) under normal and drought conditions. Results indicated that expression profile of GmNAC genes was genotype-dependent, and six GmNACs (GmNAC019, 043, 062, 085, 095 and 101) had higher transcript levels in the shoots of the drought-tolerant DT51 in comparison with the drought-sensitive MTD720 under drought. Our study suggests a positive correlation between the higher drought tolerance degree of DT51 versus MTD720 and the up-regulation of at least these six drought-responsive GmNACs in the shoot tissues. Furthermore, on the basis of our analysis, three genes, GmNAC043, 085 and 101, were identified as promising candidates for development of drought-tolerant soybean cultivars by genetic engineering.
Collapse
Affiliation(s)
- Nguyen Binh Anh Thu
- School of Biotechnology, International University, Vietnam National University HCMC, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | |
Collapse
|
18
|
Hiz MC, Canher B, Niron H, Turet M. Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS One 2014; 9:e92598. [PMID: 24651267 PMCID: PMC3961409 DOI: 10.1371/journal.pone.0092598] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/24/2014] [Indexed: 12/02/2022] Open
Abstract
Salinity is one of the important abiotic stress factors that limit crop production. Common bean, Phaseolus vulgaris L., a major protein source in developing countries, is highly affected by soil salinity and the information on genes that play a role in salt tolerance is scarce. We aimed to identify differentially expressed genes (DEGs) and related pathways by comprehensive analysis of transcriptomes of both root and leaf tissues of the tolerant genotype grown under saline and control conditions in hydroponic system. We have generated a total of 158 million high-quality reads which were assembled into 83,774 all-unigenes with a mean length of 813 bp and N50 of 1,449 bp. Among the all-unigenes, 58,171 were assigned with Nr annotations after homology analyses. It was revealed that 6,422 and 4,555 all-unigenes were differentially expressed upon salt stress in leaf and root tissues respectively. Validation of the RNA-seq quantifications (RPKM values) was performed by qRT-PCR (Quantitative Reverse Transcription PCR) analyses. Enrichment analyses of DEGs based on GO and KEGG databases have shown that both leaf and root tissues regulate energy metabolism, transmembrane transport activity, and secondary metabolites to cope with salinity. A total of 2,678 putative common bean transcription factors were identified and classified under 59 transcription factor families; among them 441 were salt responsive. The data generated in this study will help in understanding the fundamentals of salt tolerance in common bean and will provide resources for functional genomic studies.
Collapse
Affiliation(s)
- Mahmut Can Hiz
- Bogazici University Department of Molecular Biology and Genetics, Istanbul, Turkey
- * E-mail:
| | - Balkan Canher
- Bogazici University Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Harun Niron
- Bogazici University Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Muge Turet
- Bogazici University Department of Molecular Biology and Genetics, Istanbul, Turkey
| |
Collapse
|
19
|
Quach TN, Tran LSP, Valliyodan B, Nguyen HTM, Kumar R, Neelakandan AK, Guttikonda SK, Sharp RE, Nguyen HT. Functional analysis of water stress-responsive soybean GmNAC003 and GmNAC004 transcription factors in lateral root development in arabidopsis. PLoS One 2014; 9:e84886. [PMID: 24465446 PMCID: PMC3900428 DOI: 10.1371/journal.pone.0084886] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 11/27/2013] [Indexed: 12/22/2022] Open
Abstract
In Arabidopsis, NAC (NAM, ATAF and CUC) transcription factors have been found to promote lateral root number through the auxin signaling pathway. In the present study, the role of water stress-inducible soybean GmNAC003 and GmNAC004 genes in the enhancement of lateral root development under water deficit conditions was investigated. Both genes were highly expressed in roots, leaves and flowers of soybean and were strongly induced by water stress and moderately induced by a treatment with abscisic acid (ABA). They showed a slight response to treatment with 2,4-dichlorophenoxyacetic acid (2,4-D). The transgenic Arabidopsis plants overexpressing GmNAC004 showed an increase in lateral root number and length under non-stress conditions and maintained higher lateral root number and length under mild water stress conditions compared to the wild-type (WT), while the transgenic plants overexpressing GmNAC003 did not show any response. However, LR development of GmNAC004 transgenic Arabidopsis plants was not enhanced in the water-stressed compared to the well-watered treatment. In the treatment with ABA, LR density of the GmNAC004 transgenic Arabidopsis was less suppressed than that of the WT, suggesting that GmNAC004 counteracts ABA-induced inhibition of lateral root development. In the treatment with 2,4-D, lateral root density was enhanced in both GmNAC004 transgenic Arabidopsis and WT plants but the promotion was higher in the transgenic plants. Conversely, in the treatment with naphthylphthalamic acid (NPA), lateral root density was inhibited and there was no difference in the phenotype of the GmNAC004 transgenic Arabidopsis and WT plants, indicating that auxin is required for the action of GmNAC004. Transcript analysis for a number of known auxin and ABA related genes showed that GmNAC004's role may suppress ABA signaling but promote auxin signaling to increase lateral root development in the Arabidopsis heterologous system.
Collapse
Affiliation(s)
- Truyen N. Quach
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Lam-Son Phan Tran
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Babu Valliyodan
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Hanh TM. Nguyen
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Rajesh Kumar
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Anjanasree K. Neelakandan
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Satish Kumar Guttikonda
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Robert E. Sharp
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Henry T. Nguyen
- Division of Plant Sciences, National Center for Soybean Biotechnology and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
20
|
Jin J, Zhang H, Kong L, Gao G, Luo J. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res 2014; 42:D1182-7. [PMID: 24174544 PMCID: PMC3965000 DOI: 10.1093/nar/gkt1016] [Citation(s) in RCA: 651] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 11/25/2022] Open
Abstract
With the aim to provide a resource for functional and evolutionary study of plant transcription factors (TFs), we updated the plant TF database PlantTFDB to version 3.0 (http://planttfdb.cbi.pku.edu.cn). After refining the TF classification pipeline, we systematically identified 129 288 TFs from 83 species, of which 67 species have genome sequences, covering main lineages of green plants. Besides the abundant annotation provided in the previous version, we generated more annotations for identified TFs, including expression, regulation, interaction, conserved elements, phenotype information, expert-curated descriptions derived from UniProt, TAIR and NCBI GeneRIF, as well as references to provide clues for functional studies of TFs. To help identify evolutionary relationship among identified TFs, we assigned 69 450 TFs into 3924 orthologous groups, and constructed 9217 phylogenetic trees for TFs within the same families or same orthologous groups, respectively. In addition, we set up a TF prediction server in this version for users to identify TFs from their own sequences.
Collapse
Affiliation(s)
- Jinpu Jin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences and Center for Bioinformatics, Peking University, Beijing 100871, P.R. China
| | | | - Lei Kong
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences and Center for Bioinformatics, Peking University, Beijing 100871, P.R. China
| | - Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences and Center for Bioinformatics, Peking University, Beijing 100871, P.R. China
| | - Jingchu Luo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences and Center for Bioinformatics, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
21
|
Mochida K, Shinozaki K. Unlocking Triticeae genomics to sustainably feed the future. PLANT & CELL PHYSIOLOGY 2013; 54:1931-50. [PMID: 24204022 PMCID: PMC3856857 DOI: 10.1093/pcp/pct163] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/04/2013] [Indexed: 05/23/2023]
Abstract
The tribe Triticeae includes the major crops wheat and barley. Within the last few years, the whole genomes of four Triticeae species-barley, wheat, Tausch's goatgrass (Aegilops tauschii) and wild einkorn wheat (Triticum urartu)-have been sequenced. The availability of these genomic resources for Triticeae plants and innovative analytical applications using next-generation sequencing technologies are helping to revitalize our approaches in genetic work and to accelerate improvement of the Triticeae crops. Comparative genomics and integration of genomic resources from Triticeae plants and the model grass Brachypodium distachyon are aiding the discovery of new genes and functional analyses of genes in Triticeae crops. Innovative approaches and tools such as analysis of next-generation populations, evolutionary genomics and systems approaches with mathematical modeling are new strategies that will help us discover alleles for adaptive traits to future agronomic environments. In this review, we provide an update on genomic tools for use with Triticeae plants and Brachypodium and describe emerging approaches toward crop improvements in Triticeae.
Collapse
Affiliation(s)
- Keiichi Mochida
- Biomass Research Platform Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Kazuo Shinozaki
- Biomass Research Platform Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
22
|
Xia Z, Zhai H, Lü S, Wu H, Zhang Y. Recent achievement in gene cloning and functional genomics in soybean. ScientificWorldJournal 2013; 2013:281367. [PMID: 24311973 PMCID: PMC3842071 DOI: 10.1155/2013/281367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/18/2013] [Indexed: 11/18/2022] Open
Abstract
Soybean is a model plant for photoperiodism as well as for symbiotic nitrogen fixation. However, a rather low efficiency in soybean transformation hampers functional analysis of genes isolated from soybean. In comparison, rapid development and progress in flowering time and photoperiodic response have been achieved in Arabidopsis and rice. As the soybean genomic information has been released since 2008, gene cloning and functional genomic studies have been revived as indicated by successfully characterizing genes involved in maturity and nematode resistance. Here, we review some major achievements in the cloning of some important genes and some specific features at genetic or genomic levels revealed by the analysis of functional genomics of soybean.
Collapse
Affiliation(s)
- Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hong Zhai
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Shixiang Lü
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Hongyan Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yupeng Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
23
|
Van Ha C, Le DT, Nishiyama R, Watanabe Y, Sulieman S, Tran UT, Mochida K, Van Dong N, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. The auxin response factor transcription factor family in soybean: genome-wide identification and expression analyses during development and water stress. DNA Res 2013; 20:511-24. [PMID: 23810914 PMCID: PMC3789561 DOI: 10.1093/dnares/dst027] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/28/2013] [Indexed: 12/20/2022] Open
Abstract
In plants, the auxin response factor (ARF) transcription factors play important roles in regulating diverse biological processes, including development, growth, cell division and responses to environmental stimuli. An exhaustive search of soybean genome revealed 51 GmARFs, many of which were formed by genome duplications. The typical GmARFs (43 members) contain a DNA-binding domain, an ARF domain and an auxin/indole acetic acid (AUX/IAA) dimerization domain, whereas the remaining eight members lack the dimerization domain. Phylogenetic analysis of the ARFs from soybean and Arabidopsis revealed both similarity and divergence between the two ARF families, as well as enabled us to predict the functions of the GmARFs. Using quantitative real-time polymerase chain reaction (qRT-PCR) and available soybean Affymetrix array and Illumina transcriptome sequence data, a comprehensive expression atlas of GmARF genes was obtained in various organs and tissues, providing useful information about their involvement in defining the precise nature of individual tissues. Furthermore, expression profiling using qRT-PCR and microarray data revealed many water stress-responsive GmARFs in soybean, albeit with different patterns depending on types of tissues and/or developmental stages. Our systematic analysis has identified excellent tissue-specific and/or stress-responsive candidate GmARF genes for in-depth in planta functional analyses, which would lead to potential applications in the development of genetically modified soybean cultivars with enhanced drought tolerance.
Collapse
Affiliation(s)
- Chien Van Ha
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- National Key Laboratory of Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham-Van-Dong Str., Hanoi, Vietnam
- Post-Graduate Program, Vietnamese Academy of Agricultural Science, Thanhtri, Hanoi, Vietnam
| | - Dung Tien Le
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- National Key Laboratory of Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham-Van-Dong Str., Hanoi, Vietnam
| | - Rie Nishiyama
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuko Watanabe
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Saad Sulieman
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Uyen Thi Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Keiichi Mochida
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
| | - Nguyen Van Dong
- National Key Laboratory of Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham-Van-Dong Str., Hanoi, Vietnam
| | | | - Kazuo Shinozaki
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
24
|
Guo Y, Qiu LJ. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics. PLoS One 2013; 8:e76809. [PMID: 24098807 PMCID: PMC3786956 DOI: 10.1371/journal.pone.0076809] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/30/2013] [Indexed: 01/09/2023] Open
Abstract
The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max). In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs) were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.
Collapse
Affiliation(s)
- Yong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
25
|
Kujur A, Bajaj D, Saxena MS, Tripathi S, Upadhyaya HD, Gowda C, Singh S, Jain M, Tyagi AK, Parida SK. Functionally relevant microsatellite markers from chickpea transcription factor genes for efficient genotyping applications and trait association mapping. DNA Res 2013; 20:355-74. [PMID: 23633531 PMCID: PMC3738162 DOI: 10.1093/dnares/dst015] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/02/2013] [Indexed: 12/30/2022] Open
Abstract
We developed 1108 transcription factor gene-derived microsatellite (TFGMS) and 161 transcription factor functional domain-associated microsatellite (TFFDMS) markers from 707 TFs of chickpea. The robust amplification efficiency (96.5%) and high intra-specific polymorphic potential (34%) detected by markers suggest their immense utilities in efficient large-scale genotyping applications, including construction of both physical and functional transcript maps and understanding population structure. Candidate gene-based association analysis revealed strong genetic association of TFFDMS markers with three major seed and pod traits. Further, TFGMS markers in the 5' untranslated regions of TF genes showing differential expression during seed development had higher trait association potential. The significance of TFFDMS markers was demonstrated by correlating their allelic variation with amino acid sequence expansion/contraction in the functional domain and alteration of secondary protein structure encoded by genes. The seed weight-associated markers were validated through traditional bi-parental genetic mapping. The determination of gene-specific linkage disequilibrium (LD) patterns in desi and kabuli based on single nucleotide polymorphism-microsatellite marker haplotypes revealed extended LD decay, enhanced LD resolution and trait association potential of genes. The evolutionary history of a strong seed-size/weight-associated TF based on natural variation and haplotype sharing among desi, kabuli and wild unravelled useful information having implication for seed-size trait evolution during chickpea domestication.
Collapse
Affiliation(s)
- Alice Kujur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Maneesha S. Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - C.L.L. Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - Mukesh Jain
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
26
|
Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. TreeTFDB: an integrative database of the transcription factors from six economically important tree crops for functional predictions and comparative and functional genomics. DNA Res 2013; 20:151-62. [PMID: 23284086 PMCID: PMC3628445 DOI: 10.1093/dnares/dss040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/10/2012] [Indexed: 12/11/2022] Open
Abstract
Crop plants, whose productivity is affected by a wide range of growing and environmental conditions, are grown for economic purposes. Transcription factors (TFs) play central role in regulation of many biological processes, including plant development and responses to environmental stimuli, by activating or repressing spatiotemporal gene expression. Here, we describe the TreeTFDB (http://treetfdb.bmep.riken.jp/index.pl) that houses the TF repertoires of six economically important tree crop species: Jatropha curcas, papaya, cassava, poplar, castor bean and grapevine. Among these, the TF repertoire of J. curcas has not been reported by any other TF databases. In addition to their basic information, such as sequence and domain features, domain alignments, gene ontology assignment and sequence comparison, information on available full-length cDNAs, identity and positions of all types of known cis-motifs found in the promoter regions, gene expression data are provided. With its newly designed and friendly interface and its unique features, TreeTFDB will enable research community to predict the functions and provide access to available genetic resources for performing comparative and functional genomics of the crop TFs, either individually or at whole family level, in a comprehensive and convenient manner.
Collapse
Affiliation(s)
- Keiichi Mochida
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Biomass Engineering Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
| | - Takuhiro Yoshida
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya Sakurai
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | - Kazuo Shinozaki
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Biomass Engineering Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Lam-Son Phan Tran
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
27
|
Sulieman S, Schulze J, Tran LSP. Comparative Analysis of the Symbiotic Efficiency of Medicago truncatula and Medicago sativa under Phosphorus Deficiency. Int J Mol Sci 2013; 14:5198-213. [PMID: 23459233 PMCID: PMC3634504 DOI: 10.3390/ijms14035198] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 02/14/2013] [Accepted: 02/26/2013] [Indexed: 12/18/2022] Open
Abstract
Phosphorus (P)-deficiency is a major abiotic stress that limits legume growth in many types of soils. The relationship between Medicago and Sinorhizobium, is known to be affected by different environmental conditions. Recent reports have shown that, in combination with S. meliloti 2011, Medicago truncatula had a lower symbiotic efficiency than Medicago sativa. However, little is known about how Medicago-Sinorhizobium is affected by P-deficiency at the whole-plant level. The objective of the present study was to compare and characterize the symbiotic efficiency of N2 fixation of M. truncatula and M. sativa grown in sand under P-limitation. Under this condition, M. truncatula exhibited a significantly higher rate of N2 fixation. The specific activity of the nodules was much higher in M. truncatula in comparison to M. sativa, partially as a result of an increase in electron allocation to N2 versus H+. Although the main organic acid, succinate, exhibited a strong tendency to decrease under P-deficiency, the more efficient symbiotic ability observed in M. truncatula coincided with an apparent increase in the content of malate in its nodules. Our results indicate that the higher efficiency of the M. truncatula symbiotic system is related to the ability to increase malate content under limited P-conditions.
Collapse
Affiliation(s)
- Saad Sulieman
- Signaling Pathway Research Unit, Plant Science Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; E-Mail:
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Shambat, Khartoum North 13314, Sudan
| | - Joachim Schulze
- Department of Crop Sciences, Section of Plant Nutrition, Georg-August-University of Göttingen, Carl-Sprengel-Weg 1, Göttingen 37075, Germany; E-Mail:
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, Plant Science Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-45-503-9593; Fax: +81-45-503-9591
| |
Collapse
|
28
|
Abstract
Soybean (Glycine max) is one of the most important crops in legume family. Soybean and soybean-based products are also considered as popular food for human and animal husbandry. With its high oil content, soybean has become a potential resource for the production of renewable fuel. However, soybean is considered one of the most drought-sensitive crops, with approximately 40% reduction of the yield in the worst years. Recent research progresses in elucidation of biochemical, morphological and physiological responses as well as molecular mechanisms of plant adaptation to drought stress in model plants have provided a solid foundation for translational genomics of soybean toward drought tolerance. In this review, we will summarize the recent advances in development of drought-tolerant soybean cultivars by gene transfer.
Collapse
Affiliation(s)
- Nguyen Phuong Thao
- International University, Vietnam National University-HCMC, St block 6, Linh Trung ward, Thu Duc district, HCM city, Vietnam
| | | |
Collapse
|
29
|
Le DT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Ham LH, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS One 2012; 7:e49522. [PMID: 23189148 PMCID: PMC3505142 DOI: 10.1371/journal.pone.0049522] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 10/09/2012] [Indexed: 12/15/2022] Open
Abstract
The availability of complete genome sequence of soybean has allowed research community to design the 66 K Affymetrix Soybean Array GeneChip for genome-wide expression profiling of soybean. In this study, we carried out microarray analysis of leaf tissues of soybean plants, which were subjected to drought stress from late vegetative V6 and from full bloom reproductive R2 stages. Our data analyses showed that out of 46,093 soybean genes, which were predicted with high confidence among approximately 66,000 putative genes, 41,059 genes could be assigned with a known function. Using the criteria of a ratio change > = 2 and a q-value<0.05, we identified 1458 and 1818 upregulated and 1582 and 1688 downregulated genes in drought-stressed V6 and R2 leaves, respectively. These datasets were classified into 19 most abundant biological categories with similar proportions. There were only 612 and 463 genes that were overlapped among the upregulated and downregulated genes, respectively, in both stages, suggesting that both conserved and unconserved pathways might be involved in regulation of drought response in different stages of plant development. A comparative expression analysis using our datasets and that of drought stressed Arabidopsis leaves revealed the existence of both conserved and species-specific mechanisms that regulate drought responses. Many upregulated genes encode either regulatory proteins, such as transcription factors, including those with high homology to Arabidopsis DREB, NAC, AREB and ZAT/STZ transcription factors, kinases and two-component system members, or functional proteins, e.g. late embryogenesis-abundant proteins, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins. A detailed analysis of the GmNAC family and the hormone-related gene category showed that expression of many GmNAC and hormone-related genes was altered by drought in V6 and/or R2 leaves. Additionally, the downregulation of many photosynthesis-related genes, which contribute to growth retardation under drought stress, may serve as an adaptive mechanism for plant survival. This study has identified excellent drought-responsive candidate genes for in-depth characterization and future development of improved drought-tolerant transgenic soybeans.
Collapse
Affiliation(s)
- Dung Tien Le
- Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
- National Key Laboratory of Plant Cell Biotechnology and Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Hanoi, Vietnam
| | - Rie Nishiyama
- Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Yasuko Watanabe
- Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Le Huy Ham
- National Key Laboratory of Plant Cell Biotechnology and Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Hanoi, Vietnam
| | | | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| |
Collapse
|
30
|
Neves-Borges AC, Guimarães-Dias F, Cruz F, Mesquita RO, Nepomuceno AL, Romano E, Loureiro ME, de Fátima Grossi-de-Sá M, Alves-Ferreira M. Expression pattern of drought stress marker genes in soybean roots under two water deficit systems. Genet Mol Biol 2012; 35:212-21. [PMID: 22802707 PMCID: PMC3392874 DOI: 10.1590/s1415-47572012000200003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The study of tolerance mechanisms for drought stress in soybean is fundamental to the understanding and development of tolerant varieties. Using in silico analysis, four marker genes involved in the classical ABA-dependent and ABA-independent pathways of drought response were identified in the Glycine max genome in the present work. The expression profiles of the marker genes ERD1-like, GmaxRD20A-like, GmaxRD22-like and GmaxRD29B-like were investigated by qPCR in root samples of drought sensitive and tolerant soybean cultivars (BR 16 and Embrapa 48, respectively), submitted to water deficit conditions in hydroponic and pot-based systems. Among the four putative soybean homologs to Arabidopsis genes investigated herein, only GmaxRD29B-like was not regulated by water deficit stress. Distinct expression profiles and different induction levels were observed among the genes, as well as between the two drought-inducing systems. Our results showed contrasting gene expression responses for the GmaxRD20A-like and GmaxRD22-like genes. GmaxRD20A-like was highly induced by continuous drought acclimating conditions, whereas GmaxRD22-like responses decreased after abrupt water deprivation. GmaxERD1-like showed a different expression profile for the cultivars in each system. Conversely, GmaxRD20A-like and GmaxRD22-like genes exhibited similar expression levels in tolerant plants in both systems.
Collapse
|
31
|
Soares-Cavalcanti NM, Belarmino LC, Kido EA, Pandolfi V, Marcelino-Guimarães FC, Rodrigues FA, Pereira GAG, Benko-Iseppon AM. Overall picture of expressed Heat Shock Factors in Glycine max, Lotus japonicus and Medicago truncatula. Genet Mol Biol 2012; 35:247-59. [PMID: 22802710 PMCID: PMC3392877 DOI: 10.1590/s1415-47572012000200006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heat shock (HS) leads to the activation of molecular mechanisms, known as HS-response, that prevent damage and enhance survival under stress. Plants have a flexible and specialized network of Heat Shock Factors (HSFs), which are transcription factors that induce the expression of heat shock proteins. The present work aimed to identify and characterize the Glycine max HSF repertory in the Soybean Genome Project (GENOSOJA platform), comparing them with other legumes (Medicago truncatula and Lotus japonicus) in view of current knowledge of Arabidopsis thaliana. The HSF characterization in leguminous plants led to the identification of 25, 19 and 21 candidate ESTs in soybean, Lotus and Medicago, respectively. A search in the SuperSAGE libraries revealed 68 tags distributed in seven HSF gene types. From the total number of obtained tags, more than 70% were related to root tissues (water deficit stress libraries vs. controls), indicating their role in abiotic stress responses, since the root is the first tissue to sense and respond to abiotic stress. Moreover, as heat stress is related to the pressure of dryness, a higher HSF expression was expected at the water deficit libraries. On the other hand, expressive HSF candidates were obtained from the library inoculated with Asian Soybean Rust, inferring crosstalk among genes associated with abiotic and biotic stresses. Evolutionary relationships among sequences were consistent with different HSF classes and subclasses. Expression profiling indicated that regulation of specific genes is associated with the stage of plant development and also with stimuli from other abiotic stresses pointing to the maintenance of HSF expression at a basal level in soybean, favoring its activation under heat-stress conditions.
Collapse
Affiliation(s)
- Nina M Soares-Cavalcanti
- Departamento de Genética, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lü S, Wu H, Tabata S, Harada K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci U S A 2012; 109:E2155-64. [PMID: 22619331 PMCID: PMC3420212 DOI: 10.1073/pnas.1117982109] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complex and coordinated regulation of flowering has high ecological and agricultural significance. The maturity locus E1 has a large impact on flowering time in soybean, but the molecular basis for the E1 locus is largely unknown. Through positional cloning, we delimited the E1 locus to a 17.4-kb region containing an intron-free gene (E1). The E1 protein contains a putative bipartite nuclear localization signal and a region distantly related to B3 domain. In the recessive allele, a nonsynonymous substitution occurred in the putative nuclear localization signal, leading to the loss of localization specificity of the E1 protein and earlier flowering. The early-flowering phenotype was consistently observed in three ethylmethanesulfonate-induced mutants and two natural mutations that harbored a premature stop codon or a deletion of the entire E1 gene. E1 expression was significantly suppressed under short-day conditions and showed a bimodal diurnal pattern under long-day conditions, suggesting its response to photoperiod and its dominant effect induced by long day length. When a functional E1 gene was transformed into the early-flowering cultivar Kariyutaka with low E1 expression, transgenic plants carrying exogenous E1 displayed late flowering. Furthermore, the transcript abundance of E1 was negatively correlated with that of GmFT2a and GmFT5a, homologues of FLOWERING LOCUS T that promote flowering. These findings demonstrated the key role of E1 in repressing flowering and delaying maturity in soybean. The molecular identification of the maturity locus E1 will contribute to our understanding of the molecular mechanisms by which a short-day plant regulates flowering time and maturity.
Collapse
Affiliation(s)
- Zhengjun Xia
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- Soybean Applied Genomics Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Satoshi Watanabe
- Soybean Applied Genomics Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yasutaka Tsubokura
- Soybean Applied Genomics Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | - Hong Zhai
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Shusei Sato
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu 292-0812, Japan; and
| | - Toshimasa Yamazaki
- Biomolecular Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Shixiang Lü
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Hongyan Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Satoshi Tabata
- Department of Plant Genome Research, Kazusa DNA Research Institute, Kisarazu 292-0812, Japan; and
| | - Kyuya Harada
- Soybean Applied Genomics Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| |
Collapse
|
33
|
Puranik S, Sahu PP, Srivastava PS, Prasad M. NAC proteins: regulation and role in stress tolerance. TRENDS IN PLANT SCIENCE 2012; 17:369-81. [PMID: 22445067 DOI: 10.1016/j.tplants.2012.02.004] [Citation(s) in RCA: 657] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/31/2012] [Accepted: 02/16/2012] [Indexed: 05/17/2023]
Abstract
The plant-specific NAC (NAM, ATAF1,2 and CUC2) proteins constitute a major transcription factor family renowned for their roles in several developmental programs. Despite their highly conserved DNA-binding domains, their remarkable diversification across plants reflects their numerous functions. Lately, they have received much attention as regulators in various stress signaling pathways which may include interplay of phytohormones. This review summarizes the recent progress in research on NACs highlighting the proteins' potential for engineering stress tolerance against various abiotic and biotic challenges. We discuss regulatory components and targets of NAC proteins in the context of their prospective role for crop improvement strategies via biotechnological intervention.
Collapse
Affiliation(s)
- Swati Puranik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | |
Collapse
|
34
|
Shelton D, Stranne M, Mikkelsen L, Pakseresht N, Welham T, Hiraka H, Tabata S, Sato S, Paquette S, Wang TL, Martin C, Bailey P. Transcription factors of Lotus: regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity. PLANT PHYSIOLOGY 2012; 159:531-47. [PMID: 22529285 PMCID: PMC3375922 DOI: 10.1104/pp.112.194753] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/23/2012] [Indexed: 05/20/2023]
Abstract
Isoflavonoids are a class of phenylpropanoids made by legumes, and consumption of dietary isoflavonoids confers benefits to human health. Our aim is to understand the regulation of isoflavonoid biosynthesis. Many studies have shown the importance of transcription factors in regulating the transcription of one or more genes encoding enzymes in phenylpropanoid metabolism. In this study, we coupled bioinformatics and coexpression analysis to identify candidate genes encoding transcription factors involved in regulating isoflavonoid biosynthesis in Lotus (Lotus japonicus). Genes encoding proteins belonging to 39 of the main transcription factor families were examined by microarray analysis of RNA from leaf tissue that had been elicited with glutathione. Phylogenetic analyses of each transcription factor family were used to identify subgroups of proteins that were specific to L. japonicus or closely related to known regulators of the phenylpropanoid pathway in other species. R2R3MYB subgroup 2 genes showed increased expression after treatment with glutathione. One member of this subgroup, LjMYB14, was constitutively overexpressed in L. japonicus and induced the expression of at least 12 genes that encoded enzymes in the general phenylpropanoid and isoflavonoid pathways. A distinct set of six R2R3MYB subgroup 2-like genes was identified. We suggest that these subgroup 2 sister group proteins and those belonging to the main subgroup 2 have roles in inducing isoflavonoid biosynthesis. The induction of isoflavonoid production in L. japonicus also involves the coordinated down-regulation of competing biosynthetic pathways by changing the expression of other transcription factors.
Collapse
Affiliation(s)
- Dale Shelton
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Maria Stranne
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Lisbeth Mikkelsen
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Nima Pakseresht
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Tracey Welham
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Hideki Hiraka
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Satoshi Tabata
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Shusei Sato
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Suzanne Paquette
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Trevor L. Wang
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | | | - Paul Bailey
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| |
Collapse
|
35
|
Mochida K, Shinozaki K. Advances in omics and bioinformatics tools for systems analyses of plant functions. PLANT & CELL PHYSIOLOGY 2011; 52:2017-38. [PMID: 22156726 PMCID: PMC3233218 DOI: 10.1093/pcp/pcr153] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Omics and bioinformatics are essential to understanding the molecular systems that underlie various plant functions. Recent game-changing sequencing technologies have revitalized sequencing approaches in genomics and have produced opportunities for various emerging analytical applications. Driven by technological advances, several new omics layers such as the interactome, epigenome and hormonome have emerged. Furthermore, in several plant species, the development of omics resources has progressed to address particular biological properties of individual species. Integration of knowledge from omics-based research is an emerging issue as researchers seek to identify significance, gain biological insights and promote translational research. From these perspectives, we provide this review of the emerging aspects of plant systems research based on omics and bioinformatics analyses together with their associated resources and technological advances.
Collapse
Affiliation(s)
- Keiichi Mochida
- RIKEN Biomass Engineering Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan.
| | | |
Collapse
|
36
|
Kalavacharla V, Liu Z, Meyers BC, Thimmapuram J, Melmaiee K. Identification and analysis of common bean (Phaseolus vulgaris L.) transcriptomes by massively parallel pyrosequencing. BMC PLANT BIOLOGY 2011; 11:135. [PMID: 21985325 PMCID: PMC3209450 DOI: 10.1186/1471-2229-11-135] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/11/2011] [Indexed: 05/25/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris) is the most important food legume in the world. Although this crop is very important to both the developed and developing world as a means of dietary protein supply, resources available in common bean are limited. Global transcriptome analysis is important to better understand gene expression, genetic variation, and gene structure annotation in addition to other important features. However, the number and description of common bean sequences are very limited, which greatly inhibits genome and transcriptome research. Here we used 454 pyrosequencing to obtain a substantial transcriptome dataset for common bean. RESULTS We obtained 1,692,972 reads with an average read length of 207 nucleotides (nt). These reads were assembled into 59,295 unigenes including 39,572 contigs and 19,723 singletons, in addition to 35,328 singletons less than 100 bp. Comparing the unigenes to common bean ESTs deposited in GenBank, we found that 53.40% or 31,664 of these unigenes had no matches to this dataset and can be considered as new common bean transcripts. Functional annotation of the unigenes carried out by Gene Ontology assignments from hits to Arabidopsis and soybean indicated coverage of a broad range of GO categories. The common bean unigenes were also compared to the bean bacterial artificial chromosome (BAC) end sequences, and a total of 21% of the unigenes (12,724) including 9,199 contigs and 3,256 singletons match to the 8,823 BAC-end sequences. In addition, a large number of simple sequence repeats (SSRs) and transcription factors were also identified in this study. CONCLUSIONS This work provides the first large scale identification of the common bean transcriptome derived by 454 pyrosequencing. This research has resulted in a 150% increase in the number of Phaseolus vulgaris ESTs. The dataset obtained through this analysis will provide a platform for functional genomics in common bean and related legumes and will aid in the development of molecular markers that can be used for tagging genes of interest. Additionally, these sequences will provide a means for better annotation of the on-going common bean whole genome sequencing.
Collapse
Affiliation(s)
- Venu Kalavacharla
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
- Center for Integrated Biological and Environmental Research, Delaware State University, Dover, DE 19901, USA
| | - Zhanji Liu
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
| | - Blake C Meyers
- Department of Plant & Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Jyothi Thimmapuram
- W. M. Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Kalpalatha Melmaiee
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
37
|
Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 2011; 18:263-76. [PMID: 21685489 PMCID: PMC3158466 DOI: 10.1093/dnares/dsr015] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 05/24/2011] [Indexed: 01/17/2023] Open
Abstract
Plant-specific NAC transcription factors (TFs) play important roles in regulating diverse biological processes, including development, senescence, growth, cell division and responses to environmental stress stimuli. Within the soybean genome, we identified 152 full-length GmNAC TFs, including 11 membrane-bound members. In silico analysis of the GmNACs, together with their Arabidopsis and rice counterparts, revealed similar NAC architecture. Next, we explored the soybean Affymetrix array and Illumina transcriptome sequence data to analyse tissue-specific expression profiles of GmNAC genes. Phylogenetic analysis using stress-related NAC TFs from Arabidopsis and rice as seeding sequences identified 58 of the 152 GmNACs as putative stress-responsive genes, including eight previously reported dehydration-responsive GmNACs. We could design gene-specific primers for quantitative real-time PCR verification of 38 out of 50 newly predicted stress-related genes. Twenty-five and six GmNACs were found to be induced and repressed 2-fold or more, respectively, in soybean roots and/or shoots in response to dehydration. GmNAC085, whose amino acid sequence was 39%; identical to that of well-known SNAC1/ONAC2, was the most induced gene upon dehydration, showing 390-fold and 20-fold induction in shoots and roots, respectively. Our systematic analysis has identified excellent tissue-specific and/or dehydration-responsive candidate GmNAC genes for in-depth characterization and future development of improved drought-tolerant transgenic soybeans.
Collapse
Affiliation(s)
- Dung Tien Le
- Signaling Pathway Research Unit, Plant Science Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham-Van-Dong Str., Hanoi, Vietnam
| | - Rie Nishiyama
- Signaling Pathway Research Unit, Plant Science Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yasuko Watanabe
- Signaling Pathway Research Unit, Plant Science Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Keiichi Mochida
- Gene Discovery Research Group, Plant Science Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | - Kazuo Shinozaki
- Gene Discovery Research Group, Plant Science Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Lam-Son Phan Tran
- Signaling Pathway Research Unit, Plant Science Center, RIKEN Yokohama Institute, 1-7-22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
38
|
Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. In silico analysis of transcription factor repertoires and prediction of stress-responsive transcription factors from six major gramineae plants. DNA Res 2011; 18:321-32. [PMID: 21729923 PMCID: PMC3190953 DOI: 10.1093/dnares/dsr019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The interactions between transcription factors (TFs) and cis-regulatory DNA sequences control gene expression, constituting the essential functional linkages of gene regulatory networks. The aim of this study is to identify and integrate all putative TFs from six grass species: Brachypodium distachyon, maize, rice, sorghum, barley, and wheat with significant information into an integrative database (GramineaeTFDB) for comparative genomics and functional genomics. For each TF, sequence features, promoter regions, domain alignments, GO assignment, FL-cDNA information, if available, and cross-references to various public databases and genetic resources are provided. Additionally, GramineaeTFDB possesses a tool which aids the users to search for putative cis-elements located in the promoter regions of TFs and predict the functions of the TFs using cis-element-based functional prediction approach. We also supplied hyperlinks to expression profiles of those TF genes of maize, rice, and barley, for which data are available. Furthermore, information about the availability of FOX and Ds mutant lines for rice and maize TFs, respectively, are also accessible through hyperlinks. Our study provides an important user-friendly public resource for functional analyses and comparative genomics of grass TFs, and understanding of the architecture of transcriptional regulatory networks and evolution of the TFs in agriculturally important cereal crops.
Collapse
Affiliation(s)
- Keiichi Mochida
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J. PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 2010; 39:D1114-7. [PMID: 21097470 PMCID: PMC3013715 DOI: 10.1093/nar/gkq1141] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We updated the plant transcription factor (TF) database to version 2.0 (PlantTFDB 2.0, http://planttfdb.cbi.pku.edu.cn) which contains 53 319 putative TFs predicted from 49 species. We made detailed annotation including general information, domain feature, gene ontology, expression pattern and ortholog groups, as well as cross references to various databases and literature citations for these TFs classified into 58 newly defined families with computational approach and manual inspection. Multiple sequence alignments and phylogenetic trees for each family can be shown as Weblogo pictures or downloaded as text files. We have redesigned the user interface in the new version. Users can search TFs with much more flexibility through the improved advanced search page, and the search results can be exported into various formats for further analysis. In addition, we now provide web service for advanced users to access PlantTFDB 2.0 more efficiently.
Collapse
Affiliation(s)
- He Zhang
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering and College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Tran LSP, Mochida K. Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genomics 2010; 10:447-62. [PMID: 20582712 DOI: 10.1007/s10142-010-0178-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 06/01/2010] [Accepted: 06/16/2010] [Indexed: 01/07/2023]
Abstract
Global soybean production is frequently impacted by various stresses, including both abiotic and biotic stresses. To develop soybean plants with enhanced tolerance to different stressors, functional genomics of soybean and a comprehensive understanding of available biotechnological resources and approaches are essential. In this review, we will discuss recent advances in soybean functional genomics which provide unprecedented opportunities to understand global patterns of gene expression, gene regulatory networks, various physiological, biochemical, and metabolic pathways as well as their association with the development of specific phenotypes. Soybean functional genomics, therefore, will ultimately enable us to develop new soybean varieties with improved productivity under adverse conditions by genetic engineering.
Collapse
|