1
|
Peng J, Yu Y, Fang X. Stress sensing and response through biomolecular condensates in plants. PLANT COMMUNICATIONS 2025; 6:101225. [PMID: 39702967 PMCID: PMC11897469 DOI: 10.1016/j.xplc.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Plants have developed intricate mechanisms for rapid and efficient stress perception and adaptation in response to environmental stressors. Recent research highlights the emerging role of biomolecular condensates in modulating plant stress perception and response. These condensates function through numerous mechanisms to regulate cellular processes such as transcription, translation, RNA metabolism, and signaling pathways under stress conditions. In this review, we provide an overview of current knowledge on stress-responsive biomolecular condensates in plants, including well-defined condensates such as stress granules, processing bodies, and the nucleolus, as well as more recently discovered plant-specific condensates. By briefly referring to findings from yeast and animal studies, we discuss mechanisms by which plant condensates perceive stress signals and elicit cellular responses. Finally, we provide insights for future investigations on stress-responsive condensates in plants. Understanding how condensates act as stress sensors and regulators will pave the way for potential applications in improving plant resilience through targeted genetic or biotechnological interventions.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Wu HYL, Jen J, Hsu PY. What, where, and how: Regulation of translation and the translational landscape in plants. THE PLANT CELL 2024; 36:1540-1564. [PMID: 37437121 PMCID: PMC11062462 DOI: 10.1093/plcell/koad197] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Translation is a crucial step in gene expression and plays a vital role in regulating various aspects of plant development and environmental responses. It is a dynamic and complex program that involves interactions between mRNAs, transfer RNAs, and the ribosome machinery through both cis- and trans-regulation while integrating internal and external signals. Translational control can act in a global (transcriptome-wide) or mRNA-specific manner. Recent advances in genome-wide techniques, particularly ribosome profiling and proteomics, have led to numerous exciting discoveries in both global and mRNA-specific translation. In this review, we aim to provide a "primer" that introduces readers to this fascinating yet complex cellular process and provide a big picture of how essential components connect within the network. We begin with an overview of mRNA translation, followed by a discussion of the experimental approaches and recent findings in the field, focusing on unannotated translation events and translational control through cis-regulatory elements on mRNAs and trans-acting factors, as well as signaling networks through 3 conserved translational regulators TOR, SnRK1, and GCN2. Finally, we briefly touch on the spatial regulation of mRNAs in translational control. Here, we focus on cytosolic mRNAs; translation in organelles and viruses is not covered in this review.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Joey Jen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Wu HYL, Ai Q, Teixeira RT, Nguyen PHT, Song G, Montes C, Elmore JM, Walley JW, Hsu PY. Improved super-resolution ribosome profiling reveals prevalent translation of upstream ORFs and small ORFs in Arabidopsis. THE PLANT CELL 2024; 36:510-539. [PMID: 38000896 PMCID: PMC10896292 DOI: 10.1093/plcell/koad290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023]
Abstract
A crucial step in functional genomics is identifying actively translated ORFs and linking them to biological functions. The challenge lies in identifying short ORFs, as their identification is greatly influenced by data quality and depth. Here, we improved the coverage of super-resolution Ribo-seq in Arabidopsis (Arabidopsis thaliana), revealing uncharacterized translation events for nuclear, chloroplastic, and mitochondrial genes. Assisted by a transcriptome assembly, we identified 7,751 unconventional translation events, comprising 6,996 upstream ORFs (uORFs) and 209 downstream ORFs on annotated protein-coding genes, as well as 546 ORFs in presumed noncoding RNAs. Proteomic data confirmed the production of stable proteins from some of these unannotated translation events. We present evidence of active translation from primary transcripts of trans-acting small interfering RNAs (TAS1-4) and microRNAs (pri-MIR163 and pri-MIR169) and periodic ribosome stalling supporting cotranslational decay. Additionally, we developed a method for identifying extremely short uORFs, including 370 minimum uORFs (AUG-stop), and 2,921 tiny uORFs (2 to 10 amino acids) and 681 uORFs that overlap with each other. Remarkably, these short uORFs exhibit strong translational repression as do longer uORFs. We also systematically discovered 594 uORFs regulated by alternative splicing, suggesting widespread isoform-specific translational control. Finally, these prevalent uORFs are associated with numerous important pathways. In summary, our improved Arabidopsis translational landscape provides valuable resources to study gene expression regulation.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Qiaoyun Ai
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Rita Teresa Teixeira
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Phong H T Nguyen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Gaoyuan Song
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - J Mitch Elmore
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Justin W Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Sasaki S, Murakami T, Yasumuro M, Makita A, Oi Y, Hiragori Y, Watanabe S, Kudo R, Hayashi N, Ohbayashi I, Sugiyama M, Yamashita Y, Naito S, Onouchi H. Upstream open reading frame-mediated upregulation of ANAC082 expression in response to nucleolar stress in Arabidopsis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:21-30. [PMID: 38213914 PMCID: PMC10777128 DOI: 10.5511/plantbiotechnology.22.1215a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2024]
Abstract
Perturbations in ribosome biogenesis cause a type of cellular stress called nucleolar or ribosomal stress, which triggers adaptive responses in both animal and plant cells. The Arabidopsis ANAC082 transcription factor has been identified as a key mediator of the plant nucleolar stress response. The 5'-untranslated region (5'-UTR) of ANAC082 mRNA contains an upstream ORF (uORF) encoding an evolutionarily conserved amino acid sequence. Here, we report that this uORF mediates the upregulation of ANAC082 expression in response to nucleolar stress. When transgenic Arabidopsis plants containing a luciferase reporter gene under the control of the ANAC082 promoter and 5'-UTR were treated with reagents that induced nucleolar stress, expression of the reporter gene was enhanced in a uORF sequence-dependent manner. Additionally, we examined the effect of an endoplasmic reticulum (ER) stress-inducing reagent on reporter gene expression because the closest homolog of ANAC082 in Arabidopsis, ANAC103, is involved in the ER stress response. However, the ANAC082 uORF did not respond to ER stress. Interestingly, although ANAC103 has a uORF with an amino acid sequence similar to that of the ANAC082 uORF, the C-terminal sequence critical for regulation is not well conserved among ANAC103 homologs in Brassicaceae. Transient expression assays revealed that unlike the ANAC082 uORF, the ANAC103 uORF does not exert a sequence-dependent repressive effect. Altogether, our findings suggest that the ANAC082 uORF is important for the nucleolar stress response but not for the ER stress response, and that for this reason, the uORF sequence-dependent regulation was lost in ANAC103 during evolution.
Collapse
Affiliation(s)
- Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Toru Murakami
- Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Miharu Yasumuro
- Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Ayaka Makita
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Yutaro Oi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Yuta Hiragori
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Shun Watanabe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Rin Kudo
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Iwai Ohbayashi
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan R.O.C
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan R.O.C
| | - Munetaka Sugiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Satoshi Naito
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
5
|
Hiragori Y, Takahashi H, Karino T, Kaido A, Hayashi N, Sasaki S, Nakao K, Motomura T, Yamashita Y, Naito S, Onouchi H. Genome-wide identification of Arabidopsis non-AUG-initiated upstream ORFs with evolutionarily conserved regulatory sequences that control protein expression levels. PLANT MOLECULAR BIOLOGY 2023; 111:37-55. [PMID: 36044152 DOI: 10.1007/s11103-022-01309-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
This study identified four novel regulatory non-AUG-initiated upstream ORFs (uORFs) with evolutionarily conserved sequences in Arabidopsis and elucidated the mechanism by which a non-AUG-initiated uORF promotes main ORF translation. Upstream open reading frames (uORFs) are short ORFs found in the 5'-untranslated regions (5'-UTRs) of eukaryotic transcripts and can influence the translation of protein-coding main ORFs (mORFs). Recent genome-wide ribosome profiling studies have revealed that hundreds or thousands of uORFs initiate translation at non-AUG start codons. However, the physiological significance of these non-AUG uORFs has so far been demonstrated for only a few of them. In this study, to identify physiologically important regulatory non-AUG uORFs in Arabidopsis, we took an approach that combined bioinformatics and experimental analysis. Since physiologically important non-AUG uORFs are likely to be conserved across species, we first searched the Arabidopsis genome for non-AUG-initiated uORFs with evolutionarily conserved sequences. Then, we examined the effects of the conserved non-AUG uORFs on the expression of the downstream mORFs using transient expression assays. As a result, three inhibitory and one promotive non-AUG uORFs were identified. Among the inhibitory non-AUG uORFs, two exerted repressive effects on mORF expression in an amino acid sequence-dependent manner. These two non-AUG uORFs are likely to encode regulatory peptides that cause ribosome stalling, thereby enhancing their repressive effects. In contrast, one of the identified regulatory non-AUG uORFs promoted mORF expression by alleviating the inhibitory effect of a downstream AUG-initiated uORF. These findings provide insights into the mechanisms that enable non-AUG uORFs to play regulatory roles despite their low translation initiation efficiencies.
Collapse
Affiliation(s)
- Yuta Hiragori
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Taihei Karino
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Atsushi Kaido
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kodai Nakao
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Taichiro Motomura
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Satoshi Naito
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
6
|
Guo R, Yu X, Gregory BD. The identification of conserved sequence features of co-translationally decayed mRNAs and upstream open reading frames in angiosperm transcriptomes. PLANT DIRECT 2023; 7:e479. [PMID: 36643787 PMCID: PMC9831718 DOI: 10.1002/pld3.479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
RNA turnover is essential in maintaining messenger RNA (mRNA) homeostasis during various developmental stages and stress responses. Co-translational mRNA decay (CTRD), a process in which mRNAs are degraded while still associated with translating ribosomes, has recently been discovered to function in yeast and three angiosperm transcriptomes. However, it is still unclear how prevalent CTRD across the plant lineage. Moreover, the sequence features of co-translationally decayed mRNAs have not been well-studied. Here, utilizing a collection of publicly available degradome sequencing datasets for another seven angiosperm transcriptomes, we have confirmed that CTRD is functioning in at least 10 angiosperms and likely throughout the plant lineage. Additionally, we have identified sequence features shared by the co-translationally decayed mRNAs in these species, implying a possible conserved triggering mechanism for this pathway. Given that degradome sequencing datasets can also be used to identify actively translating upstream open reading frames (uORFs), which are quite understudied in plants, we have identified numerous actively translating uORFs in the same 10 angiosperms. These findings reveal that actively translating uORFs are prevalent in plant transcriptomes, some of which are conserved across this lineage. We have also observed conserved sequence features in the regions flanking these uORFs' stop codons that might contribute to ribosome stalling at these sequences. Finally, we discovered that there were very few overlaps between the mRNAs harboring actively translating uORFs and those sorted into the co-translational decay pathway in the majority of the studied angiosperms, suggesting that these two processes might be nearly mutually exclusive in those species. In total, our findings provide the identification of CTRD and actively translating uORFs across a broad collection of plants and provide novel insights into the important sequence features associated with these collections of mRNAs and regulatory elements, respectively.
Collapse
Affiliation(s)
- Rong Guo
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Xiang Yu
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Present address:
School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Brian D. Gregory
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Causier B, Hopes T, McKay M, Paling Z, Davies B. Plants utilise ancient conserved peptide upstream open reading frames in stress-responsive translational regulation. PLANT, CELL & ENVIRONMENT 2022; 45:1229-1241. [PMID: 35128674 PMCID: PMC9305500 DOI: 10.1111/pce.14277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 05/08/2023]
Abstract
The regulation of protein synthesis plays an important role in the growth and development of all organisms. Upstream open reading frames (uORFs) are commonly found in eukaryotic messenger RNA transcripts and typically attenuate the translation of associated downstream main ORFs (mORFs). Conserved peptide uORFs (CPuORFs) are a rare subset of uORFs, some of which have been shown to conditionally regulate translation by ribosome stalling. Here, we show that Arabidopsis CPuORF19, CPuORF46 and CPuORF47, which are ancient in origin, regulate translation of any downstream ORF, in response to the agriculturally significant environmental signals, heat stress and water limitation. Consequently, these CPuORFs represent a versatile toolkit for inducible gene expression with broad applications. Finally, we note that different classes of CPuORFs may operate during distinct phases of translation, which has implications for the bioengineering of these regulatory factors.
Collapse
Affiliation(s)
- Barry Causier
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Tayah Hopes
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Mary McKay
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Zachary Paling
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| | - Brendan Davies
- Faculty of Biological Sciences, Centre for Plant SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
8
|
Translational and post-translational regulation of polyamine metabolic enzymes in plants. J Biotechnol 2021; 344:1-10. [PMID: 34915092 DOI: 10.1016/j.jbiotec.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/19/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Polyamines are small organic and basic polycations that perform essential regulatory functions in all living organisms. Fluctuations in polyamine content have been observed to occur during growth, development and under stress conditions, implying that polyamines play pivotal roles in diverse cellular and physiological processes. To achieve polyamine homeostasis, the entire metabolic pathway is subjected to a fine-tuned regulation of its biosynthetic and catabolic genes and enzymes. In this review, we describe and discuss the most important mechanisms implicated in the translational and post-translational regulation of polyamine metabolic enzymes in plants. At the translational level, we emphasize the role of polyamines in the modulation of upstream open reading frame (uORF) activities that control the translation of polyamine biosynthetic and catabolic mRNAs. At the post-translational level, different aspects of the regulation of polyamine metabolic proteins are depicted, such as the proteolytic activation of enzyme precursors, the importance of dimerization in protein stability as well as in protein intracellular localization.
Collapse
|
9
|
Sotta N, Chiba Y, Miwa K, Takamatsu S, Tanaka M, Yamashita Y, Naito S, Fujiwara T. Global analysis of boron-induced ribosome stalling reveals its effects on translation termination and unique regulation by AUG-stops in Arabidopsis shoots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1455-1467. [PMID: 33772920 DOI: 10.1111/tpj.15248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
We previously reported that ribosome stalling at AUG-stop sequences in the 5'-untranslated region plays a critical role in regulating the expression of Arabidopsis thaliana NIP5;1, which encodes a boron uptake transporter, in response to boron conditions in media. This ribosome stalling is triggered specifically by boric acid, but the mechanisms are unknown. Although upstream open reading frames (uORFs) are known in many cases to regulate translation through peptides encoded by the uORF, AUG-stop stalling does not involve any peptide synthesis. The unique feature of AUG-stops - that termination follows immediately after initiation - suggests a possible effect of boron on the translational process itself. However, the generality of AUG-stop-mediated translational regulation and the effect of boron on translation at the genome scale are not clear. Here, we conducted a ribosome profiling analysis to reveal the genome-wide regulation of translation in response to boron conditions in A. thaliana shoots. We identified hundreds of translationally regulated genes that function in various biological processes. Under high-boron conditions, transcripts with reduced translation efficiency were rich in uORFs, highlighting the importance of uORF-mediated translational regulation. We found 673 uORFs that had more frequent ribosome association. Moreover, transcripts that were translationally downregulated under high-boron conditions were rich in minimum uORFs (AUG-stops), suggesting that AUG-stops play a global role in the boron response. Metagene analysis revealed that boron increased the ribosome occupancy of stop codons, indicating that this element is involved in global translational termination processes.
Collapse
Affiliation(s)
- Naoyuki Sotta
- Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo, 113-8657, Japan
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Yukako Chiba
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kyoko Miwa
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Seidai Takamatsu
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Mayuki Tanaka
- Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo, 113-8657, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Satoshi Naito
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Science, University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
10
|
Takahashi H, Miyaki S, Onouchi H, Motomura T, Idesako N, Takahashi A, Murase M, Fukuyoshi S, Endo T, Satou K, Naito S, Itoh M. Exhaustive identification of conserved upstream open reading frames with potential translational regulatory functions from animal genomes. Sci Rep 2020; 10:16289. [PMID: 33004976 PMCID: PMC7530721 DOI: 10.1038/s41598-020-73307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Abstract
Upstream open reading frames (uORFs) are present in the 5′-untranslated regions of many eukaryotic mRNAs, and some peptides encoded by these regions play important regulatory roles in controlling main ORF (mORF) translation. We previously developed a novel pipeline, ESUCA, to comprehensively identify plant uORFs encoding functional peptides, based on genome-wide identification of uORFs with conserved peptide sequences (CPuORFs). Here, we applied ESUCA to diverse animal genomes, because animal CPuORFs have been identified only by comparing uORF sequences between a limited number of species, and how many previously identified CPuORFs encode regulatory peptides is unclear. By using ESUCA, 1517 (1373 novel and 144 known) CPuORFs were extracted from four evolutionarily divergent animal genomes. We examined the effects of 17 human CPuORFs on mORF translation using transient expression assays. Through these analyses, we identified seven novel regulatory CPuORFs that repressed mORF translation in a sequence-dependent manner, including one conserved only among Eutheria. We discovered a much higher number of animal CPuORFs than previously identified. Since most human CPuORFs identified in this study are conserved across a wide range of Eutheria or a wider taxonomic range, many CPuORFs encoding regulatory peptides are expected to be found in the identified CPuORFs.
Collapse
Affiliation(s)
- Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan. .,Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan. .,Fundamental Innovative Oncology Core Center, National Cancer Center, Tokyo, 104-0045, Japan.
| | - Shido Miyaki
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Taichiro Motomura
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Nobuo Idesako
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Anna Takahashi
- Faculty of Information Technologies and Control, Belarusian State University of Informatics and Radio Electronics, 220013, Minsk, Belarus.,College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Masataka Murase
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shuichi Fukuyoshi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Toshinori Endo
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan
| | - Kenji Satou
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Science, Chiba University, Chiba, 260-8675, Japan.
| |
Collapse
|
11
|
Li YR, Liu MJ. Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants. Genome Res 2020; 30:1418-1433. [PMID: 32973042 PMCID: PMC7605272 DOI: 10.1101/gr.261834.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Translation initiation is a key step determining protein synthesis. Studies have uncovered a number of alternative translation initiation sites (TISs) in mammalian mRNAs and showed their roles in reshaping the proteome. However, the extent to which alternative TISs affect gene expression across plants remains largely unclear. Here, by profiling initiating ribosome positions, we globally identified in vivo TISs in tomato and Arabidopsis and found thousands of genes with more than one TIS. Of the identified TISs, >19% and >20% were located at unannotated AUG and non-AUG sites, respectively. CUG and ACG were the most frequently observed codons at non-AUG TISs, a phenomenon also found in mammals. In addition, although alternative TISs were usually found in both orthologous genes, the TIS sequences were not conserved, suggesting the conservation of alternative initiation mechanisms but flexibility in using TISs. Unlike upstream AUG TISs, the presence of upstream non-AUG TISs was not correlated with the translational repression of main open reading frames, a pattern observed across plants. Also, the generation of proteins with diverse N-terminal regions through the use of alternative TISs contributes to differential subcellular localization, as mutating alternative TISs resulted in the loss of organelle localization. Our findings uncovered the hidden coding potential of plant genomes and, importantly, the constraint and flexibility of translational initiation mechanisms in the regulation of gene expression across plant species.
Collapse
Affiliation(s)
- Ya-Ru Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
| | - Ming-Jung Liu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
12
|
Dever TE, Ivanov IP, Sachs MS. Conserved Upstream Open Reading Frame Nascent Peptides That Control Translation. Annu Rev Genet 2020; 54:237-264. [PMID: 32870728 DOI: 10.1146/annurev-genet-112618-043822] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells utilize transcriptional and posttranscriptional mechanisms to alter gene expression in response to environmental cues. Gene-specific controls, including changing the translation of specific messenger RNAs (mRNAs), provide a rapid means to respond precisely to different conditions. Upstream open reading frames (uORFs) are known to control the translation of mRNAs. Recent studies in bacteria and eukaryotes have revealed the functions of evolutionarily conserved uORF-encoded peptides. Some of these uORF-encoded nascent peptides enable responses to specific metabolites to modulate the translation of their mRNAs by stalling ribosomes and through ribosome stalling may also modulate the level of their mRNAs. In this review, we highlight several examples of conserved uORF nascent peptides that stall ribosomes to regulate gene expression in response to specific metabolites in bacteria, fungi, mammals, and plants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA;
| |
Collapse
|
13
|
Takahashi H, Hayashi N, Hiragori Y, Sasaki S, Motomura T, Yamashita Y, Naito S, Takahashi A, Fuse K, Satou K, Endo T, Kojima S, Onouchi H. Comprehensive genome-wide identification of angiosperm upstream ORFs with peptide sequences conserved in various taxonomic ranges using a novel pipeline, ESUCA. BMC Genomics 2020; 21:260. [PMID: 32228449 PMCID: PMC7106846 DOI: 10.1186/s12864-020-6662-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/10/2020] [Indexed: 12/27/2022] Open
Abstract
Background Upstream open reading frames (uORFs) in the 5′-untranslated regions (5′-UTRs) of certain eukaryotic mRNAs encode evolutionarily conserved functional peptides, such as cis-acting regulatory peptides that control translation of downstream main ORFs (mORFs). For genome-wide searches for uORFs with conserved peptide sequences (CPuORFs), comparative genomic studies have been conducted, in which uORF sequences were compared between selected species. To increase chances of identifying CPuORFs, we previously developed an approach in which uORF sequences were compared using BLAST between Arabidopsis and any other plant species with available transcript sequence databases. If this approach is applied to multiple plant species belonging to phylogenetically distant clades, it is expected to further comprehensively identify CPuORFs conserved in various plant lineages, including those conserved among relatively small taxonomic groups. Results To efficiently compare uORF sequences among many species and efficiently identify CPuORFs conserved in various taxonomic lineages, we developed a novel pipeline, ESUCA. We applied ESUCA to the genomes of five angiosperm species, which belong to phylogenetically distant clades, and selected CPuORFs conserved among at least three different orders. Through these analyses, we identified 89 novel CPuORF families. As expected, ESUCA analysis of each of the five angiosperm genomes identified many CPuORFs that were not identified from ESUCA analyses of the other four species. However, unexpectedly, these CPuORFs include those conserved across wide taxonomic ranges, indicating that the approach used here is useful not only for comprehensive identification of narrowly conserved CPuORFs but also for that of widely conserved CPuORFs. Examination of the effects of 11 selected CPuORFs on mORF translation revealed that CPuORFs conserved only in relatively narrow taxonomic ranges can have sequence-dependent regulatory effects, suggesting that most of the identified CPuORFs are conserved because of functional constraints of their encoded peptides. Conclusions This study demonstrates that ESUCA is capable of efficiently identifying CPuORFs likely to be conserved because of the functional importance of their encoded peptides. Furthermore, our data show that the approach in which uORF sequences from multiple species are compared with those of many other species, using ESUCA, is highly effective in comprehensively identifying CPuORFs conserved in various taxonomic ranges.
Collapse
Affiliation(s)
- Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan. .,Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan.
| | - Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yuta Hiragori
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Taichiro Motomura
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Anna Takahashi
- Faculty of Information Technologies and Control, Belarusian State University of Informatics and Radio Electronics, 220013, Minsk, Belarus
| | - Kazuyuki Fuse
- New Business Development Office, Churitsu Electric Corporation, Toyoake, 470-1112, Japan
| | - Kenji Satou
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Toshinori Endo
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
14
|
Kurihara Y, Makita Y, Shimohira H, Fujita T, Iwasaki S, Matsui M. Translational Landscape of Protein-Coding and Non-Protein-Coding RNAs upon Light Exposure in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:536-545. [PMID: 31794029 DOI: 10.1093/pcp/pcz219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Light is one of the most essential environmental clues for plant growth and morphogenesis. Exposure to blue monochromatic light from darkness is a turning point for plant biological activity, and as a result dramatic changes in gene expression occur. To understand the translational impacts of blue light, we have performed ribosome profiling analysis and called translated open reading frames (ORFs) de novo within not only mRNAs but also non-coding RNAs (ncRNAs). Translation efficiency of 3,823 protein-coding ORFs, such as nuclear chloroplast-related genes, was up-regulated by blue light exposure. Moreover, the translational activation of the microRNA biogenesis-related genes, DCL1 and HYL1, was induced by blue light. Considering the 3-nucleotide codon periodicity of ribosome footprints, a few hundred short ORFs lying on ncRNAs and upstream ORFs (uORFs) on mRNAs were found that had differential translation status between blue light and dark. uORFs are known to have a negative effect on the expression of the main ORFs (mORFs) on the same mRNAs. Our analysis suggests that the translation of uORFs is likely to be more stimulated than that of the corresponding mORFs, and uORF-mediated translational repression of the mORFs in five genes was alleviated by blue light exposure. With data-based annotation of the ORFs, our analysis provides insights into the translatome in response to environmental changes, such as those involving light.
Collapse
Affiliation(s)
- Yukio Kurihara
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Yuko Makita
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Haruka Shimohira
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Nanobioscience Department of Life and Environmental System Science, Yokohama City University, Yokohama, Kanagawa, 236-0027 Japan
| | - Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503 Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561 Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
15
|
Niu R, Zhou Y, Zhang Y, Mou R, Tang Z, Wang Z, Zhou G, Guo S, Yuan M, Xu G. uORFlight: a vehicle toward uORF-mediated translational regulation mechanisms in eukaryotes. Database (Oxford) 2020; 2020:baaa007. [PMID: 32168374 PMCID: PMC7068905 DOI: 10.1093/database/baaa007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/10/2023]
Abstract
Upstream open reading frames (uORFs) are prevalent in eukaryotic mRNAs. They act as a translational control element for precisely tuning the expression of the downstream major open reading frame (mORF). uORF variation has been clearly associated with several human diseases. In contrast, natural uORF variants in plants have not ever been identified or linked with any phenotypic changes. The paucity of such evidence encouraged us to generate this database-uORFlight (http://uorflight.whu.edu.cn). It facilitates the exploration of uORF variation among different splicing models of Arabidopsis and rice genes. Most importantly, users can evaluate uORF frequency among different accessions at the population scale and find out the causal single nucleotide polymorphism (SNP) or insertion/deletion (INDEL), which can be associated with phenotypic variation through database mining or simple experiments. Such information will help to make hypothesis of uORF function in plant development or adaption to changing environments on the basis of the cognate mORF function. This database also curates plant uORF relevant literature into distinct groups. To be broadly interesting, our database expands uORF annotation into more species of fungus (Botrytis cinerea and Saccharomyces cerevisiae), plant (Brassica napus, Glycine max, Gossypium raimondii, Medicago truncatula, Solanum lycopersicum, Solanum tuberosum, Triticum aestivum and Zea mays), metazoan (Caenorhabditis elegans and Drosophila melanogaster) and vertebrate (Homo sapiens, Mus musculus and Danio rerio). Therefore, uORFlight will light up the runway toward how uORF genetic variation determines phenotypic diversity and advance our understanding of translational control mechanisms in eukaryotes.
Collapse
Affiliation(s)
- Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yu Zhang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guilong Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Sibin Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi 530007, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
16
|
Nagarajan VK, Kukulich PM, von Hagel B, Green PJ. RNA degradomes reveal substrates and importance for dark and nitrogen stress responses of Arabidopsis XRN4. Nucleic Acids Res 2019; 47:9216-9230. [PMID: 31428786 PMCID: PMC6755094 DOI: 10.1093/nar/gkz712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
XRN4, the plant cytoplasmic homolog of yeast and metazoan XRN1, catalyzes exoribonucleolytic degradation of uncapped mRNAs from the 5' end. Most studies of cytoplasmic XRN substrates have focused on polyadenylated transcripts, although many substrates are likely first deadenylated. Here, we report the global investigation of XRN4 substrates in both polyadenylated and nonpolyadenylated RNA to better understand the impact of the enzyme in Arabidopsis. RNA degradome analysis demonstrated that xrn4 mutants overaccumulate many more decapped deadenylated intermediates than those that are polyadenylated. Among these XRN4 substrates that have 5' ends precisely at cap sites, those associated with photosynthesis, nitrogen responses and auxin responses were enriched. Moreover, xrn4 was found to be defective in the dark stress response and lateral root growth during N resupply, demonstrating that XRN4 is required during both processes. XRN4 also contributes to nonsense-mediated decay (NMD) and xrn4 accumulates 3' fragments of select NMD targets, despite the lack of the metazoan endoribonuclease SMG6 in plants. Beyond demonstrating that XRN4 is a major player in multiple decay pathways, this study identified intriguing molecular impacts of the enzyme, including those that led to new insights about mRNA decay and discovery of functional contributions at the whole-plant level.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick M Kukulich
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Bryan von Hagel
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Pamela J Green
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
17
|
van der Horst S, Snel B, Hanson J, Smeekens S. Novel pipeline identifies new upstream ORFs and non-AUG initiating main ORFs with conserved amino acid sequences in the 5' leader of mRNAs in Arabidopsis thaliana. RNA (NEW YORK, N.Y.) 2019; 25:292-304. [PMID: 30567971 PMCID: PMC6380273 DOI: 10.1261/rna.067983.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/10/2018] [Indexed: 05/10/2023]
Abstract
Eukaryotic mRNAs contain a 5' leader sequence preceding the main open reading frame (mORF) and, depending on the species, 20%-50% of eukaryotic mRNAs harbor an upstream ORF (uORF) in the 5' leader. An unknown fraction of these uORFs encode sequence conserved peptides (conserved peptide uORFs, CPuORFs). Experimentally validated CPuORFs demonstrated to regulate the translation of downstream mORFs often do so in a metabolite concentration-dependent manner. Previous research has shown that most CPuORFs possess a start codon context suboptimal for translation initiation, which turns out to be favorable for translational regulation. The suboptimal initiation context may even include non-AUG start codons, which makes CPuORFs hard to predict. For this reason, we developed a novel pipeline to identify CPuORFs unbiased of start codon using well-annotated sequence data from 31 eudicot plant species and rice. Our new pipeline was able to identify 29 novel Arabidopsis thaliana (Arabidopsis) CPuORFs, conserved across a wide variety of eudicot species of which 15 do not initiate with an AUG start codon. In addition to CPuORFs, the pipeline was able to find 14 conserved coding regions directly upstream and in frame with the mORF, which likely initiate translation on a non-AUG start codon. Altogether, our pipeline identified highly conserved coding regions in the 5' leaders of Arabidopsis transcripts, including in genes with proven functional importance such as LHY, a key regulator of the circadian clock, and the RAPTOR1 subunit of the target of rapamycin (TOR) kinase.
Collapse
Affiliation(s)
- Sjors van der Horst
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Johannes Hanson
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Sjef Smeekens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
18
|
Goldenkova-Pavlova IV, Pavlenko OS, Mustafaev ON, Deyneko IV, Kabardaeva KV, Tyurin AA. Computational and Experimental Tools to Monitor the Changes in Translation Efficiency of Plant mRNA on a Genome-Wide Scale: Advantages, Limitations, and Solutions. Int J Mol Sci 2018; 20:E33. [PMID: 30577638 PMCID: PMC6337405 DOI: 10.3390/ijms20010033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
The control of translation in the course of gene expression regulation plays a crucial role in plants' cellular events and, particularly, in responses to environmental factors. The paradox of the great variance between levels of mRNAs and their protein products in eukaryotic cells, including plants, requires thorough investigation of the regulatory mechanisms of translation. A wide and amazingly complex network of mechanisms decoding the plant genome into proteome challenges researchers to design new methods for genome-wide analysis of translational control, develop computational algorithms detecting regulatory mRNA contexts, and to establish rules underlying differential translation. The aims of this review are to (i) describe the experimental approaches for investigation of differential translation in plants on a genome-wide scale; (ii) summarize the current data on computational algorithms for detection of specific structure⁻function features and key determinants in plant mRNAs and their correlation with translation efficiency; (iii) highlight the methods for experimental verification of existed and theoretically predicted features within plant mRNAs important for their differential translation; and finally (iv) to discuss the perspectives of discovering the specific structural features of plant mRNA that mediate differential translation control by the combination of computational and experimental approaches.
Collapse
Affiliation(s)
- Irina V Goldenkova-Pavlova
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Olga S Pavlenko
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Orkhan N Mustafaev
- Department of Biophysics and Molecular Biology, Baku State University, Zahid Khalilov Str. 23, Baku AZ 1148, Azerbaijan.
| | - Igor V Deyneko
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Ksenya V Kabardaeva
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| | - Alexander A Tyurin
- Group of Functional Genomics, Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya str. 35, Moscow 127276, Russia.
| |
Collapse
|
19
|
Cominelli E, Confalonieri M, Carlessi M, Cortinovis G, Daminati MG, Porch TG, Losa A, Sparvoli F. Phytic acid transport in Phaseolus vulgaris: A new low phytic acid mutant in the PvMRP1 gene and study of the PvMRPs promoters in two different plant systems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:1-12. [PMID: 29576062 DOI: 10.1016/j.plantsci.2018.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 05/24/2023]
Abstract
Phytic acid (InsP6) is the main storage form of phosphate in seeds. In the plant it plays an important role in response to environmental stress and hormonal changes. InsP6 is a strong chelator of cations, reducing the bioavailability of essential minerals in the diet. Only a common bean low phytic acid (lpa1) mutant, affected in the PvMRP1 gene, coding for a putative tonoplastic phytic acid transporter, was described so far. This mutant is devoid of negative pleiotropic effects normally characterising lpa mutants. With the aim of isolating new common bean lpa mutants, an ethyl methane sulfonate mutagenized population was screened, resulting in the identification of an additional lpa1 allele. Other putative lpa lines were also isolated. The PvMRP2 gene is probably able to complement the phenotype of mutants affected in the PvMRP1 gene in tissues other than the seed. Only the PvMRP1 gene is expressed at appreciable levels in cotyledons. Arabidopsis thaliana and Medicago truncatula transgenic plants harbouring 1.5 kb portions of the intergenic 5' sequences of both PvMRP genes, fused upstream of the GUS reporter, were generated. GUS activity in different organs suggests a refined, species-specific mechanisms of regulation of gene expression for these two PvMRP genes.
Collapse
Affiliation(s)
- Eleonora Cominelli
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy.
| | - Massimo Confalonieri
- CREA Research Centre for Animal Production and Aquaculture (CREA-ZA), Viale Piacenza 29, 26900, Lodi, Italy.
| | - Martina Carlessi
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy; Present address: Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Guidiccioni, 8-10, 56010 Ghezzano (Pisa), Italy.
| | - Gaia Cortinovis
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy.
| | - Maria Gloria Daminati
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy.
| | - Timothy G Porch
- USDA-ARS, Tropical Agriculture Research Station, 2200 P.A. Campos Avenue, Suite 201, Mayaguez, 00680, Puerto Rico.
| | - Alessia Losa
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy; CREA Research Centre for Genomics and Bioinformatics (CREA-GB), Via Paullese 28, 26836 Montanaso Lombardo, Lodi, Italy.
| | - Francesca Sparvoli
- CNR - National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Via E. Bassini, 15, 20133, Milan, Italy.
| |
Collapse
|
20
|
Ohbayashi I, Sugiyama M. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 8:2247. [PMID: 29375613 PMCID: PMC5767325 DOI: 10.3389/fpls.2017.02247] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/21/2017] [Indexed: 05/24/2023]
Abstract
The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.
Collapse
Affiliation(s)
- Iwai Ohbayashi
- FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Hsu PY, Benfey PN. Small but Mighty: Functional Peptides Encoded by Small ORFs in Plants. Proteomics 2017; 18:e1700038. [PMID: 28759167 DOI: 10.1002/pmic.201700038] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Peptides encoded by small open reading frames (sORFs, usually <100 codons) play critical regulatory roles in plant development and environmental responses. Despite their importance, only a small number of these peptides have been identified and characterized. Genomic studies have revealed that many plant genomes contain thousands of possible sORFs, which could potentially encode small peptides. The challenge is to distinguish translated sORFs from nontranslated ones. Here, we highlight advances in methodologies for identifying these hidden sORFs in plant genomes, including ribosome profiling and proteomics. We also examine the evidence for new peptides arising from sORFs and discuss their functions in plant development, environmental responses, and translational control.
Collapse
Affiliation(s)
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC, USA.,Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| |
Collapse
|
22
|
Hayashi N, Sasaki S, Takahashi H, Yamashita Y, Naito S, Onouchi H. Identification of Arabidopsis thaliana upstream open reading frames encoding peptide sequences that cause ribosomal arrest. Nucleic Acids Res 2017. [PMID: 28637336 PMCID: PMC5587730 DOI: 10.1093/nar/gkx528] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Specific sequences of certain nascent peptides cause programmed ribosomal arrest during mRNA translation to control gene expression. In eukaryotes, most known regulatory arrest peptides are encoded by upstream open reading frames (uORFs) present in the 5′-untranslated region of mRNAs. However, to date, a limited number of eukaryotic uORFs encoding arrest peptides have been reported. Here, we searched for arrest peptide-encoding uORFs among Arabidopsis thaliana uORFs with evolutionarily conserved peptide sequences. Analysis of in vitro translation products of 22 conserved uORFs identified three novel uORFs causing ribosomal arrest in a peptide sequence-dependent manner. Stop codon-scanning mutagenesis, in which the effect of changing the uORF stop codon position on the ribosomal arrest was examined, and toeprint analysis revealed that two of the three uORFs cause ribosomal arrest during translation elongation, whereas the other one causes ribosomal arrest during translation termination. Transient expression assays showed that the newly identified arrest-causing uORFs exerted a strong sequence-dependent repressive effect on the expression of the downstream reporter gene in A. thaliana protoplasts. These results suggest that the peptide sequences of the three uORFs identified in this study cause ribosomal arrest in the uORFs, thereby repressing the expression of proteins encoded by the main ORFs.
Collapse
Affiliation(s)
- Noriya Hayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Shun Sasaki
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, Chiba 263-8522, Japan
| | - Yui Yamashita
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Satoshi Naito
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
23
|
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:789-804. [PMID: 27862469 DOI: 10.1111/tpj.13415] [Citation(s) in RCA: 704] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
The flowering plant Arabidopsis thaliana is a dicot model organism for research in many aspects of plant biology. A comprehensive annotation of its genome paves the way for understanding the functions and activities of all types of transcripts, including mRNA, the various classes of non-coding RNA, and small RNA. The TAIR10 annotation update had a profound impact on Arabidopsis research but was released more than 5 years ago. Maintaining the accuracy of the annotation continues to be a prerequisite for future progress. Using an integrative annotation pipeline, we assembled tissue-specific RNA-Seq libraries from 113 datasets and constructed 48 359 transcript models of protein-coding genes in eleven tissues. In addition, we annotated various classes of non-coding RNA including microRNA, long intergenic RNA, small nucleolar RNA, natural antisense transcript, small nuclear RNA, and small RNA using published datasets and in-house analytic results. Altogether, we identified 635 novel protein-coding genes, 508 novel transcribed regions, 5178 non-coding RNAs, and 35 846 small RNA loci that were formerly unannotated. Analysis of the splicing events and RNA-Seq based expression profiles revealed the landscapes of gene structures, untranslated regions, and splicing activities to be more intricate than previously appreciated. Furthermore, we present 692 uniformly expressed housekeeping genes, 43% of whose human orthologs are also housekeeping genes. This updated Arabidopsis genome annotation with a substantially increased resolution of gene models will not only further our understanding of the biological processes of this plant model but also of other species.
Collapse
Affiliation(s)
- Chia-Yi Cheng
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Vivek Krishnakumar
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Agnes P Chan
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Françoise Thibaud-Nissen
- National Center for Biotechnology Information, US National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Seth Schobel
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| | - Christopher D Town
- J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA
| |
Collapse
|
24
|
Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proc Natl Acad Sci U S A 2016; 113:E7126-E7135. [PMID: 27791167 DOI: 10.1073/pnas.1614788113] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deep sequencing of ribosome footprints (ribosome profiling) maps and quantifies mRNA translation. Because ribosomes decode mRNA every 3 nt, the periodic property of ribosome footprints could be used to identify novel translated ORFs. However, due to the limited resolution of existing methods, the 3-nt periodicity is observed mostly in a global analysis, but not in individual transcripts. Here, we report a protocol applied to Arabidopsis that maps over 90% of the footprints to the main reading frame and thus offers super-resolution profiles for individual transcripts to precisely define translated regions. The resulting data not only support many annotated and predicted noncanonical translation events but also uncover small ORFs in annotated noncoding RNAs and pseudogenes. A substantial number of these unannotated ORFs are evolutionarily conserved, and some produce stable proteins. Thus, our study provides a valuable resource for plant genomics and an efficient optimization strategy for ribosome profiling in other organisms.
Collapse
|
25
|
Hellens RP, Brown CM, Chisnall MAW, Waterhouse PM, Macknight RC. The Emerging World of Small ORFs. TRENDS IN PLANT SCIENCE 2016; 21:317-328. [PMID: 26684391 DOI: 10.1016/j.tplants.2015.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/23/2015] [Accepted: 11/05/2015] [Indexed: 05/10/2023]
Abstract
Small open reading frames (sORFs) are an often overlooked feature of plant genomes. Initially found in plant viral RNAs and considered an interesting curiosity, an increasing number of these sORFs have been shown to encode functional peptides or play a regulatory role. The recent discovery that many of these sORFs initiate with start codons other than AUG, together with the identification of functional small peptides encoded in supposedly noncoding primary miRNA transcripts (pri-miRs), has drastically increased the number of potentially functional sORFs within the genome. Here we review how advances in technology, notably ribosome profiling (RP) assays, are complementing bioinformatics and proteogenomic methods to provide powerful ways to identify these elusive features of plant genomes, and highlight the regulatory roles sORFs can play.
Collapse
Affiliation(s)
- Roger P Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Chris M Brown
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Matthew A W Chisnall
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter M Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia
| | - Richard C Macknight
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand; New Zealand Institute for Plant and Food Research Ltd.
| |
Collapse
|
26
|
Hu Q, Merchante C, Stepanova AN, Alonso JM, Heber S. Genome-Wide Search for Translated Upstream Open Reading Frames in Arabidopsis Thaliana. IEEE Trans Nanobioscience 2016; 15:148-57. [PMID: 26886998 DOI: 10.1109/tnb.2016.2516950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Upstream open reading frames (uORFs) are open reading frames that occur within the 5' UTR of an mRNA. uORFs have been found in many organisms. They play an important role in gene regulation, cell development, and in various metabolic processes. It is believed that translated uORFs reduce the translational efficiency of the main coding region. However, only few uORFs are experimentally characterized. In this paper, we use ribosome footprinting together with a semi-supervised approach based on stacking classification models to identify translated uORFs in Arabidopsis thaliana. Our approach identified 5360 potentially translated uORFs in 2051 genes. GO terms enriched in genes with translated uORFs include catalytic activity, binding, transferase activity, phosphotransferase activity, kinase activity, and transcription regulator activity. The reported uORFs occur with a higher frequency in multi-isoform genes, and some uORFs are affected by alternative transcript start sites or alternative splicing events. Association rule mining revealed sequence features associated with the translation status of the uORFs. We hypothesize that uORF translation is a complex process that might be regulated by multiple factors. The identified uORFs are available online at:https://www.dropbox.com/sh/zdutupedxafhly8/AABFsdNR5zDfiozB7B4igFcja?dl=0. This paper is the extended version of our research presented at ISBRA 2015.
Collapse
|
27
|
Takahashi H, Kaniwa N, Saito Y, Sai K, Hamaguchi T, Shirao K, Shimada Y, Matsumura Y, Ohtsu A, Yoshino T, Doi T, Takahashi A, Odaka Y, Okuyama M, Sawada JI, Sakamoto H, Yoshida T. Construction of possible integrated predictive index based on EGFR and ANXA3 polymorphisms for chemotherapy response in fluoropyrimidine-treated Japanese gastric cancer patients using a bioinformatic method. BMC Cancer 2015; 15:718. [PMID: 26475168 PMCID: PMC4609065 DOI: 10.1186/s12885-015-1721-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/08/2015] [Indexed: 12/23/2022] Open
Abstract
Background Variability in drug response between individual patients is a serious concern in medicine. To identify single-nucleotide polymorphisms (SNPs) related to drug response variability, many genome-wide association studies have been conducted. Methods We previously applied a knowledge-based bioinformatic approach to a pharmacogenomics study in which 119 fluoropyrimidine-treated gastric cancer patients were genotyped at 109,365 SNPs using the Illumina Human-1 BeadChip. We identified the SNP rs2293347 in the human epidermal growth factor receptor (EGFR) gene as a novel genetic factor related to chemotherapeutic response. In the present study, we reanalyzed these hypothesis-free genomic data using extended knowledge. Results We identified rs2867461 in annexin A3 (ANXA3) gene as another candidate. Using logistic regression, we confirmed that the performance of the rs2867461 + rs2293347 model was superior to those of the single factor models. Furthermore, we propose a novel integrated predictive index (iEA) based on these two polymorphisms in EGFR and ANXA3. The p value for iEA was 1.47 × 10−8 by Fisher’s exact test. Recent studies showed that the mutations in EGFR is associated with high expression of dihydropyrimidine dehydrogenase, which is an inactivating and rate-limiting enzyme for fluoropyrimidine, and suggested that the combination of chemotherapy with fluoropyrimidine and EGFR-targeting agents is effective against EGFR-overexpressing gastric tumors, while ANXA3 overexpression confers resistance to tyrosine kinase inhibitors targeting the EGFR pathway. Conclusions These results suggest that the iEA index or a combination of polymorphisms in EGFR and ANXA3 may serve as predictive factors of drug response, and therefore could be useful for optimal selection of chemotherapy regimens. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1721-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiro Takahashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan. .,Plant Biology Research Center, Chubu University, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, Japan. .,Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Nahoko Kaniwa
- Division of Medicinal Safety Science, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan.
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan.
| | - Kimie Sai
- Division of Medicinal Safety Science, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan.
| | - Tetsuya Hamaguchi
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Kuniaki Shirao
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Yasuhiro Shimada
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Atsushi Ohtsu
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Takayuki Yoshino
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Toshihiko Doi
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Anna Takahashi
- Plant Biology Research Center, Chubu University, Matsumoto-cho 1200, Kasugai, Aichi, 487-8501, Japan.
| | - Yoko Odaka
- Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Misuzu Okuyama
- Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Jun-Ichi Sawada
- Division of Functional Biochemistry and Genomics, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan. .,Present address: Pharmaceutical and Medical Devices Agency, Shinkasumigaseki-building, 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo, 100-0013, Japan.
| | - Hiromi Sakamoto
- Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
28
|
Hrtyan M, Šliková E, Hejátko J, Růžička K. RNA processing in auxin and cytokinin pathways. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4897-912. [PMID: 25922481 DOI: 10.1093/jxb/erv189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Auxin and cytokinin belong to the 'magnificent seven' plant hormones, having tightly interconnected pathways leading to common as well as opposing effects on plant morphogenesis. Tremendous progress in the past years has yielded a broad understanding of their signalling, metabolism, regulatory pathways, transcriptional networks, and signalling cross-talk. One of the rapidly expanding areas of auxin and cytokinin research concerns their RNA regulatory networks. This review summarizes current knowledge about post-transcriptional gene silencing, the role of non-coding RNAs, the regulation of translation, and alternative splicing of auxin- and cytokinin-related genes. In addition, the role of tRNA-bound cytokinins is also discussed. We highlight the most recent publications dealing with this topic and underline the role of RNA processing in auxin- and cytokinin-mediated growth and development.
Collapse
Affiliation(s)
- Mónika Hrtyan
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Eva Šliková
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Jan Hejátko
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Kamil Růžička
- Department of Functional Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| |
Collapse
|
29
|
Ebina I, Takemoto-Tsutsumi M, Watanabe S, Koyama H, Endo Y, Kimata K, Igarashi T, Murakami K, Kudo R, Ohsumi A, Noh AL, Takahashi H, Naito S, Onouchi H. Identification of novel Arabidopsis thaliana upstream open reading frames that control expression of the main coding sequences in a peptide sequence-dependent manner. Nucleic Acids Res 2015; 43:1562-76. [PMID: 25618853 PMCID: PMC4330380 DOI: 10.1093/nar/gkv018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Upstream open reading frames (uORFs) are often found in the 5'-leader regions of eukaryotic mRNAs and can negatively modulate the translational efficiency of the downstream main ORF. Although the effects of most uORFs are thought to be independent of their encoded peptide sequences, certain uORFs control translation of the main ORF in a peptide sequence-dependent manner. For genome-wide identification of such peptide sequence-dependent regulatory uORFs, exhaustive searches for uORFs with conserved amino acid sequences have been conducted using bioinformatic analyses. However, whether the conserved uORFs identified by these bioinformatic approaches encode regulatory peptides has not been experimentally determined. Here we analyzed 16 recently identified Arabidopsis thaliana conserved uORFs for the effects of their amino acid sequences on the expression of the main ORF using a transient expression assay. We identified five novel uORFs that repress main ORF expression in a peptide sequence-dependent manner. Mutational analysis revealed that, in four of them, the C-terminal region of the uORF-encoded peptide is critical for the repression of main ORF expression. Intriguingly, we also identified one exceptional sequence-dependent regulatory uORF, in which the stop codon position is not conserved and the C-terminal region is not important for the repression of main ORF expression.
Collapse
Affiliation(s)
- Isao Ebina
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | - Shun Watanabe
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroaki Koyama
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yayoi Endo
- Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kaori Kimata
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Takuya Igarashi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Karin Murakami
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Rin Kudo
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Arisa Ohsumi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Abdul Latif Noh
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | - Satoshi Naito
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
30
|
Hu Q, Merchante C, Stepanova AN, Alonso JM, Heber S. A Stacking-Based Approach to Identify Translated Upstream Open Reading Frames in Arabidopsis Thaliana. BIOINFORMATICS RESEARCH AND APPLICATIONS 2015. [DOI: 10.1007/978-3-319-19048-8_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
31
|
Murphy E, De Smet I. Understanding the RALF family: a tale of many species. TRENDS IN PLANT SCIENCE 2014; 19:664-71. [PMID: 24999241 DOI: 10.1016/j.tplants.2014.06.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 05/02/2023]
Abstract
Small secreted peptides are gaining importance as signalling molecules in plants. Among the 1000 open reading frames (ORFs) in the Arabidopsis (Arabidopsis thaliana) genome potentially encoding small secreted peptides, the members of the RAPID ALKALINIZATION FACTOR (RALF) family of peptides have been linked to several physiological and developmental processes. Here, we provide a comprehensive overview of current knowledge on the RALF family. Discovered in tobacco (Nicotiana tabacum), the role of RALF peptides has been investigated in numerous plant species. Together, these observations suggest that RALF peptides impact on acidification and cell expansion during growth and development. Although few components of the signalling pathway have been revealed, the recent identification of FERONIA (FER) as a RALF receptor and plasma membrane H(+)-ATPase 2 as a downstream target provide a major step forward.
Collapse
Affiliation(s)
- Evan Murphy
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK; Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| |
Collapse
|
32
|
Analysis of gene expression profiles of soft tissue sarcoma using a combination of knowledge-based filtering with integration of multiple statistics. PLoS One 2014; 9:e106801. [PMID: 25188299 PMCID: PMC4154757 DOI: 10.1371/journal.pone.0106801] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 08/01/2014] [Indexed: 12/21/2022] Open
Abstract
The diagnosis and treatment of soft tissue sarcomas (STS) have been difficult. Of the diverse histological subtypes, undifferentiated pleomorphic sarcoma (UPS) is particularly difficult to diagnose accurately, and its classification per se is still controversial. Recent advances in genomic technologies provide an excellent way to address such problems. However, it is often difficult, if not impossible, to identify definitive disease-associated genes using genome-wide analysis alone, primarily because of multiple testing problems. In the present study, we analyzed microarray data from 88 STS patients using a combination method that used knowledge-based filtering and a simulation based on the integration of multiple statistics to reduce multiple testing problems. We identified 25 genes, including hypoxia-related genes (e.g., MIF, SCD1, P4HA1, ENO1, and STAT1) and cell cycle- and DNA repair-related genes (e.g., TACC3, PRDX1, PRKDC, and H2AFY). These genes showed significant differential expression among histological subtypes, including UPS, and showed associations with overall survival. STAT1 showed a strong association with overall survival in UPS patients (logrank p = 1.84 × 10(-6) and adjusted p value 2.99 × 10(-3) after the permutation test). According to the literature, the 25 genes selected are useful not only as markers of differential diagnosis but also as prognostic/predictive markers and/or therapeutic targets for STS. Our combination method can identify genes that are potential prognostic/predictive factors and/or therapeutic targets in STS and possibly in other cancers. These disease-associated genes deserve further preclinical and clinical validation.
Collapse
|
33
|
Uchiyama-Kadokura N, Murakami K, Takemoto M, Koyanagi N, Murota K, Naito S, Onouchi H. Polyamine-responsive ribosomal arrest at the stop codon of an upstream open reading frame of the AdoMetDC1 gene triggers nonsense-mediated mRNA decay in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2014; 55:1556-67. [PMID: 24929422 DOI: 10.1093/pcp/pcu086] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
During mRNA translation, nascent peptides with certain specific sequences cause arrest of ribosomes that have synthesized themselves. In some cases, such ribosomal arrest is coupled with mRNA decay. In yeast, mRNA quality control systems have been shown to be involved in mRNA decay associated with ribosomal arrest. However, a link between ribosomal arrest and mRNA quality control systems has not been found in multicellular organisms. In this study, we aimed to explore the relationship between ribosomal arrest and mRNA decay in plants. For this purpose, we used an upstream open reading frame (uORF) of the Arabidopsis thaliana AdoMetDC1 gene, in which the uORF-encoded peptide is involved in polyamine-responsive translational repression of the main coding sequence. Our in vitro analyses revealed that the AdoMetDC1 uORF-encoded peptide caused ribosomal arrest at the uORF stop codon in response to polyamine. Using transgenic calli harboring an AdoMetDC1 uORF-containing reporter gene, we showed that polyamine promoted mRNA decay in a uORF sequence-dependent manner. These results suggest that the polyamine-responsive ribosomal arrest mediated by the uORF-encoded peptide is coupled with mRNA decay. Our results also showed that the polyamine-responsive acceleration of mRNA decay was compromised by defects in factors that are essential for nonsense-mediated mRNA decay (NMD), an mRNA quality control system that degrades mRNAs with premature stop codons, suggesting that NMD is involved in AdoMetDC1 uORF peptide-mediated mRNA decay. Collectively, these findings suggest that AdoMetDC1 uORF peptide-mediated ribosomal arrest at the uORF stop codon induces NMD.
Collapse
Affiliation(s)
- Naoko Uchiyama-Kadokura
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Present address: Chifure Corporation, Kawagoe, 350-0833 Japan
| | - Karin Murakami
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Mariko Takemoto
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan Present address: SRD Corporation, Chuo-ku, Tokyo, 104-0032 Japan
| | - Naoto Koyanagi
- Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan Present address: Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Katsunori Murota
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Present address: Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, 062-8517 Japan
| | - Satoshi Naito
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Hitoshi Onouchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| |
Collapse
|
34
|
Takahashi H, Sai K, Saito Y, Kaniwa N, Matsumura Y, Hamaguchi T, Shimada Y, Ohtsu A, Yoshino T, Doi T, Okuda H, Ichinohe R, Takahashi A, Doi A, Odaka Y, Okuyama M, Saijo N, Sawada JI, Sakamoto H, Yoshida T. Application of a combination of a knowledge-based algorithm and 2-stage screening to hypothesis-free genomic data on irinotecan-treated patients for identification of a candidate single nucleotide polymorphism related to an adverse effect. PLoS One 2014; 9:e105160. [PMID: 25127363 PMCID: PMC4134257 DOI: 10.1371/journal.pone.0105160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 07/17/2014] [Indexed: 01/27/2023] Open
Abstract
Interindividual variation in a drug response among patients is known to cause serious problems in medicine. Genomic information has been proposed as the basis for “personalized” health care. The genome-wide association study (GWAS) is a powerful technique for examining single nucleotide polymorphisms (SNPs) and their relationship with drug response variation; however, when using only GWAS, it often happens that no useful SNPs are identified due to multiple testing problems. Therefore, in a previous study, we proposed a combined method consisting of a knowledge-based algorithm, 2 stages of screening, and a permutation test for identifying SNPs. In the present study, we applied this method to a pharmacogenomics study where 109,365 SNPs were genotyped using Illumina Human-1 BeadChip in 168 cancer patients treated with irinotecan chemotherapy. We identified the SNP rs9351963 in potassium voltage-gated channel subfamily KQT member 5 (KCNQ5) as a candidate factor related to incidence of irinotecan-induced diarrhea. The p value for rs9351963 was 3.31×10−5 in Fisher's exact test and 0.0289 in the permutation test (when multiple testing problems were corrected). Additionally, rs9351963 was clearly superior to the clinical parameters and the model involving rs9351963 showed sensitivity of 77.8% and specificity of 57.6% in the evaluation by means of logistic regression. Recent studies showed that KCNQ4 and KCNQ5 genes encode members of the M channel expressed in gastrointestinal smooth muscle and suggested that these genes are associated with irritable bowel syndrome and similar peristalsis diseases. These results suggest that rs9351963 in KCNQ5 is a possible predictive factor of incidence of diarrhea in cancer patients treated with irinotecan chemotherapy and for selecting chemotherapy regimens, such as irinotecan alone or a combination of irinotecan with a KCNQ5 opener. Nonetheless, clinical importance of rs9351963 should be further elucidated.
Collapse
Affiliation(s)
- Hiro Takahashi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| | - Kimie Sai
- Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan
| | - Nahoko Kaniwa
- Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Tetsuya Hamaguchi
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhiro Shimada
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, Japan
| | - Atsushi Ohtsu
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Takayuki Yoshino
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Toshihiko Doi
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Haruhiro Okuda
- Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan
| | - Risa Ichinohe
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- Faculty of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Anna Takahashi
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
| | - Ayano Doi
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- Faculty of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Yoko Odaka
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Misuzu Okuyama
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Nagahiro Saijo
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Jun-ichi Sawada
- Division of Functional Biochemistry and Genomics, National Institute of Health Sciences, Tokyo, Japan
| | - Hiromi Sakamoto
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
35
|
Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 2014; 15:193-204. [PMID: 24514441 DOI: 10.1038/nrg3520] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Short open reading frames (sORFs) are a common feature of all genomes, but their coding potential has mostly been disregarded, partly because of the difficulty in determining whether these sequences are translated. Recent innovations in computing, proteomics and high-throughput analyses of translation start sites have begun to address this challenge and have identified hundreds of putative coding sORFs. The translation of some of these has been confirmed, although the contribution of their peptide products to cellular functions remains largely unknown. This Review examines this hitherto overlooked component of the proteome and considers potential roles for sORF-encoded peptides.
Collapse
|
36
|
von Arnim AG, Jia Q, Vaughn JN. Regulation of plant translation by upstream open reading frames. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 214:1-12. [PMID: 24268158 DOI: 10.1016/j.plantsci.2013.09.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 05/08/2023]
Abstract
We review the evidence that upstream open reading frames (uORFs) function as RNA sequence elements for post-transcriptional control of gene expression, specifically translation. uORFs are highly abundant in the genomes of angiosperms. Their negative effect on translation is often attenuated by ribosomal translation reinitiation, a process whose molecular biochemistry is still being investigated. Certain uORFs render translation responsive to small molecules, thus offering a path for metabolic control of gene expression in evolution and synthetic biology. In some cases, uORFs form modular logic gates in signal transduction. uORFs thus provide eukaryotes with a functionality analogous to, or comparable to, riboswitches and attenuators in prokaryotes. uORFs exist in many genes regulating development and point toward translational control of development. While many uORFs appear to be poorly conserved, and the number of genes with conserved-peptide uORFs is modest, many mRNAs have a conserved pattern of uORFs. Evolutionarily, the gain and loss of uORFs may be a widespread mechanism that diversifies gene expression patterns. Last but not least, this review includes a dedicated uORF database for Arabidopsis.
Collapse
Affiliation(s)
- Albrecht G von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840, USA; Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-0840, USA.
| | | | | |
Collapse
|
37
|
Lloyd JPB, Davies B. SMG1 is an ancient nonsense-mediated mRNA decay effector. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:800-10. [PMID: 24103012 DOI: 10.1111/tpj.12329] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/02/2013] [Accepted: 09/11/2013] [Indexed: 05/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic process that targets selected mRNAs for destruction, for both quality control and gene regulatory purposes. SMG1, the core kinase of the NMD machinery in animals, phosphorylates the highly conserved UPF1 effector protein to activate NMD. However, SMG1 is missing from the genomes of fungi and the model flowering plant Arabidopsis thaliana, leading to the conclusion that SMG1 is animal-specific and questioning the mechanistic conservation of the pathway. Here we show that SMG1 is not animal-specific, by identifying SMG1 in a range of eukaryotes, including all examined green plants with the exception of A. thaliana. Knockout of SMG1 by homologous recombination in the basal land plant Physcomitrella patens reveals that SMG1 has a conserved role in the NMD pathway across kingdoms. SMG1 has been lost at various points during the evolution of eukaryotes from multiple lineages, including an early loss in the fungal lineage and a very recent observable gene loss in A. thaliana. These findings suggest that the SMG1 kinase functioned in the NMD pathway of the last common eukaryotic ancestor.
Collapse
Affiliation(s)
- James P B Lloyd
- Faculty of Biological Sciences, Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
38
|
Takahashi H, Nakayama R, Hayashi S, Nemoto T, Murase Y, Nomura K, Takahashi T, Kubo K, Marui S, Yasuhara K, Nakamura T, Sueo T, Takahashi A, Tsutsumiuchi K, Ohta T, Kawai A, Sugita S, Yamamoto S, Kobayashi T, Honda H, Yoshida T, Hasegawa T. Macrophage migration inhibitory factor and stearoyl-CoA desaturase 1: potential prognostic markers for soft tissue sarcomas based on bioinformatics analyses. PLoS One 2013; 8:e78250. [PMID: 24167613 PMCID: PMC3805525 DOI: 10.1371/journal.pone.0078250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 09/10/2013] [Indexed: 11/18/2022] Open
Abstract
The diagnosis and treatment of soft tissue sarcomas (STSs) has been particularly difficult, because STSs are a group of highly heterogeneous tumors in terms of histopathology, histological grade, and primary site. Recent advances in genome technologies have provided an excellent opportunity to determine the complete biological characteristics of neoplastic tissues, resulting in improved diagnosis, treatment selection, and investigation of therapeutic targets. We had previously developed a novel bioinformatics method for marker gene selection and applied this method to gene expression data from STS patients. This previous analysis revealed that the extracted gene combination of macrophage migration inhibitory factor (MIF) and stearoyl-CoA desaturase 1 (SCD1) is an effective diagnostic marker to discriminate between subtypes of STSs with highly different outcomes. In the present study, we hypothesize that the combination of MIF and SCD1 is also a prognostic marker for the overall outcome of STSs. To prove this hypothesis, we first analyzed microarray data from 88 STS patients and their outcomes. Our results show that the survival rates for MIF- and SCD1-positive groups were lower than those for negative groups, and the p values of the log-rank test are 0.0146 and 0.00606, respectively. In addition, survival rates are more significantly different (p = 0.000116) between groups that are double-positive and double-negative for MIF and SCD1. Furthermore, in vitro cell growth inhibition experiments by MIF and SCD1 inhibitors support the hypothesis. These results suggest that the gene set is useful as a prognostic marker associated with tumor progression.
Collapse
Affiliation(s)
- Hiro Takahashi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| | - Robert Nakayama
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- Cancer Transcriptome Project, National Cancer Center Research Institute, Tokyo, Japan
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shuhei Hayashi
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Takeshi Nemoto
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Dermatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuyuki Murase
- Department of Biotechnology, School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Koji Nomura
- Department of Biotechnology, School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Teruyoshi Takahashi
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Kenji Kubo
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Shigetaka Marui
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Koji Yasuhara
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Tetsuro Nakamura
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Takuya Sueo
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
| | - Anna Takahashi
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
| | - Kaname Tsutsumiuchi
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Tsutomu Ohta
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Kawai
- Orthopedics Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shintaro Sugita
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Shinjiro Yamamoto
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Takeshi Kobayashi
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
| | - Hiroyuki Honda
- Department of Biotechnology, School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
- Pathology Division, National Cancer Center Hospital, Tokyo, Japan,
| |
Collapse
|
39
|
Takahashi H, Kaniwa N, Saito Y, Sai K, Hamaguchi T, Shirao K, Shimada Y, Matsumura Y, Ohtsu A, Yoshino T, Takahashi A, Odaka Y, Okuyama M, Sawada JI, Sakamoto H, Yoshida T. Identification of a candidate single-nucleotide polymorphism related to chemotherapeutic response through a combination of knowledge-based algorithm and hypothesis-free genomic data. J Biosci Bioeng 2013; 116:768-73. [PMID: 23816762 DOI: 10.1016/j.jbiosc.2013.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/02/2013] [Accepted: 05/13/2013] [Indexed: 01/06/2023]
Abstract
Inter-individual variations in drug responses among patients are known to cause serious problems in medicine. Genome-wide association study (GWAS) is powerful for examining single-nucleotide polymorphisms (SNPs) and their relationships with drug response variations. However, no significant SNP has been identified using GWAS due to multiple testing problems. Therefore, we propose a combination method consisting of knowledge-based algorithm, two stages of screening, and permutation test for identifying SNPs in the present study. We applied this method to a genome-wide pharmacogenomics study for which 109,365 SNPs had been genotyped using Illumina Human-1 BeadChip for 119 gastric cancer patients treated with fluoropyrimidine. We identified rs2293347 in epidermal growth factor receptor (EGFR) is as a candidate SNP related to chemotherapeutic response. The p value for the rs2293347 was 2.19 × 10(-5) for Fisher's exact test, and the p value was 0.00360 for the permutation test (multiple testing problems are corrected). Additionally, rs2293347 was clearly superior to clinical parameters and showed a sensitivity value of 55.0% and specificity value of 94.4% in the evaluation by using multiple regression models. Recent studies have shown that combination chemotherapy of fluoropyrimidine and EGFR-targeting agents is effective for gastric cancer patients highly expressing EGFR. These results suggest that rs2293347 is a potential predictive factor for selecting chemotherapies, such as fluoropyrimidine alone or combination chemotherapies.
Collapse
Affiliation(s)
- Hiro Takahashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan; Plant Biology Research Center, Chubu University, Matsumoto-cho 1200, Kasugai, Aichi 487-8501, Japan; Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Iwasaki M, Takahashi H, Iwakawa H, Nakagawa A, Ishikawa T, Tanaka H, Matsumura Y, Pekker I, Eshed Y, Vial-Pradel S, Ito T, Watanabe Y, Ueno Y, Fukazawa H, Kojima S, Machida Y, Machida C. Dual regulation of ETTIN (ARF3) gene expression by AS1-AS2, which maintains the DNA methylation level, is involved in stabilization of leaf adaxial-abaxial partitioning in Arabidopsis. Development 2013; 140:1958-69. [PMID: 23571218 DOI: 10.1242/dev.085365] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Leaf primordia are generated at the periphery of the shoot apex, developing into flat symmetric organs with adaxial-abaxial polarity, in which the indeterminate state is repressed. Despite the crucial role of the ASYMMETRIC LEAVES1 (AS1)-AS2 nuclear-protein complex in leaf adaxial-abaxial polarity specification, information on mechanisms controlling their downstream genes has remained elusive. We systematically analyzed transcripts by microarray and chromatin immunoprecipitation assays and performed genetic rescue of as1 and as2 phenotypic abnormalities, which identified a new target gene, ETTIN (ETT)/AUXIN RESPONSE FACTOR3 (ARF3), which encodes an abaxial factor acting downstream of the AS1-AS2 complex. While the AS1-AS2 complex represses ETT by direct binding of AS1 to the ETT promoter, it also indirectly activates miR390- and RDR6-dependent post-transcriptional gene silencing to negatively regulate both ETT and ARF4 activities. Furthermore, AS1-AS2 maintains the status of DNA methylation in the ETT coding region. In agreement, filamentous leaves formed in as1 and as2 plants treated with a DNA methylation inhibitor were rescued by loss of ETT and ARF4 activities. We suggest that negative transcriptional, post-transcriptional and epigenetic regulation of the ARFs by AS1-AS2 is important for stabilizing early leaf partitioning into abaxial and adaxial domains.
Collapse
Affiliation(s)
- Mayumi Iwasaki
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chiba Y, Mineta K, Hirai MY, Suzuki Y, Kanaya S, Takahashi H, Onouchi H, Yamaguchi J, Naito S. Changes in mRNA stability associated with cold stress in Arabidopsis cells. PLANT & CELL PHYSIOLOGY 2013; 54:180-94. [PMID: 23220693 DOI: 10.1093/pcp/pcs164] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Control of mRNA half-life is a powerful strategy to adjust individual mRNA levels to various stress conditions, because the mRNA degradation rate controls not only the steady-state mRNA level but also the transition speed of mRNA levels. Here, we analyzed mRNA half-life changes in response to cold stress in Arabidopsis cells using genome-wide analysis, in which mRNA half-life measurements and transcriptome analysis were combined. Half-lives of average transcripts were determined to be elongated under cold conditions. Taking this general shift into account, we identified more than a thousand transcripts that were classified as relatively stabilized or relatively destabilized. The relatively stabilized class was predominantly observed in functional categories that included various regulators involved in transcriptional, post-transcriptional and post-translational processes. On the other hand, the relatively destabilized class was enriched in categories related to stress and hormonal response proteins, supporting the idea that rapid decay of mRNA is advantageous for swift responses to stress. In addition, pentatricopeptide repeat, cyclin-like F-box and Myb transcription factor protein families were significantly over-represented in the relatively destabilized class. The global analysis presented here demonstrates not only the importance of mRNA turnover control in the cold stress response but also several structural characteristics that might be important in the control of mRNA stability.
Collapse
MESH Headings
- Adaptation, Physiological
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Cells, Cultured
- Cold Temperature
- Deoxyadenosines/pharmacology
- Gene Expression Regulation, Plant
- Half-Life
- Plant Cells/drug effects
- Plant Cells/metabolism
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protein Structure, Tertiary
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stress, Physiological
- Time Factors
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Yukako Chiba
- Creative Research Institution, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Arabidopsis ribosomal proteins control developmental programs through translational regulation of auxin response factors. Proc Natl Acad Sci U S A 2012; 109:19537-44. [PMID: 23144218 DOI: 10.1073/pnas.1214774109] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upstream ORFs are elements found in the 5'-leader sequences of specific mRNAs that modulate the translation of downstream ORFs encoding major gene products. In Arabidopsis, the translational control of auxin response factors (ARFs) by upstream ORFs has been proposed as a regulatory mechanism required to respond properly to complex auxin-signaling inputs. In this study, we identify and characterize the aberrant auxin responses in specific ribosomal protein mutants in which multiple ARF transcription factors are simultaneously repressed at the translational level. This characteristic lends itself to the use of these mutants as genetic tools to bypass the genetic redundancy among members of the ARF family in Arabidopsis. Using this approach, we were able to assign unique functions for ARF2, ARF3, and ARF6 in plant development.
Collapse
|
43
|
Rayson S, Ashworth M, de Torres Zabala M, Grant M, Davies B. The salicylic acid dependent and independent effects of NMD in plants. PLANT SIGNALING & BEHAVIOR 2012; 7:1434-7. [PMID: 22990450 PMCID: PMC3548866 DOI: 10.4161/psb.21960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In eukaryotes, nonsense-mediated mRNA decay (NMD) targets aberrant and selected non-aberrant mRNAs for destruction. A recent screen for mRNAs showing increased abundance in Arabidopsis NMD-deficient mutants revealed that most are associated with the salicylic acid (SA)-mediated defense pathway. mRNAs with conserved peptide upstream open reading frames (CpuORFs or CuORFs) are hugely overrepresented among the smaller class of NMD-regulated transcripts not associated with SA. Here we show that the common phenotypes observed in Arabidopsis NMD mutants are SA-dependent, whereas the upregulation of CpuORF-containing transcripts in NMD mutants is independent of SA. We speculate that CpuORFs could allow the conditional targeting of mRNAs for destruction using the NMD pathway.
Collapse
Affiliation(s)
- Samantha Rayson
- Centre for Plant Sciences; Faculty of Biological Sciences; University of Leeds; Leeds, UK
| | - Mary Ashworth
- Centre for Plant Sciences; Faculty of Biological Sciences; University of Leeds; Leeds, UK
| | - Marta de Torres Zabala
- Biosciences; College of Life and Environmental Sciences; Geoffrey Pope; University of Exeter; Exeter, UK
| | - Murray Grant
- Biosciences; College of Life and Environmental Sciences; Geoffrey Pope; University of Exeter; Exeter, UK
| | - Brendan Davies
- Centre for Plant Sciences; Faculty of Biological Sciences; University of Leeds; Leeds, UK
- Correspondence to: Brendan Davies,
| |
Collapse
|