1
|
Lee SJ, Ferguson C, Urbano S, Lee J, Jeong P, Cheela M, Mitsunobu H, Zhu B, Prajapati A, Richardson CC, Hernandez AJ. Mechanism of Annealing of Complementary DNA Strands by the Single-Stranded DNA Binding Protein of Bacteriophage T7. Biochemistry 2025; 64:1550-1559. [PMID: 40070037 DOI: 10.1021/acs.biochem.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Gp2.5, an essential single-stranded DNA-binding protein encoded by bacteriophage T7, is integral to various steps of DNA metabolism. Unlike other single-stranded DNA binding proteins, it greatly facilitates the annealing of complementary DNA strands. Gp2.5 efficiently anneals DNA duplexes as short as 30 base pairs: efficient annealing occurs at a 100-fold lower concentration of complementary strands than that required in the absence of gp2.5. Additionally, gp2.5 selectively promotes DNA annealing with no observed effect on RNA or DNA hybrids. Kinetic studies show a substantial increase in the annealing rate, with gp2.5 accelerating the process by 30-fold compared with spontaneous annealing. Gp2.5 tolerates mismatches and unpaired loops within DNA, facilitating annealing in sequences with slight imperfections. FRET analysis demonstrates that gp2.5 brings strands of ssDNA into close proximity irrespective of their complementarity, likely through interactions between gp2.5 molecules. A unique long α helix A in gp2.5 is critical for its annealing activity: deletions of helix A impair DNA annealing without affecting DNA replication functions.
Collapse
Affiliation(s)
- Seung-Joo Lee
- Department of Biology, Tufts University, Medford, Massachusetts 02130, United States
| | - Charlotte Ferguson
- Department of Biology, Tufts University, Medford, Massachusetts 02130, United States
| | - Sebastian Urbano
- Department of Biology, Tufts University, Medford, Massachusetts 02130, United States
| | - Jaehun Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Peter Jeong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Meghana Cheela
- Department of Biology, Tufts University, Medford, Massachusetts 02130, United States
| | - Hitoshi Mitsunobu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Bin Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ashmita Prajapati
- Department of Biology, Tufts University, Medford, Massachusetts 02130, United States
| | - Charles C Richardson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Alfredo J Hernandez
- Department of Biology, Tufts University, Medford, Massachusetts 02130, United States
| |
Collapse
|
2
|
Yutin N, Mutz P, Krupovic M, Koonin EV. Mriyaviruses: small relatives of giant viruses. mBio 2024; 15:e0103524. [PMID: 38832788 PMCID: PMC11253617 DOI: 10.1128/mbio.01035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 06/05/2024] Open
Abstract
The phylum Nucleocytoviricota consists of large and giant viruses that range in genome size from about 100 kilobases (kb) to more than 2.5 megabases. Here, using metagenome mining followed by extensive phylogenomic analysis and protein structure comparison, we delineate a distinct group of viruses with double-stranded (ds) DNA genomes in the range of 35-45 kb that appear to be related to the Nucleocytoviricota. In phylogenetic trees of the conserved double jelly-roll major capsid proteins (MCPs) and DNA packaging ATPases, these viruses do not show affinity to any particular branch of the Nucleocytoviricota and accordingly would comprise a class which we propose to name "Mriyaviricetes" (after Ukrainian "mriya," dream). Structural comparison of the MCP suggests that, among the extant virus lineages, mriyaviruses are the closest one to the ancestor of the Nucleocytoviricota. In the phylogenetic trees, mriyaviruses split into two well-separated branches, the family Yaraviridae and proposed new family "Gamadviridae." The previously characterized members of these families, yaravirus and Pleurochrysis sp. endemic viruses, infect amoeba and haptophytes, respectively. The genomes of the rest of the mriyaviruses were assembled from metagenomes from diverse environments, suggesting that mriyaviruses infect various unicellular eukaryotes. Mriyaviruses lack DNA polymerase, which is encoded by all other members of the Nucleocytoviricota, and RNA polymerase subunits encoded by all cytoplasmic viruses among the Nucleocytoviricota, suggesting that they replicate in the host cell nuclei. All mriyaviruses encode a HUH superfamily endonuclease that is likely to be essential for the initiation of virus DNA replication via the rolling circle mechanism. IMPORTANCE The origin of giant viruses of eukaryotes that belong to the phylum Nucleocytoviricota is not thoroughly understood and remains a matter of major interest and debate. Here, we combine metagenome database searches with extensive protein sequence and structure analysis to describe a distinct group of viruses with comparatively small genomes of 35-45 kilobases that appear to comprise a distinct class within the phylum Nucleocytoviricota that we provisionally named "Mriyaviricetes." Mriyaviruses appear to be the closest identified relatives of the ancestors of the Nucleocytoviricota. Analysis of proteins encoded in mriyavirus genomes suggests that they replicate their genome via the rolling circle mechanism that is unusual among viruses with double-stranded DNA genomes and so far not described for members of Nucleocytoviricota.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Yutin N, Mutz P, Krupovic M, Koonin EV. Mriyaviruses: Small Relatives of Giant Viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582850. [PMID: 38529486 PMCID: PMC10962738 DOI: 10.1101/2024.02.29.582850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The phylum Nucleocytoviricota consists of large and giant viruses that range in genome size from about 100 kilobases (kb) to more than 2.5 megabases. Here, using metagenome mining followed by extensive phylogenomic analysis and protein structure comparison, we delineate a distinct group of viruses with double-stranded (ds) DNA genomes in the range of 35-45 kb that appear to be related to the Nucleocytoviricota. In phylogenetic trees of the conserved double jelly-roll major capsid proteins (MCP) and DNA packaging ATPases, these viruses do not show affinity to any particular branch of the Nucleocytoviricota and accordingly would comprise a class which we propose to name "Mriyaviricetes" (after Ukrainian Mriya, dream). Structural comparison of the MCP suggests that, among the extant virus lineages, mriyaviruses are the closest one to the ancestor of the Nucleocytoviricota. In the phylogenetic trees, mriyaviruses split into two well-separated branches, the family Yaraviridae and proposed new family "Gamadviridae". The previously characterized members of these families, Yaravirus and Pleurochrysis sp. endemic viruses, infect amoeba and haptophytes, respectively. The genomes of the rest of the mriyaviruses were assembled from metagenomes from diverse environments, suggesting that mriyaviruses infect various unicellular eukaryotes. Mriyaviruses lack DNA polymerase, which is encoded by all other members of the Nucleocytoviricota, and RNA polymerase subunits encoded by all cytoplasmic viruses among the Nucleocytoviricota, suggesting that they replicate in the host cell nuclei. All mriyaviruses encode a HUH superfamily endonuclease that is likely to be essential for the initiation of virus DNA replication via the rolling circle mechanism.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris 75015, France
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
4
|
Sather LM, Zamani M, Muhammed Z, Kearsley JVS, Fisher GT, Jones KM, Finan TM. A broadly distributed predicted helicase/nuclease confers phage resistance via abortive infection. Cell Host Microbe 2023; 31:343-355.e5. [PMID: 36893733 DOI: 10.1016/j.chom.2023.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 03/11/2023]
Abstract
There is strong selection for the evolution of systems that protect bacterial populations from viral attack. We report a single phage defense protein, Hna, that provides protection against diverse phages in Sinorhizobium meliloti, a nitrogen-fixing alpha-proteobacterium. Homologs of Hna are distributed widely across bacterial lineages, and a homologous protein from Escherichia coli also confers phage defense. Hna contains superfamily II helicase motifs at its N terminus and a nuclease motif at its C terminus, with mutagenesis of these motifs inactivating viral defense. Hna variably impacts phage DNA replication but consistently triggers an abortive infection response in which infected cells carrying the system die but do not release phage progeny. A similar host cell response is triggered in cells containing Hna upon expression of a phage-encoded single-stranded DNA binding protein (SSB), independent of phage infection. Thus, we conclude that Hna limits phage spread by initiating abortive infection in response to a phage protein.
Collapse
Affiliation(s)
- Leah M Sather
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Maryam Zamani
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Zahed Muhammed
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Jason V S Kearsley
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Gabrielle T Fisher
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
5
|
Bocanegra R, Plaza G A I, Ibarra B. In vitro single-molecule manipulation studies of viral DNA replication. Enzymes 2021; 49:115-148. [PMID: 34696830 DOI: 10.1016/bs.enz.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Faithfull replication of genomic information relies on the coordinated activity of the multi-protein machinery known as the replisome. Several constituents of the replisome operate as molecular motors that couple thermal and chemical energy to a mechanical task. Over the last few decades, in vitro single-molecule manipulation techniques have been used to monitor and manipulate mechanically the activities of individual molecular motors involved in DNA replication with nanometer, millisecond, and picoNewton resolutions. These studies have uncovered the real-time kinetics of operation of these biological systems, the nature of their transient intermediates, and the processes by which they convert energy to work (mechano-chemistry), ultimately providing new insights into their inner workings of operation not accessible by ensemble assays. In this chapter, we describe two of the most widely used single-molecule manipulation techniques for the study of DNA replication, optical and magnetic tweezers, and their application in the study of the activities of proteins involved in viral DNA replication.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Madrid, Spain
| | - Ismael Plaza G A
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Madrid, Spain
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, Madrid, Spain.
| |
Collapse
|
6
|
Lechuga A, Kazlauskas D, Salas M, Redrejo-Rodríguez M. Unlimited Cooperativity of Betatectivirus SSB, a Novel DNA Binding Protein Related to an Atypical Group of SSBs From Protein-Primed Replicating Bacterial Viruses. Front Microbiol 2021; 12:699140. [PMID: 34267740 PMCID: PMC8276246 DOI: 10.3389/fmicb.2021.699140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022] Open
Abstract
Bam35 and related betatectiviruses are tail-less bacteriophages that prey on members of the Bacillus cereus group. These temperate viruses replicate their linear genome by a protein-primed mechanism. In this work, we have identified and characterized the product of the viral ORF2 as a single-stranded DNA binding protein (hereafter B35SSB). B35SSB binds ssDNA with great preference over dsDNA or RNA in a sequence-independent, highly cooperative manner that results in a non-specific stimulation of DNA replication. We have also identified several aromatic and basic residues, involved in base-stacking and electrostatic interactions, respectively, that are required for effective protein-ssDNA interaction. Although SSBs are essential for DNA replication in all domains of life as well as many viruses, they are very diverse proteins. However, most SSBs share a common structural domain, named OB-fold. Protein-primed viruses could constitute an exception, as no OB-fold DNA binding protein has been reported. Based on databases searches as well as phylogenetic and structural analyses, we showed that B35SSB belongs to a novel and independent group of SSBs. This group contains proteins encoded by protein-primed viral genomes from unrelated viruses, spanning betatectiviruses and Φ29 and close podoviruses, and they share a conserved pattern of secondary structure. Sensitive searches and structural predictions indicate that B35SSB contains a conserved domain resembling a divergent OB-fold, which would constitute the first occurrence of an OB-fold-like domain in a protein-primed genome.
Collapse
Affiliation(s)
- Ana Lechuga
- Centro de Biologiìa Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, Vilnius, Lithuania
| | - Margarita Salas
- Centro de Biologiìa Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Modesto Redrejo-Rodríguez
- Centro de Biologiìa Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| |
Collapse
|
7
|
Patil S, Kondabagil K. Coevolutionary and Phylogenetic Analysis of Mimiviral Replication Machinery Suggest the Cellular Origin of Mimiviruses. Mol Biol Evol 2021; 38:2014-2029. [PMID: 33570580 PMCID: PMC8097291 DOI: 10.1093/molbev/msab003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mimivirus is one of the most complex and largest viruses known. The origin and evolution of Mimivirus and other giant viruses have been a subject of intense study in the last two decades. The two prevailing hypotheses on the origin of Mimivirus and other viruses are the reduction hypothesis, which posits that viruses emerged from modern unicellular organisms; whereas the virus-first hypothesis proposes viruses as relics of precellular forms of life. In this study, to gain insights into the origin of Mimivirus, we have carried out extensive phylogenetic, correlation, and multidimensional scaling analyses of the putative proteins involved in the replication of its 1.2-Mb large genome. Correlation analysis and multidimensional scaling methods were validated using bacteriophage, bacteria, archaea, and eukaryotic replication proteins before applying to Mimivirus. We show that a large fraction of mimiviral replication proteins, including polymerase B, clamp, and clamp loaders are of eukaryotic origin and are coevolving. Although phylogenetic analysis places some components along the lineages of phage and bacteria, we show that all the replication-related genes have been homogenized and are under purifying selection. Collectively our analysis supports the idea that Mimivirus originated from a complex cellular ancestor. We hypothesize that Mimivirus has largely retained complex replication machinery reminiscent of its progenitor while losing most of the other genes related to processes such as metabolism and translation.
Collapse
Affiliation(s)
- Supriya Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Herpes simplex virus 1 ICP8 mutant lacking annealing activity is deficient for viral DNA replication. Proc Natl Acad Sci U S A 2018; 116:1033-1042. [PMID: 30598436 DOI: 10.1073/pnas.1817642116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most DNA viruses that use recombination-dependent mechanisms to replicate their DNA encode a single-strand annealing protein (SSAP). The herpes simplex virus (HSV) single-strand DNA binding protein (SSB), ICP8, is the central player in all stages of DNA replication. ICP8 is a classical replicative SSB and interacts physically and/or functionally with the other viral replication proteins. Additionally, ICP8 can promote efficient annealing of complementary ssDNA and is thus considered to be a member of the SSAP family. The role of annealing during HSV infection has been difficult to assess in part, because it has not been possible to distinguish between the role of ICP8 as an SSAP from its role as a replicative SSB during viral replication. In this paper, we have characterized an ICP8 mutant, Q706A/F707A (QF), that lacks annealing activity but retains many other functions characteristic of replicative SSBs. Like WT ICP8, the QF mutant protein forms filaments in vitro, binds ssDNA cooperatively, and stimulates the activities of other replication proteins including the viral polymerase, helicase-primase complex, and the origin binding protein. Interestingly, the QF mutant does not complement an ICP8-null virus for viral growth, replication compartment formation, or DNA replication. Thus, we have been able to separate the activities of ICP8 as a replicative SSB from its annealing activity. Taken together, our data indicate that the annealing activity of ICP8 is essential for viral DNA replication in the context of infection and support the notion that HSV-1 uses recombination-dependent mechanisms during DNA replication.
Collapse
|
9
|
Mir-Sanchis I, Pigli YZ, Rice PA. Crystal Structure of an Unusual Single-Stranded DNA-Binding Protein Encoded by Staphylococcal Cassette Chromosome Elements. Structure 2018; 26:1144-1150.e3. [PMID: 30017563 PMCID: PMC6084467 DOI: 10.1016/j.str.2018.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/19/2018] [Accepted: 05/24/2018] [Indexed: 01/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus is a global public health threat. Methicillin resistance is carried on mobile genetic elements belonging to the staphylococcal cassette chromosome (SCC) family. The molecular mechanisms that SCC elements exploit for stable maintenance and for horizontal transfer are poorly understood. Previously, we identified several conserved SCC genes with putative functions in DNA replication, including lp1413, which we found encodes a single-stranded DNA (ssDNA)-binding protein. We report here the 2.18 Å crystal structure of LP1413, which shows that it adopts a winged helix-turn-helix fold rather than the OB-fold normally seen in replication-related ssDNA-binding proteins. However, conserved residues form a hydrophobic pocket not normally found in winged helix-turn-helix domains. LP1413 also has a conserved but disordered C-terminal tail. As deletion of the tail does not significantly affect cooperative binding to ssDNA, we propose that it mediates interactions with other proteins. LP1413 could play several different roles in vivo.
Collapse
|
10
|
Hernandez AJ, Richardson CC. Gp2.5, the multifunctional bacteriophage T7 single-stranded DNA binding protein. Semin Cell Dev Biol 2018; 86:92-101. [PMID: 29588157 DOI: 10.1016/j.semcdb.2018.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/29/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
The essential bacteriophage T7-encoded single-stranded DNA binding protein is the nexus of T7 DNA metabolism. Multiple layers of macromolecular interactions mediate its function in replication, recombination, repair, and the maturation of viral genomes. In addition to binding ssDNA, the protein binds to DNA polymerase and DNA helicase, regulating their activities. The protein displays potent homologous DNA annealing activity, underscoring its role in recombination.
Collapse
Affiliation(s)
- Alfredo J Hernandez
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Charles C Richardson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Isolation and Characterization of vΔI3 Confirm that Vaccinia Virus SSB Plays an Essential Role in Viral Replication. J Virol 2018; 92:JVI.01719-17. [PMID: 29093092 DOI: 10.1128/jvi.01719-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/20/2017] [Indexed: 01/11/2023] Open
Abstract
Vaccinia virus is unusual among DNA viruses in replicating exclusively in the cytoplasm of infected cells. The single-stranded DNA (ssDNA) binding protein (SSB) I3 is among the replication machinery encoded by the 195-kb genome, although direct genetic analysis of I3 has been lacking. Herein, we describe a complementing cell line (CV1-I3) that fully supports the replication of a null virus (vΔI3) lacking the I3 open reading frame (ORF). In noncomplementing CV1-CAT cells, vΔI3 shows a severe defect in the production of infectious virus (≥200-fold reduction). Early protein synthesis and core disassembly occur normally. However, DNA replication is profoundly impaired (≤0.2% of wild-type [WT] levels), and late proteins do not accumulate. When several other noncomplementing cell lines are infected with vΔI3, the yield of infectious virus is also dramatically reduced (168- to 1,776-fold reduction). Surprisingly, the residual levels of DNA accumulation vary from 1 to 12% in the different cell lines (CV1-CAT < A549 < BSC40 < HeLa); however, any nascent DNA that can be detected is subgenomic in size. Although this subgenomic DNA supports late protein expression, it does not support the production of infectious virions. Electron microscopy (EM) analysis of vΔI3-infected BSC40 cells reveals that immature virions are abundant but no mature virions are observed. Aberrant virions characteristic of a block to genome encapsidation are seen instead. Finally, we demonstrate that a CV1 cell line encoding a previously described I3 variant with impaired ssDNA binding activity is unable to complement vΔI3. This report provides definitive evidence that the vaccinia virus I3 protein is the replicative SSB and is essential for productive viral replication.IMPORTANCE Poxviruses are of historical and contemporary importance as infectious agents, vaccines, and oncolytic therapeutics. The cytoplasmic replication of poxviruses is unique among DNA viruses of mammalian cells and necessitates that the double-stranded DNA (dsDNA) genome encode the viral replication machinery. This study focuses on the I3 protein. As a ssDNA binding protein (SSB), I3 has been presumed to play essential roles in genome replication, recombination, and repair, although genetic analysis has been lacking. Herein, we report the characterization of an I3 deletion virus. In the absence of I3 expression, DNA replication is severely compromised and viral yield profoundly decreased. The production of infectious virus can be restored in a cell line expressing WT I3 but not in a cell line expressing an I3 mutant that is defective in ssDNA binding activity. These data show conclusively that I3 is an essential viral protein and functions as the viral replicative SSB.
Collapse
|
12
|
Kazlauskas D, Sezonov G, Charpin N, Venclovas Č, Forterre P, Krupovic M. Novel Families of Archaeo-Eukaryotic Primases Associated with Mobile Genetic Elements of Bacteria and Archaea. J Mol Biol 2017; 430:737-750. [PMID: 29198957 PMCID: PMC5862659 DOI: 10.1016/j.jmb.2017.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/15/2022]
Abstract
Cellular organisms in different domains of life employ structurally unrelated, non-homologous DNA primases for synthesis of a primer for DNA replication. Archaea and eukaryotes encode enzymes of the archaeo-eukaryotic primase (AEP) superfamily, whereas bacteria uniformly use primases of the DnaG family. However, AEP genes are widespread in bacterial genomes raising questions regarding their provenance and function. Here, using an archaeal primase–polymerase PolpTN2 encoded by pTN2 plasmid as a seed for sequence similarity searches, we recovered over 800 AEP homologs from bacteria belonging to 12 highly diverse phyla. These sequences formed a supergroup, PrimPol-PV1, and could be classified into five novel AEP families which are characterized by a conserved motif containing an arginine residue likely to be involved in nucleotide binding. Functional assays confirm the essentiality of this motif for catalytic activity of the PolpTN2 primase–polymerase. Further analyses showed that bacterial AEPs display a range of domain organizations and uncovered several candidates for novel families of helicases. Furthermore, sequence and structure comparisons suggest that PriCT-1 and PriCT-2 domains frequently fused to the AEP domains are related to each other as well as to the non-catalytic, large subunit of archaeal and eukaryotic primases, and to the recently discovered PriX subunit of archaeal primases. Finally, genomic neighborhood analysis indicates that the identified AEPs encoded in bacterial genomes are nearly exclusively associated with highly diverse integrated mobile genetic elements, including integrative conjugative plasmids and prophages. Primases of the archaeo-eukaryotic primase (AEP) superfamily are widespread in bacteria. We describe five new AEP families in bacteria belonging to 12 diverse phyla. The new AEP families display a conserved signature motif likely involved in nucleotide binding. The primase domains are fused to diverse functional domains, revealing new families of putative helicases. The novel primases are encoded within highly diverse integrated mobile genetic elements.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Guennadi Sezonov
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7138 Evolution Paris Seine-Institut de Biologie Paris Seine, Paris 75005, France
| | - Nicole Charpin
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania.
| | - Patrick Forterre
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France.
| |
Collapse
|
13
|
Cernooka E, Rumnieks J, Tars K, Kazaks A. Structural Basis for DNA Recognition of a Single-stranded DNA-binding Protein from Enterobacter Phage Enc34. Sci Rep 2017; 7:15529. [PMID: 29138440 PMCID: PMC5686142 DOI: 10.1038/s41598-017-15774-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/01/2017] [Indexed: 11/29/2022] Open
Abstract
Modern DNA sequencing capabilities have led to the discovery of a large number of new bacteriophage genomes, which are a rich source of novel proteins with an unidentified biological role. The genome of Enterobacter cancerogenus bacteriophage Enc34 contains several proteins of unknown function that are nevertheless conserved among distantly related phages. Here, we report the crystal structure of a conserved Enc34 replication protein ORF6 which contains a domain of unknown function DUF2815. Despite the low (~15%) sequence identity, the Enc34 ORF6 structurally resembles the gene 2.5 protein from bacteriophage T7, and likewise is a single-stranded DNA (ssDNA)-binding protein (SSB) that consists of a variation of the oligosaccharide/oligonucleotide-binding (OB)-fold and an unstructured C-terminal segment. We further report the crystal structure of a C-terminally truncated ORF6 in complex with an ssDNA oligonucleotide that reveals a DNA-binding mode involving two aromatic stacks and multiple electrostatic interactions, with implications for a common ssDNA recognition mechanism for all T7-type SSBs.
Collapse
Affiliation(s)
- Elina Cernooka
- Latvian Biomedical Research and Study Centre, Riga, LV-1067, Latvia
| | - Janis Rumnieks
- Latvian Biomedical Research and Study Centre, Riga, LV-1067, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Riga, LV-1067, Latvia.
- Faculty of Biology, Department of Molecular Biology, Riga, LV-1004, Latvia.
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Riga, LV-1067, Latvia.
| |
Collapse
|
14
|
Delattre H, Souiai O, Fagoonee K, Guerois R, Petit MA. Phagonaute: A web-based interface for phage synteny browsing and protein function prediction. Virology 2016; 496:42-50. [PMID: 27254594 DOI: 10.1016/j.virol.2016.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
Distant homology search tools are of great help to predict viral protein functions. However, due to the lack of profile databases dedicated to viruses, they can lack sensitivity. We constructed HMM profiles for more than 80,000 proteins from both phages and archaeal viruses, and performed all pairwise comparisons with HHsearch program. The whole resulting database can be explored through a user-friendly "Phagonaute" interface to help predict functions. Results are displayed together with their genetic context, to strengthen inferences based on remote homology. Beyond function prediction, this tool permits detections of co-occurrences, often indicative of proteins completing a task together, and observation of conserved patterns across large evolutionary distances. As a test, Herpes simplex virus I was added to Phagonaute, and 25% of its proteome matched to bacterial or archaeal viral protein counterparts. Phagonaute should therefore help virologists in their quest for protein functions and evolutionary relationships.
Collapse
Affiliation(s)
- Hadrien Delattre
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Oussema Souiai
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Khema Fagoonee
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Raphaël Guerois
- I2BC, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Marie-Agnès Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
15
|
Kazlauskas D, Krupovic M, Venclovas Č. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes. Nucleic Acids Res 2016; 44:4551-64. [PMID: 27112572 PMCID: PMC4889955 DOI: 10.1093/nar/gkw322] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/13/2016] [Indexed: 11/14/2022] Open
Abstract
Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Vilnius University, Vilnius LT-02241, Lithuania
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Česlovas Venclovas
- Institute of Biotechnology, Vilnius University, Vilnius LT-02241, Lithuania
| |
Collapse
|
16
|
|