1
|
Brito MDF, Torre C, Silva-Lima B. Scientific Advances in Diabetes: The Impact of the Innovative Medicines Initiative. Front Med (Lausanne) 2021; 8:688438. [PMID: 34295913 PMCID: PMC8290522 DOI: 10.3389/fmed.2021.688438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes Mellitus is one of the World Health Organization's priority diseases under research by the first and second programmes of Innovative Medicines Initiative, with the acronyms IMI1 and IMI2, respectively. Up to October of 2019, 13 projects were funded by IMI for Diabetes & Metabolic disorders, namely SUMMIT, IMIDIA, DIRECT, StemBANCC, EMIF, EBiSC, INNODIA, RHAPSODY, BEAT-DKD, LITMUS, Hypo-RESOLVE, IM2PACT, and CARDIATEAM. In general, a total of €447 249 438 was spent by IMI in the area of Diabetes. In order to prompt a better integration of achievements between the different projects, we perform a literature review and used three data sources, namely the official project's websites, the contact with the project's coordinators and co-coordinator, and the CORDIS database. From the 662 citations identified, 185 were included. The data collected were integrated into the objectives proposed for the four IMI2 program research axes: (1) target and biomarker identification, (2) innovative clinical trials paradigms, (3) innovative medicines, and (4) patient-tailored adherence programmes. The IMI funded projects identified new biomarkers, medical and research tools, determinants of inter-individual variability, relevant pathways, clinical trial designs, clinical endpoints, therapeutic targets and concepts, pharmacologic agents, large-scale production strategies, and patient-centered predictive models for diabetes and its complications. Taking into account the scientific data produced, we provided a joint vision with strategies for integrating personalized medicine into healthcare practice. The major limitations of this article were the large gap of data in the libraries on the official project websites and even the Cordis database was not complete and up to date.
Collapse
Affiliation(s)
| | - Carla Torre
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| | - Beatriz Silva-Lima
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science-Research Institute for Medicines (iMED.ULisboa), Lisbon, Portugal
| |
Collapse
|
2
|
Sandholm N, Van Zuydam N, Ahlqvist E, Juliusdottir T, Deshmukh HA, Rayner NW, Di Camillo B, Forsblom C, Fadista J, Ziemek D, Salem RM, Hiraki LT, Pezzolesi M, Trégouët D, Dahlström E, Valo E, Oskolkov N, Ladenvall C, Marcovecchio ML, Cooper J, Sambo F, Malovini A, Manfrini M, McKnight AJ, Lajer M, Harjutsalo V, Gordin D, Parkkonen M, Tuomilehto J, Lyssenko V, McKeigue PM, Rich SS, Brosnan MJ, Fauman E, Bellazzi R, Rossing P, Hadjadj S, Krolewski A, Paterson AD, Florez JC, Hirschhorn JN, Maxwell AP, Dunger D, Cobelli C, Colhoun HM, Groop L, McCarthy MI, Groop PH. The Genetic Landscape of Renal Complications in Type 1 Diabetes. J Am Soc Nephrol 2016; 28:557-574. [PMID: 27647854 DOI: 10.1681/asn.2016020231] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022] Open
Abstract
Diabetes is the leading cause of ESRD. Despite evidence for a substantial heritability of diabetic kidney disease, efforts to identify genetic susceptibility variants have had limited success. We extended previous efforts in three dimensions, examining a more comprehensive set of genetic variants in larger numbers of subjects with type 1 diabetes characterized for a wider range of cross-sectional diabetic kidney disease phenotypes. In 2843 subjects, we estimated that the heritability of diabetic kidney disease was 35% (P=6.4×10-3). Genome-wide association analysis and replication in 12,540 individuals identified no single variants reaching stringent levels of significance and, despite excellent power, provided little independent confirmation of previously published associated variants. Whole-exome sequencing in 997 subjects failed to identify any large-effect coding alleles of lower frequency influencing the risk of diabetic kidney disease. However, sets of alleles increasing body mass index (P=2.2×10-5) and the risk of type 2 diabetes (P=6.1×10-4) associated with the risk of diabetic kidney disease. We also found genome-wide genetic correlation between diabetic kidney disease and failure at smoking cessation (P=1.1×10-4). Pathway analysis implicated ascorbate and aldarate metabolism (P=9.0×10-6), and pentose and glucuronate interconversions (P=3.0×10-6) in pathogenesis of diabetic kidney disease. These data provide further evidence for the role of genetic factors influencing diabetic kidney disease in those with type 1 diabetes and highlight some key pathways that may be responsible. Altogether these results reveal important biology behind the major cause of kidney disease.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Natalie Van Zuydam
- Wellcome Trust Centre for Human Genetics,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.,Medical Research Institute
| | - Emma Ahlqvist
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | - Harshal A Deshmukh
- Division of Population Health Sciences, University of Dundee, Dundee, United Kingdom
| | - N William Rayner
- Wellcome Trust Centre for Human Genetics,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.,Human Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Joao Fadista
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Daniel Ziemek
- Computational Sciences, Pfizer Worldwide Research and Development, Berlin, Germany
| | - Rany M Salem
- Departments of Genetics,Programs in Metabolism and Medical and Population Genetics, Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts.,Divisions of Endocrinology and Genetics, Boston Children's Hospital, Boston, Massachusetts
| | - Linda T Hiraki
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marcus Pezzolesi
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, Massachusetts
| | - David Trégouët
- Sorbonne Universities, Pierre et Marie Curie University (UPMC) and National Institute for Health and Medical Research, Mixed Research Unit in Health (UMR_S) 1166, Paris, France.,Institute for Cardiometabolism and Nutrition, Genomics and pathophysiology of Cardiovascular diseases, Paris, France
| | - Emma Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Nikolay Oskolkov
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | - Jason Cooper
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Sambo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Alberto Malovini
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy.,Laboratory of Informatics and Systems Engineering for Clinical Research, Scientific Institute for Research, Hospitalization and Health Care, IRCCS (Instituto di Ricovero e Cura a Carattere Scientifico); Salvatore Maugeri Foundation, Pavia, Italy
| | - Marco Manfrini
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Amy Jayne McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom
| | - Maria Lajer
- Diabetic Complications, Steno Diabetes Center, Gentofte, Denmark
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,The Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Daniel Gordin
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Maija Parkkonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | | | - Jaakko Tuomilehto
- The Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland.,Centre for Vascular Prevention, Danube University Krems, Krems, Austria
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden.,Diabetic Complications, Steno Diabetes Center, Gentofte, Denmark
| | - Paul M McKeigue
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | - Eric Fauman
- Computational Sciences, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Riccardo Bellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Peter Rossing
- Diabetic Complications, Steno Diabetes Center, Gentofte, Denmark.,Department of Health, Aarhus University, Aarhus, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Samy Hadjadj
- Functional Research Unit of Medicine and Pharmacy, University of Poitiers, Poitiers, France.,Department of Endocrinology-Diabetology and Center of Clinical Investigation, Poitiers University Hospital, Poitiers, France.,Institute National pour la Santé et la Recherche Médicale, National Institute for Health and Medical Research, Center of Clinical Investigation 1402 and Unit 1082, Poitiers, France
| | - Andrzej Krolewski
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, Massachusetts
| | - Andrew D Paterson
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Jose C Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts.,Diabetes Unit and Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Joel N Hirschhorn
- Departments of Genetics,Programs in Metabolism and Medical and Population Genetics, Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts.,Divisions of Endocrinology and Genetics, Boston Children's Hospital, Boston, Massachusetts
| | - Alexander P Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom.,Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom; and
| | | | - David Dunger
- Department of Paediatrics, Institute of Metabolic Science, and
| | - Claudio Cobelli
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Helen M Colhoun
- Division of Population Health Sciences, University of Dundee, Dundee, United Kingdom
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom.,Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Baker IDI (International Diabetes Institute) Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | |
Collapse
|