1
|
Pais G, Spinozzi G, Cesana D, Benedicenti F, Albertini A, Bernardo ME, Gentner B, Montini E, Calabria A. ISAnalytics enables longitudinal and high-throughput clonal tracking studies in hematopoietic stem cell gene therapy applications. Brief Bioinform 2023; 24:bbac551. [PMID: 36545803 PMCID: PMC9910212 DOI: 10.1093/bib/bbac551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Longitudinal clonal tracking studies based on high-throughput sequencing technologies supported safety and long-term efficacy and unraveled hematopoietic reconstitution in many gene therapy applications with unprecedented resolution. However, monitoring patients over a decade-long follow-up entails a constant increase of large data volume with the emergence of critical computational challenges, unfortunately not addressed by currently available tools. Here we present ISAnalytics, a new R package for comprehensive and high-throughput clonal tracking studies using vector integration sites as markers of cellular identity. Once identified the clones externally from ISAnalytics and imported in the package, a wide range of implemented functionalities are available to users for assessing the safety and long-term efficacy of the treatment, here described in a clinical trial use case for Hurler disease, and for supporting hematopoietic stem cell biology in vivo with longitudinal analysis of clones over time, proliferation and differentiation. ISAnalytics is conceived to be metadata-driven, enabling users to focus on biological questions and hypotheses rather than on computational aspects. ISAnalytics can be fully integrated within laboratory workflows and standard procedures. Moreover, ISAnalytics is designed with efficient and scalable data structures, benchmarked with previous methods, and grants reproducibility and full analytical control through interactive web-reports and a module with Shiny interface. The implemented functionalities are flexible for all viral vector-based clonal tracking applications as well as genetic barcoding or cancer immunotherapies.
Collapse
Affiliation(s)
- Giulia Pais
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Giulio Spinozzi
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Daniela Cesana
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Fabrizio Benedicenti
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Alessandra Albertini
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Maria Ester Bernardo
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
- IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Bernhard Gentner
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Eugenio Montini
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| | - Andrea Calabria
- IRCCS Ospedale San Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Milan, Italy
| |
Collapse
|
2
|
Narayan V, Barber-Rotenberg JS, Jung IY, Lacey SF, Rech AJ, Davis MM, Hwang WT, Lal P, Carpenter EL, Maude SL, Plesa G, Vapiwala N, Chew A, Moniak M, Sebro RA, Farwell MD, Marshall A, Gilmore J, Lledo L, Dengel K, Church SE, Hether TD, Xu J, Gohil M, Buckingham TH, Yee SS, Gonzalez VE, Kulikovskaya I, Chen F, Tian L, Tien K, Gladney W, Nobles CL, Raymond HE, Hexner EO, Siegel DL, Bushman FD, June CH, Fraietta JA, Haas NB. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med 2022; 28:724-734. [PMID: 35314843 PMCID: PMC10308799 DOI: 10.1038/s41591-022-01726-1] [Citation(s) in RCA: 286] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have demonstrated promising efficacy, particularly in hematologic malignancies. One challenge regarding CAR T cells in solid tumors is the immunosuppressive tumor microenvironment (TME), characterized by high levels of multiple inhibitory factors, including transforming growth factor (TGF)-β. We report results from an in-human phase 1 trial of castration-resistant, prostate cancer-directed CAR T cells armored with a dominant-negative TGF-β receptor (NCT03089203). Primary endpoints were safety and feasibility, while secondary objectives included assessment of CAR T cell distribution, bioactivity and disease response. All prespecified endpoints were met. Eighteen patients enrolled, and 13 subjects received therapy across four dose levels. Five of the 13 patients developed grade ≥2 cytokine release syndrome (CRS), including one patient who experienced a marked clonal CAR T cell expansion, >98% reduction in prostate-specific antigen (PSA) and death following grade 4 CRS with concurrent sepsis. Acute increases in inflammatory cytokines correlated with manageable high-grade CRS events. Three additional patients achieved a PSA reduction of ≥30%, with CAR T cell failure accompanied by upregulation of multiple TME-localized inhibitory molecules following adoptive cell transfer. CAR T cell kinetics revealed expansion in blood and tumor trafficking. Thus, clinical application of TGF-β-resistant CAR T cells is feasible and generally safe. Future studies should use superior multipronged approaches against the TME to improve outcomes.
Collapse
Affiliation(s)
- Vivek Narayan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie S Barber-Rotenberg
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - In-Young Jung
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew J Rech
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan M Davis
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Priti Lal
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erica L Carpenter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon L Maude
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Neha Vapiwala
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne Chew
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Moniak
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronnie A Sebro
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D Farwell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Marshall
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan Gilmore
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lester Lledo
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karen Dengel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Jun Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mercy Gohil
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas H Buckingham
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie S Yee
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Vanessa E Gonzalez
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fang Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lifeng Tian
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyle Tien
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Whitney Gladney
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher L Nobles
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hayley E Raymond
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth O Hexner
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald L Siegel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joseph A Fraietta
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| | - Naomi B Haas
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Winans S, Yu HJ, de Los Santos K, Wang GZ, KewalRamani VN, Goff SP. A point mutation in HIV-1 integrase redirects proviral integration into centromeric repeats. Nat Commun 2022; 13:1474. [PMID: 35304442 PMCID: PMC8933506 DOI: 10.1038/s41467-022-29097-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Retroviruses utilize the viral integrase (IN) protein to integrate a DNA copy of their genome into host chromosomal DNA. HIV-1 integration sites are highly biased towards actively transcribed genes, likely mediated by binding of the IN protein to specific host factors, particularly LEDGF, located at these gene regions. We here report a substantial redirection of integration site distribution induced by a single point mutation in HIV-1 IN. Viruses carrying the K258R IN mutation exhibit a high frequency of integrations into centromeric alpha satellite repeat sequences, as assessed by deep sequencing, a more than 10-fold increase over wild-type. Quantitative PCR and in situ immunofluorescence assays confirm this bias of the K258R mutant virus for integration into centromeric DNA. Immunoprecipitation studies identify host factors binding to IN that may account for the observed bias for integration into centromeres. Centromeric integration events are known to be enriched in the latent reservoir of infected memory T cells, as well as in elite controllers who limit viral replication without intervention. The K258R point mutation in HIV-1 IN is also present in databases of latent proviruses found in patients, and may reflect an unappreciated aspect of the establishment of viral latency. HIV-1 integration sites are biased towards actively transcribed genes, likely mediated by binding of the viral integrase (IN) protein to host factors. Here, Winans et al. show that the K258R point mutation in IN eredirects viral DNA integration to the centromeres of host chromosomes, which may affect HIV latency.
Collapse
Affiliation(s)
- Shelby Winans
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Hyun Jae Yu
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD, USA
| | - Kenia de Los Santos
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Gary Z Wang
- Department of Pathology, Columbia University Medical Center, New York, NY, USA
| | - Vineet N KewalRamani
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA. .,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA. .,Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Boulad F, Maggio A, Wang X, Moi P, Acuto S, Kogel F, Takpradit C, Prockop S, Mansilla-Soto J, Cabriolu A, Odak A, Qu J, Thummar K, Du F, Shen L, Raso S, Barone R, Di Maggio R, Pitrolo L, Giambona A, Mingoia M, Everett JK, Hokama P, Roche AM, Cantu VA, Adhikari H, Reddy S, Bouhassira E, Mohandas N, Bushman FD, Rivière I, Sadelain M. Lentiviral globin gene therapy with reduced-intensity conditioning in adults with β-thalassemia: a phase 1 trial. Nat Med 2022; 28:63-70. [PMID: 34980909 PMCID: PMC9380046 DOI: 10.1038/s41591-021-01554-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/23/2021] [Indexed: 01/05/2023]
Abstract
β-Thalassemias are inherited anemias that are caused by the absent or insufficient production of the β chain of hemoglobin. Here we report 6-8-year follow-up of four adult patients with transfusion-dependent β-thalassemia who were infused with autologous CD34+ cells transduced with the TNS9.3.55 lentiviral globin vector after reduced-intensity conditioning (RIC) in a phase 1 clinical trial ( NCT01639690) . Patients were monitored for insertional mutagenesis and the generation of a replication-competent lentivirus (safety and tolerability of the infusion product after RIC-primary endpoint) and engraftment of genetically modified autologous CD34+ cells, expression of the transduced β-globin gene and post-transplant transfusion requirements (efficacy-secondary endpoint). No unexpected safety issues occurred during conditioning and cell product infusion. Hematopoietic gene marking was very stable but low, reducing transfusion requirements in two patients, albeit not achieving transfusion independence. Our findings suggest that non-myeloablative conditioning can achieve durable stem cell engraftment but underscore a minimum CD34+ cell transduction requirement for effective therapy. Moderate clonal expansions were associated with integrations near cancer-related genes, suggestive of non-erythroid activity of globin vectors in stem/progenitor cells. These correlative findings highlight the necessity of cautiously monitoring patients harboring globin vectors.
Collapse
Affiliation(s)
- Farid Boulad
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aurelio Maggio
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Xiuyan Wang
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paolo Moi
- Ospedale Pediatrico Microcitemie 'A.Cao', A.O. 'G.Brotzu', Cagliari, Italy
| | - Santina Acuto
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Friederike Kogel
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chayamon Takpradit
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pediatrics, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Susan Prockop
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Annalisa Cabriolu
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashlesha Odak
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinrong Qu
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Keyur Thummar
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fang Du
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lingbo Shen
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simona Raso
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Rita Barone
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Rosario Di Maggio
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Lorella Pitrolo
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Antonino Giambona
- Department of Hematology and Rare Diseases, Azienda Ospedaliera Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Maura Mingoia
- Ospedale Pediatrico Microcitemie 'A.Cao', A.O. 'G.Brotzu', Cagliari, Italy
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pascha Hokama
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aoife M Roche
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vito Adrian Cantu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hriju Adhikari
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shantan Reddy
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Narla Mohandas
- Laboratory of Red Cell Physiology, New York Blood Center, New York, NY, USA
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabelle Rivière
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy and Cell Engineering Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Espinoza DA, Mortlock RD, Koelle SJ, Wu C, Dunbar CE. Interrogation of clonal tracking data using barcodetrackR. NATURE COMPUTATIONAL SCIENCE 2021; 1:280-289. [PMID: 37621673 PMCID: PMC10449013 DOI: 10.1038/s43588-021-00057-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2021] [Indexed: 08/26/2023]
Abstract
Clonal tracking methods provide quantitative insights into the cellular output of genetically labelled progenitor cells across time and cellular compartments. In the context of gene and cell therapies, clonal tracking methods have enabled the tracking of progenitor cell output both in humans receiving therapies and in corresponding animal models, providing valuable insight into lineage reconstitution, clonal dynamics, and vector genotoxicity. However, the absence of a toolbox for analysis of clonal tracking data has precluded the development of standardized analytical frameworks within the field. Thus, we developed barcodetrackR, an R package and accompanying Shiny app containing diverse tools for the analysis and visualization of clonal tracking data. We demonstrate the utility of barcodetrackR in exploring longitudinal clonal patterns and lineage relationships in a number of clonal tracking studies of hematopoietic stem and progenitor cells (HSPCs) in humans receiving HSPC gene therapy and in animals receiving lentivirally transduced HSPC transplants or tumor cells.
Collapse
Affiliation(s)
- Diego A. Espinoza
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryland D. Mortlock
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samson J. Koelle
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Nguyen GN, Everett JK, Kafle S, Roche AM, Raymond HE, Leiby J, Wood C, Assenmacher CA, Merricks EP, Long CT, Kazazian HH, Nichols TC, Bushman FD, Sabatino DE. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat Biotechnol 2021; 39:47-55. [PMID: 33199875 PMCID: PMC7855056 DOI: 10.1038/s41587-020-0741-7] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Nine dogs with hemophilia A were treated with adeno-associated viral (AAV) gene therapy and followed for up to 10 years. Administration of AAV8 or AAV9 vectors expressing canine factor VIII (AAV-cFVIII) corrected the FVIII deficiency to 1.9-11.3% of normal FVIII levels. In two of nine dogs, levels of FVIII activity increased gradually starting about 4 years after treatment. None of the dogs showed evidence of tumors or altered liver function. Analysis of integration sites in liver samples from six treated dogs identified 1,741 unique AAV integration events in genomic DNA and expanded cell clones in five dogs, with 44% of the integrations near genes involved in cell growth. All recovered integrated vectors were partially deleted and/or rearranged. Our data suggest that the increase in FVIII protein expression in two dogs may have been due to clonal expansion of cells harboring integrated vectors. These results support the clinical development of liver-directed AAV gene therapy for hemophilia A, while emphasizing the importance of long-term monitoring for potential genotoxicity.
Collapse
Affiliation(s)
- Giang N Nguyen
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John K Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samita Kafle
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aoife M Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hayley E Raymond
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Leiby
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Wood
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C Tyler Long
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haig H Kazazian
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Naldini L. Genetic engineering of hematopoiesis: current stage of clinical translation and future perspectives. EMBO Mol Med 2019; 11:e9958. [PMID: 30670463 PMCID: PMC6404113 DOI: 10.15252/emmm.201809958] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/03/2023] Open
Abstract
Here I review the scientific background, current stage of development and future perspectives that I foresee in the field of genetic manipulation of hematopoietic stem cells with a special emphasis on clinical applications.
Collapse
Affiliation(s)
- Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Hospital and Research Institute, "Vita - Salute San Raffaele" University Medical School, Milan, Italy
| |
Collapse
|
8
|
Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, Cogdill AP, Morrissette JJD, DeNizio JE, Reddy S, Hwang Y, Gohil M, Kulikovskaya I, Nazimuddin F, Gupta M, Chen F, Everett JK, Alexander KA, Lin-Shiao E, Gee MH, Liu X, Young RM, Ambrose D, Wang Y, Xu J, Jordan MS, Marcucci KT, Levine BL, Garcia KC, Zhao Y, Kalos M, Porter DL, Kohli RM, Lacey SF, Berger SL, Bushman FD, June CH, Melenhorst JJ. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 2018; 558:307-312. [PMID: 29849141 DOI: 10.1038/s41586-018-0178-z] [Citation(s) in RCA: 645] [Impact Index Per Article: 92.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/27/2018] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapy based on genetically redirecting T cells has been used successfully to treat B cell malignancies1-3. In this strategy, the T cell genome is modified by integration of viral vectors or transposons encoding chimaeric antigen receptors (CARs) that direct tumour cell killing. However, this approach is often limited by the extent of expansion and persistence of CAR T cells4,5. Here we report mechanistic insights from studies of a patient with chronic lymphocytic leukaemia treated with CAR T cells targeting the CD19 protein. Following infusion of CAR T cells, anti-tumour activity was evident in the peripheral blood, lymph nodes and bone marrow; this activity was accompanied by complete remission. Unexpectedly, at the peak of the response, 94% of CAR T cells originated from a single clone in which lentiviral vector-mediated insertion of the CAR transgene disrupted the methylcytosine dioxygenase TET2 gene. Further analysis revealed a hypomorphic mutation in this patient's second TET2 allele. TET2-disrupted CAR T cells exhibited an epigenetic profile consistent with altered T cell differentiation and, at the peak of expansion, displayed a central memory phenotype. Experimental knockdown of TET2 recapitulated the potency-enhancing effect of TET2 dysfunction in this patient's CAR T cells. These findings suggest that the progeny of a single CAR T cell induced leukaemia remission and that TET2 modification may be useful for improving immunotherapies.
Collapse
Affiliation(s)
- Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher L Nobles
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Morgan A Sammons
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biology, University at Albany, State University of New York, Albany, NY, USA
| | - Stefan Lundh
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shannon A Carty
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Internal Medicine and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Tyler J Reich
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandria P Cogdill
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J D Morrissette
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jamie E DeNizio
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Young Hwang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mercy Gohil
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Farzana Nazimuddin
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Minnal Gupta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fang Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John K Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine A Alexander
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enrique Lin-Shiao
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marvin H Gee
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaojun Liu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Ambrose
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Wang
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martha S Jordan
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine T Marcucci
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce L Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yangbing Zhao
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Kalos
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David L Porter
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul M Kohli
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| | - J Joseph Melenhorst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
The impact of aging on primate hematopoiesis as interrogated by clonal tracking. Blood 2018; 131:1195-1205. [PMID: 29295845 DOI: 10.1182/blood-2017-08-802033] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/21/2017] [Indexed: 01/04/2023] Open
Abstract
Age-associated changes in hematopoietic stem and progenitor cells (HSPCs) have been carefully documented in mouse models but poorly characterized in primates and humans. To investigate clinically relevant aspects of hematopoietic aging, we compared the clonal output of thousands of genetically barcoded HSPCs in aged vs young macaques after autologous transplantation. Aged macaques showed delayed emergence of output from multipotent (MP) clones, with persistence of lineage-biased clones for many months after engraftment. In contrast to murine aging models reporting persistence of myeloid-biased HSPCs, aged macaques demonstrated persistent output from both B-cell and myeloid-biased clones. Clonal expansions of MP, myeloid-biased, and B-biased clones occurred in aged macaques, providing a potential model for human clonal hematopoiesis of indeterminate prognosis. These results suggest that long-term MP HSPC output is impaired in aged macaques, resulting in differences in the kinetics and lineage reconstitution patterns between young and aged primates in an autologous transplantation setting.
Collapse
|
10
|
Gene therapy for Wiskott-Aldrich syndrome in a severely affected adult. Blood 2017; 130:1327-1335. [PMID: 28716862 DOI: 10.1182/blood-2017-04-777136] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/04/2017] [Indexed: 11/20/2022] Open
Abstract
Until recently, hematopoietic stem cell transplantation was the only curative option for Wiskott-Aldrich syndrome (WAS). The first attempts at gene therapy for WAS using a ϒ-retroviral vector improved immunological parameters substantially but were complicated by acute leukemia as a result of insertional mutagenesis in a high proportion of patients. More recently, treatment of children with a state-of-the-art self-inactivating lentiviral vector (LV-w1.6 WASp) has resulted in significant clinical benefit without inducing selection of clones harboring integrations near oncogenes. Here, we describe a case of a presplenectomized 30-year-old patient with severe WAS manifesting as cutaneous vasculitis, inflammatory arthropathy, intermittent polyclonal lymphoproliferation, and significant chronic kidney disease and requiring long-term immunosuppressive treatment. Following reduced-intensity conditioning, there was rapid engraftment and expansion of a polyclonal pool of transgene-positive functional T cells and sustained gene marking in myeloid and B-cell lineages up to 20 months of observation. The patient was able to discontinue immunosuppression and exogenous immunoglobulin support, with improvement in vasculitic disease and proinflammatory markers. Autologous gene therapy using a lentiviral vector is a viable strategy for adult WAS patients with severe chronic disease complications and for whom an allogeneic procedure could present an unacceptable risk. This trial was registered at www.clinicaltrials.gov as #NCT01347242.
Collapse
|
11
|
Berry CC, Nobles C, Six E, Wu Y, Malani N, Sherman E, Dryga A, Everett JK, Male F, Bailey A, Bittinger K, Drake MJ, Caccavelli L, Bates P, Hacein-Bey-Abina S, Cavazzana M, Bushman FD. INSPIIRED: Quantification and Visualization Tools for Analyzing Integration Site Distributions. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 4:17-26. [PMID: 28344988 PMCID: PMC5363318 DOI: 10.1016/j.omtm.2016.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/15/2016] [Indexed: 01/08/2023]
Abstract
Analysis of sites of newly integrated DNA in cellular genomes is important to several fields, but methods for analyzing and visualizing these datasets are still under development. Here, we describe tools for data analysis and visualization that take as input integration site data from our INSPIIRED pipeline. Paired-end sequencing allows inference of the numbers of transduced cells as well as the distributions of integration sites in target genomes. We present interactive heatmaps that allow comparison of distributions of integration sites to genomic features and that support numerous user-defined statistical tests. To summarize integration site data from human gene therapy samples, we developed a reproducible report format that catalogs sample population structure, longitudinal dynamics, and integration frequency near cancer-associated genes. We also introduce a novel summary statistic, the UC50 (unique cell progenitors contributing the most expanded 50% of progeny cell clones), which provides a single number summarizing possible clonal expansion. Using these tools, we characterize ongoing longitudinal characterization of a patient from the first trial to treat severe combined immunodeficiency-X1 (SCID-X1), showing successful reconstitution for 15 years accompanied by persistence of a cell clone with an integration site near the cancer-associated gene CCND2. Software is available at https://github.com/BushmanLab/INSPIIRED.
Collapse
Affiliation(s)
- Charles C Berry
- Department of Family Medicine and Public Health, UC San Diego, La Jolla, CA 92093, USA
| | - Christopher Nobles
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Emmanuelle Six
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France; INSERM 24, Laboratory of Human Lymphohematopoiesis, 75015 Paris, France
| | - Yinghua Wu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Eric Sherman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Anatoly Dryga
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Frances Male
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Aubrey Bailey
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Kyle Bittinger
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Mary J Drake
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Laure Caccavelli
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Salima Hacein-Bey-Abina
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| |
Collapse
|
12
|
Sherman E, Nobles C, Berry CC, Six E, Wu Y, Dryga A, Malani N, Male F, Reddy S, Bailey A, Bittinger K, Everett JK, Caccavelli L, Drake MJ, Bates P, Hacein-Bey-Abina S, Cavazzana M, Bushman FD. INSPIIRED: A Pipeline for Quantitative Analysis of Sites of New DNA Integration in Cellular Genomes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 4:39-49. [PMID: 28344990 PMCID: PMC5363316 DOI: 10.1016/j.omtm.2016.11.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/15/2016] [Indexed: 01/24/2023]
Abstract
Integration of new DNA into cellular genomes mediates replication of retroviruses and transposons; integration reactions have also been adapted for use in human gene therapy. Tracking the distributions of integration sites is important to characterize populations of transduced cells and to monitor potential outgrow of pathogenic cell clones. Here, we describe a pipeline for quantitative analysis of integration site distributions named INSPIIRED (integration site pipeline for paired-end reads). We describe optimized biochemical steps for site isolation using Illumina paired-end sequencing, including new technology for suppressing recovery of unwanted contaminants, then software for alignment, quality control, and management of integration site sequences. During library preparation, DNAs are broken by sonication, so that after ligation-mediated PCR the number of ligation junction sites can be used to infer abundance of gene-modified cells. We generated integration sites of known positions in silico, and we describe optimization of sample processing parameters refined by comparison to truth. We also present a novel graph-theory-based method for quantifying integration sites in repeated sequences, and we characterize the consequences using synthetic and experimental data. In an accompanying paper, we describe an additional set of statistical tools for data analysis and visualization. Software is available at https://github.com/BushmanLab/INSPIIRED.
Collapse
Affiliation(s)
- Eric Sherman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Christopher Nobles
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Charles C Berry
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emmanuelle Six
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, 75014 Paris, France; Laboratory of Human Lymphohematopoiesis, INSERM 24, 75014 Paris, France
| | - Yinghua Wu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Anatoly Dryga
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Frances Male
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Shantan Reddy
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Aubrey Bailey
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Kyle Bittinger
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Laure Caccavelli
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Mary J Drake
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Salima Hacein-Bey-Abina
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| |
Collapse
|
13
|
Sherrill-Mix S, Ocwieja KE, Bushman FD. Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats. Retrovirology 2015; 12:79. [PMID: 26377088 PMCID: PMC4574318 DOI: 10.1186/s12977-015-0205-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023] Open
Abstract
Background HIV infection has been reported to alter cellular gene activity, but published studies have commonly assayed transformed cell lines and lab-adapted HIV strains, yielding inconsistent results. Here we carried out a deep RNA-Seq analysis of primary human T cells infected with the low passage HIV isolate HIV89.6. Results Seventeen percent of cellular genes showed altered activity 48 h after infection. In a meta-analysis including four other studies, our data differed from studies of HIV infection in cell lines but showed more parallels with infections of primary cells. We found a global trend toward retention of introns after infection, suggestive of a novel cellular response to infection. HIV89.6 infection was also associated with activation of several human endogenous retroviruses (HERVs) and retrotransposons, of interest as possible novel antigens that could serve as vaccine targets. The most highly activated group of HERVs was a subset of the ERV-9. Analysis showed that activation was associated with a particular variant of ERV-9 long terminal repeats that contains an indel near the U3-R border. These data also allowed quantification of >70 splice forms of the HIV89.6 RNA and specified the main types of chimeric HIV89.6-host RNAs. Comparison to over 100,000 integration site sequences from the same infected cell populations allowed quantification of authentic versus artifactual chimeric reads, showing that 5′ read-in, splicing out of HIV89.6 from the D4 donor and 3′ read-through were the most common HIV89.6-host cell chimeric RNA forms. Conclusions Analysis of RNA abundance after infection of primary T cells with the low passage HIV89.6 isolate disclosed multiple novel features of HIV-host interactions, notably intron retention and induction of transcription of retrotransposons and endogenous retroviruses. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0205-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, 425 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | - Karen E Ocwieja
- Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, 425 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Abina SHB, Gaspar HB, Blondeau J, Caccavelli L, Charrier S, Buckland K, Picard C, Six E, Himoudi N, Gilmour K, McNicol AM, Hara H, Xu-Bayford J, Rivat C, Touzot F, Mavilio F, Lim A, Treluyer JM, Héritier S, Lefrere F, Magalon J, Pengue-Koyi I, Honnet G, Blanche S, Sherman EA, Male F, Berry C, Malani N, Bushman FD, Fischer A, Thrasher AJ, Galy A, Cavazzana M. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. JAMA 2015; 313:1550-63. [PMID: 25898053 PMCID: PMC4942841 DOI: 10.1001/jama.2015.3253] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE Wiskott-Aldrich syndrome is a rare primary immunodeficiency associated with severe microthrombocytopenia. Partially HLA antigen-matched allogeneic hematopoietic stem cell (HSC) transplantation is often curative but is associated with significant comorbidity. OBJECTIVE To assess the outcomes and safety of autologous HSC gene therapy in Wiskott-Aldrich syndrome. DESIGN, SETTING, AND PARTICIPANTS Gene-corrected autologous HSCs were infused in 7 consecutive patients with severe Wiskott-Aldrich syndrome lacking HLA antigen-matched related or unrelated HSC donors (age range, 0.8-15.5 years; mean, 7 years) following myeloablative conditioning. Patients were enrolled in France and England and treated between December 2010 and January 2014. Follow-up of patients in this intermediate analysis ranged from 9 to 42 months. INTERVENTION A single infusion of gene-modified CD34+ cells with an advanced lentiviral vector. MAIN OUTCOMES AND MEASURES Primary outcomes were improvement at 24 months in eczema, frequency and severity of infections, bleeding tendency, and autoimmunity and reduction in disease-related days of hospitalization. Secondary outcomes were improvement in immunological and hematological characteristics and evidence of safety through vector integration analysis. RESULTS Six of the 7 patients were alive at the time of last follow-up (mean and median follow-up, 28 months and 27 months, respectively) and showed sustained clinical benefit. One patient died 7 months after treatment of preexisting drug-resistant herpes virus infection. Eczema and susceptibility to infections resolved in all 6 patients. Autoimmunity improved in 5 of 5 patients. No severe bleeding episodes were recorded after treatment, and at last follow-up, all 6 surviving patients were free of blood product support and thrombopoietic agonists. Hospitalization days were reduced from a median of 25 days during the 2 years before treatment to a median of 0 days during the 2 years after treatment. All 6 surviving patients exhibited high-level, stable engraftment of functionally corrected lymphoid cells. The degree of myeloid cell engraftment and of platelet reconstitution correlated with the dose of gene-corrected cells administered. No evidence of vector-related toxicity was observed clinically or by molecular analysis. CONCLUSIONS AND RELEVANCE This study demonstrated the feasibility of the use of gene therapy in patients with Wiskott-Aldrich syndrome. Controlled trials with larger numbers of patients are necessary to assess long-term outcomes and safety.
Collapse
Affiliation(s)
- Salima Hacein-Bey Abina
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
- UTCBS CNRS 8258- INSERM U1022, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
- Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, AP-HP, 78, rue du Général-Leclerc, 94270 Le-Kremlin-Bicêtre, France
| | - H. Bobby Gaspar
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Johanna Blondeau
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Laure Caccavelli
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Sabine Charrier
- INSERM, U951; University of Evry, UMR_S951; Molecular Immunology and Innovative Biotherapies, Genethon, Evry, F-91002 France
- Genethon, Evry, F-91002 France
| | - Karen Buckland
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Capucine Picard
- Centre d’Étude des Déficits Immunitaires, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuelle Six
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
- INSERM UMR 1163, Laboratory of human lymphohematopoiesis, Paris, France
| | - Nourredine Himoudi
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Kimberly Gilmour
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Anne-Marie McNicol
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Havinder Hara
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Jinhua Xu-Bayford
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Christine Rivat
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Fabien Touzot
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Annick Lim
- Groupe Immunoscope, Immunology Department, Institut Pasteur, Paris, France
| | - Jean-Marc Treluyer
- Clinical research Center Necker-Enfants Malades and Cochin Hospital Assistance Publique, Hôpitaux de Paris, Paris Descartes University
| | - Sébastien Héritier
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Francois Lefrere
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jeremy Magalon
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Isabelle Pengue-Koyi
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | | | - Stéphane Blanche
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric A. Sherman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Frances Male
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charles Berry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alain Fischer
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMR 1163, Laboratory of human lymphohematopoiesis, Paris, France
- Collège de France, Paris, France
| | - Adrian J. Thrasher
- Section of Molecular and Cellular Immunology, University College London Institute of Child Health, London, UK
- Dept of Clinical Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Anne Galy
- INSERM, U951; University of Evry, UMR_S951; Molecular Immunology and Innovative Biotherapies, Genethon, Evry, F-91002 France
- Genethon, Evry, F-91002 France
| | - Marina Cavazzana
- Biotherapy Department, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Immunology and Pediatric Hematology Department, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMR 1163, Laboratory of human lymphohematopoiesis, Paris, France
- To whom correspondence should be addressed: Marina Cavazzana, MD, PhD: Address: Biotherapy Department, Necker Children’s Hospital, 149 rue de Sèvres, 75015 Paris, France. Phone number: 00.33(1)44.49.50.68,
| |
Collapse
|
15
|
Craigie R, Bushman FD. Host Factors in Retroviral Integration and the Selection of Integration Target Sites. Microbiol Spectr 2014; 2:10.1128/microbiolspec.MDNA3-0026-2014. [PMID: 26104434 PMCID: PMC4525071 DOI: 10.1128/microbiolspec.mdna3-0026-2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Indexed: 02/07/2023] Open
Abstract
In order to replicate, a retrovirus must integrate a DNA copy of the viral RNA genome into a chromosome of the host cell. The study of retroviral integration has advanced considerably in the past few years. Here we focus on host factor interactions and the linked area of integration targeting. Genome-wide screens for cellular factors affecting HIV replication have identified a series of host cell proteins that may mediate subcellular trafficking for preintegration complexes, nuclear import, and integration target site selection. The cell transcriptional co-activator protein LEDGF/p75 has been identified as a tethering factor important for HIV integration, and recently, BET proteins (Brd2, 4, and 4) have been identified as tethering factors for the gammaretroviruses. A new class of HIV inhibitors has been developed targeting the HIV-1 IN-LEDGF binding site, though surprisingly these inhibitors appear to block assembly late during replication and do not act at the integration step. Going forward, genome-wide studies of HIV-host interactions offer many new starting points to investigate HIV replication and identify potential new inhibitor targets.
Collapse
Affiliation(s)
- Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0560
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Hacein-Bey-Abina S, Pai SY, Gaspar HB, Armant M, Berry CC, Blanche S, Bleesing J, Blondeau J, de Boer H, Buckland KF, Caccavelli L, Cros G, De Oliveira S, Fernández KS, Guo D, Harris CE, Hopkins G, Lehmann LE, Lim A, London WB, van der Loo JCM, Malani N, Male F, Malik P, Marinovic MA, McNicol AM, Moshous D, Neven B, Oleastro M, Picard C, Ritz J, Rivat C, Schambach A, Shaw KL, Sherman EA, Silberstein LE, Six E, Touzot F, Tsytsykova A, Xu-Bayford J, Baum C, Bushman FD, Fischer A, Kohn DB, Filipovich AH, Notarangelo LD, Cavazzana M, Williams DA, Thrasher AJ. A modified γ-retrovirus vector for X-linked severe combined immunodeficiency. N Engl J Med 2014; 371:1407-17. [PMID: 25295500 PMCID: PMC4274995 DOI: 10.1056/nejmoa1404588] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND In previous clinical trials involving children with X-linked severe combined immunodeficiency (SCID-X1), a Moloney murine leukemia virus-based γ-retrovirus vector expressing interleukin-2 receptor γ-chain (γc) complementary DNA successfully restored immunity in most patients but resulted in vector-induced leukemia through enhancer-mediated mutagenesis in 25% of patients. We assessed the efficacy and safety of a self-inactivating retrovirus for the treatment of SCID-X1. METHODS We enrolled nine boys with SCID-X1 in parallel trials in Europe and the United States to evaluate treatment with a self-inactivating (SIN) γ-retrovirus vector containing deletions in viral enhancer sequences expressing γc (SIN-γc). RESULTS All patients received bone marrow-derived CD34+ cells transduced with the SIN-γc vector, without preparative conditioning. After 12.1 to 38.7 months of follow-up, eight of the nine children were still alive. One patient died from an overwhelming adenoviral infection before reconstitution with genetically modified T cells. Of the remaining eight patients, seven had recovery of peripheral-blood T cells that were functional and led to resolution of infections. The patients remained healthy thereafter. The kinetics of CD3+ T-cell recovery was not significantly different from that observed in previous trials. Assessment of insertion sites in peripheral blood from patients in the current trial as compared with those in previous trials revealed significantly less clustering of insertion sites within LMO2, MECOM, and other lymphoid proto-oncogenes in our patients. CONCLUSIONS This modified γ-retrovirus vector was found to retain efficacy in the treatment of SCID-X1. The long-term effect of this therapy on leukemogenesis remains unknown. (Funded by the National Institutes of Health and others; ClinicalTrials.gov numbers, NCT01410019, NCT01175239, and NCT01129544.).
Collapse
Affiliation(s)
- Salima Hacein-Bey-Abina
- From the Departments of Biotherapy (S.H.-B.-A., J. Blondeau, L.C., F.T., M.C.) and Immunology and Pediatric Hematology (S.B., G.C., D.M., B.N., C.P., F.T., A.F.) and the Centre d'Étude des Déficits Immunitaires (C.P.), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), the Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM (S.H.-B.-A., J. Blondeau, L.C., F.T., M.C.), Unité de Technologies Chimiques et Biologiques pour la Santé, Centre National de la Recherche Scientifique, 8258-INSERM Unité 1022, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes (S.H.-B.-A.), Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, AP-HP, Le Kremlin-Bicêtre (S.H.-B.-A.), Imagine Institute, Paris Descartes-Sorbonne Paris Cité University (S.B., J. Blondeau, L.C., D.M., B.N., C.P., E.S., A.F., M.C.), INSERM Unités Mixtes de Recherche 1163, Laboratory of Human Lymphohematopoiesis (J. Blondeau, L.C., E.S., F.T., A.F., M.C.), Groupe Immunoscope, Immunology Department, Institut Pasteur (A.L.), and Collège de France (A.F.) - all in Paris; Division of Hematology-Oncology (S.-Y.P., H.B., D.G., C.E.H., G.H., L.E.L., W.B.L., D.A.W.) and Division of Immunology (L.D.N.), Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute (S.-Y.P., D.G., L.E.L., W.B.L., D.A.W.), Harvard Medical School (S.-Y.P., M.A., L.E.L., W.B.L., J.R., L.E.S., A.T., L.D.N., D.A.W.), Center for Human Cell Therapy, Program in Cellular and Molecular Medicine, Boston Children's Hospital (M.A., J.R., L.E.S., A.T.), Division of Hematologic Malignancies, Dana-Farber Cancer Institute (J.R.), and the Manton Center for Orphan Disease Research (L.D.N.) - all in Boston; Great Ormond Street Hospital for Children NHS Foundation Trust (H.B.G., J.X.-B., A.J.T.) and Section of Molecular and Cellular Immunology, University College London Institute of Child Health (H.B.G., K.F.B., A
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- D J Spiegelhalter
- Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WB, UK.
| |
Collapse
|
18
|
Bushman FD. Engineering the human genome: reflections on the beginning. Hum Gene Ther 2014; 25:395-400. [PMID: 24848314 DOI: 10.1089/hum.2014.2524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Frederic D Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine , Philadelphia, PA 19104-6076
| |
Collapse
|