1
|
Yuan R, Zhang J, Zhou J, Cong Q. Recent progress and future challenges in structure-based protein-protein interaction prediction. Mol Ther 2025; 33:2252-2268. [PMID: 40195117 DOI: 10.1016/j.ymthe.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
Protein-protein interactions (PPIs) play a fundamental role in cellular processes, and understanding these interactions is crucial for advances in both basic biological science and biomedical applications. This review presents an overview of recent progress in computational methods for modeling protein complexes and predicting PPIs based on 3D structures, focusing on the transformative role of artificial intelligence-based approaches. We further discuss the expanding biomedical applications of PPI research, including the elucidation of disease mechanisms, drug discovery, and therapeutic design. Despite these advances, significant challenges remain in predicting host-pathogen interactions, interactions between intrinsically disordered regions, and interactions related to immune responses. These challenges are worthwhile for future explorations and represent the frontier of research in this field.
Collapse
Affiliation(s)
- Rongqing Yuan
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Kumar SP, Nadendla EK, Malireddi RKS, Haque SA, Mall R, Neuwald AF, Kanneganti TD. Evolutionary and Functional Analysis of Caspase-8 and ASC Interactions to Drive Lytic Cell Death, PANoptosis. Mol Biol Evol 2025; 42:msaf096. [PMID: 40277230 PMCID: PMC12066828 DOI: 10.1093/molbev/msaf096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Caspases are evolutionarily conserved proteins essential for driving cell death in development and host defense. Caspase-8, a key member of the caspase family, is implicated in nonlytic apoptosis, as well as lytic forms of cell death. Recently, caspase-8 has been identified as an integral component of PANoptosomes, multiprotein complexes formed in response to innate immune sensor activation. Several innate immune sensors can nucleate caspase-8-containing PANoptosome complexes to drive inflammatory lytic cell death, PANoptosis. However, how the evolutionarily conserved and diverse functions of caspase-8 drive PANoptosis remains unclear. To address this, we performed evolutionary, sequence, structural, and functional analyses to decode caspase-8's complex-forming abilities and its interaction with the PANoptosome adaptor ASC. Our study distinguished distinct subgroups within the death domain superfamily based on their evolutionary and functional relationships, identified homotypic traits among subfamily members, and captured key events in caspase evolution. We also identified critical residues defining the heterotypic interaction between caspase-8's death effector domain and ASC's pyrin domain, validated through cross-species analyses, dynamic simulations, and in vitro experiments. Overall, our study elucidated recent evolutionary adaptations of caspase-8 that allowed it to interact with ASC, improving our understanding of critical molecular associations in PANoptosome complex formation and the underlying PANoptotic responses in host defense and inflammation. These findings have implications for understanding mammalian immune responses and developing new therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Sivakumar Prasanth Kumar
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Eswar Kumar Nadendla
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Syed Asfarul Haque
- Cryo-Electron Microscopy Center, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Andrew F Neuwald
- Institute for Genome Sciences and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
3
|
Almalki B, Liao L. Transmembrane Homodimers Interface Identification: Predicting Interface Residues in Alpha-Helical Transmembrane Protein Homodimers Using Sequential and Structural Features. Int J Mol Sci 2025; 26:4270. [PMID: 40362505 PMCID: PMC12073085 DOI: 10.3390/ijms26094270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Most bitopic transmembrane proteins associate with one another through interface residues to form dimers, which facilitate or activate specific cellular functions. Therefore, accurately identifying interface residues in a given dimer is crucial for understanding its function and has been a challenging pursuit for many computational methods. These methods can be broadly categorized into two approaches: general-purpose ones for dimerization and specialized ones for interface residues. In this study, we develop a machine learning method that integrates both approaches by integrating sequential and structural features extracted from predicted structures and various domains. The results from cross-validation on a benchmark dataset show that our method, despite utilizing significantly fewer features, outperforms the state-of-the-art methods by more than three percentage points in performance, as measured by the F1 score. Furthermore, we evaluated the performance of the proposed model on a benchmark dataset as compared to the state-of-the-art multimeric structure predictors, including RoseTTAFold2, AlphaFold2Multimer, and PREDDIMER. The results show the superiority of the proposed model by outperforming all the other models, highlighting the effectiveness of integrating both structural and sequential features within the proposed framework.
Collapse
Affiliation(s)
| | - Li Liao
- Department of Computer and Information Sciences, University of Delaware, Smith Hall, 18 Amstel Avenue, Newark, DE 19716, USA;
| |
Collapse
|
4
|
Xu M, Dantu SC, Garnett JA, Bonomo RA, Pandini A, Haider S. Functionally important residues from graph analysis of coevolved dynamic couplings. eLife 2025; 14:RP105005. [PMID: 40153310 PMCID: PMC11952748 DOI: 10.7554/elife.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025] Open
Abstract
The relationship between protein dynamics and function is essential for understanding biological processes and developing effective therapeutics. Functional sites within proteins are critical for activities such as substrate binding, catalysis, and structural changes. Existing computational methods for the predictions of functional residues are trained on sequence, structural, and experimental data, but they do not explicitly model the influence of evolution on protein dynamics. This overlooked contribution is essential as it is known that evolution can fine-tune protein dynamics through compensatory mutations either to improve the proteins' performance or diversify its function while maintaining the same structural scaffold. To model this critical contribution, we introduce DyNoPy, a computational method that combines residue coevolution analysis with molecular dynamics simulations, revealing hidden correlations between functional sites. DyNoPy constructs a graph model of residue-residue interactions, identifies communities of key residue groups, and annotates critical sites based on their roles. By leveraging the concept of coevolved dynamical couplings-residue pairs with critical dynamical interactions that have been preserved during evolution-DyNoPy offers a powerful method for predicting and analysing protein evolution and dynamics. We demonstrate the effectiveness of DyNoPy on SHV-1 and PDC-3, chromosomally encoded β-lactamases linked to antibiotic resistance, highlighting its potential to inform drug design and address pressing healthcare challenges.
Collapse
Affiliation(s)
- Manming Xu
- UCL School of PharmacyLondonUnited Kingdom
| | | | - James A Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College LondonLondonUnited Kingdom
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical CenterClevelandUnited States
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of MedicineClevelandUnited States
- Department of Medicine, Case Western Reserve University School of MedicineClevelandUnited States
- Departments of Pharmacology, Biochemistry, and Proteomics and Bioinformatics Case Western Reserve University School of MedicineClevelandUnited States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES)ClevelandUnited States
| | - Alessandro Pandini
- Department of Computer Science, Brunel University LondonUxbridgeUnited Kingdom
| | - Shozeb Haider
- UCL School of PharmacyLondonUnited Kingdom
- University of Tabuk (PFSCBR)TabukSaudi Arabia
- UCL Center for Advanced Research Computing, University College LondonLondonUnited Kingdom
| |
Collapse
|
5
|
Park S, Myung S, Baek M. Advancing protein structure prediction beyond AlphaFold2. Curr Opin Struct Biol 2025; 90:102985. [PMID: 39862760 DOI: 10.1016/j.sbi.2025.102985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025]
Abstract
Accurate prediction of protein structures is essential for understanding their biological functions. The release of AlphaFold2 in 2021 marked a significant breakthrough, delivering unprecedented accuracy. However, challenges remain, particularly for proteins with limited evolutionary data or complex molecular interactions. This review explores efforts to enhance AlphaFold2's performance through advanced sequence search techniques and alternative approaches, including protein language models and frameworks that integrate diverse biomolecular interactions. We propose that future progress will depend on developing models grounded in fundamental physicochemical principles, offering more accurate and comprehensive predictions across a wider spectrum of biological systems.
Collapse
Affiliation(s)
- Sanggeun Park
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sojung Myung
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea. https://twitter.com/sj_myung27
| | - Minkyung Baek
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Tikhonov DB, Korkosh VS, Zhorov BS. 3D-aligned tetrameric ion channels with universal residue labels for comparative structural analysis. Biophys J 2025; 124:458-470. [PMID: 39696821 PMCID: PMC11788486 DOI: 10.1016/j.bpj.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024] Open
Abstract
Despite their large functional diversity and poor sequence similarity, tetrameric and pseudotetrameric potassium, sodium, calcium, and cyclic-nucleotide gated channels, as well as two-pore channels, transient receptor potential channels, and ionotropic glutamate receptor channels, share a common folding pattern of the transmembrane (TM) helices in the pore domain. In each subunit or repeat, two TM helices connected by a membrane-reentering P-loop contribute a quarter to the pore domain. The P-loop includes a membrane-descending helix, P1, which is structurally the most conserved element of these channels, and residues that contribute to the selectivity-filter region at the constriction of the ion-permeating pathway. In 24-TM channels, the pore domain is surrounded by four voltage-sensing domains, each with conserved folding of four TM helices. Hundreds of atomic-scale structures of these channels, referred to as "P-loop channels," have been obtained through x-ray crystallography or cryoelectron microscopy. The number of experimental structures of P-loop channels deposited in the PDB is rapidly increasing. AlphaFold3, RoseTTAFold, and other computational tools can be used to generate three-dimensional (3D) models of P-loop channels that lack experimental structures. While comparative structural analysis of P-loop channels is desirable, it is hindered by variations in residue numbers and 3D orientations of the channels. To address this problem, we have developed a universal residue-labeling scheme for TM helices and P-loops. We further created a database of P-loop ion channels, PLIC: www.plic3da.com, which currently includes over 400 3D-aligned structures with relabeled residues. We use this database to compare multiple 3D structures of channels from different subfamilies. The comparison, which for the first time employs statistical methods, highlights conserved and variable elements in the channels' folding, reveals irregularities, and identifies outliers that warrant further analysis.
Collapse
Affiliation(s)
- Denis B Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia.
| | - Vyacheslav S Korkosh
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia
| | - Boris S Zhorov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia; Department of Biochemistry and Biomedical Sciences, Master University, Hamilton, Ontario, Canada.
| |
Collapse
|
7
|
Srivastava G, Liu M, Ni X, Pu L, Brylinski M. Machine Learning Techniques to Infer Protein Structure and Function from Sequences: A Comprehensive Review. Methods Mol Biol 2025; 2867:79-104. [PMID: 39576576 DOI: 10.1007/978-1-0716-4196-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The elucidation of protein structure and function plays a pivotal role in understanding biological processes and facilitating drug discovery. With the exponential growth of protein sequence data, machine learning techniques have emerged as powerful tools for predicting protein characteristics from sequences alone. This review provides a comprehensive overview of the importance and application of machine learning in inferring protein structure and function. We discuss various machine learning approaches, primarily focusing on convolutional neural networks and natural language processing, and their utilization in predicting protein secondary and tertiary structures, residue-residue contacts, protein function, and subcellular localization. Furthermore, we highlight the challenges associated with using machine learning techniques in this context, such as the availability of high-quality training datasets and the interpretability of models. We also delve into the latest progress in the field concerning the advancements made in the development of intricate deep learning architectures. Overall, this review underscores the significance of machine learning in advancing our understanding of protein structure and function, and its potential to revolutionize drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Gopal Srivastava
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Mengmeng Liu
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Xialong Ni
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Limeng Pu
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
8
|
Qin X, Zhang L, Liu M, Liu G. PRFold-TNN: Protein Fold Recognition With an Ensemble Feature Selection Method Using PageRank Algorithm Based on Transformer. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1740-1751. [PMID: 38875077 DOI: 10.1109/tcbb.2024.3414497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Understanding the tertiary structures of proteins is of great benefit to function in many aspects of human life. Protein fold recognition is a vital and salient means to know protein structure. Until now, researchers have successively proposed a variety of methods to realize protein fold recognition, but the novel and effective computational method is still needed to handle this problem with the continuous updating of protein structure databases. In this study, we develop a new protein structure dataset named AT and propose the PRFold-TNN model for protein fold recognition. First, different types of feature extraction methods including AAC, HMM, HMM-Bigram and ACC are selected to extract corresponding features for protein sequences. Then an ensemble feature selection method based on PageRank algorithm integrating various tree-based algorithms is used to screen the fusion features. Ultimately, the classifier based on the Transformer model achieves the final prediction. Experiments show that the prediction accuracy is 86.27% on the AT dataset and 88.91% on the independent test set, indicating that the model can demonstrate superior performance and generalization ability in the problem of protein fold recognition. Furthermore, we also carry out research on the DD, EDD and TG benchmark datasets, and make them achieve prediction accuracy of 88.41%, 97.91% and 95.16%, which are at least 3.0%, 0.8% and 2.5% higher than those of the state-of-the-art methods. It can be concluded that the PRFold-TNN model is more prominent.
Collapse
|
9
|
Zhang F, Li Z, Zhao K, Zhao P, Zhang G. Prediction of Inter-Residue Multiple Distances and Exploration of Protein Multiple Conformations by Deep Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1731-1739. [PMID: 38857126 DOI: 10.1109/tcbb.2024.3411825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
AlphaFold2 has achieved a major breakthrough in end-to-end prediction for static protein structures. However, protein conformational change is considered to be a key factor in protein biological function. Inter-residue multiple distances prediction is of great significance for research on protein multiple conformations exploration. In this study, we proposed an inter-residue multiple distances prediction method, DeepMDisPre, based on an improved network which integrates triangle update, axial attention and ResNet to predict multiple distances of residue pairs. We built a dataset which contains proteins with a single structure and proteins with multiple conformations to train the network. We tested DeepMDisPre on 114 proteins with multiple conformations. The results show that the inter-residue distance distribution predicted by DeepMDisPre tends to have multiple peaks for flexible residue pairs than for rigid residue pairs. On two cases of proteins with multiple conformations, we modeled the multiple conformations relatively accurately by using the predicted inter-residue multiple distances. In addition, we also tested the performance of DeepMDisPre on 279 proteins with a single structure. Experimental results demonstrate that the average contact accuracy of DeepMDisPre is higher than that of the comparative method. In terms of static protein modeling, the average TM-score of the 3D models built by DeepMDisPre is also improved compared with the comparative method.
Collapse
|
10
|
Heinzinger M, Rost B. Artificial Intelligence Learns Protein Prediction. Cold Spring Harb Perspect Biol 2024; 16:a041458. [PMID: 38858069 PMCID: PMC11368192 DOI: 10.1101/cshperspect.a041458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
From AlphaGO over StableDiffusion to ChatGPT, the recent decade of exponential advances in artificial intelligence (AI) has been altering life. In parallel, advances in computational biology are beginning to decode the language of life: AlphaFold2 leaped forward in protein structure prediction, and protein language models (pLMs) replaced expertise and evolutionary information from multiple sequence alignments with information learned from reoccurring patterns in databases of billions of proteins without experimental annotations other than the amino acid sequences. None of those tools could have been developed 10 years ago; all will increase the wealth of experimental data and speed up the cycle from idea to proof. AI is affecting molecular and medical biology at giant steps, and the most important might be the leap toward more powerful protein design.
Collapse
Affiliation(s)
- Michael Heinzinger
- Technical University of Munich (TUM) School of School of Computation, Information and Technology (CIT), Bioinformatics and Computational Biology - i12, 85748 Garching/Munich, Germany
| | - Burkhard Rost
- Technical University of Munich (TUM) School of School of Computation, Information and Technology (CIT), Bioinformatics and Computational Biology - i12, 85748 Garching/Munich, Germany
- Institute for Advanced Study (TUM-IAS), 85748 Garching/Munich, Germany
- TUM School of Life Sciences Weihenstephan (WZW), 85354 Freising, Germany
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| |
Collapse
|
11
|
Rahimzadeh F, Mohammad Khanli L, Salehpoor P, Golabi F, PourBahrami S. Unveiling the evolution of policies for enhancing protein structure predictions: A comprehensive analysis. Comput Biol Med 2024; 179:108815. [PMID: 38986287 DOI: 10.1016/j.compbiomed.2024.108815] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Predicting protein structure is both fascinating and formidable, playing a crucial role in structure-based drug discovery and unraveling diseases with elusive origins. The Critical Assessment of Protein Structure Prediction (CASP) serves as a biannual battleground where global scientists converge to untangle the intricate relationships within amino acid chains. Two primary methods, Template-Based Modeling (TBM) and Template-Free (TF) strategies, dominate protein structure prediction. The trend has shifted towards Template-Free predictions due to their broader sequence coverage with fewer templates. The predictive process can be broadly classified into contact map, binned-distance, and real-valued distance predictions, each with distinctive strengths and limitations manifested through tailored loss functions. We have also introduced revolutionary end-to-end, and all-atom diffusion-based techniques that have transformed protein structure predictions. Recent advancements in deep learning techniques have significantly improved prediction accuracy, although the effectiveness is contingent upon the quality of input features derived from natural bio-physiochemical attributes and Multiple Sequence Alignments (MSA). Hence, the generation of high-quality MSA data holds paramount importance in harnessing informative input features for enhanced prediction outcomes. Remarkable successes have been achieved in protein structure prediction accuracy, however not enough for what structural knowledge was intended to, which implies need for development in some other aspects of the predictions. In this regard, scientists have opened other frontiers for protein structural prediction. The utilization of subsampling in multiple sequence alignment (MSA) and protein language modeling appears to be particularly promising in enhancing the accuracy and efficiency of predictions, ultimately aiding in drug discovery efforts. The exploration of predicting protein complex structure also opens up exciting opportunities to deepen our knowledge of molecular interactions and design therapeutics that are more effective. In this article, we have discussed the vicissitudes that the scientists have gone through to improve prediction accuracy, and examined the effective policies in predicting from different aspects, including the construction of high quality MSA, providing informative input features, and progresses in deep learning approaches. We have also briefly touched upon transitioning from predicting single-chain protein structures to predicting protein complex structures. Our findings point towards promoting open research environments to support the objectives of protein structure prediction.
Collapse
Affiliation(s)
- Faezeh Rahimzadeh
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | | | - Pedram Salehpoor
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Faegheh Golabi
- Department of Biomedical Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin PourBahrami
- Department of Computer Engineering, Technical and Vocational University (TVU), Tehran, Iran
| |
Collapse
|
12
|
Illig AM, Siedhoff NE, Davari MD, Schwaneberg U. Evolutionary Probability and Stacked Regressions Enable Data-Driven Protein Engineering with Minimized Experimental Effort. J Chem Inf Model 2024; 64:6350-6360. [PMID: 39088689 DOI: 10.1021/acs.jcim.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Protein engineering through directed evolution and (semi)rational approaches is routinely applied to optimize protein properties for a broad range of applications in industry and academia. The multitude of possible variants, combined with limited screening throughput, hampers efficient protein engineering. Data-driven strategies have emerged as a powerful tool to model the protein fitness landscape that can be explored in silico, significantly accelerating protein engineering campaigns. However, such methods require a certain amount of data, which often cannot be provided, to generate a reliable model of the fitness landscape. Here, we introduce MERGE, a method that combines direct coupling analysis (DCA) and machine learning (ML). MERGE enables data-driven protein engineering when only limited data are available for training, typically ranging from 50 to 500 labeled sequences. Our method demonstrates remarkable performance in predicting a protein's fitness value and rank based on its sequence across diverse proteins and properties. Notably, MERGE outperforms state-of-the-art methods when only small data sets are available for modeling, requiring fewer computational resources, and proving particularly promising for protein engineers who have access to limited amounts of data.
Collapse
Affiliation(s)
| | - Niklas E Siedhoff
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| |
Collapse
|
13
|
Basu S, Subedi U, Tonelli M, Afshinpour M, Tiwari N, Fuentes EJ, Chakravarty S. Assessing the functional roles of coevolving PHD finger residues. Protein Sci 2024; 33:e5065. [PMID: 38923615 PMCID: PMC11201814 DOI: 10.1002/pro.5065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024]
Abstract
Although in silico folding based on coevolving residue constraints in the deep-learning era has transformed protein structure prediction, the contributions of coevolving residues to protein folding, stability, and other functions in physical contexts remain to be clarified and experimentally validated. Herein, the PHD finger module, a well-known histone reader with distinct subtypes containing subtype-specific coevolving residues, was used as a model to experimentally assess the contributions of coevolving residues and to clarify their specific roles. The results of the assessment, including proteolysis and thermal unfolding of wildtype and mutant proteins, suggested that coevolving residues have varying contributions, despite their large in silico constraints. Residue positions with large constraints were found to contribute to stability in one subtype but not others. Computational sequence design and generative model-based energy estimates of individual structures were also implemented to complement the experimental assessment. Sequence design and energy estimates distinguish coevolving residues that contribute to folding from those that do not. The results of proteolytic analysis of mutations at positions contributing to folding were consistent with those suggested by sequence design and energy estimation. Thus, we report a comprehensive assessment of the contributions of coevolving residues, as well as a strategy based on a combination of approaches that should enable detailed understanding of the residue contributions in other large protein families.
Collapse
Affiliation(s)
- Shraddha Basu
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Ujwal Subedi
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Maral Afshinpour
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Nitija Tiwari
- Department of Biochemistry & Molecular BiologyUniversity of IowaIowa CityIowaUSA
| | - Ernesto J. Fuentes
- Department of Biochemistry & Molecular BiologyUniversity of IowaIowa CityIowaUSA
| | - Suvobrata Chakravarty
- Department of Chemistry & BiochemistrySouth Dakota State UniversityBrookingsSouth DakotaUSA
| |
Collapse
|
14
|
Jisna VA, Ajay AP, Jayaraj PB. Using Attention-UNet Models to Predict Protein Contact Maps. J Comput Biol 2024; 31:691-702. [PMID: 38979621 DOI: 10.1089/cmb.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Proteins are essential to life, and understanding their intrinsic roles requires determining their structure. The field of proteomics has opened up new opportunities by applying deep learning algorithms to large databases of solved protein structures. With the availability of large data sets and advanced machine learning methods, the prediction of protein residue interactions has greatly improved. Protein contact maps provide empirical evidence of the interacting residue pairs within a protein sequence. Template-free protein structure prediction systems rely heavily on this information. This article proposes UNet-CON, an attention-integrated UNet architecture, trained to predict residue-residue contacts in protein sequences. With the predicted contacts being more accurate than state-of-the-art methods on the PDB25 test set, the model paves the way for the development of more powerful deep learning algorithms for predicting protein residue interactions.
Collapse
Affiliation(s)
- V A Jisna
- Department of Computer Science and Engineering, Indian Institute of Information Technology Design and Manufacturing, Kurnool, India
| | | | - P B Jayaraj
- Department of Computer Science and Engineering, NIT Calicut, Calicut, India
| |
Collapse
|
15
|
Durrant MG, Perry NT, Pai JJ, Jangid AR, Athukoralage JS, Hiraizumi M, McSpedon JP, Pawluk A, Nishimasu H, Konermann S, Hsu PD. Bridge RNAs direct programmable recombination of target and donor DNA. Nature 2024; 630:984-993. [PMID: 38926615 PMCID: PMC11208160 DOI: 10.1038/s41586-024-07552-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/09/2024] [Indexed: 06/28/2024]
Abstract
Genomic rearrangements, encompassing mutational changes in the genome such as insertions, deletions or inversions, are essential for genetic diversity. These rearrangements are typically orchestrated by enzymes that are involved in fundamental DNA repair processes, such as homologous recombination, or in the transposition of foreign genetic material by viruses and mobile genetic elements1,2. Here we report that IS110 insertion sequences, a family of minimal and autonomous mobile genetic elements, express a structured non-coding RNA that binds specifically to their encoded recombinase. This bridge RNA contains two internal loops encoding nucleotide stretches that base-pair with the target DNA and the donor DNA, which is the IS110 element itself. We demonstrate that the target-binding and donor-binding loops can be independently reprogrammed to direct sequence-specific recombination between two DNA molecules. This modularity enables the insertion of DNA into genomic target sites, as well as programmable DNA excision and inversion. The IS110 bridge recombination system expands the diversity of nucleic-acid-guided systems beyond CRISPR and RNA interference, offering a unified mechanism for the three fundamental DNA rearrangements-insertion, excision and inversion-that are required for genome design.
Collapse
Affiliation(s)
- Matthew G Durrant
- Arc Institute, Palo Alto, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Nicholas T Perry
- Arc Institute, Palo Alto, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | | | - Aditya R Jangid
- Arc Institute, Palo Alto, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Masahiro Hiraizumi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | | | | | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
- Structural Biology Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Inamori Research Institute for Science, Kyoto, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Saitama, Japan
| | - Silvana Konermann
- Arc Institute, Palo Alto, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick D Hsu
- Arc Institute, Palo Alto, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
16
|
Xie T, Huang J. Can Protein Structure Prediction Methods Capture Alternative Conformations of Membrane Transporters? J Chem Inf Model 2024; 64:3524-3536. [PMID: 38564295 DOI: 10.1021/acs.jcim.3c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Understanding the conformational dynamics of proteins, such as the inward-facing (IF) and outward-facing (OF) transition observed in transporters, is vital for elucidating their functional mechanisms. Despite significant advances in protein structure prediction (PSP) over the past three decades, most efforts have been focused on single-state prediction, leaving multistate or alternative conformation prediction (ACP) relatively unexplored. This discrepancy has led to the development of highly accurate PSP methods such as AlphaFold, yet their capabilities for ACP remain limited. To investigate the performance of current PSP methods in ACP, we curated a data set, named IOMemP, consisting of 32 experimentally determined high-resolution IF and OF structures of 16 membrane proteins with substantial conformational changes. We benchmarked 12 representative PSP methods, along with two recent multistate methods based on AlphaFold, against this data set. Our findings reveal a remarkably consistent preference for specific states across various PSP methods. We elucidated how coevolution information in MSAs influences state preference. Moreover, we showed that AlphaFold, when excluding coevolution information, estimated similar energies between the experimental IF and OF conformations, indicating that the energy model learned by AlphaFold is not biased toward any particular state. Our IOMemP data set and benchmark results are anticipated to advance the development of robust ACP methods.
Collapse
Affiliation(s)
- Tengyu Xie
- College of Life Science, Zhejiang University, HangZhou Zhejiang 310058, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, HangZhou Zhejiang 310024, China
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, HangZhou Zhejiang 310024, China
| | - Jing Huang
- College of Life Science, Zhejiang University, HangZhou Zhejiang 310058, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, HangZhou Zhejiang 310024, China
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, HangZhou Zhejiang 310024, China
| |
Collapse
|
17
|
Si Y, Yan C. Protein language model-embedded geometric graphs power inter-protein contact prediction. eLife 2024; 12:RP92184. [PMID: 38564241 PMCID: PMC10987090 DOI: 10.7554/elife.92184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Accurate prediction of contacting residue pairs between interacting proteins is very useful for structural characterization of protein-protein interactions. Although significant improvement has been made in inter-protein contact prediction recently, there is still a large room for improving the prediction accuracy. Here we present a new deep learning method referred to as PLMGraph-Inter for inter-protein contact prediction. Specifically, we employ rotationally and translationally invariant geometric graphs obtained from structures of interacting proteins to integrate multiple protein language models, which are successively transformed by graph encoders formed by geometric vector perceptrons and residual networks formed by dimensional hybrid residual blocks to predict inter-protein contacts. Extensive evaluation on multiple test sets illustrates that PLMGraph-Inter outperforms five top inter-protein contact prediction methods, including DeepHomo, GLINTER, CDPred, DeepHomo2, and DRN-1D2D_Inter, by large margins. In addition, we also show that the prediction of PLMGraph-Inter can complement the result of AlphaFold-Multimer. Finally, we show leveraging the contacts predicted by PLMGraph-Inter as constraints for protein-protein docking can dramatically improve its performance for protein complex structure prediction.
Collapse
Affiliation(s)
- Yunda Si
- School of Physics, Huazhong University of Science and TechnologyWuhanChina
| | - Chengfei Yan
- School of Physics, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
18
|
Zhang J, Durham J, Qian Cong. Revolutionizing protein-protein interaction prediction with deep learning. Curr Opin Struct Biol 2024; 85:102775. [PMID: 38330793 DOI: 10.1016/j.sbi.2024.102775] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Protein-protein interactions (PPIs) are pivotal for driving diverse biological processes, and any disturbance in these interactions can lead to disease. Thus, the study of PPIs has been a central focus in biology. Recent developments in deep learning methods, coupled with the vast genomic sequence data, have significantly boosted the accuracy of predicting protein structures and modeling protein complexes, approaching levels comparable to experimental techniques. Herein, we review the latest advances in the computational methods for modeling 3D protein complexes and the prediction of protein interaction partners, emphasizing the application of deep learning methods deriving from coevolution analysis. The review also highlights biomedical applications of PPI prediction and outlines challenges in the field.
Collapse
Affiliation(s)
- Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; HaroldC.Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA. https://twitter.com/jzhang_genome
| | - Jesse Durham
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; HaroldC.Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; HaroldC.Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
19
|
Bibik P, Alibai S, Pandini A, Dantu SC. PyCoM: a python library for large-scale analysis of residue-residue coevolution data. Bioinformatics 2024; 40:btae166. [PMID: 38532297 PMCID: PMC11009027 DOI: 10.1093/bioinformatics/btae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/02/2024] [Accepted: 03/25/2024] [Indexed: 03/28/2024] Open
Abstract
MOTIVATION Computational methods to detect correlated amino acid positions in proteins have become a valuable tool to predict intra- and inter-residue protein contacts, protein structures, and effects of mutation on protein stability and function. While there are many tools and webservers to compute coevolution scoring matrices, there is no central repository of alignments and coevolution matrices for large-scale studies and pattern detection leveraging on biological and structural annotations already available in UniProt. RESULTS We present a Python library, PyCoM, which enables users to query and analyze coevolution matrices and sequence alignments of 457 622 proteins, selected from UniProtKB/Swiss-Prot database (length ≤ 500 residues), from a precompiled coevolution matrix database (PyCoMdb). PyCoM facilitates the development of statistical analyses of residue coevolution patterns using filters on biological and structural annotations from UniProtKB/Swiss-Prot, with simple access to PyCoMdb for both novice and advanced users, supporting Jupyter Notebooks, Python scripts, and a web API access. The resource is open source and will help in generating data-driven computational models and methods to study and understand protein structures, stability, function, and design. AVAILABILITY AND IMPLEMENTATION PyCoM code is freely available from https://github.com/scdantu/pycom and PyCoMdb and the Jupyter Notebook tutorials are freely available from https://pycom.brunel.ac.uk.
Collapse
Affiliation(s)
- Philipp Bibik
- Department of Computer Science, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Sabriyeh Alibai
- Department of Computer Science, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Alessandro Pandini
- Department of Computer Science, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Sarath Chandra Dantu
- Department of Computer Science, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| |
Collapse
|
20
|
Qi H, Yu T, Yu W, Liu C. Drug-target affinity prediction with extended graph learning-convolutional networks. BMC Bioinformatics 2024; 25:75. [PMID: 38365583 PMCID: PMC10874073 DOI: 10.1186/s12859-024-05698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND High-performance computing plays a pivotal role in computer-aided drug design, a field that holds significant promise in pharmaceutical research. The prediction of drug-target affinity (DTA) is a crucial stage in this process, potentially accelerating drug development through rapid and extensive preliminary compound screening, while also minimizing resource utilization and costs. Recently, the incorporation of deep learning into DTA prediction and the enhancement of its accuracy have emerged as key areas of interest in the research community. Drugs and targets can be characterized through various methods, including structure-based, sequence-based, and graph-based representations. Despite the progress in structure and sequence-based techniques, they tend to provide limited feature information. Conversely, graph-based approaches have risen to prominence, attracting considerable attention for their comprehensive data representation capabilities. Recent studies have focused on constructing protein and drug molecular graphs using sequences and SMILES, subsequently deriving representations through graph neural networks. However, these graph-based approaches are limited by the use of a fixed adjacent matrix of protein and drug molecular graphs for graph convolution. This limitation restricts the learning of comprehensive feature representations from intricate compound and protein structures, consequently impeding the full potential of graph-based feature representation in DTA prediction. This, in turn, significantly impacts the models' generalization capabilities in the complex realm of drug discovery. RESULTS To tackle these challenges, we introduce GLCN-DTA, a model specifically designed for proficiency in DTA tasks. GLCN-DTA innovatively integrates a graph learning module into the existing graph architecture. This module is designed to learn a soft adjacent matrix, which effectively and efficiently refines the contextual structure of protein and drug molecular graphs. This advancement allows for learning richer structural information from protein and drug molecular graphs via graph convolution, specifically tailored for DTA tasks, compared to the conventional fixed adjacent matrix approach. A series of experiments have been conducted to validate the efficacy of the proposed GLCN-DTA method across diverse scenarios. The results demonstrate that GLCN-DTA possesses advantages in terms of robustness and high accuracy. CONCLUSIONS The proposed GLCN-DTA model enhances DTA prediction performance by introducing a novel framework that synergizes graph learning operations with graph convolution operations, thereby achieving richer representations. GLCN-DTA does not distinguish between different protein classifications, including structurally ordered and intrinsically disordered proteins, focusing instead on improving feature representation. Therefore, its applicability scope may be more effective in scenarios involving structurally ordered proteins, while potentially being limited in contexts with intrinsically disordered proteins.
Collapse
Affiliation(s)
- Haiou Qi
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ting Yu
- Operating Room Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Wenwen Yu
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chenxi Liu
- School of Medicine and Health Management, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
21
|
Zhao C, Wang S. AttCON: With better MSAs and attention mechanism for accurate protein contact map prediction. Comput Biol Med 2024; 169:107822. [PMID: 38091726 DOI: 10.1016/j.compbiomed.2023.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Protein contact map prediction is a critical and vital step in protein structure prediction, and its accuracy is highly contingent upon the feature representations of protein sequence information and the efficacy of deep learning models. In this paper, we propose an algorithm, DeepMSA+, to generate protein multiple sequence alignments (MSAs) and to construct feature representations based on co-evolutionary information and sequence information derived from MSAs. We also propose an improved deep learning model, AttCON, for training input features to predict protein contact map. The model incorporates an attention module, and by comparing different attention modules, we find a parameter-free attention module suitable for contact map prediction. Additionally, we use the Focal Loss function to better address the data imbalance issue in protein contact map. We also developed a weighted evaluation index (W score) for model evaluation, which takes into account a wide range of metrics. W score is comprehensive in its scope, with a particular focus on the precision of predictions for medium-range and long-range contacts. Experimental results show that AttCON achieves good precision results on datasets from CASP11 to CASP15. Compared to some state-of-the-art methods, it achieves an average improvement of over 5% in both medium-range and long-range predictions, and W score is improved by an average of 2 points.
Collapse
Affiliation(s)
- Che Zhao
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shunfang Wang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China; Yunnan Key Laboratory of Intelligent Systems and Computing, Yunnan University, Kunming, 650504, Yunnan, China.
| |
Collapse
|
22
|
Durrant MG, Perry NT, Pai JJ, Jangid AR, Athukoralage JS, Hiraizumi M, McSpedon JP, Pawluk A, Nishimasu H, Konermann S, Hsu PD. Bridge RNAs direct modular and programmable recombination of target and donor DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577089. [PMID: 38328150 PMCID: PMC10849738 DOI: 10.1101/2024.01.24.577089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Genomic rearrangements, encompassing mutational changes in the genome such as insertions, deletions, or inversions, are essential for genetic diversity. These rearrangements are typically orchestrated by enzymes involved in fundamental DNA repair processes such as homologous recombination or in the transposition of foreign genetic material by viruses and mobile genetic elements (MGEs). We report that IS110 insertion sequences, a family of minimal and autonomous MGEs, express a structured non-coding RNA that binds specifically to their encoded recombinase. This bridge RNA contains two internal loops encoding nucleotide stretches that base-pair with the target DNA and donor DNA, which is the IS110 element itself. We demonstrate that the target-binding and donor-binding loops can be independently reprogrammed to direct sequence-specific recombination between two DNA molecules. This modularity enables DNA insertion into genomic target sites as well as programmable DNA excision and inversion. The IS110 bridge system expands the diversity of nucleic acid-guided systems beyond CRISPR and RNA interference, offering a unified mechanism for the three fundamental DNA rearrangements required for genome design.
Collapse
Affiliation(s)
- Matthew G. Durrant
- Arc Institute, 3181 Porter Drive, Palo Alto, CA 94304, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Nicholas T. Perry
- Arc Institute, 3181 Porter Drive, Palo Alto, CA 94304, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - James J. Pai
- Arc Institute, 3181 Porter Drive, Palo Alto, CA 94304, USA
| | - Aditya R. Jangid
- Arc Institute, 3181 Porter Drive, Palo Alto, CA 94304, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Masahiro Hiraizumi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | - April Pawluk
- Arc Institute, 3181 Porter Drive, Palo Alto, CA 94304, USA
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto 600-8411, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Silvana Konermann
- Arc Institute, 3181 Porter Drive, Palo Alto, CA 94304, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick D. Hsu
- Arc Institute, 3181 Porter Drive, Palo Alto, CA 94304, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
23
|
Wei Q, Wang R, Jiang Y, Wei L, Sun Y, Geng J, Su R. ConPep: Prediction of peptide contact maps with pre-trained biological language model and multi-view feature extracting strategy. Comput Biol Med 2023; 167:107631. [PMID: 37948966 DOI: 10.1016/j.compbiomed.2023.107631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The accurate prediction of peptide contact maps remains a challenging task due to the difficulty in obtaining the interactive information between residues on short sequences. To address this challenge, we propose ConPep, a deep learning framework designed for predicting the contact map of peptides based on sequences only. To sufficiently incorporate the sequential semantic information between residues in peptide sequences, we use a pre-trained biological language model and transfer prior knowledge from large scale databases. Additionally, to extract and integrate sequential local information and residue-based global correlations, our model incorporates Bidirectional Gated Recurrent Unit and attention mechanisms. They can obtain multi-view features and thus enhance the accuracy and robustness of our prediction. Comparative results on independent tests demonstrate that our proposed method significantly outperforms state-of-the-art methods even with short peptides. Notably, our method exhibits superior performance at the sequence level, suggesting the robust ability of our model compared with the multiple sequence alignment (MSA) analysis-based methods. We expect it can be meaningful research for facilitating the wide use of our method.
Collapse
Affiliation(s)
- Qingxin Wei
- School of Software, Shandong University, Jinan, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China
| | - Ruheng Wang
- School of Software, Shandong University, Jinan, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China
| | - Yi Jiang
- School of Software, Shandong University, Jinan, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, China
| | - Leyi Wei
- School of Software, Shandong University, Jinan, China; Centre for Artificial Intelligence driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR, China
| | - Yu Sun
- Beidahuang Industry Group General Hospital, Harbin, China.
| | - Jie Geng
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China.
| | - Ran Su
- College of Intelligence and Computing, Tianjin University, Tianjin, China.
| |
Collapse
|
24
|
Xie WJ, Warshel A. Harnessing generative AI to decode enzyme catalysis and evolution for enhanced engineering. Natl Sci Rev 2023; 10:nwad331. [PMID: 38299119 PMCID: PMC10829072 DOI: 10.1093/nsr/nwad331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 02/02/2024] Open
Abstract
Enzymes, as paramount protein catalysts, occupy a central role in fostering remarkable progress across numerous fields. However, the intricacy of sequence-function relationships continues to obscure our grasp of enzyme behaviors and curtails our capabilities in rational enzyme engineering. Generative artificial intelligence (AI), known for its proficiency in handling intricate data distributions, holds the potential to offer novel perspectives in enzyme research. Generative models could discern elusive patterns within the vast sequence space and uncover new functional enzyme sequences. This review highlights the recent advancements in employing generative AI for enzyme sequence analysis. We delve into the impact of generative AI in predicting mutation effects on enzyme fitness, catalytic activity and stability, rationalizing the laboratory evolution of de novo enzymes, and decoding protein sequence semantics and their application in enzyme engineering. Notably, the prediction of catalytic activity and stability of enzymes using natural protein sequences serves as a vital link, indicating how enzyme catalysis shapes enzyme evolution. Overall, we foresee that the integration of generative AI into enzyme studies will remarkably enhance our knowledge of enzymes and expedite the creation of superior biocatalysts.
Collapse
Affiliation(s)
- Wen Jun Xie
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
25
|
Qu Y, Niu Z, Ding Q, Zhao T, Kong T, Bai B, Ma J, Zhao Y, Zheng J. Ensemble Learning with Supervised Methods Based on Large-Scale Protein Language Models for Protein Mutation Effects Prediction. Int J Mol Sci 2023; 24:16496. [PMID: 38003686 PMCID: PMC10671426 DOI: 10.3390/ijms242216496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Machine learning has been increasingly utilized in the field of protein engineering, and research directed at predicting the effects of protein mutations has attracted increasing attention. Among them, so far, the best results have been achieved by related methods based on protein language models, which are trained on a large number of unlabeled protein sequences to capture the generally hidden evolutionary rules in protein sequences, and are therefore able to predict their fitness from protein sequences. Although numerous similar models and methods have been successfully employed in practical protein engineering processes, the majority of the studies have been limited to how to construct more complex language models to capture richer protein sequence feature information and utilize this feature information for unsupervised protein fitness prediction. There remains considerable untapped potential in these developed models, such as whether the prediction performance can be further improved by integrating different models to further improve the accuracy of prediction. Furthermore, how to utilize large-scale models for prediction methods of mutational effects on quantifiable properties of proteins due to the nonlinear relationship between protein fitness and the quantification of specific functionalities has yet to be explored thoroughly. In this study, we propose an ensemble learning approach for predicting mutational effects of proteins integrating protein sequence features extracted from multiple large protein language models, as well as evolutionarily coupled features extracted in homologous sequences, while comparing the differences between linear regression and deep learning models in mapping these features to quantifiable functional changes. We tested our approach on a dataset of 17 protein deep mutation scans and indicated that the integrated approach together with linear regression enables the models to have higher prediction accuracy and generalization. Moreover, we further illustrated the reliability of the integrated approach by exploring the differences in the predictive performance of the models across species and protein sequence lengths, as well as by visualizing clustering of ensemble and non-ensemble features.
Collapse
Affiliation(s)
- Yang Qu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; (Y.Q.); (Z.N.); (Q.D.); (T.Z.)
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Zitong Niu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; (Y.Q.); (Z.N.); (Q.D.); (T.Z.)
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Qiaojiao Ding
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; (Y.Q.); (Z.N.); (Q.D.); (T.Z.)
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Taowa Zhao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; (Y.Q.); (Z.N.); (Q.D.); (T.Z.)
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Tong Kong
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Bing Bai
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Jianwei Ma
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Yitian Zhao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; (Y.Q.); (Z.N.); (Q.D.); (T.Z.)
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Jianping Zheng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; (Y.Q.); (Z.N.); (Q.D.); (T.Z.)
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| |
Collapse
|
26
|
Li M, Wang H, Yang Z, Zhang L, Zhu Y. DeepTM: A deep learning algorithm for prediction of melting temperature of thermophilic proteins directly from sequences. Comput Struct Biotechnol J 2023; 21:5544-5560. [PMID: 38034401 PMCID: PMC10681957 DOI: 10.1016/j.csbj.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Thermally stable proteins find extensive applications in industrial production, pharmaceutical development, and serve as a highly evolved starting point in protein engineering. The thermal stability of proteins is commonly characterized by their melting temperature (Tm). However, due to the limited availability of experimentally determined Tm data and the insufficient accuracy of existing computational methods in predicting Tm, there is an urgent need for a computational approach to accurately forecast the Tm values of thermophilic proteins. Here, we present a deep learning-based model, called DeepTM, which exclusively utilizes protein sequences as input and accurately predicts the Tm values of target thermophilic proteins on a dataset consisting of 7790 thermophilic protein entries. On a test set of 1550 samples, DeepTM demonstrates excellent performance with a coefficient of determination (R2) of 0.75, Pearson correlation coefficient (P) of 0.87, and root mean square error (RMSE) of 6.24 ℃. We further analyzed the sequence features that determine the thermal stability of thermophilic proteins and found that dipeptide frequency, optimal growth temperature (OGT) of the host organisms, and the evolutionary information of the protein significantly affect its melting temperature. We compared the performance of DeepTM with recently reported methods, ProTstab2 and DeepSTABp, in predicting the Tm values on two blind test datasets. One dataset comprised 22 PET plastic-degrading enzymes, while the other included 29 thermally stable proteins of broader classification. In the PET plastic-degrading enzyme dataset, DeepTM achieved RMSE of 8.25 ℃. Compared to ProTstab2 (20.05 ℃) and DeepSTABp (20.97 ℃), DeepTM demonstrated a reduction in RMSE of 58.85% and 60.66%, respectively. In the dataset of thermally stable proteins, DeepTM (RMSE=7.66 ℃) demonstrated a 51.73% reduction in RMSE compared to ProTstab2 (RMSE=15.87 ℃). DeepTM, with the sole requirement of protein sequence information, accurately predicts the melting temperature and achieves a fully end-to-end prediction process, thus providing enhanced convenience and expediency for further protein engineering.
Collapse
Affiliation(s)
- Mengyu Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongzhao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenwu Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Longgui Zhang
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013, China
| | - Yushan Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
27
|
Liu Z, Zhu YH, Shen LC, Xiao X, Qiu WR, Yu DJ. Integrating unsupervised language model with multi-view multiple sequence alignments for high-accuracy inter-chain contact prediction. Comput Biol Med 2023; 166:107529. [PMID: 37748220 DOI: 10.1016/j.compbiomed.2023.107529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Accurate identification of inter-chain contacts in the protein complex is critical to determine the corresponding 3D structures and understand the biological functions. We proposed a new deep learning method, ICCPred, to deduce the inter-chain contacts from the amino acid sequences of the protein complex. This pipeline was built on the designed deep residual network architecture, integrating the pre-trained language model with three multiple sequence alignments (MSAs) from different biological views. Experimental results on 709 non-redundant benchmarking protein complexes showed that the proposed ICCPred significantly increased inter-chain contact prediction accuracy compared to the state-of-the-art approaches. Detailed data analyses showed that the significant advantage of ICCPred lies in the utilization of pre-trained transformer language models which can effectively extract the complementary co-evolution diversity from three MSAs. Meanwhile, the designed deep residual network enhances the correlation between the co-evolution diversity and the patterns of inter-chain contacts. These results demonstrated a new avenue for high-accuracy deep-learning inter-chain contact prediction that is applicable to large-scale protein-protein interaction annotations from sequence alone.
Collapse
Affiliation(s)
- Zi Liu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094, China; Computer Department, Jingdezhen Ceramic University, Jingdezhen, 333403 , China
| | - Yi-Heng Zhu
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210095 , China
| | - Long-Chen Shen
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094, China
| | - Xuan Xiao
- Computer Department, Jingdezhen Ceramic University, Jingdezhen, 333403 , China
| | - Wang-Ren Qiu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen, 333403 , China.
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, 210094, China.
| |
Collapse
|
28
|
Qin X, Liu M, Liu G. ResCNNT-fold: Combining residual convolutional neural network and Transformer for protein fold recognition from language model embeddings. Comput Biol Med 2023; 166:107571. [PMID: 37864911 DOI: 10.1016/j.compbiomed.2023.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
A comprehensive understanding of protein functions holds significant promise for disease research and drug development, and proteins with analogous tertiary structures tend to exhibit similar functions. Protein fold recognition stands as a classical approach in the realm of protein structure investigation. Despite significant advancements made by researchers in this field, the continuous updating of protein databases presents an ongoing challenge in accurately identifying protein fold types. In this study, we introduce a predictor, ResCNNT-fold, for protein fold recognition and employ the LE dataset for testing purpose. ResCNNT-fold leverages a pre-trained language model to obtain embedding representations for protein sequences, which are then processed by the ResCNNT feature extractor, a combination of residual convolutional neural network and Transformer, to derive fold-specific features. Subsequently, the query protein is paired with each protein whose structure is known in the template dataset. For each pair, the similarity score of their fold-specific features is calculated. Ultimately, the query protein is identified as the fold type of the template protein in the pair with the highest similarity score. To further validate the utility and efficacy of the proposed ResCNNT-fold predictor, we conduct a 2-fold cross-validation experiment on the fold level of the LE dataset. Remarkably, this rigorous evaluation yields an exceptional accuracy of 91.57%, which surpasses the best result among other state-of-the-art protein fold recognition methods by an approximate margin of 10%. The excellent performance unequivocally underscores the compelling advantages inherent to our proposed ResCNNT-fold predictor in the realm of protein fold recognition. The source code and data of ResCNNT-fold can be downloaded from https://github.com/Bioinformatics-Laboratory/ResCNNT-fold.
Collapse
Affiliation(s)
- Xinyi Qin
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Min Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Guangzhong Liu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| |
Collapse
|
29
|
Jia K, Kilinc M, Jernigan RL. New alignment method for remote protein sequences by the direct use of pairwise sequence correlations and substitutions. FRONTIERS IN BIOINFORMATICS 2023; 3:1227193. [PMID: 37900964 PMCID: PMC10602800 DOI: 10.3389/fbinf.2023.1227193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/14/2023] [Indexed: 10/31/2023] Open
Abstract
Understanding protein sequences and how they relate to the functions of proteins is extremely important. One of the most basic operations in bioinformatics is sequence alignment and usually the first things learned from these are which positions are the most conserved and often these are critical parts of the structure, such as enzyme active site residues. In addition, the contact pairs in a protein usually correspond closely to the correlations between residue positions in the multiple sequence alignment, and these usually change in a systematic and coordinated way, if one position changes then the other member of the pair also changes to compensate. In the present work, these correlated pairs are taken as anchor points for a new type of sequence alignment. The main advantage of the method here is its combining the remote homolog detection from our method PROST with pairwise sequence substitutions in the rigorous method from Kleinjung et al. We show a few examples of some resulting sequence alignments, and how they can lead to improvements in alignments for function, even for a disordered protein.
Collapse
Affiliation(s)
- Kejue Jia
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Mesih Kilinc
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| | - Robert L. Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
30
|
Xie WJ, Warshel A. Harnessing Generative AI to Decode Enzyme Catalysis and Evolution for Enhanced Engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561808. [PMID: 37873334 PMCID: PMC10592750 DOI: 10.1101/2023.10.10.561808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Enzymes, as paramount protein catalysts, occupy a central role in fostering remarkable progress across numerous fields. However, the intricacy of sequence-function relationships continues to obscure our grasp of enzyme behaviors and curtails our capabilities in rational enzyme engineering. Generative artificial intelligence (AI), known for its proficiency in handling intricate data distributions, holds the potential to offer novel perspectives in enzyme research. By applying generative models, we could discern elusive patterns within the vast sequence space and uncover new functional enzyme sequences. This review highlights the recent advancements in employing generative AI for enzyme sequence analysis. We delve into the impact of generative AI in predicting mutation effects on enzyme fitness, activity, and stability, rationalizing the laboratory evolution of de novo enzymes, decoding protein sequence semantics, and its applications in enzyme engineering. Notably, the prediction of enzyme activity and stability using natural enzyme sequences serves as a vital link, indicating how enzyme catalysis shapes enzyme evolution. Overall, we foresee that the integration of generative AI into enzyme studies will remarkably enhance our knowledge of enzymes and expedite the creation of superior biocatalysts.
Collapse
Affiliation(s)
- Wen Jun Xie
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
- Departmet of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Huang B, Kong L, Wang C, Ju F, Zhang Q, Zhu J, Gong T, Zhang H, Yu C, Zheng WM, Bu D. Protein Structure Prediction: Challenges, Advances, and the Shift of Research Paradigms. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:913-925. [PMID: 37001856 PMCID: PMC10928435 DOI: 10.1016/j.gpb.2022.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 03/31/2023]
Abstract
Protein structure prediction is an interdisciplinary research topic that has attracted researchers from multiple fields, including biochemistry, medicine, physics, mathematics, and computer science. These researchers adopt various research paradigms to attack the same structure prediction problem: biochemists and physicists attempt to reveal the principles governing protein folding; mathematicians, especially statisticians, usually start from assuming a probability distribution of protein structures given a target sequence and then find the most likely structure, while computer scientists formulate protein structure prediction as an optimization problem - finding the structural conformation with the lowest energy or minimizing the difference between predicted structure and native structure. These research paradigms fall into the two statistical modeling cultures proposed by Leo Breiman, namely, data modeling and algorithmic modeling. Recently, we have also witnessed the great success of deep learning in protein structure prediction. In this review, we present a survey of the efforts for protein structure prediction. We compare the research paradigms adopted by researchers from different fields, with an emphasis on the shift of research paradigms in the era of deep learning. In short, the algorithmic modeling techniques, especially deep neural networks, have considerably improved the accuracy of protein structure prediction; however, theories interpreting the neural networks and knowledge on protein folding are still highly desired.
Collapse
Affiliation(s)
- Bin Huang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lupeng Kong
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; Changping Laboratory, Beijing 102206, China
| | - Chao Wang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Fusong Ju
- Microsoft Research AI4Science, Beijing 100080, China
| | - Qi Zhang
- Huawei Noah's Ark Lab, Wuhan 430206, China
| | - Jianwei Zhu
- Microsoft Research AI4Science, Beijing 100080, China
| | - Tiansu Gong
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haicang Zhang
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongke Big Data Academy, Zhengzhou 450046, China.
| | - Chungong Yu
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongke Big Data Academy, Zhengzhou 450046, China.
| | - Wei-Mou Zheng
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dongbo Bu
- Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongke Big Data Academy, Zhengzhou 450046, China.
| |
Collapse
|
32
|
Ru Z, Wu Y, Shao J, Yin J, Qian L, Miao X. A dual-modal graph learning framework for identifying interaction events among chemical and biotech drugs. Brief Bioinform 2023; 24:bbad271. [PMID: 37507113 DOI: 10.1093/bib/bbad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/18/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Drug-drug interaction (DDI) identification is essential to clinical medicine and drug discovery. The two categories of drugs (i.e. chemical drugs and biotech drugs) differ remarkably in molecular properties, action mechanisms, etc. Biotech drugs are up-to-comers but highly promising in modern medicine due to higher specificity and fewer side effects. However, existing DDI prediction methods only consider chemical drugs of small molecules, not biotech drugs of large molecules. Here, we build a large-scale dual-modal graph database named CB-DB and customize a graph-based framework named CB-TIP to reason event-aware DDIs for both chemical and biotech drugs. CB-DB comprehensively integrates various interaction events and two heterogeneous kinds of molecular structures. It imports endogenous proteins founded on the fact that most drugs take effects by interacting with endogenous proteins. In the modality of molecular structure, drugs and endogenous proteins are two heterogeneous kinds of graphs, while in the modality of interaction, they are nodes connected by events (i.e. edges of different relationships). CB-TIP employs graph representation learning methods to generate drug representations from either modality and then contrastively mixes them to predict how likely an event occurs when a drug meets another in an end-to-end manner. Experiments demonstrate CB-TIP's great superiority in DDI prediction and the promising potential of uncovering novel DDIs.
Collapse
Affiliation(s)
- Zhongying Ru
- Center for Data Science, Zhejiang University, 866 Yuhangtang Rd, 310058, Hangzhou, P.R. China
- Polytechnic Institute, Zhejiang University, 866 Yuhangtang Rd, 310058, Hangzhou, P.R. China
| | - Yangyang Wu
- Center for Data Science, Zhejiang University, 866 Yuhangtang Rd, 310058, Hangzhou, P.R. China
| | - Jinning Shao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, 866 Yuhangtang Rd, 310058, Hangzhou, P.R. China
| | - Jianwei Yin
- Center for Data Science, Zhejiang University, 866 Yuhangtang Rd, 310058, Hangzhou, P.R. China
- College of Computer Science, Zhejiang University, 866 Yuhangtang Rd, 310058, Hangzhou, P.R. China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, 866 Yuhangtang Rd, 310058, Hangzhou, P.R. China
| | - Xiaoye Miao
- Center for Data Science, Zhejiang University, 866 Yuhangtang Rd, 310058, Hangzhou, P.R. China
| |
Collapse
|
33
|
Wang H, Zang Y, Kang Y, Zhang J, Zhang L, Zhang S. ETLD: an encoder-transformation layer-decoder architecture for protein contact and mutation effects prediction. Brief Bioinform 2023; 24:bbad290. [PMID: 37598423 DOI: 10.1093/bib/bbad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/21/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
The latent features extracted from the multiple sequence alignments (MSAs) of homologous protein families are useful for identifying residue-residue contacts, predicting mutation effects, shaping protein evolution, etc. Over the past three decades, a growing body of supervised and unsupervised machine learning methods have been applied to this field, yielding fruitful results. Here, we propose a novel self-supervised model, called encoder-transformation layer-decoder (ETLD) architecture, capable of capturing protein sequence latent features directly from MSAs. Compared to the typical autoencoder model, ETLD introduces a transformation layer with the ability to learn inter-site couplings, which can be used to parse out the two-dimensional residue-residue contacts map after a simple mathematical derivation or an additional supervised neural network. ETLD retains the process of encoding and decoding sequences, and the predicted probabilities of amino acids at each site can be further used to construct the mutation landscapes for mutation effects prediction, outperforming advanced models such as GEMME, DeepSequence and EVmutation in general. Overall, ETLD is a highly interpretable unsupervised model with great potential for improvement and can be further combined with supervised methods for more extensive and accurate predictions.
Collapse
Affiliation(s)
- He Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongjian Zang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Kang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianwen Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
34
|
Tang YJ, Yan K, Zhang X, Tian Y, Liu B. Protein intrinsically disordered region prediction by combining neural architecture search and multi-objective genetic algorithm. BMC Biol 2023; 21:188. [PMID: 37674132 PMCID: PMC10483879 DOI: 10.1186/s12915-023-01672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Intrinsically disordered regions (IDRs) are widely distributed in proteins and related to many important biological functions. Accurately identifying IDRs is of great significance for protein structure and function analysis. Because the long disordered regions (LDRs) and short disordered regions (SDRs) share different characteristics, the existing predictors fail to achieve better and more stable performance on datasets with different ratios between LDRs and SDRs. There are two main reasons. First, the existing predictors construct network structures based on their own experiences such as convolutional neural network (CNN) which is used to extract the feature of neighboring residues in protein, and long short-term memory (LSTM) is used to extract the long-distance dependencies feature of protein residues. But these networks cannot capture the hidden feature associated with the length-dependent between residues. Second, many algorithms based on deep learning have been proposed but the complementarity of the existing predictors is not fully explored and used. RESULTS In this study, the neural architecture search (NAS) algorithm was employed to automatically construct the network structures so as to capture the hidden features in protein sequences. In order to stably predict both the LDRs and SDRs, the model constructed by NAS was combined with length-dependent models for capturing the unique features of SDRs or LDRs and general models for capturing the common features between LDRs and SDRs. A new predictor called IDP-Fusion was proposed. CONCLUSIONS Experimental results showed that IDP-Fusion can achieve more stable performance than the other existing predictors on independent test sets with different ratios between SDRs and LDRs.
Collapse
Affiliation(s)
- Yi-Jun Tang
- School of Computer Science and Technology, Beijing Institute of Technology, Haidian District, No. 5, South Zhongguancun Street, Beijing, 100081, China
| | - Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Haidian District, No. 5, South Zhongguancun Street, Beijing, 100081, China
| | - Xingyi Zhang
- School of Artificial Intelligence, Anhui University, Hefei, 230601, China
| | - Ye Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Haidian District, No. 5, South Zhongguancun Street, Beijing, 100081, China.
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
35
|
Li J, Sawhney A, Lee JY, Liao L. Improving Inter-Helix Contact Prediction With Local 2D Topological Information. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3001-3012. [PMID: 37155404 DOI: 10.1109/tcbb.2023.3274361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Inter-helix contact prediction is to identify residue contact across different helices in α-helical integral membrane proteins. Despite the progress made by various computational methods, contact prediction remains as a challenging task, and there is no method to our knowledge that directly tap into the contact map in an alignment free manner. We build 2D contact models from an independent dataset to capture the topological patterns in the neighborhood of a residue pair depending it is a contact or not, and apply the models to the state-of-art method's predictions to extract the features reflecting 2D inter-helix contact patterns. A secondary classifier is trained on such features. Realizing that the achievable improvement is intrinsically hinged on the quality of original predictions, we devise a mechanism to deal with the issue by introducing, 1) partial discretization of original prediction scores to more effectively leverage useful information 2) fuzzy score to assess the quality of the original prediction to help with selecting the residue pairs where improvement is more achievable. The cross-validation results show that the prediction from our method outperforms other methods including the state-of-the-art method (DeepHelicon) by a notable degree even without using the refinement selection scheme. By applying the refinement selection scheme, our method outperforms the state-of-the-art method significantly in these selected sequences.
Collapse
|
36
|
Chen L, Zhang Z, Li Z, Li R, Huo R, Chen L, Wang D, Luo X, Chen K, Liao C, Zheng M. Learning protein fitness landscapes with deep mutational scanning data from multiple sources. Cell Syst 2023; 14:706-721.e5. [PMID: 37591206 DOI: 10.1016/j.cels.2023.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
One of the key points of machine learning-assisted directed evolution (MLDE) is the accurate learning of the fitness landscape, a conceptual mapping from sequence variants to the desired function. Here, we describe a multi-protein training scheme that leverages the existing deep mutational scanning data from diverse proteins to aid in understanding the fitness landscape of a new protein. Proof-of-concept trials are designed to validate this training scheme in three aspects: random and positional extrapolation for single-variant effects, zero-shot fitness predictions for new proteins, and extrapolation for higher-order variant effects from single-variant effects. Moreover, our study identified previously overlooked strong baselines, and their unexpectedly good performance brings our attention to the pitfalls of MLDE. Overall, these results may improve our understanding of the association between different protein fitness profiles and shed light on developing better machine learning-assisted approaches to the directed evolution of proteins. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Lin Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehong Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenghao Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rui Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ruifeng Huo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lifan Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Cangsong Liao
- University of Chinese Academy of Sciences, Beijing 100049, China; Chemical Biology Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
37
|
Lin P, Yan Y, Tao H, Huang SY. Deep transfer learning for inter-chain contact predictions of transmembrane protein complexes. Nat Commun 2023; 14:4935. [PMID: 37582780 PMCID: PMC10427616 DOI: 10.1038/s41467-023-40426-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
Membrane proteins are encoded by approximately a quarter of human genes. Inter-chain residue-residue contact information is important for structure prediction of membrane protein complexes and valuable for understanding their molecular mechanism. Although many deep learning methods have been proposed to predict the intra-protein contacts or helix-helix interactions in membrane proteins, it is still challenging to accurately predict their inter-chain contacts due to the limited number of transmembrane proteins. Addressing the challenge, here we develop a deep transfer learning method for predicting inter-chain contacts of transmembrane protein complexes, named DeepTMP, by taking advantage of the knowledge pre-trained from a large data set of non-transmembrane proteins. DeepTMP utilizes a geometric triangle-aware module to capture the correct inter-chain interaction from the coevolution information generated by protein language models. DeepTMP is extensively evaluated on a test set of 52 self-associated transmembrane protein complexes, and compared with state-of-the-art methods including DeepHomo2.0, CDPred, GLINTER, DeepHomo, and DNCON2_Inter. It is shown that DeepTMP considerably improves the precision of inter-chain contact prediction and outperforms the existing approaches in both accuracy and robustness.
Collapse
Affiliation(s)
- Peicong Lin
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Huanyu Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
38
|
Liu X, Duan Y, Hong X, Xie J, Liu S. Challenges in structural modeling of RNA-protein interactions. Curr Opin Struct Biol 2023; 81:102623. [PMID: 37301066 DOI: 10.1016/j.sbi.2023.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
In the past few years, the number of RNA-binding proteins (RBP) and RNA-RBP interactions has increased significantly. Here, we review recent developments in the methodology for protein-RNA and protein-protein complex structure modeling with deep learning and co-evolution, as well as discuss the challenges and opportunities for building a reliable approach for protein-RNA complex structure modelling. Protein Data bank (PDB) and Cross-linking immunoprecipitation (CLIP) data could be combined together and used to infer 2D geometry of protein-RNA interactions by deep learning.
Collapse
Affiliation(s)
- Xudong Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yingtian Duan
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xu Hong
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Juan Xie
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Shiyong Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
39
|
Montezano D, Bernstein R, Copeland MM, Slusky JSG. General features of transmembrane beta barrels from a large database. Proc Natl Acad Sci U S A 2023; 120:e2220762120. [PMID: 37432995 PMCID: PMC10629564 DOI: 10.1073/pnas.2220762120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/03/2023] [Indexed: 07/13/2023] Open
Abstract
Large datasets contribute new insights to subjects formerly investigated by exemplars. We used coevolution data to create a large, high-quality database of transmembrane β-barrels (TMBB). By applying simple feature detection on generated evolutionary contact maps, our method (IsItABarrel) achieves 95.88% balanced accuracy when discriminating among protein classes. Moreover, comparison with IsItABarrel revealed a high rate of false positives in previous TMBB algorithms. In addition to being more accurate than previous datasets, our database (available online) contains 1,938,936 bacterial TMBB proteins from 38 phyla, respectively, 17 and 2.2 times larger than the previous sets TMBB-DB and OMPdb. We anticipate that due to its quality and size, the database will serve as a useful resource where high-quality TMBB sequence data are required. We found that TMBBs can be divided into 11 types, three of which have not been previously reported. We find tremendous variance in proteome percentage among TMBB-containing organisms with some using 6.79% of their proteome for TMBBs and others using as little as 0.27% of their proteome. The distribution of the lengths of the TMBBs is suggestive of previously hypothesized duplication events. In addition, we find that the C-terminal β-signal varies among different classes of bacteria though its consensus sequence is LGLGYRF. However, this β-signal is only characteristic of prototypical TMBBs. The ten non-prototypical barrel types have other C-terminal motifs, and it remains to be determined if these alternative motifs facilitate TMBB insertion or perform any other signaling function.
Collapse
Affiliation(s)
- Daniel Montezano
- Computational Biology Program, University of Kansas, Lawrence, KS66045
| | - Rebecca Bernstein
- Computational Biology Program, University of Kansas, Lawrence, KS66045
| | | | - Joanna S. G. Slusky
- Computational Biology Program, University of Kansas, Lawrence, KS66045
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66045
| |
Collapse
|
40
|
Meng Q, Guo F, Tang J. Improved structure-related prediction for insufficient homologous proteins using MSA enhancement and pre-trained language model. Brief Bioinform 2023:bbad217. [PMID: 37321965 DOI: 10.1093/bib/bbad217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/18/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023] Open
Abstract
In recent years, protein structure problems have become a hotspot for understanding protein folding and function mechanisms. It has been observed that most of the protein structure works rely on and benefit from co-evolutionary information obtained by multiple sequence alignment (MSA). As an example, AlphaFold2 (AF2) is a typical MSA-based protein structure tool which is famous for its high accuracy. As a consequence, these MSA-based methods are limited by the quality of the MSAs. Especially for orphan proteins that have no homologous sequence, AlphaFold2 performs unsatisfactorily as MSA depth decreases, which may pose a barrier to its widespread application in protein mutation and design problems in which there are no rich homologous sequences and rapid prediction is needed. In this paper, we constructed two standard datasets for orphan and de novo proteins which have insufficient/none homology information, called Orphan62 and Design204, respectively, to fairly evaluate the performance of the various methods in this case. Then, depending on whether or not utilizing scarce MSA information, we summarized two approaches, MSA-enhanced and MSA-free methods, to effectively solve the issue without sufficient MSAs. MSA-enhanced model aims to improve poor MSA quality from the data source by knowledge distillation and generation models. MSA-free model directly learns the relationship between residues on enormous protein sequences from pre-trained models, bypassing the step of extracting the residue pair representation from MSA. Next, we evaluated the performance of four MSA-free methods (trRosettaX-Single, TRFold, ESMFold and ProtT5) and MSA-enhanced (Bagging MSA) method compared with a traditional MSA-based method AlphaFold2, in two protein structure-related prediction tasks, respectively. Comparison analyses show that trRosettaX-Single and ESMFold which belong to MSA-free method can achieve fast prediction ($\sim\! 40$s) and comparable performance compared with AF2 in tertiary structure prediction, especially for short peptides, $\alpha $-helical segments and targets with few homologous sequences. Bagging MSA utilizing MSA enhancement improves the accuracy of our trained base model which is an MSA-based method when poor homology information exists in secondary structure prediction. Our study provides biologists an insight of how to select rapid and appropriate prediction tools for enzyme engineering and peptide drug development. CONTACT guofei@csu.edu.cn, jj.tang@siat.ac.cn.
Collapse
Affiliation(s)
- Qiaozhen Meng
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| |
Collapse
|
41
|
Durham J, Zhang J, Humphreys IR, Pei J, Cong Q. Recent advances in predicting and modeling protein-protein interactions. Trends Biochem Sci 2023; 48:527-538. [PMID: 37061423 DOI: 10.1016/j.tibs.2023.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 04/17/2023]
Abstract
Protein-protein interactions (PPIs) drive biological processes, and disruption of PPIs can cause disease. With recent breakthroughs in structure prediction and a deluge of genomic sequence data, computational methods to predict PPIs and model spatial structures of protein complexes are now approaching the accuracy of experimental approaches for permanent interactions and show promise for elucidating transient interactions. As we describe here, the key to this success is rich evolutionary information deciphered from thousands of homologous sequences that coevolve in interacting partners. This covariation signal, revealed by sophisticated statistical and machine learning (ML) algorithms, predicts physiological interactions. Accurate artificial intelligence (AI)-based modeling of protein structures promises to provide accurate 3D models of PPIs at a proteome-wide scale.
Collapse
Affiliation(s)
- Jesse Durham
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ian R Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
42
|
Si Y, Yan C. Improved inter-protein contact prediction using dimensional hybrid residual networks and protein language models. Brief Bioinform 2023; 24:7033302. [PMID: 36759333 DOI: 10.1093/bib/bbad039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
The knowledge of contacting residue pairs between interacting proteins is very useful for the structural characterization of protein-protein interactions (PPIs). However, accurately identifying the tens of contacting ones from hundreds of thousands of inter-protein residue pairs is extremely challenging, and performances of the state-of-the-art inter-protein contact prediction methods are still quite limited. In this study, we developed a deep learning method for inter-protein contact prediction, which is referred to as DRN-1D2D_Inter. Specifically, we employed pretrained protein language models to generate structural information-enriched input features to residual networks formed by dimensional hybrid residual blocks to perform inter-protein contact prediction. Extensively bechmarking DRN-1D2D_Inter on multiple datasets, including both heteromeric PPIs and homomeric PPIs, we show DRN-1D2D_Inter consistently and significantly outperformed two state-of-the-art inter-protein contact prediction methods, including GLINTER and DeepHomo, although both the latter two methods leveraged the native structures of interacting proteins in the prediction, and DRN-1D2D_Inter made the prediction purely from sequences. We further show that applying the predicted contacts as constraints for protein-protein docking can significantly improve its performance for protein complex structure prediction.
Collapse
Affiliation(s)
- Yunda Si
- School of Physics, Huazhong University of Science and Technology, China
| | - Chengfei Yan
- School of Physics, Huazhong University of Science and Technology, China
| |
Collapse
|
43
|
Karamanos TK. Chasing long-range evolutionary couplings in the AlphaFold era. Biopolymers 2023; 114:e23530. [PMID: 36752285 PMCID: PMC10909459 DOI: 10.1002/bip.23530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Coevolution between protein residues is normally interpreted as direct contact. However, the evolutionary record of a protein sequence contains rich information that may include long-range functional couplings, couplings that report on homo-oligomeric states or even conformational changes. Due to the complexity of the sequence space and the lack of structural information on various members of a protein family, it has been difficult to effectively mine the additional information encoded in a multiple sequence alignment (MSA). Here, taking advantage of the recent release of the AlphaFold (AF) database we attempt to identify coevolutionary couplings that cannot be explained simply by spatial proximity. We propose a simple computational method that performs direct coupling analysis on a MSA and searches for couplings that are not satisfied in any of the AF models of members of the identified protein family. Application of this method on 2012 protein families suggests that ~12% of the total identified coevolving residue pairs are spatially distant and more likely to be disordered than their contacting counterparts. We expect that this analysis will help improve the quality of coevolutionary distance restraints used for structure determination and will be useful in identifying potentially functional/allosteric cross-talk between distant residues.
Collapse
|
44
|
Gu J, Xu Y, Nie Y. Role of distal sites in enzyme engineering. Biotechnol Adv 2023; 63:108094. [PMID: 36621725 DOI: 10.1016/j.biotechadv.2023.108094] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/15/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
The limitations associated with natural enzyme catalysis have triggered the rise of the field of protein engineering. Traditional rational design was based on the analysis of protein structural information and catalytic mechanisms to identify key active sites or ligand binding sites to reshape the substrate pocket. The role and significance of functional sites in the active center have been studied extensively. With a deeper understanding of the structure-catalysis relationship map, the entire protein molecule can be filled with residues that play a substantial role in its structure and function. However, the catalytic mechanism underlying distal mutations remains unclear. The aim of this review was to highlight the criticality of the distal site in enzyme engineering based on the following three aspects: What can distal mutations exert on function from mutability landscape? How do distal sites influence enzyme function? How to predict and design distal mutations? This review provides insights into the catalytic mechanism of enzymes from the global interaction network, knowledge from sequence-structure-dynamics-function relationships, and strategies for distal mutation-based protein engineering.
Collapse
Affiliation(s)
- Jie Gu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China.
| |
Collapse
|
45
|
Li M, Kang L, Xiong Y, Wang YG, Fan G, Tan P, Hong L. SESNet: sequence-structure feature-integrated deep learning method for data-efficient protein engineering. J Cheminform 2023; 15:12. [PMID: 36737798 PMCID: PMC9898993 DOI: 10.1186/s13321-023-00688-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Deep learning has been widely used for protein engineering. However, it is limited by the lack of sufficient experimental data to train an accurate model for predicting the functional fitness of high-order mutants. Here, we develop SESNet, a supervised deep-learning model to predict the fitness for protein mutants by leveraging both sequence and structure information, and exploiting attention mechanism. Our model integrates local evolutionary context from homologous sequences, the global evolutionary context encoding rich semantic from the universal protein sequence space and the structure information accounting for the microenvironment around each residue in a protein. We show that SESNet outperforms state-of-the-art models for predicting the sequence-function relationship on 26 deep mutational scanning datasets. More importantly, we propose a data augmentation strategy by leveraging the data from unsupervised models to pre-train our model. After that, our model can achieve strikingly high accuracy in prediction of the fitness of protein mutants, especially for the higher order variants (> 4 mutation sites), when finetuned by using only a small number of experimental mutation data (< 50). The strategy proposed is of great practical value as the required experimental effort, i.e., producing a few tens of experimental mutation data on a given protein, is generally affordable by an ordinary biochemical group and can be applied on almost any protein.
Collapse
Affiliation(s)
- Mingchen Li
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200240, China
| | - Liqi Kang
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Physics and Astronomy & School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiong
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Guang Wang
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200240, China
| | - Guisheng Fan
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200240, China
| | - Pan Tan
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200240, China.
| | - Liang Hong
- Shanghai National Center for Applied Mathematics (SJTU Center), & Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200240, China.
- School of Physics and Astronomy & School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
46
|
Lin P, Yan Y, Huang SY. DeepHomo2.0: improved protein-protein contact prediction of homodimers by transformer-enhanced deep learning. Brief Bioinform 2023; 24:6849483. [PMID: 36440949 DOI: 10.1093/bib/bbac499] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022] Open
Abstract
Protein-protein interactions play an important role in many biological processes. However, although structure prediction for monomer proteins has achieved great progress with the advent of advanced deep learning algorithms like AlphaFold, the structure prediction for protein-protein complexes remains an open question. Taking advantage of the Transformer model of ESM-MSA, we have developed a deep learning-based model, named DeepHomo2.0, to predict protein-protein interactions of homodimeric complexes by leveraging the direct-coupling analysis (DCA) and Transformer features of sequences and the structure features of monomers. DeepHomo2.0 was extensively evaluated on diverse test sets and compared with eight state-of-the-art methods including protein language model-based, DCA-based and machine learning-based methods. It was shown that DeepHomo2.0 achieved a high precision of >70% with experimental monomer structures and >60% with predicted monomer structures for the top 10 predicted contacts on the test sets and outperformed the other eight methods. Moreover, even the version without using structure information, named DeepHomoSeq, still achieved a good precision of >55% for the top 10 predicted contacts. Integrating the predicted contacts into protein docking significantly improved the structure prediction of realistic Critical Assessment of Protein Structure Prediction homodimeric complexes. DeepHomo2.0 and DeepHomoSeq are available at http://huanglab.phys.hust.edu.cn/DeepHomo2/.
Collapse
Affiliation(s)
- Peicong Lin
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
47
|
Moafinejad SN, Pandaranadar Jeyeram IPN, Jaryani F, Shirvanizadeh N, Baulin EF, Bujnicki JM. 1D2DSimScore: A novel method for comparing contacts in biomacromolecules and their complexes. Protein Sci 2023; 32:e4503. [PMID: 36369832 PMCID: PMC9795538 DOI: 10.1002/pro.4503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
The biologically relevant structures of proteins and nucleic acids and their complexes are dynamic. They include a combination of regions ranging from rigid structural segments to structural switches to regions that are almost always disordered, which interact with each other in various ways. Comparing conformational changes and variation in contacts between different conformational states is essential to understand the biological functions of proteins, nucleic acids, and their complexes. Here, we describe a new computational tool, 1D2DSimScore, for comparing contacts and contact interfaces in all kinds of macromolecules and macromolecular complexes, including proteins, nucleic acids, and other molecules. 1D2DSimScore can be used to compare structural features of macromolecular models between alternative structures obtained in a particular experiment or to score various predictions against a defined "ideal" reference structure. Comparisons at the level of contacts are particularly useful for flexible molecules, for which comparisons in 3D that require rigid-body superpositions are difficult, and in biological systems where the formation of specific inter-residue contacts is more relevant for the biological function than the maintenance of a specific global 3D structure. Similarity/dissimilarity scores calculated by 1D2DSimScore can be used to complement scores describing 3D structural similarity measures calculated by the existing tools.
Collapse
Affiliation(s)
- S. Naeim Moafinejad
- Laboratory of Bioinformatics and Protein EngineeringInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | - Farhang Jaryani
- Laboratory of Bioinformatics and Protein EngineeringInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Niloofar Shirvanizadeh
- Laboratory of Bioinformatics and Protein EngineeringInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Eugene F. Baulin
- Laboratory of Bioinformatics and Protein EngineeringInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein EngineeringInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| |
Collapse
|
48
|
Bhattacharya S, Roche R, Shuvo MH, Moussad B, Bhattacharya D. Contact-Assisted Threading in Low-Homology Protein Modeling. Methods Mol Biol 2023; 2627:41-59. [PMID: 36959441 DOI: 10.1007/978-1-0716-2974-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The ability to successfully predict the three-dimensional structure of a protein from its amino acid sequence has made considerable progress in the recent past. The progress is propelled by the improved accuracy of deep learning-based inter-residue contact map predictors coupled with the rising growth of protein sequence databases. Contact map encodes interatomic interaction information that can be exploited for highly accurate prediction of protein structures via contact map threading even for the query proteins that are not amenable to direct homology modeling. As such, contact-assisted threading has garnered considerable research effort. In this chapter, we provide an overview of existing contact-assisted threading methods while highlighting the recent advances and discussing some of the current limitations and future prospects in the application of contact-assisted threading for improving the accuracy of low-homology protein modeling.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA
| | | | - Md Hossain Shuvo
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Bernard Moussad
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
49
|
Abstract
Future applications of synthetic biology will rely on deploying engineered cells outside of lab environments for long periods of time. Currently, a significant roadblock to this application is the potential for deactivating mutations in engineered genes. A recently developed method to protect engineered coding sequences from mutation is called Constraining Adaptive Mutations using Engineered Overlapping Sequences (CAMEOS). In this chapter we provide a workflow for utilizing CAMEOS to create synthetic overlaps between two genes, one essential (infA) and one non-essential (aroB), to protect the non-essential gene from mutation and loss of protein function. In this workflow we detail the methods to collect large numbers of related protein sequences, produce multiple sequence alignments (MSAs), use the MSAs to generate hidden Markov models and Markov random field models, and finally generate a library of overlapping coding sequences through CAMEOS scripts. To assist practitioners with basic coding skills to try out the CAMEOS method, we have created a virtual machine containing all the required packages already installed that can be downloaded and run locally.
Collapse
Affiliation(s)
- Dominic Y Logel
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
50
|
Mufassirin MMM, Newton MAH, Sattar A. Artificial intelligence for template-free protein structure prediction: a comprehensive review. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|