1
|
Meng L, Xu C, Cao Y, Wu L, Zhu Y, Zou J, Uddin I, Zafar I, Muhammad A, Xing X, Jin RT, He L, Liu H, Li W, Bao J. Combinatorial tagging generates a multi-purpose knock-in mouse model revealing phase separation-dependent germ granules in RNA homeostasis and germline development. Cell Death Differ 2025:10.1038/s41418-025-01495-7. [PMID: 40269199 DOI: 10.1038/s41418-025-01495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
A large resource of epitope-tagged and Cre/CreERT2-expressing mouse models are available for studying germ granules and germline development. Germ granules are proteinaceous, membraneless organelles (MLO) involved in germ cell differentiation and maturation; however, their protein and RNA transcript constituents, as well as their functional mechanisms remain incompletely understood. Herein, we generated a versatile germline mouse model through combinatorially tagging DDX4 to enable simultaneous expression of three cistronic coding products (C-terminally tagged DDX4 - DDX45HA, EGFP, and CreERT2) under the control of the endogenous Ddx4 promoter. By leveraging the high-affinity HA tag, we optimized an efficient workflow to purify germ granules (Chromatoid body, CB) from spermatids, and characterized their protein and RNA transcript composition. Moreover, we explored and ascertained that DDX4-mediated, phase-separation dependent CB integrity is functionally important for recruiting distinctive long RNA transcripts and for the biogenesis of pachytene- and TE-derived piRNAs. Together, our study generated a versatile germline mouse model with a multiplicity of applications for germline study, and provided mechanistic insights into germline development as dictated by germ granules.
Collapse
Affiliation(s)
- Lan Meng
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Caoling Xu
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Yuzhu Cao
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Department of pharmacy, Anhui Medical College, Hefei, 230601, China
| | - Limin Wu
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yuzhang Zhu
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jiaqi Zou
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Islam Uddin
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Iqra Zafar
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Azhar Muhammad
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xuemei Xing
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ren-Tao Jin
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Li He
- School of life sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Hongbin Liu
- Institute of Women, Children and Reproductive Health, State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China.
| | - Wenqing Li
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China.
| | - Jianqiang Bao
- Center for Reproduction and Genetics, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China.
| |
Collapse
|
2
|
Ahrend F, Konstantinidou P, Loubalova Z, Wang Y, Lorenzi H, Meister G, Haase AD. Protocol for assembling, prioritizing, and characterizing piRNA clusters using the piRNA Cluster Builder. STAR Protoc 2025; 6:103759. [PMID: 40220304 PMCID: PMC12023778 DOI: 10.1016/j.xpro.2025.103759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/19/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
PIWI-interacting RNAs (piRNAs) play a critical role in safeguarding genome integrity in germ cells, ensuring fertility. Here, we provide a protocol for processing piRNA sequencing data, identifying piRNA-rich genomic regions as piRNA clusters, and preparing these clusters for downstream analyses. We describe steps for assembling piRNA cluster regions using an R-based tool, the piRNA Cluster Builder (PICB), which integrates unique and multimapping piRNA reads stepwise. The protocol allows for parameter optimizations and generates normalized outputs for prioritization of piRNA clusters. For complete details on the use and execution of this protocol, please refer to Konstantinidou et al.1.
Collapse
Affiliation(s)
- Franziska Ahrend
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany.
| | - Parthena Konstantinidou
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zuzana Loubalova
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yuejun Wang
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; The TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hernan Lorenzi
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; The TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Astrid D Haase
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Parikh RY, Nayak D, Lin H, Gangaraju VK. Drosophila Modulo is essential for transposon silencing and developmental robustness. J Biol Chem 2025; 301:108210. [PMID: 39848495 PMCID: PMC11879677 DOI: 10.1016/j.jbc.2025.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Transposable element (TE) silencing in the germline is crucial for preserving genome integrity; its absence results in sterility and diminished developmental robustness. The Piwi-interacting RNA (piRNA) pathway is the primary small non-coding RNA mechanism by which TEs are silenced in the germline. Three piRNA binding proteins promote the piRNA pathway function in the germline- P-element-induced wimpy testis (Piwi), Aubergine (Aub), and Argonaute 3 (Ago3). Piwi mediates transcriptional silencing of TEs by promoting the deposition of the heterochromatin mark Histone 3 lysine nine trimethylation (H3K9me3) at TE genomic sites. Aub and Ago3 facilitate post-transcriptional silencing of TEs. Proteins and mechanisms that promote piRNA function in TE silencing are still being discovered. This study demonstrates that the Drosophila Modulo protein, a homolog of mammalian Nucleolin and an epigenetic regulator, is crucial for the enrichment of H3K9me3 at TEs. We show that Modulo interacts with Piwi and operates downstream of the Piwi-piRNA complex's entry into the nucleus. Lack of Modulo function impairs Piwi-interacting protein Panoramix's ability to target transposon RNAs. Furthermore, the reduced function of Modulo in the mother undermines developmental robustness and exacerbates neomorphic Kr[If-1]-induced ectopic eye outgrowths in the offspring. Maternal Modulo enhances developmental robustness by inhibiting TE activation and transcriptome variability associated with intrinsic genetic variation. Thus, Modulo is an essential component of the mechanism that operates in the maternal germline to facilitate TE silencing and ensure developmental robustness in the ensuing generation.
Collapse
Affiliation(s)
- Rasesh Y Parikh
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dhananjaya Nayak
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University, New Haven, Connecticut, USA
| | - Vamsi K Gangaraju
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
4
|
Guo C, Wang X, Ren H. Databases and computational methods for the identification of piRNA-related molecules: A survey. Comput Struct Biotechnol J 2024; 23:813-833. [PMID: 38328006 PMCID: PMC10847878 DOI: 10.1016/j.csbj.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/31/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a class of small non-coding RNAs (ncRNAs) that plays important roles in many biological processes and major cancer diagnosis and treatment, thus becoming a hot research topic. This study aims to provide an in-depth review of computational piRNA-related research, including databases and computational models. Herein, we perform literature analysis and use comparative evaluation methods to summarize and analyze three aspects of computational piRNA-related research: (i) computational models for piRNA-related molecular identification tasks, (ii) computational models for piRNA-disease association prediction tasks, and (iii) computational resources and evaluation metrics for these tasks. This study shows that computational piRNA-related research has significantly progressed, exhibiting promising performance in recent years, whereas they also suffer from the emerging challenges of inconsistent naming systems and the lack of data. Different from other reviews on piRNA-related identification tasks that focus on the organization of datasets and computational methods, we pay more attention to the analysis of computational models, algorithms, and performances that aim to provide valuable references for computational piRNA-related identification tasks. This study will benefit the theoretical development and practical application of piRNAs by better understanding computational models and resources to investigate the biological functions and clinical implications of piRNA.
Collapse
Affiliation(s)
- Chang Guo
- Laboratory of Language Engineering and Computing, Guangdong University of Foreign Studies, Guangzhou 510420, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Ren
- Laboratory of Language Engineering and Computing, Guangdong University of Foreign Studies, Guangzhou 510420, China
- Laboratory of Language and Artificial Intelligence, Guangdong University of Foreign Studies, Guangzhou 510420, China
| |
Collapse
|
5
|
Cecchini K, Ajaykumar N, Bagci A, Zamore PD, Gainetdinov I. Mouse Pachytene piRNAs Cleave Hundreds of Transcripts, But Alter the Steady-State Abundance of Only a Minority of Targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621675. [PMID: 39554027 PMCID: PMC11566022 DOI: 10.1101/2024.11.02.621675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
In animals, 18-35-nt piRNAs guide PIWI proteins to regulate complementary RNAs. During male meiosis, mammals produce an exceptionally abundant class of piRNAs called pachytene piRNAs. Pachytene piRNAs are required for spermatogenesis and have been proposed to control gene expression by various mechanisms. Here, we show that pachytene piRNAs regulate targets predominantly, if not exclusively, by endonucleolytic cleavage. Remarkably, pachytene piRNAs slice hundreds of RNAs, yet a change in steady-state level is detectable for a small fraction of transcripts. Our data suggest that cleavage of the few targets whose abundance is reduced significantly by piRNAs is essential for male fertility. Other pachytene piRNA targets are enriched for highly transcribed genes, which may explain why piRNA cleavage is often inconsequential for the steady-state abundance of targets. We propose that the retention of pachytene piRNAs throughout mammalian evolution is driven by the selective advantage conferred by a tiny minority of piRNAs.
Collapse
Affiliation(s)
- Katharine Cecchini
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Ayca Bagci
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
6
|
Shaffer JF, Gupta A, Kharkwal G, Linares EE, Holmes AD, Swartz JR, Katzman S, Sharma U. Epididymis-specific RNase A family genes regulate fertility and small RNA processing. J Biol Chem 2024; 300:107933. [PMID: 39476961 DOI: 10.1016/j.jbc.2024.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Sperm small RNAs are implicated in intergenerational transmission of paternal environmental effects. Small RNAs generated by the cleavage of tRNAs, known as tRNA fragments (tRFs) or tRNA-derived RNAs (tDRs or tsRNAs), are an abundant class of RNAs in mature sperm and can be modulated by environmental conditions. The biogenesis of tRFs in the male reproductive tract remains poorly understood. Angiogenin, a member of the ribonuclease A superfamily (RNase A), cleaves tRNAs to generate tRFs in response to cellular stress. Four paralogs of Angiogenin, namely Rnase9, Rnase10, Rnase11, and Rnase12, are specifically expressed in the epididymis-a long, convoluted tubule where sperm mature and acquire fertility and motility. Here, by generating mice deleted for all four genes (Rnase9-12-/-, termed "KO" for Knock Out), we report that these genes regulate fertility and small RNA levels. KO male mice are sterile; KO sperm fertilized oocytes in vitro but failed to efficiently fertilize oocytes in vivo due to an inability of sperm to pass through the utero-tubular junction. Intriguingly, there were decreased levels of tRFs and rRNAs (rRNA-derived small RNAs or rsRNAs) in the KO epididymis and epididymal luminal fluid, although RNases 9-12 did not show ribonucleolytic activity in vitro. Importantly, KO sperm showed a dramatic decrease in the levels of tRFs, demonstrating a role of epididymis-specific Rnase9-12 genes in regulating sperm small RNA composition. Together, our results reveal an unexpected role of four epididymis-specific noncanonical ribonuclease A family genes in regulating fertility and small RNA processing.
Collapse
Affiliation(s)
- Joshua F Shaffer
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | - Alka Gupta
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | | | - Edgardo E Linares
- University of Colorado Anshutz Medical Campus, Aurora, Colorado, USA
| | - Andrew D Holmes
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | - Julian R Swartz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | - Sol Katzman
- Genomics Institute, University of California, Santa Cruz, California, USA
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA.
| |
Collapse
|
7
|
Choi H, Zhou L, Zhao Y, Dean J. RNA helicase D1PAS1 resolves R-loops and forms a complex for mouse pachytene piRNA biogenesis required for male fertility. Nucleic Acids Res 2024; 52:11973-11994. [PMID: 39162228 PMCID: PMC11514495 DOI: 10.1093/nar/gkae712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
During meiosis, RNA polymerase II transcribes pachytene piRNA precursors with unusually long and unspliced transcripts from discrete autosomal loci in the mouse genome. Despite the importance of piRNA for male fertility and a well-defined maturation process, the transcriptional machinery remains poorly understood. Here, we document that D1PAS1, an ATP-dependent RNA helicase, is critical for pachytene piRNA expression from multiple genomic loci and subsequent translocation into the cytoplasm to ensure mature piRNA biogenesis. Depletion of D1PAS1 in gene-edited mice results in the accumulation of R-loops in pachytene spermatocytes, leading to DNA-damage-induced apoptosis, disruption of piRNA biogenesis, spermatogenic arrest, and male infertility. Transcriptome, genome-wide R-loop profiling, and proteomic analyses document that D1PAS1 regulates pachytene piRNA transcript elongation and termination. D1PAS1 subsequently forms a complex with nuclear export components to ensure pachytene piRNA precursor translocation from the nucleus to the cytoplasm for processing into small non-coding RNAs. Thus, our study defines D1PAS1 as a specific transcription activator that promotes R-loop unwinding and is a critical factor in pachytene piRNA biogenesis.
Collapse
Affiliation(s)
- Heejin Choi
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lecong Zhou
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yangu Zhao
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Konstantinidou P, Loubalova Z, Ahrend F, Friman A, Almeida MV, Poulet A, Horvat F, Wang Y, Losert W, Lorenzi H, Svoboda P, Miska EA, van Wolfswinkel JC, Haase AD. A comparative roadmap of PIWI-interacting RNAs across seven species reveals insights into de novo piRNA-precursor formation in mammals. Cell Rep 2024; 43:114777. [PMID: 39302833 PMCID: PMC11615739 DOI: 10.1016/j.celrep.2024.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/09/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
PIWI-interacting RNAs (piRNAs) play a crucial role in safeguarding genome integrity by silencing mobile genetic elements. From flies to humans, piRNAs originate from long single-stranded precursors encoded by genomic piRNA clusters. How piRNA clusters form to adapt to genomic invaders and evolve to maintain protection remain key outstanding questions. Here, we generate a roadmap of piRNA clusters across seven species that highlights both similarities and variations. In mammals, we identify transcriptional readthrough as a mechanism to generate piRNAs from transposon insertions (piCs) downstream of genes (DoG). Together with the well-known stress-dependent DoG transcripts, our findings suggest a molecular mechanism for the formation of piRNA clusters in response to retroviral invasion. Finally, we identify a class of dynamic piRNA clusters in humans, underscoring unique features of human germ cell biology. Our results advance the understanding of conserved principles and species-specific variations in piRNA biology and provide tools for future studies.
Collapse
Affiliation(s)
- Parthena Konstantinidou
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zuzana Loubalova
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Franziska Ahrend
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, TN, USA
| | - Aleksandr Friman
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Biophysics Graduate Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK; Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Axel Poulet
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA; Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Filip Horvat
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Yuejun Wang
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, TN, USA; TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Hernan Lorenzi
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA; TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Petr Svoboda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eric A Miska
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK; Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA; Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Astrid D Haase
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Rojas-Ríos P, Chartier A, Enjolras C, Cremaschi J, Garret C, Boughlita A, Ramat A, Simonelig M. piRNAs are regulators of metabolic reprogramming in stem cells. Nat Commun 2024; 15:8405. [PMID: 39333531 PMCID: PMC11437085 DOI: 10.1038/s41467-024-52709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Stem cells preferentially use glycolysis instead of oxidative phosphorylation and this metabolic rewiring plays an instructive role in their fate; however, the underlying molecular mechanisms remain largely unexplored. PIWI-interacting RNAs (piRNAs) and PIWI proteins have essential functions in a range of adult stem cells across species. Here, we show that piRNAs and the PIWI protein Aubergine (Aub) are instrumental in activating glycolysis in Drosophila female germline stem cells (GSCs). Higher glycolysis is required for GSC self-renewal and aub loss-of-function induces a metabolic switch in GSCs leading to their differentiation. Aub directly binds glycolytic mRNAs and Enolase mRNA regulation by Aub depends on its 5'UTR. Furthermore, mutations of a piRNA target site in Enolase 5'UTR lead to GSC loss. These data reveal an Aub/piRNA function in translational activation of glycolytic mRNAs in GSCs, and pinpoint a mechanism of regulation of metabolic reprogramming in stem cells based on small RNAs.
Collapse
Affiliation(s)
- Patricia Rojas-Ríos
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Aymeric Chartier
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Camille Enjolras
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Julie Cremaschi
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Céline Garret
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Adel Boughlita
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Anne Ramat
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
10
|
Shaffer JF, Gupta A, Kharkwal G, Linares EE, Holmes AD, Katzman S, Sharma U. Epididymis-specific RNase A family genes regulate fertility and small RNA processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.608813. [PMID: 39253511 PMCID: PMC11383283 DOI: 10.1101/2024.08.26.608813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Sperm small RNAs are implicated in intergenerational transmission of paternal environmental effects. Small RNAs generated by cleavage of tRNAs, known as tRNA fragments (tRFs), are an abundant class of RNAs in mature sperm, and can be modulated by environmental conditions. The ribonuclease(s) responsible for the biogenesis of tRFs in the male reproductive tract remains unknown. Angiogenin, a member of the Ribonuclease A superfamily (RNase A), cleaves tRNAs to generate tRFs in response to cellular stress. Four paralogs of Angiogenin, namely Rnase9, Rnase10, Rnase11, and Rnase12, are specifically expressed in the epididymis-a long, convoluted tubule where sperm mature and acquire fertility and motility. The biological functions of these genes remain largely unknown. Here, by generating mice deleted for all four genes (Rnase9-12-/-, termed "KO" for Knock Out), we report that these genes regulate fertility and RNA processing. KO mice showed complete male sterility. KO sperm fertilized oocytes in vitro but failed to efficiently fertilize oocytes in vivo, likely due to an inability of sperm to pass through the utero-tubular junction. Intriguingly, there were decreased levels of fragments of tRNAs (tRFs) and rRNAs (rRNA-derived small RNAs or rsRNAs) in the KO epididymis and epididymal luminal fluid, implying that Rnase9-12 regulate the biogenesis and/or stability of tRFs and rsRNAs. Importantly, KO sperm showed a dramatic decrease in the levels of tRFs, demonstrating a role of Rnase9-12 in regulating sperm RNA composition. Together, our results reveal an unexpected role of four epididymis-specific non-canonical RNase A family genes in fertility and RNA processing.
Collapse
Affiliation(s)
- Joshua F. Shaffer
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Alka Gupta
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Geetika Kharkwal
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Edgardo E. Linares
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Andrew D. Holmes
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Sol Katzman
- Genomics Institute, University of California, Santa Cruz, California, 95064
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| |
Collapse
|
11
|
Liu S, Holmes AD, Katzman S, Sharma U. A sperm-enriched 5'fragment of tRNA-Valine regulates preimplantation embryonic transcriptome and development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607197. [PMID: 39211093 PMCID: PMC11361008 DOI: 10.1101/2024.08.08.607197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sperm small RNAs have been implicated in intergenerational epigenetic inheritance of paternal environmental effects; however, their biogenesis and functions remain poorly understood. We previously identified a 5' fragment of tRNA-Valine-CAC-2 (tRFValCAC) as one of the most abundant small RNA in mature sperm. tRFValCAC is specifically enriched in sperm during post-testicular maturation in the epididymis, and we found that it is delivered to sperm from epididymis epithelial cells via extracellular vesicles. Here, we investigated the mechanistic basis of tRFValCAC delivery to sperm and its functions in the early embryo. We show that tRFValCAC interacts with an RNA binding protein, heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB), in the epididymis, and this interaction regulates the sorting and packing of tRFValCAC into extracellular vesicles. In the embryo, we found that tRFValCAC regulates early embryonic mRNA processing and splicing. Inhibition of tRFValCAC in preimplantation embryos altered the transcript abundance of genes involved in RNA splicing and mRNA processing. Importantly, tRFValCAC-inhibited embryos showed altered mRNA splicing, including alternative splicing of various splicing factors and genes important for proper preimplantation embryonic development. Finally, we find that inhibition of tRFValCAC in zygotes delayed preimplantation embryonic development. Together, our results reveal a novel function of a sperm-enriched tRF in regulating alternating splicing and preimplantation embryonic development and shed light on the mechanism of sperm small RNA-mediated epigenetic inheritance.
Collapse
Affiliation(s)
- Simeiyun Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Andrew D. Holmes
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Sol Katzman
- Genomics Institute, University of California, Santa Cruz, California, 95064
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| |
Collapse
|
12
|
Venkei ZG, Gainetdinov I, Bagci A, Starostik MR, Choi CP, Fingerhut JM, Chen P, Balsara C, Whitfield TW, Bell GW, Feng S, Jacobsen SE, Aravin AA, Kim JK, Zamore PD, Yamashita YM. A maternally programmed intergenerational mechanism enables male offspring to make piRNAs from Y-linked precursor RNAs in Drosophila. Nat Cell Biol 2023; 25:1495-1505. [PMID: 37723298 PMCID: PMC10567549 DOI: 10.1038/s41556-023-01227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/09/2023] [Indexed: 09/20/2023]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) direct PIWI proteins to silence complementary targets such as transposons. In Drosophila and other species with a maternally specified germline, piRNAs deposited in the egg initiate piRNA biogenesis in the progeny. However, Y chromosome loci cannot participate in such a chain of intergenerational inheritance. How then can the biogenesis of Y-linked piRNAs be initiated? Here, using Suppressor of Stellate (Su(Ste)), a Y-linked Drosophila melanogaster piRNA locus as a model, we show that Su(Ste) piRNAs are made in the early male germline via 5'-to-3' phased piRNA biogenesis initiated by maternally deposited 1360/Hoppel transposon piRNAs. Notably, deposition of Su(Ste) piRNAs from XXY mothers obviates the need for phased piRNA biogenesis in sons. Together, our study uncovers a developmentally programmed, intergenerational mechanism that allows fly mothers to protect their sons using a Y-linked piRNA locus.
Collapse
Affiliation(s)
- Zsolt G Venkei
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ildar Gainetdinov
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ayca Bagci
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Charlotte P Choi
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peiwei Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Chiraag Balsara
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Troy W Whitfield
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - George W Bell
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexei A Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
13
|
Iyer SS, Sun Y, Seyfferth J, Manjunath V, Samata M, Alexiadis A, Kulkarni T, Gutierrez N, Georgiev P, Shvedunova M, Akhtar A. The NSL complex is required for piRNA production from telomeric clusters. Life Sci Alliance 2023; 6:e202302194. [PMID: 37399316 PMCID: PMC10313855 DOI: 10.26508/lsa.202302194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
The NSL complex is a transcriptional activator. Germline-specific knockdown of NSL complex subunits NSL1, NSL2, and NSL3 results in reduced piRNA production from a subset of bidirectional piRNA clusters, accompanied by widespread transposon derepression. The piRNAs most transcriptionally affected by NSL2 and NSL1 RNAi map to telomeric piRNA clusters. At the chromatin level, these piRNA clusters also show decreased levels of H3K9me3, HP1a, and Rhino after NSL2 depletion. Using NSL2 ChIP-seq in ovaries, we found that this protein specifically binds promoters of telomeric transposons HeT-A, TAHRE, and TART Germline-specific depletion of NSL2 also led to a reduction in nuclear Piwi in nurse cells. Our findings thereby support a role for the NSL complex in promoting the transcription of piRNA precursors from telomeric piRNA clusters and in regulating Piwi levels in the Drosophila female germline.
Collapse
Affiliation(s)
- Shantanu S Iyer
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Yidan Sun
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Janine Seyfferth
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Vinitha Manjunath
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Maria Samata
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Anastasios Alexiadis
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Tanvi Kulkarni
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Noel Gutierrez
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Plamen Georgiev
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Maria Shvedunova
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| |
Collapse
|
14
|
Gainetdinov I, Vega-Badillo J, Cecchini K, Bagci A, Colpan C, De D, Bailey S, Arif A, Wu PH, MacRae IJ, Zamore PD. Relaxed targeting rules help PIWI proteins silence transposons. Nature 2023:10.1038/s41586-023-06257-4. [PMID: 37344600 PMCID: PMC10338343 DOI: 10.1038/s41586-023-06257-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023]
Abstract
In eukaryotes, small RNA guides, such as small interfering RNAs and microRNAs, direct AGO-clade Argonaute proteins to regulate gene expression and defend the genome against external threats. Only animals make a second clade of Argonaute proteins: PIWI proteins. PIWI proteins use PIWI-interacting RNAs (piRNAs) to repress complementary transposon transcripts1,2. In theory, transposons could evade silencing through target site mutations that reduce piRNA complementarity. Here we report that, unlike AGO proteins, PIWI proteins efficiently cleave transcripts that are only partially paired to their piRNA guides. Examination of target binding and cleavage by mouse and sponge PIWI proteins revealed that PIWI slicing tolerates mismatches to any target nucleotide, including those flanking the scissile phosphate. Even canonical seed pairing is dispensable for PIWI binding or cleavage, unlike plant and animal AGOs, which require uninterrupted target pairing from the seed to the nucleotides past the scissile bond3,4. PIWI proteins are therefore better equipped than AGO proteins to target newly acquired or rapidly diverging endogenous transposons without recourse to new small RNA guides. Conversely, the minimum requirements for PIWI slicing are sufficient to avoid inadvertent silencing of host RNAs. Our results demonstrate the biological advantage of PIWI over AGO proteins in defending the genome against transposons and suggest an explanation for why the piRNA pathway was retained in animal evolution.
Collapse
Affiliation(s)
- Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Joel Vega-Badillo
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katharine Cecchini
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ayca Bagci
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cansu Colpan
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Voyager Therapeutics, Cambridge, MA, USA
| | - Dipayan De
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Shannon Bailey
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Amena Arif
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Beam Therapeutics, Cambridge, MA, USA
| | - Pei-Hsuan Wu
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- University of Geneva, Geneva, Switzerland
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
15
|
Tate AJ, Brown KC, Montgomery TA. tiny-count: a counting tool for hierarchical classification and quantification of small RNA-seq reads with single-nucleotide precision. BIOINFORMATICS ADVANCES 2023; 3:vbad065. [PMID: 37288323 PMCID: PMC10243934 DOI: 10.1093/bioadv/vbad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Summary tiny-count is a highly flexible counting tool that allows for hierarchical classification and quantification of small RNA reads from high-throughput sequencing data. Selection rules can be used to filter reads by 5' nucleotide, length, position of alignments in relation to reference features, and by the number of mismatches to reference sequences. tiny-count can quantify reads aligned to a genome or directly to small RNA or transcript sequences. With tiny-count, users can quantify a single class of small RNAs or multiple classes in parallel. tiny-count can resolve distinct classes of small RNAs, for example, piRNAs and siRNAs, produced from the same locus. It can distinguish small RNA variants, such as miRNAs and isomiRs, with single-nucleotide precision. tRNA, rRNA, and other RNA fragments can also be quantified. tiny-count can be run alone or as part of tinyRNA, a workflow that provides a basic all-in-one command line-based solution for small RNA-seq data analysis, with documentation and statistics generated at each step for accurate and reproducible results. Availability and implementation tiny-count and other tinyRNA tools are implemented in Python, C++, Cython, and R, and the workflow is coordinated with CWL. tiny-count and tinyRNA are free and open-source software distributed under the GPLv3 license. tiny-count can be installed via Bioconda (https://anaconda.org/bioconda/tiny-count) and both tiny-count and tinyRNA documentation and software downloads are available at https://github.com/MontgomeryLab/tinyRNA. Reference data, including genome and feature information, for certain species can be found at https://www.MontgomeryLab.org.
Collapse
Affiliation(s)
- Alex J Tate
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kristen C Brown
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Taiowa A Montgomery
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
16
|
Jarva T, Zhang J, Flynt A. MiSiPi-Rna: an integrated tool for characterizing small regulatory RNA processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539760. [PMID: 37214880 PMCID: PMC10197562 DOI: 10.1101/2023.05.07.539760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNA interference (RNAi) is mediated by small (20-30 nucleotide) RNAs that are produced by complex processing pathways. In animals, three main classes are recognized: microRNAs (miRNAs), small-interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs). Understanding of small RNA pathways has benefited from genetic models where key enzymatic events were identified that lead to stereotypical positioning of small RNAs relative to precursor transcripts. Increasingly there is interest in using RNAi in non-model systems due to ease of generating synthetic small RNA precursors for research and biotechnology. Unfortunately, small RNAs are often rapidly evolving, requiring investigation of a species' endogenous small RNAs prior to deploying an RNAi approach. This can be accomplished through small non-coding RNA sequencing followed by applying various computational tools; however, the complexity and separately maintained packages lead to significant challenges for annotating global small RNA populations. To address this need, we developed a simple and efficient R package (MiSiPi-Rna) which can be used to characterize pre-selected loci with plots and statistics, aiding researchers understanding RNAi biology specific to their target species. Additionally, MiSiPi-Rna pioneers several computational approaches to identifying Dicer processing to assist annotation of miRNA and siRNA.
Collapse
|
17
|
Approaches for sRNA Analysis of Human RNA-Seq Data: Comparison, Benchmarking. Int J Mol Sci 2023; 24:ijms24044195. [PMID: 36835604 PMCID: PMC9959513 DOI: 10.3390/ijms24044195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Expression analysis of small noncoding RNA (sRNA), including microRNA, piwi-interacting RNA, small rRNA-derived RNA, and tRNA-derived small RNA, is a novel and quickly developing field. Despite a range of proposed approaches, selecting and adapting a particular pipeline for transcriptomic analysis of sRNA remains a challenge. This paper focuses on the identification of the optimal pipeline configurations for each step of human sRNA analysis, including reads trimming, filtering, mapping, transcript abundance quantification and differential expression analysis. Based on our study, we suggest the following parameters for the analysis of human sRNA in relation to categorical analyses with two groups of biosamples: (1) trimming with the lower length bound = 15 and the upper length bound = Read length - 40% Adapter length; (2) mapping on a reference genome with bowtie aligner with one mismatch allowed (-v 1 parameter); (3) filtering by mean threshold > 5; (4) analyzing differential expression with DESeq2 with adjusted p-value < 0.05 or limma with p-value < 0.05 if there is very little signal and few transcripts.
Collapse
|
18
|
Sun YH, Cui H, Song C, Shen JT, Zhuo X, Wang RH, Yu X, Ndamba R, Mu Q, Gu H, Wang D, Murthy GG, Li P, Liang F, Liu L, Tao Q, Wang Y, Orlowski S, Xu Q, Zhou H, Jagne J, Gokcumen O, Anthony N, Zhao X, Li XZ. Amniotes co-opt intrinsic genetic instability to protect germ-line genome integrity. Nat Commun 2023; 14:812. [PMID: 36781861 PMCID: PMC9925758 DOI: 10.1038/s41467-023-36354-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Unlike PIWI-interacting RNA (piRNA) in other species that mostly target transposable elements (TEs), >80% of piRNAs in adult mammalian testes lack obvious targets. However, mammalian piRNA sequences and piRNA-producing loci evolve more rapidly than the rest of the genome for unknown reasons. Here, through comparative studies of chickens, ducks, mice, and humans, as well as long-read nanopore sequencing on diverse chicken breeds, we find that piRNA loci across amniotes experience: (1) a high local mutation rate of structural variations (SVs, mutations ≥ 50 bp in size); (2) positive selection to suppress young and actively mobilizing TEs commencing at the pachytene stage of meiosis during germ cell development; and (3) negative selection to purge deleterious SV hotspots. Our results indicate that genetic instability at pachytene piRNA loci, while producing certain pathogenic SVs, also protects genome integrity against TE mobilization by driving the formation of rapid-evolving piRNA sequences.
Collapse
Affiliation(s)
- Yu H Sun
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hongxiao Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chi Song
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, OH, 43210, USA
| | - Jiafei Teng Shen
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Xiaoyu Zhuo
- Department of Genetics, The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ruoqiao Huiyi Wang
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaohui Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rudo Ndamba
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Qian Mu
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hanwen Gu
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Duolin Wang
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Gayathri Guru Murthy
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Pidong Li
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Fan Liang
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Lei Liu
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Qing Tao
- Grandomics Biosciences Co., Ltd, Beijing, 102206, China
| | - Ying Wang
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Sara Orlowski
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Qi Xu
- Department of Animal Science, McGill University, Quebec, H9X 3V9, Canada
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Jarra Jagne
- Animal Health Diagnostic Center, Cornell University College of Veterinary Medicine, Ithaca, NY, 14850, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Nick Anthony
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Xin Zhao
- Department of Animal Science, McGill University, Quebec, H9X 3V9, Canada.
| | - Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
19
|
Pittroff A, Kim IV, Demtröder T, Kuhn CD. Genome-Wide Analysis of Planarian piRNAs. Methods Mol Biol 2023; 2680:55-65. [PMID: 37428370 DOI: 10.1007/978-1-0716-3275-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In planarian flatworms, the piRNA pathway is operated by three PIWI proteins, termed SMEDWI-1, SMEDWI-2, and SMEDWI-3 (SMEDWI = Schmidtea mediterranea PIWI). The interplay between these three PIWI proteins and their associated small noncoding RNAs, termed piRNAs, fuels the outstanding regenerative abilities of planarians, enables tissue homeostasis, and, ultimately, ensures animal survival. As the molecular targets of PIWI proteins are determined by the sequences of their co-bound piRNAs, it is imperative to identify these sequences by next-generation sequencing applications. Following sequencing, the genomic targets and the regulatory potential of the isolated piRNA populations need to be uncovered. To that end, here we present a bioinformatics analysis pipeline for processing and systematic characterization of planarian piRNAs. The pipeline includes steps for the removal of PCR duplicates based on unique molecular identifier (UMI) sequences, and it accounts for piRNA multimapping to different loci in the genome. Importantly, our protocol also includes a fully automated pipeline that is freely available at GitHub. Together with the piRNA isolation and library preparation protocol (see accompanying chapter), the presented computational pipeline enables researchers to explore the functional role of the piRNA pathway in flatworm biology.
Collapse
Affiliation(s)
| | - Iana V Kim
- RNA Biochemistry, University of Bayreuth, Bayreuth, Germany
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Tim Demtröder
- RNA Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Claus-D Kuhn
- RNA Biochemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
20
|
Parikh RY, Gangaraju VK. Hexavalent chromium-induced epigenetic instability and transposon activation lead to phenotypic variations and tumors in Drosophila. ENVIRONMENTAL EPIGENETICS 2022; 9:dvac030. [PMID: 36743586 PMCID: PMC9892686 DOI: 10.1093/eep/dvac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/22/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Developmental robustness represents the ability of an organism to resist phenotypic variations despite environmental insults and inherent genetic variations. Derailment of developmental robustness leads to phenotypic variations that can get fixed in a population for many generations. Environmental pollution is a significant worldwide problem with detrimental consequences of human development. Understanding the genetic basis for how pollutants affect human development is critical for developing interventional therapies. Here, we report that environmental stress induced by hexavalent chromium, Cr(VI), a potent industrial pollutant, compromises developmental robustness, leading to phenotypic variations in the progeny. These phenotypic variations arise due to epigenetic instability and transposon activation in the somatic tissues of the progeny rather than novel genetic mutations and can be reduced by increasing the dosage of Piwi - a Piwi-interacting RNA-binding protein, in the ovary of the exposed mother. Significantly, the derailment of developmental robustness by Cr(VI) exposure leads to tumors in the progeny, and the predisposition to develop tumors is fixed in the population for at least three generations. Thus, we show for the first time that environmental pollution can derail developmental robustness and predispose the progeny of the exposed population to develop phenotypic variations and tumors.
Collapse
Affiliation(s)
- Rasesh Y Parikh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Vamsi K Gangaraju
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
21
|
Grigoriadis D, Perdikopanis N, Georgakilas GK, Hatzigeorgiou AG. DeepTSS: multi-branch convolutional neural network for transcription start site identification from CAGE data. BMC Bioinformatics 2022; 23:395. [PMID: 36510136 PMCID: PMC9743497 DOI: 10.1186/s12859-022-04945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The widespread usage of Cap Analysis of Gene Expression (CAGE) has led to numerous breakthroughs in understanding the transcription mechanisms. Recent evidence in the literature, however, suggests that CAGE suffers from transcriptional and technical noise. Regardless of the sample quality, there is a significant number of CAGE peaks that are not associated with transcription initiation events. This type of signal is typically attributed to technical noise and more frequently to random five-prime capping or transcription bioproducts. Thus, the need for computational methods emerges, that can accurately increase the signal-to-noise ratio in CAGE data, resulting in error-free transcription start site (TSS) annotation and quantification of regulatory region usage. In this study, we present DeepTSS, a novel computational method for processing CAGE samples, that combines genomic signal processing (GSP), structural DNA features, evolutionary conservation evidence and raw DNA sequence with Deep Learning (DL) to provide single-nucleotide TSS predictions with unprecedented levels of performance. RESULTS To evaluate DeepTSS, we utilized experimental data, protein-coding gene annotations and computationally-derived genome segmentations by chromatin states. DeepTSS was found to outperform existing algorithms on all benchmarks, achieving 98% precision and 96% sensitivity (accuracy 95.4%) on the protein-coding gene strategy, with 96.66% of its positive predictions overlapping active chromatin, 98.27% and 92.04% co-localized with at least one transcription factor and H3K4me3 peak. CONCLUSIONS CAGE is a key protocol in deciphering the language of transcription, however, as every experimental protocol, it suffers from biological and technical noise that can severely affect downstream analyses. DeepTSS is a novel DL-based method for effectively removing noisy CAGE signal. In contrast to existing software, DeepTSS does not require feature selection since the embedded convolutional layers can readily identify patterns and only utilize the important ones for the classification task. This study highlights the key role that DL can play in Molecular Biology, by removing the inherent flaws of experimental protocols, that form the backbone of contemporary research. Here, we show how DeepTSS can unleash the full potential of an already popular and mature method such as CAGE, and push the boundaries of coding and non-coding gene expression regulator research even further.
Collapse
Affiliation(s)
- Dimitris Grigoriadis
- grid.418497.7Hellenic Pasteur Institute, 11521 Athens, Greece ,grid.410558.d0000 0001 0035 6670Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Nikos Perdikopanis
- grid.418497.7Hellenic Pasteur Institute, 11521 Athens, Greece ,grid.5216.00000 0001 2155 0800Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece ,grid.410558.d0000 0001 0035 6670Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece
| | - Georgios K. Georgakilas
- grid.410558.d0000 0001 0035 6670Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece ,ommAI Technologies, Tallinn, Estonia
| | - Artemis G. Hatzigeorgiou
- grid.418497.7Hellenic Pasteur Institute, 11521 Athens, Greece ,grid.410558.d0000 0001 0035 6670Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| |
Collapse
|
22
|
Dindhoria K, Monga I, Thind AS. Computational approaches and challenges for identification and annotation of non-coding RNAs using RNA-Seq. Funct Integr Genomics 2022; 22:1105-1112. [DOI: 10.1007/s10142-022-00915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
|
23
|
Lerat E. Recent Bioinformatic Progress to Identify Epigenetic Changes Associated to Transposable Elements. Front Genet 2022; 13:891194. [PMID: 35646069 PMCID: PMC9140218 DOI: 10.3389/fgene.2022.891194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Transposable elements (TEs) are recognized for their great impact on the functioning and evolution of their host genomes. They are associated to various deleterious effects, which has led to the evolution of regulatory epigenetic mechanisms to control their activity. Despite these negative effects, TEs are also important actors in the evolution of genomes by promoting genetic diversity and new regulatory elements. Consequently, it is important to study the epigenetic modifications associated to TEs especially at a locus-specific level to determine their individual influence on gene functioning. To this aim, this short review presents the current bioinformatic tools to achieve this task.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- Univ Lyon, Univ Lyon 1, CNRS, VetAgro Sup, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| |
Collapse
|
24
|
ITAS: Integrated Transcript Annotation for Small RNA. Noncoding RNA 2022; 8:ncrna8030030. [PMID: 35645337 PMCID: PMC9150019 DOI: 10.3390/ncrna8030030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Transcriptomics analysis of various small RNA (sRNA) biotypes is a new and rapidly developing field. Annotations for microRNAs, tRNAs, piRNAs and rRNAs contain information on transcript sequences and loci that is vital for downstream analyses. Several databases have been established to provide this type of data for specific RNA biotypes. However, these sources often contain data in different formats, which makes the bulk analysis of several sRNA biotypes in a single pipeline challenging. Information on some transcripts may be incomplete or conflicting with other entries. To overcome these challenges, we introduce ITAS, or Integrated Transcript Annotation for Small RNA, a filtered, corrected and integrated transcript annotation containing information on several types of small RNAs, including tRNA-derived small RNA, for several species (Homo sapiens, Rattus norvegicus, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans). ITAS is presented in a format applicable for the vast majority of bioinformatic transcriptomics analysis, and it was tested in several case studies for human-derived data against existing alternative databases.
Collapse
|
25
|
Khanal S, Zancanela BS, Peter JO, Flynt AS. The Small RNA Universe of Capitella teleta. Front Mol Biosci 2022; 9:802814. [PMID: 35281272 PMCID: PMC8915122 DOI: 10.3389/fmolb.2022.802814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
RNAi is an evolutionarily fluid mechanism with dramatically different activities across animal phyla. One major group where there has been little investigation is annelid worms. Here, the small RNAs of the polychaete developmental model Capitella teleta are profiled across development. As is seen with nearly all animals, nearly 200 microRNAs were found with 58 high-confidence novel species. Greater miRNA diversity was associated with later stages consistent with differentiation of tissues. Outside miRNA, a distinct composition of other small RNA pathways was found. Unlike many invertebrates, an endogenous siRNA pathway was not observed, indicating pathway loss relative to basal planarians. No processively generated siRNA-class RNAs could be found arising from dsRNA precursors. This has a significant impact on RNAi technology development for this group of animals. Unlike the apparent absence of siRNAs, a significant population of piRNAs was observed. For many piRNAs, phasing and ping-pong biogenesis pathways were identified. Interestingly, piRNAs were found to be highly expressed during early development, suggesting a potential role in regulation in metamorphosis. Critically, the configuration of RNAi factors in C. teleta is found in other annelids and mollusks, suggesting that similar biology is likely to be present in the wider clade. This study is the first in providing comprehensive analysis of small RNAs in annelids.
Collapse
|
26
|
O Adetunji M, J Abraham B. SEAseq: a portable and cloud-based chromatin occupancy analysis suite. BMC Bioinformatics 2022; 23:77. [PMID: 35193506 PMCID: PMC8864840 DOI: 10.1186/s12859-022-04588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background Genome-wide protein-DNA binding is popularly assessed using specific antibody pulldown in Chromatin Immunoprecipitation Sequencing (ChIP-Seq) or Cleavage Under Targets and Release Using Nuclease (CUT&RUN) sequencing experiments. These technologies generate high-throughput sequencing data that necessitate the use of multiple sophisticated, computationally intensive genomic tools to make discoveries, but these genomic tools often have a high barrier to use because of computational resource constraints. Results We present a comprehensive, infrastructure-independent, computational pipeline called SEAseq, which leverages field-standard, open-source tools for processing and analyzing ChIP-Seq/CUT&RUN data. SEAseq performs extensive analyses from the raw output of the experiment, including alignment, peak calling, motif analysis, promoters and metagene coverage profiling, peak annotation distribution, clustered/stitched peaks (e.g. super-enhancer) identification, and multiple relevant quality assessment metrics, as well as automatic interfacing with data in GEO/SRA. SEAseq enables rapid and cost-effective resource for analysis of both new and publicly available datasets as demonstrated in our comparative case studies. Conclusions The easy-to-use and versatile design of SEAseq makes it a reliable and efficient resource for ensuring high quality analysis. Its cloud implementation enables a broad suite of analyses in environments with constrained computational resources. SEAseq is platform-independent and is aimed to be usable by everyone with or without programming skills. It is available on the cloud at https://platform.stjude.cloud/workflows/seaseq and can be locally installed from the repository at https://github.com/stjude/seaseq. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04588-z.
Collapse
Affiliation(s)
- Modupeore O Adetunji
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
27
|
Hanusek K, Poletajew S, Kryst P, Piekiełko-Witkowska A, Bogusławska J. piRNAs and PIWI Proteins as Diagnostic and Prognostic Markers of Genitourinary Cancers. Biomolecules 2022; 12:biom12020186. [PMID: 35204687 PMCID: PMC8869487 DOI: 10.3390/biom12020186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
piRNAs (PIWI-interacting RNAs) are small non-coding RNAs capable of regulation of transposon and gene expression. piRNAs utilise multiple mechanisms to affect gene expression, which makes them potentially more powerful regulators than microRNAs. The mechanisms by which piRNAs regulate transposon and gene expression include DNA methylation, histone modifications, and mRNA degradation. Genitourinary cancers (GC) are a large group of neoplasms that differ by their incidence, clinical course, biology, and prognosis for patients. Regardless of the GC type, metastatic disease remains a key therapeutic challenge, largely affecting patients’ survival rates. Recent studies indicate that piRNAs could serve as potentially useful biomarkers allowing for early cancer detection and therapeutic interventions at the stage of non-advanced tumour, improving patient’s outcomes. Furthermore, studies in prostate cancer show that piRNAs contribute to cancer progression by affecting key oncogenic pathways such as PI3K/AKT. Here, we discuss recent findings on biogenesis, mechanisms of action and the role of piRNAs and the associated PIWI proteins in GC. We also present tools that may be useful for studies on the functioning of piRNAs in cancers.
Collapse
Affiliation(s)
- Karolina Hanusek
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
| | - Sławomir Poletajew
- Centre of Postgraduate Medical Education, II Department of Urology, 01-813 Warsaw, Poland; (S.P.); (P.K.)
| | - Piotr Kryst
- Centre of Postgraduate Medical Education, II Department of Urology, 01-813 Warsaw, Poland; (S.P.); (P.K.)
| | - Agnieszka Piekiełko-Witkowska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
- Correspondence: (A.P.-W.); (J.B.)
| | - Joanna Bogusławska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
- Correspondence: (A.P.-W.); (J.B.)
| |
Collapse
|
28
|
Haase AD. An introduction to PIWI-interacting RNAs (piRNAs) in the context of metazoan small RNA silencing pathways. RNA Biol 2022; 19:1094-1102. [PMID: 36217279 PMCID: PMC9559041 DOI: 10.1080/15476286.2022.2132359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
PIWI proteins and their associated PIWI-interacting RNAs (piRNAs) constitute a small RNA-based adaptive immune system that restricts the deleterious activity of mobile genetic elements to protect genome integrity. Self/nonself discrimination is at the very core of successful defence and relies on complementary base-pairing in RNA-guided immunity. How the millions of piRNA sequences faithfully discriminate between self and nonself and how they adapt to novel genomic invaders remain key outstanding questions in genome biology. This review aims to introduce principles of piRNA silencing in the context of metazoan small RNA pathways. A distinct feature of piRNAs is their origin from single-stranded instead of double-stranded RNA precursors, and piRNAs require a unique set of processing factors. Novel nucleases, helicases and RNA binding proteins have been identified in piRNA biology, and while we are starting to understand some mechanisms of piRNA biogenesis and function, this diverse and prolific class of small RNAs remains full of surprises.
Collapse
Affiliation(s)
- Astrid D. Haase
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Peter JO, Santos-Ortega Y, Flynt A. Guiding RNAi Design Through Characterization of Endogenous Small RNA Pathways. Methods Mol Biol 2022; 2360:33-47. [PMID: 34495505 PMCID: PMC8959004 DOI: 10.1007/978-1-0716-1633-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA interference (RNAi) is a common eukaryotic gene regulation process driven by small RNA effectors. Mechanisms that govern regulatory small noncoding RNA behavior have been extensively described in only a handful of organisms, which suggests that the most effective RNAi approach in many organisms, such as insect pests, remains to be determined. Taking advantage of advances in high-throughput sequencing, characterization of small RNA molecules can be achieved through bioinformatic approaches without the need for genetic experiments. This chapter describes pipelines for characterizing three main classes of small RNAs (microRNAs, small-interfering RNAs, and piwi-associated RNAs) using computationally determined small RNA biogenesis signatures. Obtaining information regarding the abundance of different small RNA classes through these pipelines will lead to a better-informed RNAi strategy, thereby identifying the most efficacious approach for RNAi.
Collapse
Affiliation(s)
- Jacob O Peter
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Yulica Santos-Ortega
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Alex Flynt
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
30
|
Gainetdinov I, Colpan C, Cecchini K, Arif A, Jouravleva K, Albosta P, Vega-Badillo J, Lee Y, Özata DM, Zamore PD. Terminal modification, sequence, length, and PIWI-protein identity determine piRNA stability. Mol Cell 2021; 81:4826-4842.e8. [PMID: 34626567 DOI: 10.1016/j.molcel.2021.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) silence transposons, fight viral infections, and regulate gene expression. piRNA biogenesis concludes with 3' terminal trimming and 2'-O-methylation. Both trimming and methylation influence piRNA stability. Our biochemical data show that multiple mechanisms destabilize unmethylated mouse piRNAs, depending on whether the piRNA 5' or 3' sequence is complementary to a trigger RNA. Unlike target-directed degradation of microRNAs, complementarity-dependent destabilization of piRNAs in mice and flies is blocked by 3' terminal 2'-O-methylation and does not require base pairing to both the piRNA seed and the 3' sequence. In flies, 2'-O-methylation also protects small interfering RNAs (siRNAs) from complementarity-dependent destruction. By contrast, pre-piRNA trimming protects mouse piRNAs from a degradation pathway unaffected by trigger complementarity. In testis lysate and in vivo, internal or 3' terminal uridine- or guanine-rich tracts accelerate pre-piRNA decay. Loss of both trimming and 2'-O-methylation causes the mouse piRNA pathway to collapse, demonstrating that these modifications collaborate to stabilize piRNAs.
Collapse
Affiliation(s)
- Ildar Gainetdinov
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - Cansu Colpan
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Katharine Cecchini
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Amena Arif
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Karina Jouravleva
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Paul Albosta
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Joel Vega-Badillo
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Yongjin Lee
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Deniz M Özata
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
31
|
Merkerova MD, Krejcik Z. Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review). Int J Oncol 2021; 59:105. [PMID: 34779490 DOI: 10.3892/ijo.2021.5285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022] Open
Abstract
Our current understanding of hematopoietic stem cell differentiation and the abnormalities that lead to leukemogenesis originates from the accumulation of knowledge regarding protein‑coding genes. However, the possible impact of transposable element (TE) mobilization and the expression of P‑element‑induced WImpy testis‑interacting RNAs (piRNAs) on leukemogenesis has been beyond the scope of scientific interest to date. The expression profiles of these molecules and their importance for human health have only been characterized recently due to the rapid progress of high‑throughput sequencing technology development. In the present review, current knowledge on the expression profile and function of TEs and piRNAs was summarized, with specific focus on their reported involvement in leukemogenesis and pathogenesis of myelodysplastic syndrome.
Collapse
Affiliation(s)
| | - Zdenek Krejcik
- Institute of Hematology and Blood Transfusion, 128 20 Prague, Czech Republic
| |
Collapse
|
32
|
Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs. Nat Commun 2021; 12:5970. [PMID: 34645830 PMCID: PMC8514520 DOI: 10.1038/s41467-021-26233-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting small RNAs (piRNAs) protect the germline genome and are essential for fertility. piRNAs originate from transposable element (TE) RNAs, long non-coding RNAs, or 3´ untranslated regions (3´UTRs) of protein-coding messenger genes, with the last being the least characterized of the three piRNA classes. Here, we demonstrate that the precursors of 3´UTR piRNAs are full-length mRNAs and that post-termination 80S ribosomes guide piRNA production on 3´UTRs in mice and chickens. At the pachytene stage, when other co-translational RNA surveillance pathways are sequestered, piRNA biogenesis degrades mRNAs right after pioneer rounds of translation and fine-tunes protein production from mRNAs. Although 3´UTR piRNA precursor mRNAs code for distinct proteins in mice and chickens, they all harbor embedded TEs and produce piRNAs that cleave TEs. Altogether, we discover a function of the piRNA pathway in fine-tuning protein production and reveal a conserved piRNA biogenesis mechanism that recognizes translating RNAs in amniotes.
Collapse
|
33
|
Gebert D, Neubert LK, Lloyd C, Gui J, Lehmann R, Teixeira FK. Large Drosophila germline piRNA clusters are evolutionarily labile and dispensable for transposon regulation. Mol Cell 2021; 81:3965-3978.e5. [PMID: 34352205 PMCID: PMC8516431 DOI: 10.1016/j.molcel.2021.07.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/23/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022]
Abstract
PIWI proteins and their guiding Piwi-interacting small RNAs (piRNAs) are crucial for fertility and transposon defense in the animal germline. In most species, the majority of piRNAs are produced from distinct large genomic loci, called piRNA clusters. It is assumed that germline-expressed piRNA clusters, particularly in Drosophila, act as principal regulators to control transposons dispersed across the genome. Here, using synteny analysis, we show that large clusters are evolutionarily labile, arise at loci characterized by recurrent chromosomal rearrangements, and are mostly species-specific across the Drosophila genus. By engineering chromosomal deletions in D. melanogaster, we demonstrate that the three largest germline clusters, which account for the accumulation of >40% of all transposon-targeting piRNAs in ovaries, are neither required for fertility nor for transposon regulation in trans. We provide further evidence that dispersed elements, rather than the regulatory action of large Drosophila germline clusters in trans, may be central for transposon defense.
Collapse
Affiliation(s)
- Daniel Gebert
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Lena K Neubert
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Catrin Lloyd
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Jinghua Gui
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Ruth Lehmann
- Howard Hughes Medical Institute (HHMI) and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
34
|
Bioinformatics and Machine Learning Approaches to Understand the Regulation of Mobile Genetic Elements. BIOLOGY 2021; 10:biology10090896. [PMID: 34571773 PMCID: PMC8465862 DOI: 10.3390/biology10090896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary Transposable elements (TEs) are DNA sequences that are, or were, able to move (transpose) within the genome of a single cell. They were first discovered by Barbara McClintock while working on maize, and they make up a large fraction of the genome. Transpositions can result in mutations and they can alter the genome size. Cells regulate the activity of TEs using a variety of mechanisms, such as chemical modifications of DNA and small RNAs. Machine learning (ML) is an interdisciplinary subject that studies computer algorithms that can improve through experience and by the use of data. ML has been successfully applied to a variety of problems in bioinformatics and has exhibited favorable precision and speed. Here, we provide a systematic and guided review on the ML and bioinformatic methods and tools that are used for the analysis of the regulation of TEs. Abstract Transposable elements (TEs, or mobile genetic elements, MGEs) are ubiquitous genetic elements that make up a substantial proportion of the genome of many species. The recent growing interest in understanding the evolution and function of TEs has revealed that TEs play a dual role in genome evolution, development, disease, and drug resistance. Cells regulate TE expression against uncontrolled activity that can lead to developmental defects and disease, using multiple strategies, such as DNA chemical modification, small RNA (sRNA) silencing, chromatin modification, as well as sequence-specific repressors. Advancements in bioinformatics and machine learning approaches are increasingly contributing to the analysis of the regulation mechanisms. A plethora of tools and machine learning approaches have been developed for prediction, annotation, and expression profiling of sRNAs, for methylation analysis of TEs, as well as for genome-wide methylation analysis through bisulfite sequencing data. In this review, we provide a guided overview of the bioinformatic and machine learning state of the art of fields closely associated with TE regulation and function.
Collapse
|
35
|
Wei X, Eickbush DG, Speece I, Larracuente AM. Heterochromatin-dependent transcription of satellite DNAs in the Drosophila melanogaster female germline. eLife 2021; 10:e62375. [PMID: 34259629 PMCID: PMC8321551 DOI: 10.7554/elife.62375] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Large blocks of tandemly repeated DNAs-satellite DNAs (satDNAs)-play important roles in heterochromatin formation and chromosome segregation. We know little about how satDNAs are regulated; however, their misregulation is associated with genomic instability and human diseases. We use the Drosophila melanogaster germline as a model to study the regulation of satDNA transcription and chromatin. Here we show that complex satDNAs (>100-bp repeat units) are transcribed into long noncoding RNAs and processed into piRNAs (PIWI interacting RNAs). This satDNA piRNA production depends on the Rhino-Deadlock-Cutoff complex and the transcription factor Moonshiner-a previously described non-canonical pathway that licenses heterochromatin-dependent transcription of dual-strand piRNA clusters. We show that this pathway is important for establishing heterochromatin at satDNAs. Therefore, satDNAs are regulated by piRNAs originating from their own genomic loci. This novel mechanism of satDNA regulation provides insight into the role of piRNA pathways in heterochromatin formation and genome stability.
Collapse
Affiliation(s)
- Xiaolu Wei
- Department of Biomedical Genetics, University of Rochester Medical CenterRochesterUnited States
| | - Danna G Eickbush
- Department of Biology, University of RochesterRochesterUnited States
| | - Iain Speece
- Department of Biology, University of RochesterRochesterUnited States
| | | |
Collapse
|
36
|
La Ferlita A, Alaimo S, Di Bella S, Martorana E, Laliotis GI, Bertoni F, Cascione L, Tsichlis PN, Ferro A, Bosotti R, Pulvirenti A. RNAdetector: a free user-friendly stand-alone and cloud-based system for RNA-Seq data analysis. BMC Bioinformatics 2021; 22:298. [PMID: 34082707 PMCID: PMC8173825 DOI: 10.1186/s12859-021-04211-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background RNA-Seq is a well-established technology extensively used for transcriptome profiling, allowing the analysis of coding and non-coding RNA molecules. However, this technology produces a vast amount of data requiring sophisticated computational approaches for their analysis than other traditional technologies such as Real-Time PCR or microarrays, strongly discouraging non-expert users. For this reason, dozens of pipelines have been deployed for the analysis of RNA-Seq data. Although interesting, these present several limitations and their usage require a technical background, which may be uncommon in small research laboratories. Therefore, the application of these technologies in such contexts is still limited and causes a clear bottleneck in knowledge advancement. Results Motivated by these considerations, we have developed RNAdetector, a new free cross-platform and user-friendly RNA-Seq data analysis software that can be used locally or in cloud environments through an easy-to-use Graphical User Interface allowing the analysis of coding and non-coding RNAs from RNA-Seq datasets of any sequenced biological species. Conclusions RNAdetector is a new software that fills an essential gap between the needs of biomedical and research labs to process RNA-Seq data and their common lack of technical background in performing such analysis, which usually relies on outsourcing such steps to third party bioinformatics facilities or using expensive commercial software. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04211-7.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.,Department of Physics and Astronomy, University of Catania, Catania, Italy
| | - Salvatore Alaimo
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | | | - Emanuele Martorana
- Regional Referral Centre for Rare Lung Diseases, A. O. U. "Policlinico-Vittorio Emanuele", Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Georgios I Laliotis
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | | | | | - Philip N Tsichlis
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | | | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy.
| |
Collapse
|
37
|
Flynt AS. Insecticidal RNA interference, thinking beyond long dsRNA. PEST MANAGEMENT SCIENCE 2021; 77:2179-2187. [PMID: 33078549 PMCID: PMC8048086 DOI: 10.1002/ps.6147] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 05/07/2023]
Abstract
Over 20 years ago double-stranded RNA (dsRNA) was described as the trigger of RNAi interference (RNAi)-based gene silencing. This paradigm has held since, especially for insect biopesticide technologies where dsRNAs, similar to those described in 1998, are used to inhibit gene expression. In the intervening years, investigation of RNAi pathways has revealed the small RNA effectors of RNAi are diverse and rapidly evolving. The rich biology of insect small RNAs suggests potential to use multiple RNAi modes for manipulating gene expression. By exploiting different RNAi pathways, the menu of options for pest control can be expanded and could lead to better tailored solutions. Fortunately, basic delivery strategies used for dsRNA such as direct application or transgenic expression will translate well between RNAs transiting different RNAi pathways. Importantly, further engineering of RNAi-based biopesticides may provide an opportunity to address dsRNA insensitivity seen in some pests. Characterization of RNAi pathways unique to target species will be indispensable to this end and may require thinking beyond long dsRNA. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alex S Flynt
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
38
|
Choi H, Wang Z, Dean J. Sperm acrosome overgrowth and infertility in mice lacking chromosome 18 pachytene piRNA. PLoS Genet 2021; 17:e1009485. [PMID: 33831001 PMCID: PMC8057611 DOI: 10.1371/journal.pgen.1009485] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/20/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
piRNAs are small non-coding RNAs required to maintain genome integrity and preserve RNA homeostasis during male gametogenesis. In murine adult testes, the highest levels of piRNAs are present in the pachytene stage of meiosis, but their mode of action and function remain incompletely understood. We previously reported that BTBD18 binds to 50 pachytene piRNA-producing loci. Here we show that spermatozoa in gene-edited mice lacking a BTBD18 targeted pachytene piRNA cluster on Chr18 have severe sperm head dysmorphology, poor motility, impaired acrosome exocytosis, zona pellucida penetration and are sterile. The mutant phenotype arises from aberrant formation of proacrosomal vesicles, distortion of the trans-Golgi network, and up-regulation of GOLGA2 transcripts and protein associated with acrosome dysgenesis. Collectively, our findings reveal central role of pachytene piRNAs in controlling spermiogenesis and male fertility.
Collapse
Affiliation(s)
- Heejin Choi
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States of America
| | - Zhengpin Wang
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States of America
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
39
|
Sun YH, Wang A, Song C, Shankar G, Srivastava RK, Au KF, Li XZ. Single-molecule long-read sequencing reveals a conserved intact long RNA profile in sperm. Nat Commun 2021; 12:1361. [PMID: 33649327 PMCID: PMC7921563 DOI: 10.1038/s41467-021-21524-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Sperm contributes diverse RNAs to the zygote. While sperm small RNAs have been shown to impact offspring phenotypes, our knowledge of the sperm transcriptome, especially the composition of long RNAs, has been limited by the lack of sensitive, high-throughput experimental techniques that can distinguish intact RNAs from fragmented RNAs, known to abound in sperm. Here, we integrate single-molecule long-read sequencing with short-read sequencing to detect sperm intact RNAs (spiRNAs). We identify 3440 spiRNA species in mice and 4100 in humans. The spiRNA profile consists of both mRNAs and long non-coding RNAs, is evolutionarily conserved between mice and humans, and displays an enrichment in mRNAs encoding for ribosome. In sum, we characterize the landscape of intact long RNAs in sperm, paving the way for future studies on their biogenesis and functions. Our experimental and bioinformatics approaches can be applied to other tissues and organisms to detect intact transcripts.
Collapse
Affiliation(s)
- Yu H Sun
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Anqi Wang
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Chi Song
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, OH, USA
- Division of Reproductive Endocrinology, Geisinger Medical Center, Danville, PA, USA
| | - Goutham Shankar
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, NY, USA
| | - Rajesh K Srivastava
- Department of Obstetrics/Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Kin Fai Au
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.
| | - Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
40
|
Tsai SY, Huang F. Acetyltransferase Enok regulates transposon silencing and piRNA cluster transcription. PLoS Genet 2021; 17:e1009349. [PMID: 33524038 PMCID: PMC7877743 DOI: 10.1371/journal.pgen.1009349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/11/2021] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
The piRNA pathway is a highly conserved mechanism to repress transposon activation in the germline in Drosophila and mammals. This pathway starts from transcribing piRNA clusters to generate long piRNA precursors. The majority of piRNA clusters lack conventional promoters, and utilize heterochromatin- and HP1D/Rhino-dependent noncanonical mechanisms for transcription. However, information regarding the transcriptional regulation of piRNA clusters is limited. Here, we report that the Drosophila acetyltransferase Enok, which can activate transcription by acetylating H3K23, is critical for piRNA production from 54% of piRNA clusters including 42AB, the major piRNA source. Surprisingly, we found that Enok not only promotes rhino expression by acetylating H3K23, but also directly enhances transcription of piRNA clusters by facilitating Rhino recruitment. Taken together, our study provides novel insights into the regulation of noncanonical transcription at piRNA clusters and transposon silencing. Roughly half of our genome is composed of transposons. Activation of those transposons in the germline will result in severe DNA damages and infertility. The PIWI-interacting RNA (piRNA) pathway, which is highly conserved between mammals and flies, is a key mechanism to suppress transposon activation in the germline. Here, we identified the fly acetyltransferase Enok as a novel regulator functioning in the early steps of this pathway. We found that Enok can promote the expression of three genes involved in piRNA production by acetylating histone H3 lysine 23 (H3K23). We also demonstrated that Enok regulates the recruitment of Rhi, a factor critical for transcription initiation at piRNA-generating loci, to a subset of those loci, and therefore enhances their transcription. Our findings reveal an upstream regulator in the piRNA pathway and advance our understanding regarding the molecular mechanism of transposon silencing.
Collapse
Affiliation(s)
- Shih-Ying Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Fu Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
41
|
Onishi R, Sato K, Murano K, Negishi L, Siomi H, Siomi MC. Piwi suppresses transcription of Brahma-dependent transposons via Maelstrom in ovarian somatic cells. SCIENCE ADVANCES 2020; 6:6/50/eaaz7420. [PMID: 33310860 PMCID: PMC7732180 DOI: 10.1126/sciadv.aaz7420] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/19/2020] [Indexed: 05/05/2023]
Abstract
Drosophila Piwi associates with PIWI-interacting RNAs (piRNAs) and represses transposons transcriptionally through heterochromatinization; however, this process is poorly understood. Here, we identify Brahma (Brm), the core adenosine triphosphatase of the SWI/SNF chromatin remodeling complex, as a new Piwi interactor, and show Brm involvement in activating transcription of Piwi-targeted transposons before silencing. Bioinformatic analyses indicated that Piwi, once bound to target RNAs, reduced the occupancies of SWI/SNF and RNA polymerase II (Pol II) on target loci, abrogating transcription. Artificial piRNA-driven targeting of Piwi to RNA transcripts enhanced repression of Brm-dependent reporters compared with Brm-independent reporters. This was dependent on Piwi cofactors, Gtsf1/Asterix (Gtsf1), Panoramix/Silencio (Panx), and Maelstrom (Mael), but not Eggless/dSetdb (Egg)-mediated H3K9me3 deposition. The λN-box B-mediated tethering of Mael to reporters repressed Brm-dependent genes in the absence of Piwi, Panx, and Gtsf1. We propose that Piwi, via Mael, can rapidly suppress transcription of Brm-dependent genes to facilitate heterochromatin formation.
Collapse
Affiliation(s)
- Ryo Onishi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kaoru Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Lumi Negishi
- Central Laboratory, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| |
Collapse
|
42
|
Shiromoto Y, Kuramochi-Miyagawa S, Nagamori I, Chuma S, Arakawa T, Nishimura T, Hasuwa H, Tachibana T, Ikawa M, Nakano T. GPAT2 is required for piRNA biogenesis, transposon silencing, and maintenance of spermatogonia in mice†. Biol Reprod 2020; 101:248-256. [PMID: 30951587 DOI: 10.1093/biolre/ioz056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/19/2018] [Accepted: 04/04/2019] [Indexed: 11/14/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs), a subclass of germ cell-specific noncoding small RNAs, are essential for de novo DNA methylation of retrotransposon genes in embryonic testes. PIWIL2/MILI, one of three mouse PIWI family members, is indispensable for piRNA production, DNA methylation of retrotransposons presumably via piRNA, and normal spermatogenesis. In vitro analysis using germline stem cells (GS cells) revealed that glycerol-3-phosphate acyltransferase 2 (GPAT2), which is a mitochondrial outer membrane protein involved in generation of lysophosphatidic acid (LPA) and highly expressed in testes, plays important roles in spermatogenesis. Namely, GPAT2 binds to PIWIL2 and is closely involved in the biogenesis of piRNAs; this process is independent of its enzymatic activity on LPA. However, GS cells recapitulate only a limited phase of spermatogenesis and the biological functions of GPAT2 remain largely unknown. In this study, we generated GPAT2-deficient mice and conducted comprehensive analyses. The deficient mice showed defective piRNA production and subsequent de-silencing of IAP and Line-1 retrotransposons in fetal testes. In addition, apoptosis of pachytene spermatocytes was observed. These abnormalities were all common to the phenotype of PIWIL2-deficient mice, in which piRNA production was impaired. GPAT2-deficient mice exhibited apoptosis in spermatogonia at the neonatal stage, which was not observed in PIWIL2-deficient mice. These data show that GPAT2 plays a critical role in preventing apoptosis in spermatogonia.
Collapse
Affiliation(s)
- Yusuke Shiromoto
- Department of Pathology, Medical School, Osaka University, Osaka, Japan.,Japan Agency for Medical Research and Development (AMED)-CREST, Tokyo, Japan
| | - Satomi Kuramochi-Miyagawa
- Department of Pathology, Medical School, Osaka University, Osaka, Japan.,Japan Agency for Medical Research and Development (AMED)-CREST, Tokyo, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Ippei Nagamori
- Department of Pathology, Medical School, Osaka University, Osaka, Japan
| | - Shinichiro Chuma
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tatsuhiko Arakawa
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Toru Nishimura
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hidetoshi Hasuwa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toru Nakano
- Department of Pathology, Medical School, Osaka University, Osaka, Japan.,Japan Agency for Medical Research and Development (AMED)-CREST, Tokyo, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
43
|
Sun YM, Chen YQ. Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. J Hematol Oncol 2020; 13:109. [PMID: 32778133 PMCID: PMC7416809 DOI: 10.1186/s13045-020-00945-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Noncoding RNAs (ncRNAs) are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including disease pathogenesis. With the development of innovative technologies, an increasing number of novel ncRNAs have been uncovered; information about their prominent tissue-specific expression patterns, various interaction networks, and subcellular locations will undoubtedly enhance our understanding of their potential functions. Here, we summarized the principles and innovative methods for identifications of novel ncRNAs that have potential functional roles in cancer biology. Moreover, this review also provides alternative ncRNA databases based on high-throughput sequencing or experimental validation, and it briefly describes the current strategy for the clinical translation of cancer-associated ncRNAs to be used in diagnosis.
Collapse
Affiliation(s)
- Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 People’s Republic of China
| |
Collapse
|
44
|
Mondal M, Brown JK, Flynt A. Exploiting somatic piRNAs in Bemisia tabaci enables novel gene silencing through RNA feeding. Life Sci Alliance 2020; 3:3/10/e202000731. [PMID: 32764103 PMCID: PMC7425214 DOI: 10.26508/lsa.202000731] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
RNAi usually relies on Dicer-produced siRNAs to induce gene silencing. In many arthropods, another type of RNAi is present in the soma—the piRNA pathway. This work finds exploiting this biology is a viable alternative for gene knockdown. RNAi promises to reshape pest control by being nontoxic, biodegradable, and species specific. However, due to the plastic nature of RNAi, there is a significant variability in responses. In this study, we investigate small RNA pathways and processing of ingested RNAi trigger molecules in a hemipteran plant pest, the whitefly Bemisia tabaci. Unlike Drosophila, where the paradigm for insect RNAi technology was established, whitefly has abundant somatic piwi-associated RNAs (piRNAs). Long regarded as germline restricted, piRNAs are common in the soma of many invertebrates. We sought to exploit this for a novel gene silencing approach. The main principle of piRNA biogenesis is the recruitment of target RNA fragments into the pathway. As such, we designed synthetic RNAs to possess complementarity to the loci we annotated. Following feeding of these exogenous piRNA triggers knockdown as effective as conventional siRNA-only approaches was observed. These results demonstrate a new approach for RNAi technology that could be applicable to dsRNA-recalcitrant pest species and could be fundamental to realizing insecticidal RNAi against pests.
Collapse
Affiliation(s)
- Mosharrof Mondal
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Alex Flynt
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
45
|
Wu PH, Fu Y, Cecchini K, Özata DM, Arif A, Yu T, Colpan C, Gainetdinov I, Weng Z, Zamore PD. The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nat Genet 2020; 52:728-739. [PMID: 32601478 PMCID: PMC7383350 DOI: 10.1038/s41588-020-0657-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Pachytene PIWI-interacting RNAs (piRNAs), which comprise >80% of small RNAs in the adult mouse testis, have been proposed to bind and regulate target RNAs like microRNAs, cleave targets like short interfering RNAs or lack biological function altogether. Although piRNA pathway protein mutants are male sterile, no biological function has been identified for any mammalian piRNA-producing locus. Here, we report that males lacking piRNAs from a conserved mouse pachytene piRNA locus on chromosome 6 (pi6) produce sperm with defects in capacitation and egg fertilization. Moreover, heterozygous embryos sired by pi6-/- fathers show reduced viability in utero. Molecular analyses suggest that pi6 piRNAs repress gene expression by cleaving messenger RNAs encoding proteins required for sperm function. pi6 also participates in a network of piRNA-piRNA precursor interactions that initiate piRNA production from a second piRNA locus on chromosome 10, as well as pi6 itself. Our data establish a direct role for pachytene piRNAs in spermiogenesis and embryo viability.
Collapse
Affiliation(s)
- Pei-Hsuan Wu
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Yu Fu
- Bioinformatics Program, Boston University, Boston, MA, USA.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.,Oncology Drug Discovery Unit, Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Katharine Cecchini
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Deniz M Özata
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Amena Arif
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cansu Colpan
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ildar Gainetdinov
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA. .,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Phillip D Zamore
- Howard Hughes Medical Institute and RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
46
|
Bravo JI, Nozownik S, Danthi PS, Benayoun BA. Transposable elements, circular RNAs and mitochondrial transcription in age-related genomic regulation. Development 2020; 147:dev175786. [PMID: 32527937 PMCID: PMC10680986 DOI: 10.1242/dev.175786] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our understanding of the molecular regulation of aging and age-related diseases is still in its infancy, requiring in-depth characterization of the molecular landscape shaping these complex phenotypes. Emerging classes of molecules with promise as aging modulators include transposable elements, circRNAs and the mitochondrial transcriptome. Analytical complexity means that these molecules are often overlooked, even though they exhibit strong associations with aging and, in some cases, may directly contribute to its progress. Here, we review the links between these novel factors and age-related phenotypes, and we suggest tools that can be easily incorporated into existing pipelines to better understand the aging process.
Collapse
Affiliation(s)
- Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Séverine Nozownik
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Magistère européen de Génétique, Université Paris Diderot-Paris 7, Paris 75014, France
| | - Prakroothi S Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
47
|
Mugat B, Nicot S, Varela-Chavez C, Jourdan C, Sato K, Basyuk E, Juge F, Siomi MC, Pélisson A, Chambeyron S. The Mi-2 nucleosome remodeler and the Rpd3 histone deacetylase are involved in piRNA-guided heterochromatin formation. Nat Commun 2020; 11:2818. [PMID: 32499524 PMCID: PMC7272611 DOI: 10.1038/s41467-020-16635-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, trimethylation of lysine 9 on histone H3 (H3K9) is associated with transcriptional silencing of transposable elements (TEs). In drosophila ovaries, this heterochromatic repressive mark is thought to be deposited by SetDB1 on TE genomic loci after the initial recognition of nascent transcripts by PIWI-interacting RNAs (piRNAs) loaded on the Piwi protein. Here, we show that the nucleosome remodeler Mi-2, in complex with its partner MEP-1, forms a subunit that is transiently associated, in a MEP-1 C-terminus-dependent manner, with known Piwi interactors, including a recently reported SUMO ligase, Su(var)2-10. Together with the histone deacetylase Rpd3, this module is involved in the piRNA-dependent TE silencing, correlated with H3K9 deacetylation and trimethylation. Therefore, drosophila piRNA-mediated transcriptional silencing involves three epigenetic effectors, a remodeler, Mi-2, an eraser, Rpd3 and a writer, SetDB1, in addition to the Su(var)2-10 SUMO ligase.
Collapse
Affiliation(s)
- Bruno Mugat
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | - Simon Nicot
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | | | - Christophe Jourdan
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | - Kaoru Sato
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Eugenia Basyuk
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | - François Juge
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Alain Pélisson
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France
| | - Séverine Chambeyron
- Institute of Human Genetics, UMR9002, CNRS and Univ. Montpellier, Montpellier, France.
| |
Collapse
|
48
|
Ma X, Yin X, Tang Z, Ito H, Shao C, Meng Y, Xie T. The RNA degradome: a precious resource for deciphering RNA processing and regulation codes in plants. RNA Biol 2020; 17:1223-1227. [PMID: 32338184 DOI: 10.1080/15476286.2020.1757898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The plant RNA degradome was defined as an aggregate of the RNA fragments degraded from various biochemical pathways, such as RNA turnover, maturation and quality surveillance. In recent years, the degradome sequencing (degradome-seq) libraries became a rich storehouse for researchers to study on RNA processing and regulation. Here, we provided a brief overview of the uses of degradome-seq data in plant RNA biology, especially on non-coding RNA processing and small RNA-guided target cleavages. Some novel applications in RNA research area, such as in vivo mapping of the endoribonucleolytic cleavage sites, identification of conserved motifs at the 5' ends of the uncapped RNA fragments, and searching for the protein-binding regions on the transcripts, were also mentioned. More importantly, we proposed a model for the biologists to deduce the contributions of transcriptional and/or post-transcriptional regulation to gene differential expression based on degradome-seq data. Finally, we hope that the degradome-based analytical methods could be widely applied for the studies on RNA biology in eukaryotes.
Collapse
Affiliation(s)
- Xiaoxia Ma
- Hangzhou Normal University , Hangzhou, China
| | - Xiaopu Yin
- Hangzhou Normal University , Hangzhou, China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University , Changsha, Hunan, PR China
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University , Sapporo, Japan
| | - Chaogang Shao
- College of Life Sciences, Huzhou University , Huzhou, PR China
| | - Yijun Meng
- Hangzhou Normal University , Hangzhou, China
| | - Tian Xie
- Hangzhou Normal University , Hangzhou, China
| |
Collapse
|
49
|
O'Neill K, Brocks D, Hammell MG. Mobile genomics: tools and techniques for tackling transposons. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190345. [PMID: 32075565 PMCID: PMC7061981 DOI: 10.1098/rstb.2019.0345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2019] [Indexed: 12/22/2022] Open
Abstract
Next-generation sequencing approaches have fundamentally changed the types of questions that can be asked about gene function and regulation. With the goal of approaching truly genome-wide quantifications of all the interaction partners and downstream effects of particular genes, these quantitative assays have allowed for an unprecedented level of detail in exploring biological interactions. However, many challenges remain in our ability to accurately describe and quantify the interactions that take place in those hard to reach and extremely repetitive regions of our genome comprised mostly of transposable elements (TEs). Tools dedicated to TE-derived sequences have lagged behind, making the inclusion of these sequences in genome-wide analyses difficult. Recent improvements, both computational and experimental, allow for the better inclusion of TE sequences in genomic assays and a renewed appreciation for the importance of TE biology. This review will discuss the recent improvements that have been made in the computational analysis of TE-derived sequences as well as the areas where such analysis still proves difficult. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.
Collapse
Affiliation(s)
- Kathryn O'Neill
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Brocks
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
| | - Molly Gale Hammell
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
50
|
Venkei ZG, Choi CP, Feng S, Chen C, Jacobsen SE, Kim JK, Yamashita YM. A kinesin Klp10A mediates cell cycle-dependent shuttling of Piwi between nucleus and nuage. PLoS Genet 2020; 16:e1008648. [PMID: 32168327 PMCID: PMC7094869 DOI: 10.1371/journal.pgen.1008648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/25/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
The piRNA pathway protects germline genomes from selfish genetic elements (e.g. transposons) through their transcript cleavage in the cytoplasm and/or their transcriptional silencing in the nucleus. Here, we describe a mechanism by which the nuclear and cytoplasmic arms of the piRNA pathway are linked. We find that during mitosis of Drosophila spermatogonia, nuclear Piwi interacts with nuage, the compartment that mediates the cytoplasmic arm of the piRNA pathway. At the end of mitosis, Piwi leaves nuage to return to the nucleus. Dissociation of Piwi from nuage occurs at the depolymerizing microtubules of the central spindle, mediated by a microtubule-depolymerizing kinesin, Klp10A. Depletion of klp10A delays the return of Piwi to the nucleus and affects piRNA production, suggesting the role of nuclear-cytoplasmic communication in piRNA biogenesis. We propose that cell cycle-dependent communication between the nuclear and cytoplasmic arms of the piRNA pathway may play a previously unappreciated role in piRNA regulation. The piRNA pathway that defends germline from selfish elements operates in two subpathways, one mediated by Piwi in Drosophila to silence transcription of targets in the nucleus and the other mediated by Aub and Ago3 to cleave transcripts of targets in the cytoplasm. How these two subpathways might coordinate with each other, particularly at the cell biological level, remains elusive. This study shows that Piwi interacts with Aub/Ago3 specifically in mitosis in nuage, the organelle that serves as the platform for piRNA cytoplasmic subpathway. Piwi returns to the nucleus at the end of mitosis, and our study suggests that dissociation of Piwi from nuage is facilitated by microtubule depolymerization by a kinesin Klp10A at the central spindle. We propose that cell-cycle-dependent interaction of two piRNA subpathways may play an important role in piRNA production.
Collapse
Affiliation(s)
- Zsolt G. Venkei
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charlotte P. Choi
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, United States of America
| | - Cuie Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States of America
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - John K. Kim
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yukiko M. Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|