1
|
Shang, F, Schallek J. Characterization of the Retinal Circulation of the Mouse. Invest Ophthalmol Vis Sci 2024; 65:3. [PMID: 39620830 PMCID: PMC11613998 DOI: 10.1167/iovs.65.14.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/30/2024] [Indexed: 12/06/2024] Open
Abstract
Purpose Mice are highly used in retinal research because, like humans, mice have vascularized retinas and choroidal circulation. Although the retinal circulation has been well-characterized in development, its stability during adulthood is less understood. To examine this network, we quantified several key metrics of the trilaminar vasculature. Methods We used mice (n = 15) with transgenic fluorescent NG2-DsRed (JX: #00824), a vascular-associated label in the retina. One eye per mouse was imaged using confocal microscopy (Nikon A1 Ti2 Eclipse) and traced with ImageJ SNT tools. Using an adaptive optics scanning light ophthalmoscope, additional mice (n = 3) were imaged at single-cell resolution within the living eye to measure the same vasculature. Results Across mice, we found a stable retinal circulation that formed and maintained a trilaminar stratification throughout early adulthood at all eccentricities. Bridging these layers, microvessels had five distinct anatomical branching patterns. The superficial, intermediate, and deep plexuses increased in density with depth: 16.14 ± 3.61 mm/mm2, 22.14 ± 6.86 mm/mm2, and 31.01 ± 6.24 mm/mm2, respectively. This patterning was not impacted by eccentricity or age (13-61 weeks). Similar metrics were achieved using adaptive optics scanning light ophthalmoscope in vivo with the same analysis pipeline. Conclusions The mouse retinal vasculature was stable up to 50 weeks of age, providing a robust and extensive baseline dataset with which models of retinal vascular and neural disease may be compared. Vessels connecting the laminae were more complex than previously reported and represented a uniquely vulnerable population due to their relatively low density.
Collapse
Affiliation(s)
- Fei Shang,
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
| | - Jesse Schallek
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
- Center for Visual Science, University of Rochester, Rochester, NY, United States
- Flaum Eye Institute, University of Rochester, Rochester, NY, United States
| |
Collapse
|
2
|
Huang KC, Tawfik M, Samuel MA. Retinal ganglion cell circuits and glial interactions in humans and mice. Trends Neurosci 2024; 47:994-1013. [PMID: 39455342 PMCID: PMC11631666 DOI: 10.1016/j.tins.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway for vision, and their degeneration underlies several blinding diseases. RGCs interact with other neuronal cell types, microglia, and astrocytes in the retina and in the brain. Much knowledge has been gained about RGCs and glia from mice and other model organisms, often with the assumption that certain aspects of their biology may be conserved in humans. However, RGCs vary considerably between species, which could affect how they interact with their neuronal and glial partners. This review details which RGC and glial features are conserved between mice, humans, and primates, and which differ. We also discuss experimental approaches for studying human and primate RGCs. These strategies will help to bridge the gap between rodent and human RGC studies and increase study translatability to guide future therapeutic strategies.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| |
Collapse
|
3
|
Cullen PF, Mazumder AG, Sun D, Flanagan JG. Rapid isolation of intact retinal astrocytes: a novel approach. Acta Neuropathol Commun 2023; 11:154. [PMID: 37749651 PMCID: PMC10521529 DOI: 10.1186/s40478-023-01641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Astrocytes are a major category of glial support cell in the central nervous system and play a variety of essential roles in both health and disease. As our understanding of the diverse functions of these cells improves, the extent of heterogeneity between astrocyte populations has emerged as a key area of research. Retinal astrocytes, which form the direct cellular environment of retinal ganglion cells somas and axons, undergo a reactive response in both human glaucoma and animal models of the disease, yet their contributions to its pathology and progression remain relatively unknown. This gap in knowledge is largely a function of inadequate isolation techniques, driven in part by the sparseness of these cells and their similarities with the more abundant retinal Müller cells. Here, we present a novel method of isolating retinal astrocytes and enriching their RNA, tested in both normal and ocular hypertensive mice, a common model of experimental glaucoma. Our approach combines a novel enzyme assisted microdissection of retinal astrocytes with selective ribosome immunoprecipitation using the Ribotag method. Our microdissection method is rapid and preserves astrocyte morphology, resulting in a brief post-mortem interval and minimizing loss of RNA from distal regions of these cells. Both microdissection and Ribotag immunoprecipitation require a minimum of specialized equipment or reagents, and by using them in conjunction we are able to achieve > 100-fold enrichment of astrocyte RNA.
Collapse
Affiliation(s)
- Paul F Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
4
|
Cullen PF, Sun D. Astrocytes of the eye and optic nerve: heterogeneous populations with unique functions mediate axonal resilience and vulnerability to glaucoma. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1217137. [PMID: 37829657 PMCID: PMC10569075 DOI: 10.3389/fopht.2023.1217137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The role of glia, particularly astrocytes, in mediating the central nervous system's response to injury and neurodegenerative disease is an increasingly well studied topic. These cells perform myriad support functions under physiological conditions but undergo behavioral changes - collectively referred to as 'reactivity' - in response to the disruption of neuronal homeostasis from insults, including glaucoma. However, much remains unknown about how reactivity alters disease progression - both beneficially and detrimentally - and whether these changes can be therapeutically modulated to improve outcomes. Historically, the heterogeneity of astrocyte behavior has been insufficiently addressed under both physiological and pathological conditions, resulting in a fragmented and often contradictory understanding of their contributions to health and disease. Thanks to increased focus in recent years, we now know this heterogeneity encompasses both intrinsic variation in physiological function and insult-specific changes that vary between pathologies. Although previous studies demonstrate astrocytic alterations in glaucoma, both in human disease and animal models, generally these findings do not conclusively link astrocytes to causative roles in neuroprotection or degeneration, rather than a subsequent response. Efforts to bolster our understanding by drawing on knowledge of brain astrocytes has been constrained by the primacy in the literature of findings from peri-synaptic 'gray matter' astrocytes, whereas much early degeneration in glaucoma occurs in axonal regions populated by fibrous 'white matter' astrocytes. However, by focusing on findings from astrocytes of the anterior visual pathway - those of the retina, unmyelinated optic nerve head, and myelinated optic nerve regions - we aim to highlight aspects of their behavior that may contribute to axonal vulnerability and glaucoma progression, including roles in mitochondrial turnover and energy provisioning. Furthermore, we posit that astrocytes of the retina, optic nerve head and myelinated optic nerve, although sharing developmental origins and linked by a network of gap junctions, may be best understood as distinct populations residing in markedly different niches with accompanying functional specializations. A closer investigation of their behavioral repertoires may elucidate not only their role in glaucoma, but also mechanisms to induce protective behaviors that can impede the progressive axonal damage and retinal ganglion cell death that drive vision loss in this devastating condition.
Collapse
Affiliation(s)
- Paul F. Cullen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Gomariz A, Portenier T, Nombela-Arrieta C, Goksel O. Probabilistic spatial analysis in quantitative microscopy with uncertainty-aware cell detection using deep Bayesian regression. SCIENCE ADVANCES 2022; 8:eabi8295. [PMID: 35119934 PMCID: PMC8816343 DOI: 10.1126/sciadv.abi8295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The investigation of biological systems with three-dimensional microscopy demands automatic cell identification methods that not only are accurate but also can imply the uncertainty in their predictions. The use of deep learning to regress density maps is a popular successful approach for extracting cell coordinates from local peaks in a postprocessing step, which then, however, hinders any meaningful probabilistic output. We propose a framework that can operate on large microscopy images and output probabilistic predictions (i) by integrating deep Bayesian learning for the regression of uncertainty-aware density maps, where peak detection algorithms generate cell proposals, and (ii) by learning a mapping from prediction proposals to a probabilistic space that accurately represents the chances of a successful prediction. Using these calibrated predictions, we propose a probabilistic spatial analysis with Monte Carlo sampling. We demonstrate this in a bone marrow dataset, where our proposed methods reveal spatial patterns that are otherwise undetectable.
Collapse
Affiliation(s)
- Alvaro Gomariz
- Computer-assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Tiziano Portenier
- Computer-assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Orcun Goksel
- Computer-assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland
- Centre for Image Analysis, Department of Information Technology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Bernier LP, Brunner C, Cottarelli A, Balbi M. Location Matters: Navigating Regional Heterogeneity of the Neurovascular Unit. Front Cell Neurosci 2021; 15:696540. [PMID: 34276312 PMCID: PMC8277940 DOI: 10.3389/fncel.2021.696540] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022] Open
Abstract
The neurovascular unit (NVU) of the brain is composed of multiple cell types that act synergistically to modify blood flow to locally match the energy demand of neural activity, as well as to maintain the integrity of the blood-brain barrier (BBB). It is becoming increasingly recognized that the functional specialization, as well as the cellular composition of the NVU varies spatially. This heterogeneity is encountered as variations in vascular and perivascular cells along the arteriole-capillary-venule axis, as well as through differences in NVU composition throughout anatomical regions of the brain. Given the wide variations in metabolic demands between brain regions, especially those of gray vs. white matter, the spatial heterogeneity of the NVU is critical to brain function. Here we review recent evidence demonstrating regional specialization of the NVU between brain regions, by focusing on the heterogeneity of its individual cellular components and briefly discussing novel approaches to investigate NVU diversity.
Collapse
Affiliation(s)
- Louis-Philippe Bernier
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Clément Brunner
- Neuro-Electronics Research Flanders, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie, Leuven, Belgium.,Interuniversity Microeletronics Centre, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Matilde Balbi
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Ross JM, Kim C, Allen D, Crouch EE, Narsinh K, Cooke DL, Abla AA, Nowakowski TJ, Winkler EA. The Expanding Cell Diversity of the Brain Vasculature. Front Physiol 2020; 11:600767. [PMID: 33343397 PMCID: PMC7744630 DOI: 10.3389/fphys.2020.600767] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
The cerebrovasculature is essential to brain health and is tasked with ensuring adequate delivery of oxygen and metabolic precursors to ensure normal neurologic function. This is coordinated through a dynamic, multi-directional cellular interplay between vascular, neuronal, and glial cells. Molecular exchanges across the blood-brain barrier or the close matching of regional blood flow with brain activation are not uniformly assigned to arteries, capillaries, and veins. Evidence has supported functional segmentation of the brain vasculature. This is achieved in part through morphologic or transcriptional heterogeneity of brain vascular cells-including endothelium, pericytes, and vascular smooth muscle. Advances with single cell genomic technologies have shown increasing cell complexity of the brain vasculature identifying previously unknown cell types and further subclassifying transcriptional diversity in cardinal vascular cell types. Cell-type specific molecular transitions or zonations have been identified. In this review, we summarize emerging evidence for the expanding vascular cell diversity in the brain and how this may provide a cellular basis for functional segmentation along the arterial-venous axis.
Collapse
Affiliation(s)
- Jayden M. Ross
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Chang Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Denise Allen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Elizabeth E. Crouch
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Kazim Narsinh
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel L. Cooke
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| | - Adib A. Abla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Tomasz J. Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| | - Ethan A. Winkler
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
8
|
Gao M, Liu H, Xiao Y, Guo Y, Wan X, Li X, Li M, Liang J, Zhai Y, Liu W, Jiang M, Luo X, Sun X. xCT regulates redox homeostasis and promotes photoreceptor survival after retinal detachment. Free Radic Biol Med 2020; 158:32-43. [PMID: 32679366 DOI: 10.1016/j.freeradbiomed.2020.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/17/2020] [Accepted: 06/08/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUNDS Photoreceptor degeneration underlies various retinal disorders that lead to vision impairment. Currently, no effective medication is available to rescue photoreceptors under disease conditions. Elucidation of the molecular pathways involved in photoreceptor degeneration is a prerequisite for the rational design of therapeutic interventions. Photoreceptors are among the most energy-demanding tissues that require highly active oxidative phosphorylation. Therefore, disruption of metabolic support to photoreceptors results in a redox imbalance and subsequent cell death. We hypothesize that the redox regulatory pathway could be a potential therapeutic target to rescue photoreceptors under disease conditions. METHODS Experimental retinal detachment was induced in mice. A murine photoreceptor-derived 661w cell line treated with H2O2 was employed as an in vitro model to study the cellular response to oxidative stress. The expression and functional role of xCT, an upstream regulator of redox homeostasis, was assessed in vivo and in vitro. An xCT expression vector was constructed for an in vivo study to evaluate the therapeutic potential of this molecule. RESULTS xCT expression was upregulated in detached retina and H2O2-stimulated 661w cells compared to the control cells. Pharmacological inhibition of xCT by sulfasalazine (SAS) promoted photoreceptor degeneration after retinal detachment and 661w cell death upon H2O2 treatment. Additionally, SAS treatment induced reactive oxidative species (ROS) accumulation, glutathione (GSH) depletion, and glutamate release in 661w cells. In contrast, xCT overexpression via viral infection protected photoreceptors from degeneration after retinal detachment. CONCLUSION We conclude that xCT expression is upregulated in photoreceptors after retinal detachment and plays a neuroprotective role in preserving photoreceptors. Mechanistically, xCT promotes cellular homeostasis by regulating intracellular ROS and GSH levels, which are critical to photoreceptor survival after retinal detachment. Collectively, our findings identify xCT as a potential therapeutic target for protection of photoreceptors under disease conditions.
Collapse
Affiliation(s)
- Min Gao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Haiyun Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Yushu Xiao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Yinong Guo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Xiaoling Wan
- Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China
| | - Xiaomeng Li
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Min Li
- Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China
| | - Jian Liang
- Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China
| | - Yuanqi Zhai
- Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China
| | - Wenjia Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China
| | - Mei Jiang
- Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China
| | - Xueting Luo
- Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, 200080, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, 200080, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, 200080, Shanghai, China.
| |
Collapse
|
9
|
Zhu L, Zang J, Liu B, Yu G, Hao L, Liu L, Zhong J. Oxidative stress-induced RAC autophagy can improve the HUVEC functions by releasing exosomes. J Cell Physiol 2020; 235:7392-7409. [PMID: 32096219 PMCID: PMC7496456 DOI: 10.1002/jcp.29641] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
Retinal neovascularization (RNV) is a common pathological feature in many kinds of fundus oculi diseases. Sometimes RNV can even lead to severe vision loss. Oxidative injury is one of the main predisposing factors for RNV occurrence and development. The specific mechanism may be closely related to the special structural tissues of the retina. Retinal astrocytes (RACs) are mesenchymal cells located in the retinal neuroepithelial layer. RACs have an intimate anatomical relationship with microvascular endothelial cells. They have a variety of functions, but little is known about the mechanisms by which RACs regulate the function of endothelial cells. The molecules secreted by RACs, such as exosomes, have recently received a lot of attention and may provide potential clues to address the RAC‐mediated modulation of endothelial cells. In this study, we aimed to preliminarily explore the mechanisms of how RAC exosomes generated under oxidative stress are involved in the regulation of endothelial function. Our results showed that the apoptosis and autophagy levels in RACs were positively correlated with the oxidative stress level, and the exosomes generated from RACs under normal and oxidative stress conditions had different effects on the proliferation and migration of endothelial cells. However, the effect of RACs on endothelial cell function could be markedly reversed by the autophagy inhibitor 3‐methyladenine or the exosome inhibitor GW4869. Therefore, oxidative stress can lead to increased autophagy in RACs and can further promote RACs to regulate endothelial cell function by releasing exosomes. tBHP‐induced oxidative stress can increase the level of autophagy in retinal (RAC) astrocytes. RAC with high‐autophagy level has a completely opposite effect on HUVEC functions when compared with normal RAC. RACs under different states have different effects on endothelial cell functions by releasing exosomes
Collapse
Affiliation(s)
- Linxin Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bing Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guocheng Yu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lili Hao
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lian Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingxiang Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Pfeiffer RL, Marc RE, Jones BW. Persistent remodeling and neurodegeneration in late-stage retinal degeneration. Prog Retin Eye Res 2020; 74:100771. [PMID: 31356876 PMCID: PMC6982593 DOI: 10.1016/j.preteyeres.2019.07.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
Retinal remodeling is a progressive series of negative plasticity revisions that arise from retinal degeneration, and are seen in retinitis pigmentosa, age-related macular degeneration and other forms of retinal disease. These processes occur regardless of the precipitating event leading to degeneration. Retinal remodeling then culminates in a late-stage neurodegeneration that is indistinguishable from progressive central nervous system (CNS) proteinopathies. Following long-term deafferentation from photoreceptor cell death in humans, and long-lived animal models of retinal degeneration, most retinal neurons reprogram, then die. Glial cells reprogram into multiple anomalous metabolic phenotypes. At the same time, survivor neurons display degenerative inclusions that appear identical to progressive CNS neurodegenerative disease, and contain aberrant α-synuclein (α-syn) and phosphorylated α-syn. In addition, ultrastructural analysis indicates a novel potential mechanism for misfolded protein transfer that may explain how proteinopathies spread. While neurodegeneration poses a barrier to prospective retinal interventions that target primary photoreceptor loss, understanding the progression and time-course of retinal remodeling will be essential for the establishment of windows of therapeutic intervention and appropriate tuning and design of interventions. Finally, the development of protein aggregates and widespread neurodegeneration in numerous retinal degenerative diseases positions the retina as a ideal platform for the study of proteinopathies, and mechanisms of neurodegeneration that drive devastating CNS diseases.
Collapse
Affiliation(s)
- Rebecca L Pfeiffer
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA.
| | - Robert E Marc
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Bryan William Jones
- Dept of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
Gomariz A, Isringhausen S, Helbling PM, Nombela-Arrieta C. Imaging and spatial analysis of hematopoietic stem cell niches. Ann N Y Acad Sci 2019; 1466:5-16. [PMID: 31368140 DOI: 10.1111/nyas.14184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 01/21/2023]
Abstract
Hematopoietic stem cells (HSCs) have been long proposed to reside in defined anatomical locations within bone marrow (BM) tissues in direct contact or close proximity to nurturing cell types. Imaging techniques that allow the simultaneous mapping of HSCs and interacting cell types have been central to the discovery of basic principles of these so-called HSC niches. Despite major progress in the field, a quantitative and comprehensive model of the cellular and molecular components that define these specialized microenvironments is lacking to date, and uncertainties remain on the preferential localization of HSCs in the context of complex BM tissue landscapes. Recent technological breakthroughs currently allow for the quantitative spatial analysis of BM cellular components with extraordinary precision. Here, we critically discuss essential technical aspects related to imaging approaches, image processing tools, and spatial statistics, which constitute the three basic elements of rigorous quantitative spatial analyses of HSC niches in the BM microenvironment.
Collapse
Affiliation(s)
- Alvaro Gomariz
- Department of Medical Oncology and Hematology, University Hospital, University of Zurich, Zurich, Switzerland
| | - Stephan Isringhausen
- Department of Medical Oncology and Hematology, University Hospital, University of Zurich, Zurich, Switzerland
| | - Patrick M Helbling
- Department of Medical Oncology and Hematology, University Hospital, University of Zurich, Zurich, Switzerland
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy. Nat Commun 2018; 9:2532. [PMID: 29955044 PMCID: PMC6023894 DOI: 10.1038/s41467-018-04770-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Sinusoidal endothelial cells and mesenchymal CXCL12-abundant reticular cells are principal bone marrow stromal components, which critically modulate haematopoiesis at various levels, including haematopoietic stem cell maintenance. These stromal subsets are thought to be scarce and function via highly specific interactions in anatomically confined niches. Yet, knowledge on their abundance, global distribution and spatial associations remains limited. Using three-dimensional quantitative microscopy we show that sinusoidal endothelial and mesenchymal reticular subsets are remarkably more abundant than estimated by conventional flow cytometry. Moreover, both cell types assemble in topologically complex networks, associate to extracellular matrix and pervade marrow tissues. Through spatial statistical methods we challenge previous models and demonstrate that even in the absence of major specific interaction forces, virtually all tissue-resident cells are invariably in physical contact with, or close proximity to, mesenchymal reticular and sinusoidal endothelial cells. We further show that basic structural features of these stromal components are preserved during ageing. The bone marrow microenvironment modulates haematopoiesis, stem cell maintenance and differentiation. Here, the authors use 3D microscopy to map the topography of haematopoietic stem cell niche stromal components.
Collapse
|
13
|
Roy S, Kim D, Lim R. Cell-cell communication in diabetic retinopathy. Vision Res 2017; 139:115-122. [PMID: 28583293 DOI: 10.1016/j.visres.2017.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
In diabetic retinopathy, high glucose (HG)-mediated breakdown in cell-cell communication promotes disruption of retinal homeostasis. Several studies indicate that HG condition alters expression of connexin genes and subsequent gap junction intercellular communication (GJIC) in retinal vascular cells and non-vascular cells. A serious consequence of disrupted cell-cell communication is apoptosis and breakdown of the blood-retinal barrier (BRB). More recently, studies suggest adverse effects from HG on retinal Müller cells. This article focuses on HG-mediated changes in connexin expression and GJIC and their subsequent effects on the breakdown of retinal homeostasis, cell death, compromised vascular permeability, and interactions between endothelial cells, pericytes and retinal Müller cells in the pathogenesis of diabetic retinopathy. Additionally, options for rectifying disrupted homeostasis under HG condition associated with diabetic retinopathy are reviewed.
Collapse
Affiliation(s)
- Sayon Roy
- Department of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States.
| | - Dongjoon Kim
- Department of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Remington Lim
- Department of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
14
|
Li H, Bui BV, Cull G, Wang F, Wang L. Glial Cell Contribution to Basal Vessel Diameter and Pressure-Initiated Vascular Responses in Rat Retina. Invest Ophthalmol Vis Sci 2017; 58:1-8. [PMID: 28055098 PMCID: PMC5225997 DOI: 10.1167/iovs.16-20804] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to test the hypothesis that retinal glial cells modify basal vessel diameter and pressure-initiated vascular regulation in rat retina. Methods In rats, L-2-aminoadipic acid (LAA, 10 nM) was intravitreally injected to inhibit glial cell activity. Twenty-four hours following injection, retinal glial intracellular calcium (Ca2+) was labeled with the fluorescent calcium indicator Fluo-4/AM (F4, 1 mM). At 110 minutes after injection, intraocular pressure (IOP) was elevated from 20 to 50 mm Hg. Prior to and during IOP elevation, Ca2+ and retinal vessel diameter were assessed using a spectral-domain optical coherence tomography/confocal scanning laser ophthalmoscope. Dynamic changes in Ca2+ and diameter from IOP elevation were quantified. The response in LAA-treated eyes was compared with vehicle treated control eyes. Results L-2-Aminoadipic acid treatment significantly reduced F4-positive cells in the retina (LAA, 16 ± 20 vs. control, 55 ± 37 cells/mm2; P = 0.02). Twenty-four hours following LAA treatment, basal venous diameter was increased from 38.9 ± 3.9 to 51.8 ± 6.4 μm (P < 0.0001, n = 20), whereas arterial diameter was unchanged (from 30.3 ± 3.5 to 30.7 ± 2.8 μm; P = 0.64). In response to IOP elevation, LAA-treated eyes showed a smaller increase in glial cell Ca2+ around both arteries and veins in comparison with control (P < 0.001 for both). There was also significantly greater IOP-induced vasoconstriction in both vessel types (P = 0.05 and P = 0.02, respectively; n = 6 each). Conclusions The results suggest that glial cells can modulate basal retinal venous diameter and contribute to pressure-initiated vascular responses.
Collapse
Affiliation(s)
- Hui Li
- Department of Ophthalmology, The Tenth People's Hospital, Shanghai, Tongji University School of Medicine, Shanghai, China 2Devers Eye Institute, Legacy Research Institute, Portland, Oregon, USA
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Grant Cull
- Devers Eye Institute, Legacy Research Institute, Portland, Oregon, USA
| | - Fang Wang
- Department of Ophthalmology, The Tenth People's Hospital, Shanghai, Tongji University School of Medicine, Shanghai, China
| | - Lin Wang
- Department of Ophthalmology, The Tenth People's Hospital, Shanghai, Tongji University School of Medicine, Shanghai, China 2Devers Eye Institute, Legacy Research Institute, Portland, Oregon, USA
| |
Collapse
|
15
|
Luna G, Keeley PW, Reese BE, Linberg KA, Lewis GP, Fisher SK. Astrocyte structural reactivity and plasticity in models of retinal detachment. Exp Eye Res 2016; 150:4-21. [PMID: 27060374 DOI: 10.1016/j.exer.2016.03.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/01/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
Although retinal neurodegenerative conditions such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and retinal detachment have different etiologies and pathological characteristics, they also have many responses in common at the cellular level, including neural and glial remodeling. Structural changes in Müller cells, the large radial glia of the retina in retinal disease and injury have been well described, that of the retinal astrocytes remains less so. Using modern imaging technology to describe the structural remodeling of retinal astrocytes after retinal detachment is the focus of this paper. We present both a review of critical literature as well as novel work focusing on the responses of astrocytes following rhegmatogenous and serous retinal detachment. The mouse presents a convenient model system in which to study astrocyte reactivity since the Mϋller cell response is muted in comparison to other species thereby allowing better visualization of the astrocytes. We also show data from rat, cat, squirrel, and human retina demonstrating similarities and differences across species. Our data from immunolabeling and dye-filling experiments demonstrate previously undescribed morphological characteristics of normal astrocytes and changes induced by detachment. Astrocytes not only upregulate GFAP, but structurally remodel, becoming increasingly irregular in appearance, and often penetrating deep into neural retina. Understanding these responses, their consequences, and what drives them may prove to be an important component in improving visual outcome in a variety of therapeutic situations. Our data further supports the concept that astrocytes are important players in the retina's overall response to injury and disease.
Collapse
Affiliation(s)
- Gabriel Luna
- Neuroscience Research Institute, University of California Santa Barbara, USA; Center for Bio-image Informatics, University of California Santa Barbara, USA
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California Santa Barbara, USA
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California Santa Barbara, USA; Department of Psychological and Brain Sciences, University of California Santa Barbara, USA
| | - Kenneth A Linberg
- Neuroscience Research Institute, University of California Santa Barbara, USA
| | - Geoffrey P Lewis
- Neuroscience Research Institute, University of California Santa Barbara, USA; Center for Bio-image Informatics, University of California Santa Barbara, USA
| | - Steven K Fisher
- Neuroscience Research Institute, University of California Santa Barbara, USA; Center for Bio-image Informatics, University of California Santa Barbara, USA; Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, USA.
| |
Collapse
|
16
|
Fernández-Sánchez L, Lax P, Campello L, Pinilla I, Cuenca N. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa. Front Cell Neurosci 2015; 9:484. [PMID: 26733810 PMCID: PMC4686678 DOI: 10.3389/fncel.2015.00484] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.
Collapse
Affiliation(s)
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Aragon Institute for Health Research, Lozano Blesa University Hospital Zaragoza, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of AlicanteAlicante, Spain; Institute Ramón Margalef, University of AlicanteAlicante, Spain
| |
Collapse
|
17
|
Guidolin D, Marinaccio C, Tortorella C, Ruggieri S, Rizzi A, Maiorano E, Specchia G, Ribatti D. A fractal analysis of the spatial distribution of tumoral mast cells in lymph nodes and bone marrow. Exp Cell Res 2015; 339:96-102. [PMID: 26358232 DOI: 10.1016/j.yexcr.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/30/2015] [Accepted: 09/04/2015] [Indexed: 12/16/2022]
Abstract
The spatial distribution of mast cells inside the tumor stroma has been little investigated. In this study, we have evaluated tumor mast cells distribution through the analysis of the morphological features of the spatial patterns generated by these cells, including size, shape, and architecture of the cell pattern. We have compared diffuse large B cells lymphoma (DLBCL) and systemic mastocytosis in two different anatomical localizations (lymph nodes for DLBCL and, respectively, bone marrow for mastocytosis). Results have indicated that, despite the high difference in size exhibited by the mast cells patterns in the two conditions, the spatial relationship between the mast cells forming the aggregates resulted similar, characterized by a significant tendency of the mast cells to self-organize in clusters.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Molecular Medicine, University of Padova Medical School, University of Padova, Italy
| | - Christian Marinaccio
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Cinzia Tortorella
- Department of Molecular Medicine, University of Padova Medical School, University of Padova, Italy
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Anna Rizzi
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Eugenio Maiorano
- Department of Emergency and Transplantation, Pathology Section, University of Bari Medical School, Bari, Italy
| | - Giorgina Specchia
- Department of Emergency and Transplantation, Hematology Section, University of Bari Medical School, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, 70124 Bari, Italy; National Cancer Institute "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|