1
|
Famà V, Coscujuela Tarrero L, Albanese R, Calviello L, Biffo S, Pelizzola M, Furlan M. Coupling mechanisms coordinating mRNA translation with stages of the mRNA lifecycle. RNA Biol 2025; 22:1-12. [PMID: 40116043 PMCID: PMC11934187 DOI: 10.1080/15476286.2025.2483001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025] Open
Abstract
Gene expression involves a series of consequential processes, beginning with mRNA synthesis and culminating in translation. Traditionally studied as a linear sequence of events, recent findings challenge this perspective, revealing coupling mechanisms that coordinate key steps of gene expression, even when spatially and temporally distant. In this review, we focus on translation, the final stage of gene expression, and examine its coupling with key stages of mRNA metabolism: synthesis, processing, export, and decay. For each of these processes, we provide an overview of known instances of coupling with translation. Furthermore, we discuss the role of high-throughput technologies in uncovering these intricate interactions on a genome-wide scale. Finally, we highlight key challenges and propose future directions to advance our understanding of how coupling mechanisms orchestrate robust and adaptable gene expression programs.
Collapse
Affiliation(s)
- Valeria Famà
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
- Department of Oncology and Emato-Oncology, University of Milan, Milan, Italy
| | | | | | | | - Stefano Biffo
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| |
Collapse
|
2
|
Vock IW, Mabin JW, Machyna M, Zhang A, Hogg JR, Simon MD. Expanding and improving analyses of nucleotide recoding RNA-seq experiments with the EZbakR suite. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.617411. [PMID: 39463977 PMCID: PMC11507695 DOI: 10.1101/2024.10.14.617411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Nucleotide recoding RNA sequencing methods (NR-seq; TimeLapse-seq, SLAM-seq, TUC-seq, etc.) are powerful approaches for assaying transcript population dynamics. In addition, these methods have been extended to probe a host of regulated steps in the RNA life cycle. Current bioinformatic tools significantly constrain analyses of NR-seq data. To address this limitation, we developed EZbakR, an R package to facilitate a more comprehensive set of NR-seq analyses, and fastq2EZbakR, a Snakemake pipeline for flexible preprocessing of NR-seq datasets, collectively referred to as the EZbakR suite. Together, these tools generalize many aspects of the NR-seq analysis workflow. The fastq2EZbakR pipeline can assign reads to a diverse set of genomic features (e.g., genes, exons, splice junctions, etc.), and EZbakR can perform analyses on any combination of these features. EZbakR extends standard NR-seq mutational modeling to support multi-label analyses (e.g., s4U and s6G dual labeling), and implements an improved hierarchical model to better account for transcript-to-transcript variance in metabolic label incorporation. EZbakR also generalizes dynamical systems modeling of NR-seq data to support analyses of premature mRNA processing and flow between subcellular compartments. Finally, EZbakR implements flexible and well-powered comparative analyses of all estimated parameters via design matrix-specified generalized linear modeling. The EZbakR suite will thus allow researchers to make full, effective use of NR-seq data.
Collapse
Affiliation(s)
- Isaac W. Vock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
| | - Justin W. Mabin
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Machyna
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
- Present address: Paul-Ehrlich-Institut, Host-Pathogen-Interactions, 63225 Langen, Germany
| | - Alexandra Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
| | - J. Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew D. Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, USA
| |
Collapse
|
3
|
Coscujuela Tarrero L, Famà V, D'Andrea G, Maestri S, de Polo A, Biffo S, Furlan M, Pelizzola M. Nanodynamo quantifies subcellular RNA dynamics revealing extensive coupling between steps of the RNA life cycle. Nat Commun 2024; 15:7725. [PMID: 39231948 PMCID: PMC11375098 DOI: 10.1038/s41467-024-51917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
The coordinated action of transcriptional and post-transcriptional machineries shapes gene expression programs at steady state and determines their concerted response to perturbations. We have developed Nanodynamo, an experimental and computational workflow for quantifying the kinetic rates of nuclear and cytoplasmic steps of the RNA life cycle. Nanodynamo is based on mathematical modelling following sequencing of native RNA from cellular fractions and polysomes. We have applied this workflow to triple-negative breast cancer cells, revealing widespread post-transcriptional RNA processing that is mutually exclusive with its co-transcriptional counterpart. We used Nanodynamo to unravel the coupling between transcription, processing, export, decay and translation machineries. We have identified a number of coupling interactions within and between the nucleus and cytoplasm that largely contribute to coordinating how cells respond to perturbations that affect gene expression programs. Nanodynamo will be instrumental in unravelling the determinants and regulatory processes involved in the coordination of gene expression responses.
Collapse
Affiliation(s)
| | - Valeria Famà
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
- Department of Oncology and Emato-Oncology, University of Milan, Milan, Italy
| | - Giacomo D'Andrea
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milano, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Simone Maestri
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Anna de Polo
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Stefano Biffo
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milano, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy.
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy.
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
4
|
Kumar NH, Kluever V, Barth E, Krautwurst S, Furlan M, Pelizzola M, Marz M, Fornasiero EF. Comprehensive transcriptome analysis reveals altered mRNA splicing and post-transcriptional changes in the aged mouse brain. Nucleic Acids Res 2024; 52:2865-2885. [PMID: 38471806 PMCID: PMC11014377 DOI: 10.1093/nar/gkae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/18/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
A comprehensive understanding of molecular changes during brain aging is essential to mitigate cognitive decline and delay neurodegenerative diseases. The interpretation of mRNA alterations during brain aging is influenced by the health and age of the animal cohorts studied. Here, we carefully consider these factors and provide an in-depth investigation of mRNA splicing and dynamics in the aging mouse brain, combining short- and long-read sequencing technologies with extensive bioinformatic analyses. Our findings encompass a spectrum of age-related changes, including differences in isoform usage, decreased mRNA dynamics and a module showing increased expression of neuronal genes. Notably, our results indicate a reduced abundance of mRNA isoforms leading to nonsense-mediated RNA decay and suggest a regulatory role for RNA-binding proteins, indicating that their regulation may be altered leading to the reshaping of the aged brain transcriptome. Collectively, our study highlights the importance of studying mRNA splicing events during brain aging.
Collapse
Affiliation(s)
- Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Verena Kluever
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Emanuel Barth
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Bioinformatics Core Facility, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sebastian Krautwurst
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute for Age Research, FLI, Beutenbergstraße 11, Jena 07743, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University, Leutragraben 1, Jena 07743, Germany
- German Center for Integrative Biodiversity Research (iDiv), Puschstraße 4, Leipzig 04103, Germany
- Michael Stifel Center Jena, Friedrich Schiller University, Ernst-Abbe-Platz 2, Jena 07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Fuerstengraben 1, Jena 07743, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
5
|
Jowhar Z, Xu A, Venkataramanan S, Dossena F, Hoye ML, Silver DL, Floor SN, Calviello L. A ubiquitous GC content signature underlies multimodal mRNA regulation by DDX3X. Mol Syst Biol 2024; 20:276-290. [PMID: 38273160 PMCID: PMC10912769 DOI: 10.1038/s44320-024-00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
The road from transcription to protein synthesis is paved with many obstacles, allowing for several modes of post-transcriptional regulation of gene expression. A fundamental player in mRNA biology is DDX3X, an RNA binding protein that canonically regulates mRNA translation. By monitoring dynamics of mRNA abundance and translation following DDX3X depletion, we observe stabilization of translationally suppressed mRNAs. We use interpretable statistical learning models to uncover GC content in the coding sequence as the major feature underlying RNA stabilization. This result corroborates GC content-related mRNA regulation detectable in other studies, including hundreds of ENCODE datasets and recent work focusing on mRNA dynamics in the cell cycle. We provide further evidence for mRNA stabilization by detailed analysis of RNA-seq profiles in hundreds of samples, including a Ddx3x conditional knockout mouse model exhibiting cell cycle and neurogenesis defects. Our study identifies a ubiquitous feature underlying mRNA regulation and highlights the importance of quantifying multiple steps of the gene expression cascade, where RNA abundance and protein production are often uncoupled.
Collapse
Affiliation(s)
- Ziad Jowhar
- Department of Cell and Tissue Biology, UCSF, San Francisco, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Albert Xu
- Department of Cell and Tissue Biology, UCSF, San Francisco, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, 94158, USA
| | | | | | - Mariah L Hoye
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
- Department of Cell Biology, Duke University Medical Center, Durham, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, USA
- Department of Neurobiology, Duke University Medical Center, Durham, USA
- Duke Institute for Brain Sciences, Duke University Medical Center, Durham, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, UCSF, San Francisco, USA.
- Helen Diller Family Comprehensive Cancer Center, San Francisco, USA.
| | | |
Collapse
|
6
|
Unruh BA, Weidemann DE, Miao L, Kojima S. Coordination of rhythmic RNA synthesis and degradation orchestrates 24- and 12-h RNA expression patterns in mouse fibroblasts. Proc Natl Acad Sci U S A 2024; 121:e2314690121. [PMID: 38315868 PMCID: PMC10873638 DOI: 10.1073/pnas.2314690121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Circadian RNA expression is essential to ultimately regulate a plethora of downstream rhythmic biochemical, physiological, and behavioral processes. Both transcriptional and posttranscriptional mechanisms are considered important to drive rhythmic RNA expression; however, the extent to which each regulatory process contributes to the rhythmic RNA expression remains controversial. To systematically address this, we monitored RNA dynamics using metabolic RNA labeling technology during a circadian cycle in mouse fibroblasts. We find that rhythmic RNA synthesis is the primary contributor of 24-h RNA rhythms, while rhythmic degradation is more important for 12-h RNA rhythms. These rhythms were predominantly regulated by Bmal1 and/or the core clock mechanism, and the interplay between rhythmic synthesis and degradation has a significant impact in shaping rhythmic RNA expression patterns. Interestingly, core clock RNAs are regulated by multiple rhythmic processes and have the highest amplitude of synthesis and degradation, presumably critical to sustain robust rhythmicity of cell-autonomous circadian rhythms. Our study yields invaluable insights into the temporal dynamics of both 24- and 12-h RNA rhythms in mouse fibroblasts.
Collapse
Affiliation(s)
- Benjamin A. Unruh
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Douglas E. Weidemann
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Lin Miao
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
7
|
Jowhar Z, Xu A, Venkataramanan S, Dossena F, Hoye ML, Silver DL, Floor SN, Calviello L. A ubiquitous GC content signature underlies multimodal mRNA regulation by DDX3X. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540322. [PMID: 37214951 PMCID: PMC10197686 DOI: 10.1101/2023.05.11.540322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The road from transcription to protein synthesis is paved with many obstacles, allowing for several modes of post-transcriptional regulation of gene expression. A fundamental player in mRNA biology is DDX3X, an RNA binding protein that canonically regulates mRNA translation. By monitoring dynamics of mRNA abundance and translation following DDX3X depletion, we observe stabilization of translationally suppressed mRNAs. We use interpretable statistical learning models to uncover GC content in the coding sequence as the major feature underlying RNA stabilization. This result corroborates GC content-related mRNA regulation detectable in other studies, including hundreds of ENCODE datasets and recent work focusing on mRNA dynamics in the cell cycle. We provide further evidence for mRNA stabilization by detailed analysis of RNA-seq profiles in hundreds of samples, including a Ddx3x conditional knockout mouse model exhibiting cell cycle and neurogenesis defects. Our study identifies a ubiquitous feature underlying mRNA regulation and highlights the importance of quantifying multiple steps of the gene expression cascade, where RNA abundance and protein production are often uncoupled.
Collapse
Affiliation(s)
- Ziad Jowhar
- Department of Cell and Tissue Biology, UCSF, San Francisco, United States
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Albert Xu
- Department of Cell and Tissue Biology, UCSF, San Francisco, United States
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | - Mariah L Hoye
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
- Department of Cell Biology, Duke University Medical Center, Durham, United States
- Duke Regeneration Center, Duke University Medical Center, Durham, United States
- Department of Neurobiology, Duke University Medical Center, Durham, United States
- Duke Institute for Brain Sciences, Duke University Medical Center, Durham, United States
| | - Stephen N Floor
- Department of Cell and Tissue Biology, UCSF, San Francisco, United States
- Helen Diller Family Comprehensive Cancer Center, San Francisco, United States
| | | |
Collapse
|
8
|
Soon HR, Gaunt JR, Bansal VA, Lenherr C, Sze SK, Ch’ng TH. Seizure enhances SUMOylation and zinc-finger transcriptional repression in neuronal nuclei. iScience 2023; 26:107707. [PMID: 37694138 PMCID: PMC10483055 DOI: 10.1016/j.isci.2023.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
A single episode of pilocarpine-induced status epilepticus can trigger the development of spontaneous recurrent seizures in a rodent model for epilepsy. The initial seizure-induced events in neuronal nuclei that lead to long-term changes in gene expression and cellular responses likely contribute toward epileptogenesis. Using a transgenic mouse model to specifically isolate excitatory neuronal nuclei, we profiled the seizure-induced nuclear proteome via tandem mass tag mass spectrometry and observed robust enrichment of nuclear proteins associated with the SUMOylation pathway. In parallel with nuclear proteome, we characterized nuclear gene expression by RNA sequencing which provided insights into seizure-driven transcriptional regulation and dynamics. Strikingly, we saw widespread downregulation of zinc-finger transcription factors, specifically proteins that harbor Krüppel-associated box (KRAB) domains. Our results provide a detailed snapshot of nuclear events induced by seizure activity and demonstrate a robust method for cell-type-specific nuclear profiling that can be applied to other cell types and models.
Collapse
Affiliation(s)
- Hui Rong Soon
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| | - Jessica Ruth Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Vibhavari Aysha Bansal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Clara Lenherr
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Centre for Discovery Brain Science, The University of Edinburgh, Edinburgh, UK
| | - Siu Kwan Sze
- Faculty of Applied Health Sciences, Brock University, St. Catherines, ON, Canada
| | - Toh Hean Ch’ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| |
Collapse
|
9
|
Unruh BA, Weidemann DE, Kojima S. Coordination of rhythmic RNA synthesis and degradation orchestrates 24-hour and 12-hour RNA expression patterns in mouse fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550672. [PMID: 37546997 PMCID: PMC10402069 DOI: 10.1101/2023.07.26.550672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Circadian RNA expression is essential to ultimately regulate a plethora of downstream rhythmic biochemical, physiological, and behavioral processes. Both transcriptional and post-transcriptional mechanisms are considered important to drive rhythmic RNA expression, however, the extent to which each regulatory process contributes to the rhythmic RNA expression remains controversial. To systematically address this, we monitored RNA dynamics using metabolic RNA labeling technology during a circadian cycle in mouse fibroblasts. We find that rhythmic RNA synthesis is the primary contributor of 24 hr RNA rhythms, while rhythmic degradation is more important for 12 hr RNA rhythms. These rhythms were predominantly regulated by Bmal1 and/or the core clock mechanism, and interplay between rhythmic synthesis and degradation has a significant impact in shaping rhythmic RNA expression patterns. Interestingly, core clock RNAs are regulated by multiple rhythmic processes and have the highest amplitude of synthesis and degradation, presumably critical to sustain robust rhythmicity of cell-autonomous circadian rhythms. Our study yields invaluable insights into the temporal dynamics of both 24 hr and 12 hr RNA rhythms in mouse fibroblasts.
Collapse
Affiliation(s)
- Benjamin A Unruh
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Douglas E Weidemann
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| | - Shihoko Kojima
- Department of Biological Sciences, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA USA
| |
Collapse
|
10
|
Thompson MK, Ceccarelli A, Ish-Horowicz D, Davis I. Dynamically regulated transcription factors are encoded by highly unstable mRNAs in the Drosophila larval brain. RNA (NEW YORK, N.Y.) 2023; 29:1020-1032. [PMID: 37041032 PMCID: PMC10275270 DOI: 10.1261/rna.079552.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The level of each RNA species depends on the balance between its rates of production and decay. Although previous studies have measured RNA decay across the genome in tissue culture and single-celled organisms, few experiments have been performed in intact complex tissues and organs. It is therefore unclear whether the determinants of RNA decay found in cultured cells are preserved in an intact tissue, and whether they differ between neighboring cell types and are regulated during development. To address these questions, we measured RNA synthesis and decay rates genome wide via metabolic labeling of whole cultured Drosophila larval brains using 4-thiouridine. Our analysis revealed that decay rates span a range of more than 100-fold, and that RNA stability is linked to gene function, with mRNAs encoding transcription factors being much less stable than mRNAs involved in core metabolic functions. Surprisingly, among transcription factor mRNAs there was a clear demarcation between more widely used transcription factors and those that are expressed only transiently during development. mRNAs encoding transient transcription factors are among the least stable in the brain. These mRNAs are characterized by epigenetic silencing in most cell types, as shown by their enrichment with the histone modification H3K27me3. Our data suggest the presence of an mRNA destabilizing mechanism targeted to these transiently expressed transcription factors to allow their levels to be regulated rapidly with high precision. Our study also demonstrates a general method for measuring mRNA transcription and decay rates in intact organs or tissues, offering insights into the role of mRNA stability in the regulation of complex developmental programs.
Collapse
Affiliation(s)
- Mary Kay Thompson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Arianna Ceccarelli
- Mathematical Institute, University of Oxford, Oxford OX1 3LB, United Kingdom
| | - David Ish-Horowicz
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
11
|
Vock IW, Simon MD. bakR: uncovering differential RNA synthesis and degradation kinetics transcriptome-wide with Bayesian hierarchical modeling. RNA (NEW YORK, N.Y.) 2023; 29:958-976. [PMID: 37028916 PMCID: PMC10275263 DOI: 10.1261/rna.079451.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Differential expression analysis of RNA sequencing (RNA-seq) data can identify changes in cellular RNA levels, but provides limited information about the kinetic mechanisms underlying such changes. Nucleotide recoding RNA-seq methods (NR-seq; e.g., TimeLapse-seq, SLAM-seq, etc.) address this shortcoming and are widely used approaches to identify changes in RNA synthesis and degradation kinetics. While advanced statistical models implemented in user-friendly software (e.g., DESeq2) have ensured the statistical rigor of differential expression analyses, no such tools that facilitate differential kinetic analysis with NR-seq exist. Here, we report the development of Bayesian analysis of the kinetics of RNA (bakR; https:// github.com/simonlabcode/bakR), an R package to address this need. bakR relies on Bayesian hierarchical modeling of NR-seq data to increase statistical power by sharing information across transcripts. Analyses of simulated data confirmed that bakR implementations of the hierarchical model outperform attempts to analyze differential kinetics with existing models. bakR also uncovers biological signals in real NR-seq data sets and provides improved analyses of existing data sets. This work establishes bakR as an important tool for identifying differential RNA synthesis and degradation kinetics.
Collapse
Affiliation(s)
- Isaac W Vock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06477, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06536, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06477, USA
| |
Collapse
|
12
|
Rummel T, Sakellaridi L, Erhard F. grandR: a comprehensive package for nucleotide conversion RNA-seq data analysis. Nat Commun 2023; 14:3559. [PMID: 37321987 PMCID: PMC10272207 DOI: 10.1038/s41467-023-39163-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Metabolic labeling of RNA is a powerful technique for studying the temporal dynamics of gene expression. Nucleotide conversion approaches greatly facilitate the generation of data but introduce challenges for their analysis. Here we present grandR, a comprehensive package for quality control, differential gene expression analysis, kinetic modeling, and visualization of such data. We compare several existing methods for inference of RNA synthesis rates and half-lives using progressive labeling time courses. We demonstrate the need for recalibration of effective labeling times and introduce a Bayesian approach to study the temporal dynamics of RNA using snapshot experiments.
Collapse
Affiliation(s)
- Teresa Rummel
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078, Würzburg, Germany
| | - Lygeri Sakellaridi
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078, Würzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078, Würzburg, Germany.
- Faculty for Informatics and Data Science, University of Regensburg, Bajuwarenstr. 4, 93053, Regensburg, Germany.
| |
Collapse
|
13
|
Hersch M, Biasini A, Marques AC, Bergmann S. Estimating RNA dynamics using one time point for one sample in a single-pulse metabolic labeling experiment. BMC Bioinformatics 2022; 23:147. [PMID: 35459101 PMCID: PMC9034570 DOI: 10.1186/s12859-022-04672-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/04/2022] [Indexed: 11/05/2022] Open
Abstract
Background Over the past decade, experimental procedures such as metabolic labeling for determining RNA turnover rates at the transcriptome-wide scale have been widely adopted and are now turning to single cell measurements. Several computational methods to estimate RNA synthesis, processing and degradation rates from such experiments have been suggested, but they all require several RNA sequencing samples. Here we present a method that can estimate those three rates from a single sample. Methods Our method relies on the analytical solution to the Zeisel model of RNA dynamics. It was validated on metabolic labeling experiments performed on mouse embryonic stem cells. Resulting degradation rates were compared both to previously published rates on the same system and to a state-of-the-art method applied to the same data. Results Our method is computationally efficient and outputs rates that correlate well with previously published data sets. Using it on a single sample, we were able to reproduce the observation that dynamic biological processes tend to involve genes with higher metabolic rates, while stable processes involve genes with lower rates. This supports the hypothesis that cells control not only the mRNA steady-state abundance, but also its responsiveness, i.e., how fast steady state is reached. Moreover, degradation rates obtained with our method compare favourably with the other tested method. Conclusions In addition to saving experimental work and computational time, estimating rates for a single sample has several advantages. It does not require an error-prone normalization across samples and enables the use of replicates to estimate uncertainty and assess sample quality. Finally the method and theoretical results described here are general enough to be useful in other contexts such as nucleotide conversion methods and single cell metabolic labeling experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04672-4.
Collapse
Affiliation(s)
- Micha Hersch
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics, 1015, Lausanne, CH, Switzerland.
| | - Adriano Biasini
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ana C Marques
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, CH, Switzerland
| |
Collapse
|
14
|
Bandiera R, Wagner RE, Britto-Borges T, Dieterich C, Dietmann S, Bornelöv S, Frye M. RN7SK small nuclear RNA controls bidirectional transcription of highly expressed gene pairs in skin. Nat Commun 2021; 12:5864. [PMID: 34620876 PMCID: PMC8497571 DOI: 10.1038/s41467-021-26083-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Pausing of RNA polymerase II (Pol II) close to promoters is a common regulatory step in RNA synthesis, and is coordinated by a ribonucleoprotein complex scaffolded by the noncoding RNA RN7SK. The function of RN7SK-regulated gene transcription in adult tissue homoeostasis is currently unknown. Here, we deplete RN7SK during mouse and human epidermal stem cell differentiation. Unexpectedly, loss of this small nuclear RNA specifically reduces transcription of numerous cell cycle regulators leading to cell cycle exit and differentiation. Mechanistically, we show that RN7SK is required for efficient transcription of highly expressed gene pairs with bidirectional promoters, which in the epidermis co-regulated cell cycle and chromosome organization. The reduction in transcription involves impaired splicing and RNA decay, but occurs in the absence of chromatin remodelling at promoters and putative enhancers. Thus, RN7SK is directly required for efficient Pol II transcription of highly transcribed bidirectional gene pairs, and thereby exerts tissue-specific functions, such as maintaining a cycling cell population in the epidermis.
Collapse
Affiliation(s)
- Roberto Bandiera
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Rebecca E Wagner
- German Cancer Research Center-Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thiago Britto-Borges
- University Hospital Heidelberg, German Center for Cardiovascular Research (DZHK), Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Christoph Dieterich
- University Hospital Heidelberg, German Center for Cardiovascular Research (DZHK), Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Sabine Dietmann
- Washington University School of Medicine in St. Louis, 660S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Susanne Bornelöv
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| | - Michaela Frye
- German Cancer Research Center-Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
15
|
Ianniello Z, Sorci M, Ceci Ginistrelli L, Iaiza A, Marchioni M, Tito C, Capuano E, Masciarelli S, Ottone T, Attrotto C, Rizzo M, Franceschini L, de Pretis S, Voso MT, Pelizzola M, Fazi F, Fatica A. New insight into the catalytic -dependent and -independent roles of METTL3 in sustaining aberrant translation in chronic myeloid leukemia. Cell Death Dis 2021; 12:870. [PMID: 34561421 PMCID: PMC8463696 DOI: 10.1038/s41419-021-04169-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by the presence of tyrosine kinase BCR-ABL1 fusion protein, which deregulate transcription and mRNA translation. Tyrosine kinase inhibitors (TKIs) are the first-choice treatment. However, resistance to TKIs remains a challenge to cure CML patients. Here, we reveal that the m6A methyltransferase complex METTL3/METTL14 is upregulated in CML patients and that is required for proliferation of primary CML cells and CML cell lines sensitive and resistant to the TKI imatinib. We demonstrate that depletion of METTL3 strongly impairs global translation efficiency. In particular, our data show that METTL3 is crucial for the expression of genes involved in ribosome biogenesis and translation. Specifically, we found that METTL3 directly regulates the level of PES1 protein identified as an oncogene in several tumors. We propose a model in which nuclear METTL3/METTL14 methyltransferase complex modified nascent transcripts whose translation is enhanced by cytoplasmic localization of METTL3, independently from its catalytic activity. In conclusion, our results point to METTL3 as a novel relevant oncogene in CML and as a promising therapeutic target for TKI resistant CML.
Collapse
Affiliation(s)
- Zaira Ianniello
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Melissa Sorci
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Lavinia Ceci Ginistrelli
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Marcella Marchioni
- Institute of Biology, Molecular Medicine and Nanobiotechnology, CNR, Sapienza University of Rome, Rome, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Ernestina Capuano
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.,Histology and Embryology Section, Department of Life Science and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Fondazione Santa Lucia, Laboratorio di Neuro-Oncoematologia, Rome, Italy
| | - Cristina Attrotto
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Stefano de Pretis
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Fondazione Santa Lucia, Laboratorio di Neuro-Oncoematologia, Rome, Italy
| | - Mattia Pelizzola
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy. .,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
16
|
Furlan M, de Pretis S, Pelizzola M. Dynamics of transcriptional and post-transcriptional regulation. Brief Bioinform 2021; 22:bbaa389. [PMID: 33348360 PMCID: PMC8294512 DOI: 10.1093/bib/bbaa389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Despite gene expression programs being notoriously complex, RNA abundance is usually assumed as a proxy for transcriptional activity. Recently developed approaches, able to disentangle transcriptional and post-transcriptional regulatory processes, have revealed a more complex scenario. It is now possible to work out how synthesis, processing and degradation kinetic rates collectively determine the abundance of each gene's RNA. It has become clear that the same transcriptional output can correspond to different combinations of the kinetic rates. This underscores the fact that markedly different modes of gene expression regulation exist, each with profound effects on a gene's ability to modulate its own expression. This review describes the development of the experimental and computational approaches, including RNA metabolic labeling and mathematical modeling, that have been disclosing the mechanisms underlying complex transcriptional programs. Current limitations and future perspectives in the field are also discussed.
Collapse
Affiliation(s)
- Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Stefano de Pretis
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| |
Collapse
|
17
|
Fu R, Wellman K, Baldwin A, Rege J, Walters K, Hirsekorn A, Riemondy K, Rainey WE, Mukherjee N. RNA-binding proteins regulate aldosterone homeostasis in human steroidogenic cells. RNA (NEW YORK, N.Y.) 2021; 27:rna.078727.121. [PMID: 34074709 PMCID: PMC8284322 DOI: 10.1261/rna.078727.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Angiotensin II (AngII) stimulates adrenocortical cells to produce aldosterone, a master regulator of blood pressure. Despite extensive characterization of the transcriptional and enzymatic control of adrenocortical steroidogenesis, there are still major gaps in the precise regulation of AII-induced gene expression kinetics. Specifically, we do not know the regulatory contribution of RNA-binding proteins (RBPs) and RNA decay, which can control the timing of stimulus-induced gene expression. To investigate this question, we performed a high-resolution RNA-seq time course of the AngII stimulation response and 4-thiouridine pulse labeling in a steroidogenic human cell line (H295R). We identified twelve temporally distinct gene expression responses that contained mRNA encoding proteins known to be important for various steps of aldosterone production, such as cAMP signaling components and steroidogenic enzymes. AngII response kinetics for many of these mRNAs revealed a coordinated increase in both synthesis and decay. These findings were validated in primary human adrenocortical cells stimulated ex vivo with AngII. Using a candidate screen, we identified a subset of RNA-binding protein and RNA decay factors that activate or repress AngII-stimulated aldosterone production. Among the repressors of aldosterone were BTG2, which promotes deadenylation and global RNA decay. BTG2 was induced in response to AngII stimulation and promoted the repression of mRNAs encoding pro-steroidogenic factors indicating the existence of an incoherent feedforward loop controlling aldosterone homeostasis. These data support a model in which coordinated increases in transcription and decay facilitate the major transcriptomic changes required to implement a pro-steroidogenic expression program that actively resolved to prevent aldosterone overproduction.
Collapse
Affiliation(s)
- Rui Fu
- University of Colorado Denver School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Biasini A, Abdulkarim B, de Pretis S, Tan JY, Arora R, Wischnewski H, Dreos R, Pelizzola M, Ciaudo C, Marques AC. Translation is required for miRNA-dependent decay of endogenous transcripts. EMBO J 2021; 40:e104569. [PMID: 33300180 PMCID: PMC7849302 DOI: 10.15252/embj.2020104569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 11/09/2022] Open
Abstract
Post-transcriptional repression of gene expression by miRNAs occurs through transcript destabilization or translation inhibition. mRNA decay is known to account for most miRNA-dependent repression. However, because transcript decay occurs co-translationally, whether target translation is a requirement for miRNA-dependent transcript destabilization remains unknown. To decouple these two molecular processes, we used cytosolic long noncoding RNAs (lncRNAs) as models for endogenous transcripts that are not translated. We show that, despite interacting with the miRNA-loaded RNA-induced silencing complex, the steady-state abundance and decay rates of these transcripts are minimally affected by miRNA loss. To further validate the apparent requirement of translation for miRNA-dependent decay, we fused two lncRNA candidates to the 3'-end of a protein-coding gene reporter and found this results in their miRNA-dependent destabilization. Further analysis revealed that the few natural lncRNAs whose levels are regulated by miRNAs in mESCs tend to associate with translating ribosomes, and possibly represent misannotated micropeptides, further substantiating the necessity of target translation for miRNA-dependent transcript decay. In summary, our analyses suggest that translation is required for miRNA-dependent transcript destabilization, and demonstrate that the levels of coding and noncoding transcripts are differently affected by miRNAs.
Collapse
Affiliation(s)
- Adriano Biasini
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Baroj Abdulkarim
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Stefano de Pretis
- Center for Genomic SciencesIstituto Italiano di Tecnologia (IIT)MilanoItaly
| | - Jennifer Y Tan
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Rajika Arora
- Institute of Molecular Health SciencesETHZZurichSwitzerland
| | | | - Rene Dreos
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Mattia Pelizzola
- Center for Genomic SciencesIstituto Italiano di Tecnologia (IIT)MilanoItaly
| | | | - Ana Claudia Marques
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
19
|
de Pretis S, Furlan M, Pelizzola M. Identification of Genes Post-Transcriptionally Regulated from RNA-seq: The Case Study of Liver Hepatocellular Carcinoma. Methods Mol Biol 2021; 2284:271-287. [PMID: 33835448 DOI: 10.1007/978-1-0716-1307-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The field of transcriptional regulation generally assumes that changes in transcripts levels reflect changes in transcriptional status of the corresponding gene. While this assumption might hold true for a large population of transcripts, a considerable and still unrecognized fraction of the variation might involve other steps of the RNA lifecycle, that is the processing of the premature RNA, and degradation of the mature RNA. Discrimination between these layers requires complementary experimental techniques, such as RNA metabolic labeling or block of transcription experiments. Nonetheless, the analysis of the premature and mature RNA, derived from intronic and exonic read counts in RNA-seq data, allows distinguishing between transcriptionally and post-transcriptionally regulated genes, although not recognizing the specific step involved in the post-transcriptional response, that is processing, degradation, or a combination of the two. We illustrate how the INSPEcT R/Bioconductor package could be used to infer post-transcriptional regulation in TCGA RNA-seq samples for Hepatocellular Carcinoma.
Collapse
Affiliation(s)
- Stefano de Pretis
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy.
| |
Collapse
|
20
|
Meisig J, Dreser N, Kapitza M, Henry M, Rotshteyn T, Rahnenführer J, Hengstler J, Sachinidis A, Waldmann T, Leist M, Blüthgen N. Kinetic modeling of stem cell transcriptome dynamics to identify regulatory modules of normal and disturbed neuroectodermal differentiation. Nucleic Acids Res 2020; 48:12577-12592. [PMID: 33245762 PMCID: PMC7736781 DOI: 10.1093/nar/gkaa1089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
Thousands of transcriptome data sets are available, but approaches for their use in dynamic cell response modelling are few, especially for processes affected simultaneously by two orthogonal influencing variables. We approached this problem for neuroepithelial development of human pluripotent stem cells (differentiation variable), in the presence or absence of valproic acid (signaling variable). Using few basic assumptions (sequential differentiation states of cells; discrete on/off states for individual genes in these states), and time-resolved transcriptome data, a comprehensive model of spontaneous and perturbed gene expression dynamics was developed. The model made reliable predictions (average correlation of 0.85 between predicted and subsequently tested expression values). Even regulations predicted to be non-monotonic were successfully validated by PCR in new sets of experiments. Transient patterns of gene regulation were identified from model predictions. They pointed towards activation of Wnt signaling as a candidate pathway leading to a redirection of differentiation away from neuroepithelial cells towards neural crest. Intervention experiments, using a Wnt/beta-catenin antagonist, led to a phenotypic rescue of this disturbed differentiation. Thus, our broadly applicable model allows the analysis of transcriptome changes in complex time/perturbation matrices.
Collapse
Affiliation(s)
- Johannes Meisig
- Institute of Pathology, Charité-Universitätsmedizin, 10117 Berlin, Germany
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Nadine Dreser
- In Vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Chair foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Marion Kapitza
- In Vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Chair foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Margit Henry
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Tamara Rotshteyn
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Jörg Rahnenführer
- Department of Statistics, TU Dortmund University, 44221 Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund University, 44139 Dortmund, Germany
| | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Tanja Waldmann
- In Vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Chair foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Chair foundation, University of Konstanz, 78457 Konstanz, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité-Universitätsmedizin, 10117 Berlin, Germany
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
21
|
Shu H, Donnard E, Liu B, Jung S, Wang R, Richter JD. FMRP links optimal codons to mRNA stability in neurons. Proc Natl Acad Sci U S A 2020; 117:30400-30411. [PMID: 33199649 PMCID: PMC7720238 DOI: 10.1073/pnas.2009161117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cortex. We find that most changes in ribosome occupancy on hundreds of mRNAs are largely driven by dysregulation in transcript abundance. Many down-regulated mRNAs, which are mostly responsible for neuronal and synaptic functions, are highly enriched for FMRP binding targets. RNA metabolic labeling demonstrates that, in FMRP-deficient cortical neurons, mRNA down-regulation is caused by elevated degradation and is correlated with codon optimality. Moreover, FMRP preferentially binds mRNAs with optimal codons, suggesting that it stabilizes such transcripts through direct interactions via the translational machinery. Finally, we show that the paradigm of genetic rescue of FXS-like phenotypes in FMRP-deficient mice by deletion of the Cpeb1 gene is mediated by restoration of steady-state RNA levels and consequent rebalancing of translational homeostasis. Our data establish an essential role of FMRP in codon optimality-dependent mRNA stability as an important factor in FXS.
Collapse
Affiliation(s)
- Huan Shu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| | - Elisa Donnard
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Suna Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ruijia Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
22
|
Furlan M, Galeota E, Gaudio ND, Dassi E, Caselle M, de Pretis S, Pelizzola M. Genome-wide dynamics of RNA synthesis, processing, and degradation without RNA metabolic labeling. Genome Res 2020; 30:1492-1507. [PMID: 32978246 PMCID: PMC7605262 DOI: 10.1101/gr.260984.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The quantification of the kinetic rates of RNA synthesis, processing, and degradation are largely based on the integrative analysis of total and nascent transcription, the latter being quantified through RNA metabolic labeling. We developed INSPEcT−, a computational method based on the mathematical modeling of premature and mature RNA expression that is able to quantify kinetic rates from steady-state or time course total RNA-seq data without requiring any information on nascent transcripts. Our approach outperforms available solutions, closely recapitulates the kinetic rates obtained through RNA metabolic labeling, improves the ability to detect changes in transcript half-lives, reduces the cost and complexity of the experiments, and can be adopted to study experimental conditions in which nascent transcription cannot be readily profiled. Finally, we applied INSPEcT− to the characterization of post-transcriptional regulation landscapes in dozens of physiological and disease conditions. This approach was included in the INSPEcT Bioconductor package, which can now unveil RNA dynamics from steady-state or time course data, with or without the profiling of nascent RNA.
Collapse
Affiliation(s)
- Mattia Furlan
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy.,Physics Department and INFN, University of Turin, 10125 Turin, Italy
| | - Eugenia Galeota
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy
| | - Nunzio Del Gaudio
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy
| | - Erik Dassi
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Michele Caselle
- Physics Department and INFN, University of Turin, 10125 Turin, Italy
| | - Stefano de Pretis
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy
| |
Collapse
|
23
|
Kawata K, Wakida H, Yamada T, Taniue K, Han H, Seki M, Suzuki Y, Akimitsu N. Metabolic labeling of RNA using multiple ribonucleoside analogs enables the simultaneous evaluation of RNA synthesis and degradation rates. Genome Res 2020; 30:1481-1491. [PMID: 32843354 PMCID: PMC7605267 DOI: 10.1101/gr.264408.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Gene expression is determined by a balance between RNA synthesis and RNA degradation. To elucidate the underlying regulatory mechanisms and principles of this, simultaneous measurements of RNA synthesis and degradation are required. Here, we report the development of “Dyrec-seq,” which uses 4-thiouridine and 5-bromouridine to simultaneously quantify RNA synthesis and degradation rates. Dyrec-seq enabled the quantification of RNA synthesis and degradation rates of 4702 genes in HeLa cells. Functional enrichment analysis showed that the RNA synthesis and degradation rates of genes are actually determined by the genes’ biological functions. A comparison of theoretical and experimental analyses revealed that the amount of RNA is determined by the ratio of RNA synthesis to degradation rates, whereas the rapidity of responses to external stimuli is determined only by the degradation rate. This study emphasizes that not only RNA synthesis but also RNA degradation is important in shaping gene expression patterns.
Collapse
Affiliation(s)
- Kentaro Kawata
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hiroyasu Wakida
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshimichi Yamada
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo 204-0004, Japan
| | - Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Han Han
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | | |
Collapse
|
24
|
de Pretis S, Furlan M, Pelizzola M. INSPEcT-GUI Reveals the Impact of the Kinetic Rates of RNA Synthesis, Processing, and Degradation, on Premature and Mature RNA Species. Front Genet 2020; 11:759. [PMID: 32765590 PMCID: PMC7379887 DOI: 10.3389/fgene.2020.00759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022] Open
Abstract
The abundance of RNA species and their response to perturbations are set by the kinetics rates of RNA synthesis, processing, and degradation. However, the visualization, interpretation, and manipulation of these data require familiarity with mathematical modeling and command line tools. INSPEcT-GUI is an R-Shiny interface that allows researchers without specific training to effortlessly explore how the fine kinetic regulation of the RNA life cycle can shape gene expression programs. In particular, it allows to: (i) interactively visualize gene-level RNA dynamics; (ii) refine the model fit of experimental data; (iii) test alternative regulatory models; (iv) explore, independently from the availability of data, how the combined action of the RNA kinetic rates impacts on premature and mature RNA. INSPEcT-GUI is freely available within the R/Bioconductor package INSPEcT at http://bioconductor.org/packages/INSPEcT/. An HTML vignette including documentation on the tool startup and usage, executable examples, and a video demonstration, are available at: http://bioconductor.org/packages/release/bioc/vignettes/INSPEcT/inst/doc/INSPEcT_GUI.html.
Collapse
Affiliation(s)
- Stefano de Pretis
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| |
Collapse
|
25
|
Wang X, He S, Li J, Wang J, Wang C, Wang M, He D, Lv X, Zhong Q, Wang H, Wang Z. pulseTD: RNA life cycle dynamics analysis based on pulse model of 4sU-seq time course sequencing data. PeerJ 2020; 8:e9371. [PMID: 32714656 PMCID: PMC7353919 DOI: 10.7717/peerj.9371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/27/2020] [Indexed: 11/20/2022] Open
Abstract
The life cycle of intracellular RNA mainly involves transcriptional production, splicing maturation and degradation processes. Their dynamic changes are termed as RNA life cycle dynamics (RLCD). It is still challenging for the accurate and robust identification of RLCD under unknow the functional form of RLCD. By using the pulse model, we developed an R package named pulseTD to identify RLCD by integrating 4sU-seq and RNA-seq data, and it provides flexible functions to capture continuous changes in RCLD rates. More importantly, it also can predict the trend of RNA transcription and expression changes in future time points. The pulseTD shows better accuracy and robustness than some other methods, and it is available on the GitHub repository (https://github.com/bioWzz/pulseTD_0.2.0).
Collapse
Affiliation(s)
- Xin Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Heilongjiang, China
| | - Siyu He
- College of Bioinformatics Science and Technology, Harbin Medical University, Heilongjiang, China
| | - Jian Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Heilongjiang, China
| | - Jun Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Heilongjiang, China
| | - Chengyi Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Heilongjiang, China
| | - Mingwei Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Heilongjiang, China
| | - Danni He
- College of Bioinformatics Science and Technology, Harbin Medical University, Heilongjiang, China
| | - Xingfeng Lv
- College of Computer Science and Technology, Heilongjiang University, Harbin, China
| | | | - Hongjiu Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- School of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Science, Heilongjiang University of Science and Technology, Harbin, China
| | - Zhenzhen Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- School of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| |
Collapse
|
26
|
Furlan M, Tanaka I, Leonardi T, de Pretis S, Pelizzola M. Direct RNA Sequencing for the Study of Synthesis, Processing, and Degradation of Modified Transcripts. Front Genet 2020; 11:394. [PMID: 32425981 PMCID: PMC7212349 DOI: 10.3389/fgene.2020.00394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/30/2020] [Indexed: 01/24/2023] Open
Abstract
It has been known for a few decades that transcripts can be marked by dozens of different modifications. Yet, we are just at the beginning of charting these marks and understanding their functional impact. High-quality methods were developed for the profiling of some of these marks, and approaches to finely study their impact on specific phases of the RNA life-cycle are available, including RNA metabolic labeling. Thanks to these improvements, the most abundant marks, including N6-methyladenosine, are emerging as important determinants of the fate of marked RNAs. However, we still lack approaches to directly study how the set of marks for a given RNA molecule shape its fate. In this perspective, we first review current leading approaches in the field. Then, we propose an experimental and computational setup, based on direct RNA sequencing and mathematical modeling, to decipher the functional consequences of RNA modifications on the fate of individual RNA molecules and isoforms.
Collapse
Affiliation(s)
- Mattia Furlan
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
- Department of Physics, National Institute of Nuclear Physics, University of Turin, Turin, Italy
| | - Iris Tanaka
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
| | - Tommaso Leonardi
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
| | - Stefano de Pretis
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science, Istituto Italiano di Tecnologia, Milan, Italy
| |
Collapse
|
27
|
Bywater MJ, Burkhart DL, Straube J, Sabò A, Pendino V, Hudson JE, Quaife-Ryan GA, Porrello ER, Rae J, Parton RG, Kress TR, Amati B, Littlewood TD, Evan GI, Wilson CH. Reactivation of Myc transcription in the mouse heart unlocks its proliferative capacity. Nat Commun 2020; 11:1827. [PMID: 32286286 PMCID: PMC7156407 DOI: 10.1038/s41467-020-15552-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
It is unclear why some tissues are refractory to the mitogenic effects of the oncogene Myc. Here we show that Myc activation induces rapid transcriptional responses followed by proliferation in some, but not all, organs. Despite such disparities in proliferative response, Myc is bound to DNA at open elements in responsive (liver) and non-responsive (heart) tissues, but fails to induce a robust transcriptional and proliferative response in the heart. Using heart as an exemplar of a non-responsive tissue, we show that Myc-driven transcription is re-engaged in mature cardiomyocytes by elevating levels of the positive transcription elongation factor (P-TEFb), instating a large proliferative response. Hence, P-TEFb activity is a key limiting determinant of whether the heart is permissive for Myc transcriptional activation. These data provide a greater understanding of how Myc transcriptional activity is determined and indicate modification of P-TEFb levels could be utilised to drive regeneration of adult cardiomyocytes for the treatment of heart myopathies.
Collapse
Affiliation(s)
- Megan J Bywater
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Deborah L Burkhart
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Jasmin Straube
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Arianna Sabò
- Department of Experimental Oncology, European Institute of Oncology (IEO) - IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Vera Pendino
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139, Milan, Italy
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia
- Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, QLD, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Theresia R Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, European Institute of Oncology (IEO) - IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Catherine H Wilson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
- Department of Pharmacology, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
28
|
Biasini A, Marques AC. A Protocol for Transcriptome-Wide Inference of RNA Metabolic Rates in Mouse Embryonic Stem Cells. Front Cell Dev Biol 2020; 8:97. [PMID: 32175319 PMCID: PMC7056730 DOI: 10.3389/fcell.2020.00097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
The relative ease of mouse Embryonic Stem Cells (mESCs) culture and the potential of these cells to differentiate into any of the three primary germ layers: ectoderm, endoderm and mesoderm (pluripotency), makes them an ideal and frequently used ex vivo system to dissect how gene expression changes impact cell state and differentiation. These efforts are further supported by the large number of constitutive and inducible mESC mutants established with the aim of assessing the contributions of different pathways and genes to cell homeostasis and gene regulation. Gene product abundance is controlled by the modulation of the rates of RNA synthesis, processing, and degradation. The ability to determine the relative contribution of these different RNA metabolic rates to gene expression control using standard RNA-sequencing approaches, which only capture steady state abundance of transcripts, is limited. In contrast, metabolic labeling of RNA with 4-thiouridine (4sU) coupled with RNA-sequencing, allows simultaneous and reproducible inference of transcriptome wide synthesis, processing, and degradation rates. Here we describe, a detailed protocol for 4sU metabolic labeling in mESCs that requires short 4sU labeling times at low concentration and minimally impacts cellular homeostasis. This approach presents a versatile method for in-depth characterization of the gene regulatory strategies governing gene steady state abundance in mESC.
Collapse
Affiliation(s)
- Adriano Biasini
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Ana Claudia Marques
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
Tan JY, Biasini A, Young RS, Marques AC. Splicing of enhancer-associated lincRNAs contributes to enhancer activity. Life Sci Alliance 2020; 3:3/4/e202000663. [PMID: 32086317 PMCID: PMC7035876 DOI: 10.26508/lsa.202000663] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
Transcription is common at active mammalian enhancers sometimes giving rise to stable enhancer-associated long intergenic noncoding RNAs (elincRNAs). Expression of elincRNA is associated with changes in neighboring gene product abundance and local chromosomal topology, suggesting that transcription at these loci contributes to gene expression regulation in cis Despite the lack of evidence supporting sequence-dependent functions for most elincRNAs, splicing of these transcripts is unexpectedly common. Whether elincRNA splicing is a mere consequence of cognate enhancer activity or if it directly impacts enhancer function remains unresolved. Here, we investigate the association between elincRNA splicing and enhancer activity in mouse embryonic stem cells. We show that multi-exonic elincRNAs are enriched at conserved enhancers, and the efficient processing of elincRNAs is strongly associated with their cognate enhancer activity. This association is supported by their enrichment in enhancer-specific chromatin signatures; elevated binding of co-transcriptional regulators; increased local intra-chromosomal DNA contacts; and strengthened cis-regulation on target gene expression. Our results support the role of efficient RNA processing of enhancer-associated transcripts to cognate enhancer activity.
Collapse
Affiliation(s)
- Jennifer Y Tan
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Adriano Biasini
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Robert S Young
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ana C Marques
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Tesi A, de Pretis S, Furlan M, Filipuzzi M, Morelli MJ, Andronache A, Doni M, Verrecchia A, Pelizzola M, Amati B, Sabò A. An early Myc-dependent transcriptional program orchestrates cell growth during B-cell activation. EMBO Rep 2019; 20:e47987. [PMID: 31334602 PMCID: PMC6726900 DOI: 10.15252/embr.201947987] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Upon activation, lymphocytes exit quiescence and undergo substantial increases in cell size, accompanied by activation of energy-producing and anabolic pathways, widespread chromatin decompaction, and elevated transcriptional activity. These changes depend upon prior induction of the Myc transcription factor, but how Myc controls them remains unclear. We addressed this issue by profiling the response to LPS stimulation in wild-type and c-myc-deleted primary mouse B-cells. Myc is rapidly induced, becomes detectable on virtually all active promoters and enhancers, but has no direct impact on global transcriptional activity. Instead, Myc contributes to the swift up- and down-regulation of several hundred genes, including many known regulators of the aforementioned cellular processes. Myc-activated promoters are enriched for E-box consensus motifs, bind Myc at the highest levels, and show enhanced RNA Polymerase II recruitment, the opposite being true at down-regulated loci. Remarkably, the Myc-dependent signature identified in activated B-cells is also enriched in Myc-driven B-cell lymphomas: hence, besides modulation of new cancer-specific programs, the oncogenic action of Myc may largely rely on sustained deregulation of its normal physiological targets.
Collapse
Affiliation(s)
- Alessandra Tesi
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Stefano de Pretis
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Marco Filipuzzi
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
- Present address:
Center for Translational Genomics and BioinformaticsIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Adrian Andronache
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
- Present address:
Experimental Therapeutics Program of IFOM ‐ The FIRC Institute of Molecular OncologyMilanItaly
| | - Mirko Doni
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Alessandro Verrecchia
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Bruno Amati
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Arianna Sabò
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| |
Collapse
|
31
|
Szcześniak MW, Wanowska E, Mukherjee N, Ohler U, Makałowska I. Towards a deeper annotation of human lncRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194385. [PMID: 31128317 DOI: 10.1016/j.bbagrm.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/05/2023]
Abstract
A substantial fraction of the human transcriptome is composed of the so-called long noncoding RNAs (lncRNAs), yet the available catalogs of known lncRNAs are far from complete. Moreover, functional studies of these RNAs are challenged by several factors, such as their tissue-specific expression and functional heterogeneity, resulting in only ca. 1% of them being well characterized. Here, we describe a set of 41,400 novel lncRNAs discovered with RNA-Seq data from 1463 samples encompassing diverse tissues and cell lines. We utilized publicly available transcriptomic and genomic data to provide their characteristics, such as tissue specificity, cellular abundance, polyA status, cellular localization, evolutionary conservation and transcript stability, which allowed us to speculate on their possible biological roles. We also pinpointed 24 novel lncRNAs as candidates for breast cancer biomarkers. The results bring us closer to a comprehensive annotation of human lncRNAs, though vast amounts of further work are needed to validate the predictions and fully decipher their biology. This article is part of a Special Issue entitled: ncRNA in control of gene expression edited by Kotb Abdelmohsen.
Collapse
Affiliation(s)
- Michał Wojciech Szcześniak
- Adam Mickiewicz University in Poznan, Institute of Anthropology, Laboratory of Integrative Genomics, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115 Berlin, Germany.
| | - Elżbieta Wanowska
- Adam Mickiewicz University in Poznan, Institute of Anthropology, Laboratory of Integrative Genomics, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Neelanjan Mukherjee
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115 Berlin, Germany; Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115 Berlin, Germany; Humboldt University, Department of Computer Science, Unter den Linden 6, 10099 Berlin, Germany
| | - Izabela Makałowska
- Adam Mickiewicz University in Poznan, Institute of Anthropology, Laboratory of Integrative Genomics, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland.
| |
Collapse
|
32
|
Furlan M, Galeota E, de Pretis S, Caselle M, Pelizzola M. m6A-Dependent RNA Dynamics in T Cell Differentiation. Genes (Basel) 2019; 10:genes10010028. [PMID: 30626100 PMCID: PMC6356486 DOI: 10.3390/genes10010028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/15/2018] [Accepted: 12/27/2018] [Indexed: 11/29/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification. It has been involved in the regulation of RNA metabolism, including degradation and translation, in both physiological and disease conditions. A recent study showed that m6A-mediated degradation of key transcripts also plays a role in the control of T cells homeostasis and IL-7 induced differentiation. We re-analyzed the omics data from that study and, through the integrative analysis of total and nascent RNA-seq data, we were able to comprehensively quantify T cells RNA dynamics and how these are affected by m6A depletion. In addition to the expected impact on RNA degradation, we revealed a broader effect of m6A on RNA dynamics, which included the alteration of RNA synthesis and processing. Altogether, the combined action of m6A on all major steps of the RNA life-cycle closely re-capitulated the observed changes in the abundance of premature and mature RNA species. Ultimately, our re-analysis extended the findings of the initial study, focused on RNA stability, and proposed a yet unappreciated role for m6A in RNA synthesis and processing dynamics.
Collapse
Affiliation(s)
- Mattia Furlan
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy.
- Physics Department and INFN, University of Turin, 10125 Turin, Italy.
| | - Eugenia Galeota
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy.
| | - Stefano de Pretis
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy.
| | - Michele Caselle
- Physics Department and INFN, University of Turin, 10125 Turin, Italy.
| | - Mattia Pelizzola
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy.
| |
Collapse
|
33
|
Duffy EE, Schofield JA, Simon MD. Gaining insight into transcriptome-wide RNA population dynamics through the chemistry of 4-thiouridine. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1513. [PMID: 30370679 DOI: 10.1002/wrna.1513] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
Cellular RNA levels are the result of a juggling act between RNA transcription, processing, and degradation. By tuning one or more of these parameters, cells can rapidly alter the available pool of transcripts in response to stimuli. While RNA sequencing (RNA-seq) is a vital method to quantify RNA levels genome-wide, it is unable to capture the dynamics of different RNA populations at steady-state or distinguish between different mechanisms that induce changes to the steady-state (i.e., altered rate of transcription vs. degradation). The dynamics of different RNA populations can be studied by targeted incorporation of noncanonical nucleosides. 4-Thiouridine (s4 U) is a commonly used and versatile RNA metabolic label that allows the study of many properties of RNA metabolism from synthesis to degradation. Numerous experimental strategies have been developed that leverage the power of s4 U to label newly transcribed RNA in whole cells, followed by enrichment with activated disulfides or chemistry to induce C mutations at sites of s4 U during sequencing. This review presents existing methods to study RNA population dynamics genome-wide using s4 U metabolic labeling, as well as a discussion of considerations and challenges when designing s4 U metabolic labeling experiments. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Erin E Duffy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.,Chemical Biology Institute, Yale University, West Haven, Connecticut
| | - Jeremy A Schofield
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.,Chemical Biology Institute, Yale University, West Haven, Connecticut
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.,Chemical Biology Institute, Yale University, West Haven, Connecticut
| |
Collapse
|
34
|
Yamada T, Akimitsu N. Contributions of regulated transcription and mRNA decay to the dynamics of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1508. [PMID: 30276972 DOI: 10.1002/wrna.1508] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
Abstract
Organisms have acquired sophisticated regulatory networks that control gene expression in response to cellular perturbations. Understanding of the mechanisms underlying the coordinated changes in gene expression in response to external and internal stimuli is a fundamental issue in biology. Recent advances in high-throughput technologies have enabled the measurement of diverse biological information, including gene expression levels, kinetics of gene expression, and interactions among gene expression regulatory molecules. By coupling these technologies with quantitative modeling, we can now uncover the biological roles and mechanisms of gene regulation at the system level. This review consists of two parts. First, we focus on the methods using uridine analogs that measure synthesis and decay rates of RNAs, which demonstrate how cells dynamically change the regulation of gene expression in response to both internal and external cues. Second, we discuss the underlying mechanisms of these changes in kinetics, including the functions of transcription factors and RNA-binding proteins. Overall, this review will help to clarify a system-level view of gene expression programs in cells. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Turnover and Surveillance > Regulation of RNA Stability RNA Methods > RNA Analyses in vitro and In Silico.
Collapse
Affiliation(s)
- Toshimichi Yamada
- Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | | |
Collapse
|
35
|
Duffy DJ, Krstic A, Schwarzl T, Halasz M, Iljin K, Fey D, Haley B, Whilde J, Haapa-Paananen S, Fey V, Fischer M, Westermann F, Henrich KO, Bannert S, Higgins DG, Kolch W. Wnt signalling is a bi-directional vulnerability of cancer cells. Oncotarget 2018; 7:60310-60331. [PMID: 27531891 PMCID: PMC5312386 DOI: 10.18632/oncotarget.11203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 07/26/2016] [Indexed: 12/30/2022] Open
Abstract
Wnt signalling is involved in the formation, metastasis and relapse of a wide array of cancers. However, there is ongoing debate as to whether activation or inhibition of the pathway holds the most promise as a therapeutic treatment for cancer, with conflicting evidence from a variety of tumour types. We show that Wnt/β-catenin signalling is a bi-directional vulnerability of neuroblastoma, malignant melanoma and colorectal cancer, with hyper-activation or repression of the pathway both representing a promising therapeutic strategy, even within the same cancer type. Hyper-activation directs cancer cells to undergo apoptosis, even in cells oncogenically driven by β-catenin. Wnt inhibition blocks proliferation of cancer cells and promotes neuroblastoma differentiation. Wnt and retinoic acid co-treatments synergise, representing a promising combination treatment for MYCN-amplified neuroblastoma. Additionally, we report novel cross-talks between MYCN and β-catenin signalling, which repress normal β-catenin mediated transcriptional regulation. A β-catenin target gene signature could predict patient outcome, as could the expression level of its DNA binding partners, the TCF/LEFs. This β-catenin signature provides a tool to identify neuroblastoma patients likely to benefit from Wnt-directed therapy. Taken together, we show that Wnt/β-catenin signalling is a bi-directional vulnerability of a number of cancer entities, and potentially a more broadly conserved feature of malignant cells.
Collapse
Affiliation(s)
- David J Duffy
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Current address: The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| | - Aleksandar Krstic
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Thomas Schwarzl
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Current address: European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Melinda Halasz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Bridget Haley
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Jenny Whilde
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Vidal Fey
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Matthias Fischer
- Department of Paediatric Haematology and Oncology and Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| | - Frank Westermann
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai-Oliver Henrich
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Bannert
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Desmond G Higgins
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
36
|
Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver. Proc Natl Acad Sci U S A 2018; 115:E1916-E1925. [PMID: 29432155 PMCID: PMC5828596 DOI: 10.1073/pnas.1715225115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rhythms in gene expression propelled by the circadian clock and environmental signals are ubiquitous across cells and tissues. In particular, in mouse tissues, thousands of transcripts show oscillations with a period of 24 hours. Keys question are how such rhythms propagate and eventually exert functions, but also how these are generated. Here, we developed a mathematical model based on total RNA-seq to classify genes according to the respective contributions of transcriptional and posttranscriptional regulation toward mRNA expression profiles. We found that about one-third of rhythmically accumulating mRNA are under posttranscriptional regulation. Such regulation is only partially dependent on the circadian clock, showing that systemic pathways and feeding patterns contribute important posttranscriptional control of gene expression in liver. The mammalian circadian clock coordinates physiology with environmental cycles through the regulation of daily oscillations of gene expression. Thousands of transcripts exhibit rhythmic accumulations across mouse tissues, as determined by the balance of their synthesis and degradation. While diurnally rhythmic transcription regulation is well studied and often thought to be the main factor generating rhythmic mRNA accumulation, the extent of rhythmic posttranscriptional regulation is debated, and the kinetic parameters (e.g., half-lives), as well as the underlying regulators (e.g., mRNA-binding proteins) are relatively unexplored. Here, we developed a quantitative model for cyclic accumulations of pre-mRNA and mRNA from total RNA-seq data, and applied it to mouse liver. This allowed us to identify that about 20% of mRNA rhythms were driven by rhythmic mRNA degradation, and another 15% of mRNAs regulated by both rhythmic transcription and mRNA degradation. The method could also estimate mRNA half-lives and processing times in intact mouse liver. We then showed that, depending on mRNA half-life, rhythmic mRNA degradation can either amplify or tune phases of mRNA rhythms. By comparing mRNA rhythms in wild-type and Bmal1−/− animals, we found that the rhythmic degradation of many transcripts did not depend on a functional BMAL1. Interestingly clock-dependent and -independent degradation rhythms peaked at distinct times of day. We further predicted mRNA-binding proteins (mRBPs) that were implicated in the posttranscriptional regulation of mRNAs, either through stabilizing or destabilizing activities. Together, our results demonstrate how posttranscriptional regulation temporally shapes rhythmic mRNA accumulation in mouse liver.
Collapse
|
37
|
Integrative analysis of RNA polymerase II and transcriptional dynamics upon MYC activation. Genome Res 2017; 27:1658-1664. [PMID: 28904013 PMCID: PMC5630029 DOI: 10.1101/gr.226035.117] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 02/03/2023]
Abstract
Overexpression of the MYC transcription factor causes its widespread interaction with regulatory elements in the genome but leads to the up- and down-regulation of discrete sets of genes. The molecular determinants of these selective transcriptional responses remain elusive. Here, we present an integrated time-course analysis of transcription and mRNA dynamics following MYC activation in proliferating mouse fibroblasts, based on chromatin immunoprecipitation, metabolic labeling of newly synthesized RNA, extensive sequencing, and mathematical modeling. Transcriptional activation correlated with the highest increases in MYC binding at promoters. Repression followed a reciprocal scenario, with the lowest gains in MYC binding. Altogether, the relative abundance (henceforth, "share") of MYC at promoters was the strongest predictor of transcriptional responses in diverse cell types, predominating over MYC's association with the corepressor ZBTB17 (also known as MIZ1). MYC activation elicited immediate loading of RNA polymerase II (RNAPII) at activated promoters, followed by increases in pause-release, while repressed promoters showed opposite effects. Gains and losses in RNAPII loading were proportional to the changes in the MYC share, suggesting that repression by MYC may be partly indirect, owing to competition for limiting amounts of RNAPII. Secondary to the changes in RNAPII loading, the dynamics of elongation and pre-mRNA processing were also rapidly altered at MYC regulated genes, leading to the transient accumulation of partially or aberrantly processed mRNAs. Altogether, our results shed light on how overexpressed MYC alters the various phases of the RNAPII cycle and the resulting transcriptional response.
Collapse
|
38
|
Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y, Wang G, Broughton JP, Chen YG, Kluger Y, Simon MD, Chang HY, Yin Z, Flavell RA. m 6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 2017; 548:338-342. [PMID: 28792938 PMCID: PMC5729908 DOI: 10.1038/nature23450] [Citation(s) in RCA: 705] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 06/30/2017] [Indexed: 12/28/2022]
Abstract
N6 -methyladenosine (m6A) is the most common and abundant messenger RNA modification, modulated by ‘writers’, ‘erasers’ and ‘readers’ of this mark 1,2. In vitro data have shown that m6A influences all fundamental aspects of mRNA metabolism, mainly mRNA stability, to determine stem cell fates 3,4. However, its in vivo physiological function in mammals and adult mammalian cells is still unknown. Here we show that deletion of m6A ‘writer’ protein METTL3 in mouse T cells disrupts T cell homeostasis and differentiation. In a lymphopenic mouse adoptive transfer model, naive Mettl3 deficient T cells failed to undergo homeostatic expansion and remarkably remained in the naïve state up through 12 weeks, thereby preventing colitis. Consistent with these observations, the mRNAs of SOCS family genes encoding STAT- signaling inhibitory proteins, Socs1, Socs3 and Cish, were marked by m6A, exhibited slower mRNA decay and increased mRNAs and protein expression levels in Mettl3 deficient naïve T cells. This increased SOCS family activity consequently inhibited IL-7 mediated STAT5 activation and T cell homeostatic proliferation and differentiation. We also found that m6A plays important roles for inducible degradation of Socs mRNAs in response to IL-7 signaling in order to reprogram Naïve T cells for proliferation and differentiation. Our study elucidates for the first time the in vivo biological role of m6A modification in T cell mediated pathogenesis and reveals a novel mechanism of T cell homeostasis and signal-dependent induction of mRNA degradation.
Collapse
Affiliation(s)
- Hua-Bing Li
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Jiyu Tong
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Shu Zhu
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Pedro J Batista
- Center for Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Erin E Duffy
- Department of Molecular Biophysics &Biochemistry, Yale University, New Haven, Connecticut 06511, USA.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
| | - Jun Zhao
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Will Bailis
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Guangchao Cao
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Lina Kroehling
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Yuanyuan Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Institute of Surgical Research, Daping Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Geng Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - James P Broughton
- Center for Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Y Grace Chen
- Center for Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Matthew D Simon
- Department of Molecular Biophysics &Biochemistry, Yale University, New Haven, Connecticut 06511, USA.,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
| | - Howard Y Chang
- Center for Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
| | - Zhinan Yin
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA
| |
Collapse
|
39
|
Milek M, Imami K, Mukherjee N, Bortoli FD, Zinnall U, Hazapis O, Trahan C, Oeffinger M, Heyd F, Ohler U, Selbach M, Landthaler M. DDX54 regulates transcriptome dynamics during DNA damage response. Genome Res 2017; 27:1344-1359. [PMID: 28596291 PMCID: PMC5538551 DOI: 10.1101/gr.218438.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
The cellular response to genotoxic stress is mediated by a well-characterized network of DNA surveillance pathways. The contribution of post-transcriptional gene regulatory networks to the DNA damage response (DDR) has not been extensively studied. Here, we systematically identified RNA-binding proteins differentially interacting with polyadenylated transcripts upon exposure of human breast carcinoma cells to ionizing radiation (IR). Interestingly, more than 260 proteins, including many nucleolar proteins, showed increased binding to poly(A)+ RNA in IR-exposed cells. The functional analysis of DDX54, a candidate genotoxic stress responsive RNA helicase, revealed that this protein is an immediate-to-early DDR regulator required for the splicing efficacy of its target IR-induced pre-mRNAs. Upon IR exposure, DDX54 acts by increased interaction with a well-defined class of pre-mRNAs that harbor introns with weak acceptor splice sites, as well as by protein-protein contacts within components of U2 snRNP and spliceosomal B complex, resulting in lower intron retention and higher processing rates of its target transcripts. Because DDX54 promotes survival after exposure to IR, its expression and/or mutation rate may impact DDR-related pathologies. Our work indicates the relevance of many uncharacterized RBPs potentially involved in the DDR.
Collapse
Affiliation(s)
- Miha Milek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Koshi Imami
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Neelanjan Mukherjee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Francesca De Bortoli
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Ulrike Zinnall
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Orsalia Hazapis
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
| | - Christian Trahan
- Institut de Recherches Cliniques de Montréal, H2W 1R7 Montréal, Quebec, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, H3A 1A3 Montréal, Quebec, Canada
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, H2W 1R7 Montréal, Quebec, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, H3A 1A3 Montréal, Quebec, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, H3T 1J4 Montréal, Quebec, Canada
| | - Florian Heyd
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Uwe Ohler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Department of Computer Science, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- Charite-Universitätsmedizin Berlin, 10115 Berlin, Germany
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, 13125 Berlin, Germany
- IRI Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
40
|
Uvarovskii A, Dieterich C. pulseR: Versatile computational analysis of RNA turnover from metabolic labeling experiments. Bioinformatics 2017; 33:3305-3307. [DOI: 10.1093/bioinformatics/btx368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexey Uvarovskii
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK) - Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK) - Partner site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
41
|
Liang Y, Kelemen A. Computational dynamic approaches for temporal omics data with applications to systems medicine. BioData Min 2017. [PMID: 28638442 PMCID: PMC5473988 DOI: 10.1186/s13040-017-0140-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modeling and predicting biological dynamic systems and simultaneously estimating the kinetic structural and functional parameters are extremely important in systems and computational biology. This is key for understanding the complexity of the human health, drug response, disease susceptibility and pathogenesis for systems medicine. Temporal omics data used to measure the dynamic biological systems are essentials to discover complex biological interactions and clinical mechanism and causations. However, the delineation of the possible associations and causalities of genes, proteins, metabolites, cells and other biological entities from high throughput time course omics data is challenging for which conventional experimental techniques are not suited in the big omics era. In this paper, we present various recently developed dynamic trajectory and causal network approaches for temporal omics data, which are extremely useful for those researchers who want to start working in this challenging research area. Moreover, applications to various biological systems, health conditions and disease status, and examples that summarize the state-of-the art performances depending on different specific mining tasks are presented. We critically discuss the merits, drawbacks and limitations of the approaches, and the associated main challenges for the years ahead. The most recent computing tools and software to analyze specific problem type, associated platform resources, and other potentials for the dynamic trajectory and interaction methods are also presented and discussed in detail.
Collapse
Affiliation(s)
- Yulan Liang
- Department of Family and Community Health, University of Maryland, Baltimore, MD 21201 USA
| | - Arpad Kelemen
- Department of Organizational Systems and Adult Health, University of Maryland, Baltimore, MD 21201 USA
| |
Collapse
|
42
|
Uhlitz F, Sieber A, Wyler E, Fritsche-Guenther R, Meisig J, Landthaler M, Klinger B, Blüthgen N. An immediate-late gene expression module decodes ERK signal duration. Mol Syst Biol 2017; 13:928. [PMID: 28468958 PMCID: PMC5448165 DOI: 10.15252/msb.20177554] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The RAF‐MEK‐ERK signalling pathway controls fundamental, often opposing cellular processes such as proliferation and apoptosis. Signal duration has been identified to play a decisive role in these cell fate decisions. However, it remains unclear how the different early and late responding gene expression modules can discriminate short and long signals. We obtained both protein phosphorylation and gene expression time course data from HEK293 cells carrying an inducible construct of the proto‐oncogene RAF. By mathematical modelling, we identified a new gene expression module of immediate–late genes (ILGs) distinct in gene expression dynamics and function. We find that mRNA longevity enables these ILGs to respond late and thus translate ERK signal duration into response amplitude. Despite their late response, their GC‐rich promoter structure suggested and metabolic labelling with 4SU confirmed that transcription of ILGs is induced immediately. A comparative analysis shows that the principle of duration decoding is conserved in PC12 cells and MCF7 cells, two paradigm cell systems for ERK signal duration. Altogether, our findings suggest that ILGs function as a gene expression module to decode ERK signal duration.
Collapse
Affiliation(s)
- Florian Uhlitz
- IRI Life Sciences & Institute for Theoretical Biology, Humboldt Universität Berlin, Berlin, Germany.,Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Sieber
- IRI Life Sciences & Institute for Theoretical Biology, Humboldt Universität Berlin, Berlin, Germany.,Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Raphaela Fritsche-Guenther
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Johannes Meisig
- IRI Life Sciences & Institute for Theoretical Biology, Humboldt Universität Berlin, Berlin, Germany.,Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Bertram Klinger
- IRI Life Sciences & Institute for Theoretical Biology, Humboldt Universität Berlin, Berlin, Germany.,Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Blüthgen
- IRI Life Sciences & Institute for Theoretical Biology, Humboldt Universität Berlin, Berlin, Germany .,Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
43
|
Integrative classification of human coding and noncoding genes through RNA metabolism profiles. Nat Struct Mol Biol 2016; 24:86-96. [PMID: 27870833 DOI: 10.1038/nsmb.3325] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/18/2016] [Indexed: 12/26/2022]
Abstract
Pervasive transcription of the human genome results in a heterogeneous mix of coding RNAs and long noncoding RNAs (lncRNAs). Only a small fraction of lncRNAs have demonstrated regulatory functions, thus making functional lncRNAs difficult to distinguish from nonfunctional transcriptional byproducts. This difficulty has resulted in numerous competing human lncRNA classifications that are complicated by a steady increase in the number of annotated lncRNAs. To address these challenges, we quantitatively examined transcription, splicing, degradation, localization and translation for coding and noncoding human genes. We observed that annotated lncRNAs had lower synthesis and higher degradation rates than mRNAs and discovered mechanistic differences explaining slower lncRNA splicing. We grouped genes into classes with similar RNA metabolism profiles, containing both mRNAs and lncRNAs to varying extents. These classes exhibited distinct RNA metabolism, different evolutionary patterns and differential sensitivity to cellular RNA-regulatory pathways. Our classification provides an alternative to genomic context-driven annotations of lncRNAs.
Collapse
|
44
|
Abstract
We give an overview of experimental and computational methods to estimate RNA metabolism rates genome-wide. We then advocate a local definition of RNA metabolism rate at the level of individual phosphodiester bonds. Rates of formation and disappearance of individual bonds are unambiguously defined, in contrast to rates of complete transcripts. We show that over previous approaches, the recently developed transient transcriptome sequencing (TT-seq) protocol allows for estimation of metabolism rates of individual bonds with least positional bias.
Collapse
Affiliation(s)
- Leonhard Wachutka
- a Department of Informatics , Technical University of Munich, Garching bei München , Germany
| | - Julien Gagneur
- a Department of Informatics , Technical University of Munich, Garching bei München , Germany
| |
Collapse
|
45
|
Huang Y, Sanguinetti G. Statistical modeling of isoform splicing dynamics from RNA-seq time series data. Bioinformatics 2016; 32:2965-72. [PMID: 27318208 DOI: 10.1093/bioinformatics/btw364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/05/2016] [Indexed: 01/08/2023] Open
Abstract
MOTIVATION Isoform quantification is an important goal of RNA-seq experiments, yet it remains problematic for genes with low expression or several isoforms. These difficulties may in principle be ameliorated by exploiting correlated experimental designs, such as time series or dosage response experiments. Time series RNA-seq experiments, in particular, are becoming increasingly popular, yet there are no methods that explicitly leverage the experimental design to improve isoform quantification. RESULTS Here, we present DICEseq, the first isoform quantification method tailored to correlated RNA-seq experiments. DICEseq explicitly models the correlations between different RNA-seq experiments to aid the quantification of isoforms across experiments. Numerical experiments on simulated datasets show that DICEseq yields more accurate results than state-of-the-art methods, an advantage that can become considerable at low coverage levels. On real datasets, our results show that DICEseq provides substantially more reproducible and robust quantifications, increasing the correlation of estimates from replicate datasets by up to 10% on genes with low or moderate expression levels (bottom third of all genes). Furthermore, DICEseq permits to quantify the trade-off between temporal sampling of RNA and depth of sequencing, frequently an important choice when planning experiments. Our results have strong implications for the design of RNA-seq experiments, and offer a novel tool for improved analysis of such datasets. AVAILABILITY AND IMPLEMENTATION Python code is freely available at http://diceseq.sf.net CONTACT G.Sanguinetti@ed.ac.uk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yuanhua Huang
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
46
|
Bianchi V, Ceol A, Ogier AGE, de Pretis S, Galeota E, Kishore K, Bora P, Croci O, Campaner S, Amati B, Morelli MJ, Pelizzola M. Integrated Systems for NGS Data Management and Analysis: Open Issues and Available Solutions. Front Genet 2016; 7:75. [PMID: 27200084 PMCID: PMC4858535 DOI: 10.3389/fgene.2016.00075] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/18/2016] [Indexed: 02/06/2023] Open
Abstract
Next-generation sequencing (NGS) technologies have deeply changed our understanding of cellular processes by delivering an astonishing amount of data at affordable prices; nowadays, many biology laboratories have already accumulated a large number of sequenced samples. However, managing and analyzing these data poses new challenges, which may easily be underestimated by research groups devoid of IT and quantitative skills. In this perspective, we identify five issues that should be carefully addressed by research groups approaching NGS technologies. In particular, the five key issues to be considered concern: (1) adopting a laboratory management system (LIMS) and safeguard the resulting raw data structure in downstream analyses; (2) monitoring the flow of the data and standardizing input and output directories and file names, even when multiple analysis protocols are used on the same data; (3) ensuring complete traceability of the analysis performed; (4) enabling non-experienced users to run analyses through a graphical user interface (GUI) acting as a front-end for the pipelines; (5) relying on standard metadata to annotate the datasets, and when possible using controlled vocabularies, ideally derived from biomedical ontologies. Finally, we discuss the currently available tools in the light of these issues, and we introduce HTS-flow, a new workflow management system conceived to address the concerns we raised. HTS-flow is able to retrieve information from a LIMS database, manages data analyses through a simple GUI, outputs data in standard locations and allows the complete traceability of datasets, accompanying metadata and analysis scripts.
Collapse
Affiliation(s)
- Valerio Bianchi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia Milano, Italy
| | - Arnaud Ceol
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia Milano, Italy
| | - Alessandro G E Ogier
- Department of Experimental Oncology, European Institute of Oncology Milano, Italy
| | - Stefano de Pretis
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia Milano, Italy
| | - Eugenia Galeota
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia Milano, Italy
| | - Kamal Kishore
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia Milano, Italy
| | - Pranami Bora
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia Milano, Italy
| | - Ottavio Croci
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia Milano, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia Milano, Italy
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di TecnologiaMilano, Italy; Department of Experimental Oncology, European Institute of OncologyMilano, Italy
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia Milano, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia Milano, Italy
| |
Collapse
|
47
|
Marzi MJ, Ghini F, Cerruti B, de Pretis S, Bonetti P, Giacomelli C, Gorski MM, Kress T, Pelizzola M, Muller H, Amati B, Nicassio F. Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. Genome Res 2016; 26:554-65. [PMID: 26821571 PMCID: PMC4817778 DOI: 10.1101/gr.198788.115] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
The regulation of miRNAs is critical to the definition of cell identity and behavior in normal physiology and disease. To date, the dynamics of miRNA degradation and the mechanisms involved in remain largely obscure, in particular, in higher organisms. Here, we developed a pulse-chase approach based on metabolic RNA labeling to calculate miRNA decay rates at genome-wide scale in mammalian cells. Our analysis revealed heterogeneous miRNA half-lives, with many species behaving as stable molecules (T1/2 > 24 h), while others, including passenger miRNAs and a number (25/129) of guide miRNAs, are quickly turned over (T1/2 = 4–14 h). Decay rates were coupled with other features, including genomic organization, transcription rates, structural heterogeneity (isomiRs), and target abundance, measured through quantitative experimental approaches. This comprehensive analysis highlighted functional mechanisms that mediate miRNA degradation, as well as the importance of decay dynamics in the regulation of the miRNA pool under both steady-state conditions and during cell transitions.
Collapse
Affiliation(s)
- Matteo J Marzi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Francesco Ghini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Benedetta Cerruti
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Stefano de Pretis
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Paola Bonetti
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Chiara Giacomelli
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Marcin M Gorski
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Theresia Kress
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Heiko Muller
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| |
Collapse
|
48
|
Austenaa L, Barozzi I, Simonatto M, Masella S, Della Chiara G, Ghisletti S, Curina A, de Wit E, Bouwman B, de Pretis S, Piccolo V, Termanini A, Prosperini E, Pelizzola M, de Laat W, Natoli G. Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination. Mol Cell 2015; 60:460-74. [DOI: 10.1016/j.molcel.2015.09.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/13/2015] [Accepted: 09/17/2015] [Indexed: 12/12/2022]
|