1
|
Michels J, Bandarupalli R, Ahangar Akbari A, Le T, Xiao H, Li J, Hom EFY. Natural Language Processing Methods for the Study of Protein-Ligand Interactions. J Chem Inf Model 2025; 65:2191-2213. [PMID: 39993834 PMCID: PMC11898065 DOI: 10.1021/acs.jcim.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
Natural Language Processing (NLP) has revolutionized the way computers are used to study and interact with human languages and is increasingly influential in the study of protein and ligand binding, which is critical for drug discovery and development. This review examines how NLP techniques have been adapted to decode the "language" of proteins and small molecule ligands to predict protein-ligand interactions (PLIs). We discuss how methods such as long short-term memory (LSTM) networks, transformers, and attention mechanisms can leverage different protein and ligand data types to identify potential interaction patterns. Significant challenges are highlighted including the scarcity of high-quality negative data, difficulties in interpreting model decisions, and sampling biases in existing data sets. We argue that focusing on improving data quality, enhancing model robustness, and fostering both collaboration and competition could catalyze future advances in machine-learning-based predictions of PLIs.
Collapse
Affiliation(s)
- James Michels
- Department
of Computer and Information Science, University
of Mississippi, University, Mississippi 38677, United States
| | - Ramya Bandarupalli
- Department
of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Amin Ahangar Akbari
- Department
of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Thai Le
- Department
of Computer Science, Indiana University, Bloomington, Indiana 47408, United States
| | - Hong Xiao
- Department
of Computer and Information Science and Institute for Data Science, University of Mississippi, University, Mississippi 38677, United States
| | - Jing Li
- Department
of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Erik F. Y. Hom
- Department
of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
2
|
Wang K, Hu G, Wu Z, Kurgan L. Accurate and Fast Prediction of Intrinsic Disorder Using flDPnn. Methods Mol Biol 2025; 2867:201-218. [PMID: 39576583 DOI: 10.1007/978-1-0716-4196-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Intrinsically disordered proteins (IDPs) that include one or more intrinsically disordered regions (IDRs) are abundant across all domains of life and viruses and play numerous functional roles in various cellular processes. Due to a relatively low throughput and high cost of experimental techniques for identifying IDRs, there is a growing need for fast and accurate computational algorithms that accurately predict IDRs/IDPs from protein sequences. We describe one of the leading disorder predictors, flDPnn. Results from a recent community-organized Critical Assessment of Intrinsic Disorder (CAID) experiment show that flDPnn provides fast and state-of-the-art predictions of disorder, which are supplemented with the predictions of several major disorder functions. This chapter provides a practical guide to flDPnn, which includes a brief explanation of its predictive model, descriptions of its web server and standalone versions, and a case study that showcases how to read and understand flDPnn's predictions.
Collapse
Affiliation(s)
- Kui Wang
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Gang Hu
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Zhonghua Wu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
3
|
Carpenter KA, Altman RB. Databases of ligand-binding pockets and protein-ligand interactions. Comput Struct Biotechnol J 2024; 23:1320-1338. [PMID: 38585646 PMCID: PMC10997877 DOI: 10.1016/j.csbj.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
Many research groups and institutions have created a variety of databases curating experimental and predicted data related to protein-ligand binding. The landscape of available databases is dynamic, with new databases emerging and established databases becoming defunct. Here, we review the current state of databases that contain binding pockets and protein-ligand binding interactions. We have compiled a list of such databases, fifty-three of which are currently available for use. We discuss variation in how binding pockets are defined and summarize pocket-finding methods. We organize the fifty-three databases into subgroups based on goals and contents, and describe standard use cases. We also illustrate that pockets within the same protein are characterized differently across different databases. Finally, we assess critical issues of sustainability, accessibility and redundancy.
Collapse
Affiliation(s)
- Kristy A. Carpenter
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Russ B. Altman
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Michels J, Bandarupalli R, Akbari AA, Le T, Xiao H, Li J, Hom EFY. Natural Language Processing Methods for the Study of Protein-Ligand Interactions. ARXIV 2024:arXiv:2409.13057v2. [PMID: 39483353 PMCID: PMC11527106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Natural Language Processing (NLP) has revolutionized the way computers are used to study and interact with human languages and is increasingly influential in the study of protein and ligand binding, which is critical for drug discovery and development. This review examines how NLP techniques have been adapted to decode the "language" of proteins and small molecule ligands to predict protein-ligand interactions (PLIs). We discuss how methods such as long short-term memory (LSTM) networks, transformers, and attention mechanisms can leverage different protein and ligand data types to identify potential interaction patterns. Significant challenges are highlighted, including the scarcity of high-quality negative data, difficulties in interpreting model decisions, and sampling biases of existing datasets. We argue that focusing on improving data quality, enhancing model robustness, and fostering both collaboration and competition could catalyze future advances in machine-learning-based predictions of PLIs.
Collapse
Affiliation(s)
- James Michels
- Department of Computer Science, University of Mississippi, University, MS
| | - Ramya Bandarupalli
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS
| | - Amin Ahangar Akbari
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS
| | - Thai Le
- Department of Computer Science, Indiana University, Bloomington, IN
| | - Hong Xiao
- Department of Computer Science, University of Mississippi, University, MS
| | - Jing Li
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS
| | - Erik F Y Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS
| |
Collapse
|
5
|
Cankara F, Senyuz S, Sayin AZ, Gursoy A, Keskin O. DiPPI: A Curated Data Set for Drug-like Molecules in Protein-Protein Interfaces. J Chem Inf Model 2024; 64:5041-5051. [PMID: 38907989 DOI: 10.1021/acs.jcim.3c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Proteins interact through their interfaces, and dysfunction of protein-protein interactions (PPIs) has been associated with various diseases. Therefore, investigating the properties of the drug-modulated PPIs and interface-targeting drugs is critical. Here, we present a curated large data set for drug-like molecules in protein interfaces. We further introduce DiPPI (Drugs in Protein-Protein Interfaces), a two-module web site to facilitate the search for such molecules and their properties by exploiting our data set in drug repurposing studies. In the interface module of the web site, we present several properties, of interfaces, such as amino acid properties, hotspots, evolutionary conservation of drug-binding amino acids, and post-translational modifications of these residues. On the drug-like molecule side, we list drug-like small molecules and FDA-approved drugs from various databases and highlight those that bind to the interfaces. We further clustered the drugs based on their molecular fingerprints to confine the search for an alternative drug to a smaller space. Drug properties, including Lipinski's rules and various molecular descriptors, are also calculated and made available on the web site to guide the selection of drug molecules. Our data set contains 534,203 interfaces for 98,632 protein structures, of which 55,135 are detected to bind to a drug-like molecule. 2214 drug-like molecules are deposited on our web site, among which 335 are FDA-approved. DiPPI provides users with an easy-to-follow scheme for drug repurposing studies through its well-curated and clustered interface and drug data and is freely available at http://interactome.ku.edu.tr:8501.
Collapse
Affiliation(s)
- Fatma Cankara
- Graduate School of Sciences and Engineering, Koç University, İstanbul 34450, Turkey
| | - Simge Senyuz
- Graduate School of Sciences and Engineering, Koç University, İstanbul 34450, Turkey
| | - Ahenk Zeynep Sayin
- Department of Chemical and Biological Engineering, Koç University, İstanbul 34450, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koç University, İstanbul 34450, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koç University, İstanbul 34450, Turkey
| |
Collapse
|
6
|
Wu H, Liu J, Zhang R, Lu Y, Cui G, Cui Z, Ding Y. A review of deep learning methods for ligand based drug virtual screening. FUNDAMENTAL RESEARCH 2024; 4:715-737. [PMID: 39156568 PMCID: PMC11330120 DOI: 10.1016/j.fmre.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 08/20/2024] Open
Abstract
Drug discovery is costly and time consuming, and modern drug discovery endeavors are progressively reliant on computational methodologies, aiming to mitigate temporal and financial expenditures associated with the process. In particular, the time required for vaccine and drug discovery is prolonged during emergency situations such as the coronavirus 2019 pandemic. Recently, the performance of deep learning methods in drug virtual screening has been particularly prominent. It has become a concern for researchers how to summarize the existing deep learning in drug virtual screening, select different models for different drug screening problems, exploit the advantages of deep learning models, and further improve the capability of deep learning in drug virtual screening. This review first introduces the basic concepts of drug virtual screening, common datasets, and data representation methods. Then, large numbers of common deep learning methods for drug virtual screening are compared and analyzed. In addition, a dataset of different sizes is constructed independently to evaluate the performance of each deep learning model for the difficult problem of large-scale ligand virtual screening. Finally, the existing challenges and future directions in the field of virtual screening are presented.
Collapse
Affiliation(s)
- Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junkai Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Runhua Zhang
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yaoyao Lu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guozeng Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhiming Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| |
Collapse
|
7
|
Hoogstraten CA, Koenderink JB, van Straaten CE, Scheer-Weijers T, Smeitink JAM, Schirris TJJ, Russel FGM. Pyruvate dehydrogenase is a potential mitochondrial off-target for gentamicin based on in silico predictions and in vitro inhibition studies. Toxicol In Vitro 2024; 95:105740. [PMID: 38036072 DOI: 10.1016/j.tiv.2023.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
During the drug development process, organ toxicity leads to an estimated failure of one-third of novel chemical entities. Drug-induced toxicity is increasingly associated with mitochondrial dysfunction, but identifying the underlying molecular mechanisms remains a challenge. Computational modeling techniques have proven to be a good tool in searching for drug off-targets. Here, we aimed to identify mitochondrial off-targets of the nephrotoxic drugs tenofovir and gentamicin using different in silico approaches (KRIPO, ProBis and PDID). Dihydroorotate dehydrogenase (DHODH) and pyruvate dehydrogenase (PDH) were predicted as potential novel off-target sites for tenofovir and gentamicin, respectively. The predicted targets were evaluated in vitro, using (colorimetric) enzymatic activity measurements. Tenofovir did not inhibit DHODH activity, while gentamicin potently reduced PDH activity. In conclusion, the use of in silico methods appeared a valuable approach in predicting PDH as a mitochondrial off-target of gentamicin. Further research is required to investigate the contribution of PDH inhibition to overall renal toxicity of gentamicin.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Jan B Koenderink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Carolijn E van Straaten
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Tom Scheer-Weijers
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Jan A M Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Khondrion BV, Nijmegen 6525 EX, the Netherlands
| | - Tom J J Schirris
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Frans G M Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands.
| |
Collapse
|
8
|
Ripon Rouf ASM, Amin MA, Islam MK, Haque F, Ahmed KR, Rahman MA, Islam MZ, Kim B. Statistical Bioinformatics to Uncover the Underlying Biological Mechanisms That Linked Smoking with Type 2 Diabetes Patients Using Transcritpomic and GWAS Analysis. Molecules 2022; 27:molecules27144390. [PMID: 35889263 PMCID: PMC9323276 DOI: 10.3390/molecules27144390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disease defined by insulin insensitivity corresponding to impaired insulin sensitivity, decreased insulin production, and eventually failure of beta cells in the pancreas. There is a 30–40 percent higher risk of developing T2D in active smokers. Moreover, T2D patients with active smoking may gradually develop many complications. However, there is still no significant research conducted to solve the issue. Hence, we have proposed a highthroughput network-based quantitative pipeline employing statistical methods. Transcriptomic and GWAS data were analysed and obtained from type 2 diabetes patients and active smokers. Differentially Expressed Genes (DEGs) resulted by comparing T2D patients’ and smokers’ tissue samples to those of healthy controls of gene expression transcriptomic datasets. We have found 55 dysregulated genes shared in people with type 2 diabetes and those who smoked, 27 of which were upregulated and 28 of which were downregulated. These identified DEGs were functionally annotated to reveal the involvement of cell-associated molecular pathways and GO terms. Moreover, protein–protein interaction analysis was conducted to discover hub proteins in the pathways. We have also identified transcriptional and post-transcriptional regulators associated with T2D and smoking. Moreover, we have analysed GWAS data and found 57 common biomarker genes between T2D and smokers. Then, Transcriptomic and GWAS analyses are compared for more robust outcomes and identified 1 significant common gene, 19 shared significant pathways and 12 shared significant GOs. Finally, we have discovered protein–drug interactions for our identified biomarkers.
Collapse
Affiliation(s)
| | - Md. Al Amin
- Department of Computer Science & Engineering, Prime University, Dhaka 1216, Bangladesh;
| | - Md. Khairul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia 7003, Bangladesh;
| | - Farzana Haque
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh;
| | - Kazi Rejvee Ahmed
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea;
| | - Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (M.A.R.); (M.Z.I.); (B.K.)
| | - Md. Zahidul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia 7003, Bangladesh;
- Correspondence: (M.A.R.); (M.Z.I.); (B.K.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (M.A.R.); (M.Z.I.); (B.K.)
| |
Collapse
|
9
|
Computational Methods for Drug Repurposing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1361:119-141. [PMID: 35230686 DOI: 10.1007/978-3-030-91836-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The wealth of knowledge and multi-omics data available in drug research has allowed the rise of several computational methods in the drug discovery field, resulting in a novel and exciting strategy called drug repurposing. Drug repurposing consists in finding new applications for existing drugs. Numerous computational methods perform a high-level integration of different knowledge sources to facilitate the discovery of unknown mechanisms. In this chapter, we present a survey of data resources and computational tools available for drug repositioning.
Collapse
|
10
|
Baltoumas FA, Zafeiropoulou S, Karatzas E, Koutrouli M, Thanati F, Voutsadaki K, Gkonta M, Hotova J, Kasionis I, Hatzis P, Pavlopoulos GA. Biomolecule and Bioentity Interaction Databases in Systems Biology: A Comprehensive Review. Biomolecules 2021; 11:1245. [PMID: 34439912 PMCID: PMC8391349 DOI: 10.3390/biom11081245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Technological advances in high-throughput techniques have resulted in tremendous growth of complex biological datasets providing evidence regarding various biomolecular interactions. To cope with this data flood, computational approaches, web services, and databases have been implemented to deal with issues such as data integration, visualization, exploration, organization, scalability, and complexity. Nevertheless, as the number of such sets increases, it is becoming more and more difficult for an end user to know what the scope and focus of each repository is and how redundant the information between them is. Several repositories have a more general scope, while others focus on specialized aspects, such as specific organisms or biological systems. Unfortunately, many of these databases are self-contained or poorly documented and maintained. For a clearer view, in this article we provide a comprehensive categorization, comparison and evaluation of such repositories for different bioentity interaction types. We discuss most of the publicly available services based on their content, sources of information, data representation methods, user-friendliness, scope and interconnectivity, and we comment on their strengths and weaknesses. We aim for this review to reach a broad readership varying from biomedical beginners to experts and serve as a reference article in the field of Network Biology.
Collapse
Affiliation(s)
- Fotis A. Baltoumas
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Sofia Zafeiropoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Evangelos Karatzas
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Mikaela Koutrouli
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Foteini Thanati
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Kleanthi Voutsadaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Maria Gkonta
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Joana Hotova
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Ioannis Kasionis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios A. Pavlopoulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
11
|
Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Babes EE, Brisc C, Stoicescu M, Toma MM, Sava C, Bungau SG. Bioinformatics Accelerates the Major Tetrad: A Real Boost for the Pharmaceutical Industry. Int J Mol Sci 2021; 22:6184. [PMID: 34201152 PMCID: PMC8227524 DOI: 10.3390/ijms22126184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/01/2023] Open
Abstract
With advanced technology and its development, bioinformatics is one of the avant-garde fields that has managed to make amazing progress in the pharmaceutical-medical field by modeling the infrastructural dimensions of healthcare and integrating computing tools in drug innovation, facilitating prevention, detection/more accurate diagnosis, and treatment of disorders, while saving time and money. By association, bioinformatics and pharmacovigilance promoted both sample analyzes and interpretation of drug side effects, also focusing on drug discovery and development (DDD), in which systems biology, a personalized approach, and drug repositioning were considered together with translational medicine. The role of bioinformatics has been highlighted in DDD, proteomics, genetics, modeling, miRNA discovery and assessment, and clinical genome sequencing. The authors have collated significant data from the most known online databases and publishers, also narrowing the diversified applications, in order to target four major areas (tetrad): DDD, anti-microbial research, genomic sequencing, and miRNA research and its significance in the management of current pandemic context. Our analysis aims to provide optimal data in the field by stratification of the information related to the published data in key sectors and to capture the attention of researchers interested in bioinformatics, a field that has succeeded in advancing the healthcare paradigm by introducing developing techniques and multiple database platforms, addressed in the manuscript.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram 122413, India;
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey;
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristian Sava
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
12
|
Wang C, Kurgan L. Survey of Similarity-Based Prediction of Drug-Protein Interactions. Curr Med Chem 2021; 27:5856-5886. [PMID: 31393241 DOI: 10.2174/0929867326666190808154841] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/16/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
Therapeutic activity of a significant majority of drugs is determined by their interactions with proteins. Databases of drug-protein interactions (DPIs) primarily focus on the therapeutic protein targets while the knowledge of the off-targets is fragmented and partial. One way to bridge this knowledge gap is to employ computational methods to predict protein targets for a given drug molecule, or interacting drugs for given protein targets. We survey a comprehensive set of 35 methods that were published in high-impact venues and that predict DPIs based on similarity between drugs and similarity between protein targets. We analyze the internal databases of known PDIs that these methods utilize to compute similarities, and investigate how they are linked to the 12 publicly available source databases. We discuss contents, impact and relationships between these internal and source databases, and well as the timeline of their releases and publications. The 35 predictors exploit and often combine three types of similarities that consider drug structures, drug profiles, and target sequences. We review the predictive architectures of these methods, their impact, and we explain how their internal DPIs databases are linked to the source databases. We also include a detailed timeline of the development of these predictors and discuss the underlying limitations of the current resources and predictive tools. Finally, we provide several recommendations concerning the future development of the related databases and methods.
Collapse
Affiliation(s)
- Chen Wang
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, United States
| |
Collapse
|
13
|
Jhawat V, Gulia M, Gupta S, Maddiboyina B, Dutt R. Integration of pharmacogenomics and theranostics with nanotechnology as quality by design (QbD) approach for formulation development of novel dosage forms for effective drug therapy. J Control Release 2020; 327:500-511. [PMID: 32858073 DOI: 10.1016/j.jconrel.2020.08.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
To cater to medication needs in the future healthcare system, we need to shift from the conventional system of drug delivery to modern molecular signature-based drug delivery systems. The current drug therapies are either less effective, ineffective, or produce numerous adverse reactions. One scientific principle or discipline cannot adequately address all the problems, so we need an innovative application of the current scientific principles. Here we are proposing a novel concept of nanoformulation based on pharmacogenomics and theranostics for personalized error-free and targeted therapeutic agent delivery. The addition of more knowledge about the human genome opens the new way to study disease-gene, gene-drug, and drug-effect interactions, which is the basis of future medicines. Pharmacogenomics provides information about the disease etiology, role in genes in disease pathophysiology, disease biomarkers, drug targets, drug effects, and the fate of drugs inside the body. Theranostics approach utilizes the above information in diagnosis, treatment, and monitoring of the disease on a real-time basis. Personalized dosage forms can be formulated into a nanoformulation that provides a better therapeutic effect and minimizes adverse drug reactions. The therapeutic system needs to be shifted from the principle of one drug fits all to one drug unique population. In the present manuscript, we tried to conceptualize a modern therapeutic system by combining the three approaches viz. pharmacogenomics, theranostics, and nanotechnology applied in the area of formulation development to produce a multifunctional single tiny entity.
Collapse
Affiliation(s)
- Vikas Jhawat
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, GD Goenka University, Gurugram, Haryana, India.
| | - Monika Gulia
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, GD Goenka University, Gurugram, Haryana, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, Haryana, India
| | - Balaji Maddiboyina
- Department of Pharmaceutical Sciences, Vishwa Bharathi College of Pharmaceutical Sciences, Guntur, A.P, India
| | - Rohit Dutt
- Department of Pharmaceutical Sciences, School of Medical and Allied Sciences, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
14
|
Wu S, Liu C, Feng J, Yang A, Guo F, Qiao J. QSIdb: quorum sensing interference molecules. Brief Bioinform 2020; 22:5916938. [PMID: 33003203 DOI: 10.1093/bib/bbaa218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
Quorum sensing interference (QSI), the disruption and manipulation of quorum sensing (QS) in the dynamic control of bacteria populations could be widely applied in synthetic biology to realize dynamic metabolic control and develop potential clinical therapies. Conventionally, limited QSI molecules (QSIMs) were developed based on molecular structures or for specific QS receptors, which are in short supply for various interferences and manipulations of QS systems. In this study, we developed QSIdb (http://qsidb.lbci.net/), a specialized repository of 633 reported QSIMs and 73 073 expanded QSIMs including both QS agonists and antagonists. We have collected all reported QSIMs in literatures focused on the modifications of N-acyl homoserine lactones, natural QSIMs and synthetic QS analogues. Moreover, we developed a pipeline with SMILES-based similarity assessment algorithms and docking-based validations to mine potential QSIMs from existing 138 805 608 compounds in the PubChem database. In addition, we proposed a new measure, pocketedit, for assessing the similarities of active protein pockets or QSIMs crosstalk, and obtained 273 possible potential broad-spectrum QSIMs. We provided user-friendly browsing and searching facilities for easy data retrieval and comparison. QSIdb could assist the scientific community in understanding QS-related therapeutics, manipulating QS-based genetic circuits in metabolic engineering, developing potential broad-spectrum QSIMs and expanding new ligands for other receptors.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chunjiang Liu
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, China
| | - Jie Feng
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University) and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
15
|
Ab Ghani NS, Ramlan EI, Firdaus-Raih M. Drug ReposER: a web server for predicting similar amino acid arrangements to known drug binding interfaces for potential drug repositioning. Nucleic Acids Res 2020; 47:W350-W356. [PMID: 31106379 PMCID: PMC6602481 DOI: 10.1093/nar/gkz391] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 11/29/2022] Open
Abstract
A common drug repositioning strategy is the re-application of an existing drug to address alternative targets. A crucial aspect to enable such repurposing is that the drug's binding site on the original target is similar to that on the alternative target. Based on the assumption that proteins with similar binding sites may bind to similar drugs, the 3D substructure similarity data can be used to identify similar sites in other proteins that are not known targets. The Drug ReposER (DRug REPOSitioning Exploration Resource) web server is designed to identify potential targets for drug repurposing based on sub-structural similarity to the binding interfaces of known drug binding sites. The application has pre-computed amino acid arrangements from protein structures in the Protein Data Bank that are similar to the 3D arrangements of known drug binding sites thus allowing users to explore them as alternative targets. Users can annotate new structures for sites that are similarly arranged to the residues found in known drug binding interfaces. The search results are presented as mappings of matched sidechain superpositions. The results of the searches can be visualized using an integrated NGL viewer. The Drug ReposER server has no access restrictions and is available at http://mfrlab.org/drugreposer/.
Collapse
Affiliation(s)
- Nur Syatila Ab Ghani
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Effirul Ikhwan Ramlan
- School of Computing, Engineering and Intelligent Systems, Ulster University, Northlands Road, Magee Campus, Londonderry BT48 7JL, UK.,Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia.,Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| |
Collapse
|
16
|
Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, Najarian K. Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief Bioinform 2020; 22:247-269. [PMID: 31950972 PMCID: PMC7820849 DOI: 10.1093/bib/bbz157] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.
Collapse
Affiliation(s)
- Maryam Bagherian
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elyas Sabeti
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kai Wang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maureen A Sartor
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Kayvan Najarian
- Department of Electrical Engineering and Computer Science, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
17
|
Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, Zhang R, Zhu J, Ren Y, Tan Y, Qin C, Li Y, Li X, Chen Y, Zhu F. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res 2020; 48:D1031-D1041. [PMID: 31691823 PMCID: PMC7145558 DOI: 10.1093/nar/gkz981] [Citation(s) in RCA: 400] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022] Open
Abstract
Knowledge of therapeutic targets and early drug candidates is useful for improved drug discovery. In particular, information about target regulators and the patented therapeutic agents facilitates research regarding druggability, systems pharmacology, new trends, molecular landscapes, and the development of drug discovery tools. To complement other databases, we constructed the Therapeutic Target Database (TTD) with expanded information about (i) target-regulating microRNAs and transcription factors, (ii) target-interacting proteins, and (iii) patented agents and their targets (structures and experimental activity values if available), which can be conveniently retrieved and is further enriched with regulatory mechanisms or biochemical classes. We also updated the TTD with the recently released International Classification of Diseases ICD-11 codes and additional sets of successful, clinical trial, and literature-reported targets that emerged since the last update. TTD is accessible at http://bidd.nus.edu.sg/group/ttd/ttd.asp. In case of possible web connectivity issues, two mirror sites of TTD are also constructed (http://db.idrblab.org/ttd/ and http://db.idrblab.net/ttd/).
Collapse
Affiliation(s)
- Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Zhou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Ying Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhengwen Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Runyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuxiang Ren
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Chu Qin
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore 117543, Singapore
| | - Yinghong Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoxu Li
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore 117543, Singapore
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
18
|
Naderi M, Lemoine JM, Govindaraj RG, Kana OZ, Feinstein WP, Brylinski M. Binding site matching in rational drug design: algorithms and applications. Brief Bioinform 2019; 20:2167-2184. [PMID: 30169563 PMCID: PMC6954434 DOI: 10.1093/bib/bby078] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/18/2018] [Accepted: 07/29/2018] [Indexed: 01/06/2023] Open
Abstract
Interactions between proteins and small molecules are critical for biological functions. These interactions often occur in small cavities within protein structures, known as ligand-binding pockets. Understanding the physicochemical qualities of binding pockets is essential to improve not only our basic knowledge of biological systems, but also drug development procedures. In order to quantify similarities among pockets in terms of their geometries and chemical properties, either bound ligands can be compared to one another or binding sites can be matched directly. Both perspectives routinely take advantage of computational methods including various techniques to represent and compare small molecules as well as local protein structures. In this review, we survey 12 tools widely used to match pockets. These methods are divided into five categories based on the algorithm implemented to construct binding-site alignments. In addition to the comprehensive analysis of their algorithms, test sets and the performance of each method are described. We also discuss general pharmacological applications of computational pocket matching in drug repurposing, polypharmacology and side effects. Reflecting on the importance of these techniques in drug discovery, in the end, we elaborate on the development of more accurate meta-predictors, the incorporation of protein flexibility and the integration of powerful artificial intelligence technologies such as deep learning.
Collapse
Affiliation(s)
- Misagh Naderi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jeffrey Mitchell Lemoine
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Division of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Omar Zade Kana
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wei Pan Feinstein
- High-Performance Computing, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
19
|
Ghadermarzi S, Li X, Li M, Kurgan L. Sequence-Derived Markers of Drug Targets and Potentially Druggable Human Proteins. Front Genet 2019; 10:1075. [PMID: 31803227 PMCID: PMC6872670 DOI: 10.3389/fgene.2019.01075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Recent research shows that majority of the druggable human proteome is yet to be annotated and explored. Accurate identification of these unexplored druggable proteins would facilitate development, screening, repurposing, and repositioning of drugs, as well as prediction of new drug–protein interactions. We contrast the current drug targets against the datasets of non-druggable and possibly druggable proteins to formulate markers that could be used to identify druggable proteins. We focus on the markers that can be extracted from protein sequences or names/identifiers to ensure that they can be applied across the entire human proteome. These markers quantify key features covered in the past works (topological features of PPIs, cellular functions, and subcellular locations) and several novel factors (intrinsic disorder, residue-level conservation, alternative splicing isoforms, domains, and sequence-derived solvent accessibility). We find that the possibly druggable proteins have significantly higher abundance of alternative splicing isoforms, relatively large number of domains, higher degree of centrality in the protein-protein interaction networks, and lower numbers of conserved and surface residues, when compared with the non-druggable proteins. We show that the current drug targets and possibly druggable proteins share involvement in the catalytic and signaling functions. However, unlike the drug targets, the possibly druggable proteins participate in the metabolic and biosynthesis processes, are enriched in the intrinsic disorder, interact with proteins and nucleic acids, and are localized across the cell. To sum up, we formulate several markers that can help with finding novel druggable human proteins and provide interesting insights into the cellular functions and subcellular locations of the current drug targets and potentially druggable proteins.
Collapse
Affiliation(s)
- Sina Ghadermarzi
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Xingyi Li
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
20
|
Li YH, Yu CY, Li XX, Zhang P, Tang J, Yang Q, Fu T, Zhang X, Cui X, Tu G, Zhang Y, Li S, Yang F, Sun Q, Qin C, Zeng X, Chen Z, Chen YZ, Zhu F. Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res 2019; 46:D1121-D1127. [PMID: 29140520 PMCID: PMC5753365 DOI: 10.1093/nar/gkx1076] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/10/2017] [Indexed: 12/25/2022] Open
Abstract
Extensive efforts have been directed at the discovery, investigation and clinical monitoring of targeted therapeutics. These efforts may be facilitated by the convenient access of the genetic, proteomic, interactive and other aspects of the therapeutic targets. Here, we describe an update of the Therapeutic target database (TTD) previously featured in NAR. This update includes: (i) 2000 drug resistance mutations in 83 targets and 104 target/drug regulatory genes, which are resistant to 228 drugs targeting 63 diseases (49 targets of 61 drugs with patient prevalence data); (ii) differential expression profiles of 758 targets in the disease-relevant drug-targeted tissue of 12 615 patients of 70 diseases; (iii) expression profiles of 629 targets in the non-targeted tissues of 2565 healthy individuals; (iv) 1008 target combinations of 1764 drugs and the 1604 target combination of 664 multi-target drugs; (v) additional 48 successful, 398 clinical trial and 21 research targets, 473 approved, 812 clinical trial and 1120 experimental drugs, and (vi) ICD-10-CM and ICD-9-CM codes for additional 482 targets and 262 drugs against 98 disease conditions. This update makes TTD more useful for facilitating the patient focused research, discovery and clinical investigations of the targeted therapeutics. TTD is accessible at http://bidd.nus.edu.sg/group/ttd/ttd.asp.
Collapse
Affiliation(s)
- Ying Hong Li
- Bioinformatics and Drug Design Group, Department of Pharmacy and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543, Singapore.,Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Chun Yan Yu
- Bioinformatics and Drug Design Group, Department of Pharmacy and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543, Singapore.,Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiao Xu Li
- Bioinformatics and Drug Design Group, Department of Pharmacy and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543, Singapore.,Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Peng Zhang
- Bioinformatics and Drug Design Group, Department of Pharmacy and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543, Singapore
| | - Jing Tang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qingxia Yang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyu Zhang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xuejiao Cui
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gao Tu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yang Zhang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Shuang Li
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Fengyuan Yang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qiu Sun
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Chu Qin
- Bioinformatics and Drug Design Group, Department of Pharmacy and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543, Singapore
| | - Xian Zeng
- Bioinformatics and Drug Design Group, Department of Pharmacy and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543, Singapore
| | - Zhe Chen
- Zhejiang Key Laboratory of Gastro-intestinal Pathophysiology, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yu Zong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543, Singapore
| | - Feng Zhu
- Bioinformatics and Drug Design Group, Department of Pharmacy and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543, Singapore.,Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
21
|
Zhu M, Song X, Chen P, Wang W, Wang B. dbHDPLS: A database of human disease-related protein-ligand structures. Comput Biol Chem 2019; 78:353-358. [PMID: 30665056 DOI: 10.1016/j.compbiolchem.2018.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/11/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022]
Abstract
Protein-ligand complexes perform specific functions, most of which are related to human diseases. The database, called as human disease-related protein-ligand structures (dbHDPLS), collected 8833 structures which were extracted from protein data bank (PDB) and other related databases. The database is annotated with comprehensive information involving ligands and drugs, related human diseases and protein-ligand interaction information, with the information of protein structures. The database may be a reliable resource for structure-based drug target discoveries and druggability predictions of protein-ligand binding sites, drug-disease relationships based on protein-ligand complex structures. It can be publicly accessed at the website: http://DeepLearner.ahu.edu.cn/web/dbDPLS/.
Collapse
Affiliation(s)
- Muchun Zhu
- Institutes of Physical Science and Information Technology, Anhui University, 230601 Hefei, Anhui, China
| | - Xiaoping Song
- Institutes of Physical Science and Information Technology, Anhui University, 230601 Hefei, Anhui, China
| | - Peng Chen
- School of Electrical and Information Engineering, Anhui University of Technology, 243032 Ma'anshan, Anhui, China; Institutes of Physical Science and Information Technology, Anhui University, 230601 Hefei, Anhui, China.
| | - Wenyan Wang
- School of Electrical and Information Engineering, Anhui University of Technology, 243032 Ma'anshan, Anhui, China
| | - Bing Wang
- School of Electrical and Information Engineering, Anhui University of Technology, 243032 Ma'anshan, Anhui, China.
| |
Collapse
|
22
|
Prediction Methods of Herbal Compounds in Chinese Medicinal Herbs. Molecules 2018; 23:molecules23092303. [PMID: 30201875 PMCID: PMC6225236 DOI: 10.3390/molecules23092303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Chinese herbal medicine has recently gained worldwide attention. The curative mechanism of Chinese herbal medicine is compared with that of western medicine at the molecular level. The treatment mechanism of most Chinese herbal medicines is still not clear. How do we integrate Chinese herbal medicine compounds with modern medicine? Chinese herbal medicine drug-like prediction method is particularly important. A growing number of Chinese herbal source compounds are now widely used as drug-like compound candidates. An important way for pharmaceutical companies to develop drugs is to discover potentially active compounds from related herbs in Chinese herbs. The methods for predicting the drug-like properties of Chinese herbal compounds include the virtual screening method, pharmacophore model method and machine learning method. In this paper, we focus on the prediction methods for the medicinal properties of Chinese herbal medicines. We analyze the advantages and disadvantages of the above three methods, and then introduce the specific steps of the virtual screening method. Finally, we present the prospect of the joint application of various methods.
Collapse
|
23
|
Wang C, Kurgan L. Review and comparative assessment of similarity-based methods for prediction of drug–protein interactions in the druggable human proteome. Brief Bioinform 2018; 20:2066-2087. [DOI: 10.1093/bib/bby069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022] Open
Abstract
AbstractDrug–protein interactions (DPIs) underlie the desired therapeutic actions and the adverse side effects of a significant majority of drugs. Computational prediction of DPIs facilitates research in drug discovery, characterization and repurposing. Similarity-based methods that do not require knowledge of protein structures are particularly suitable for druggable genome-wide predictions of DPIs. We review 35 high-impact similarity-based predictors that were published in the past decade. We group them based on three types of similarities and their combinations that they use. We discuss and compare key aspects of these methods including source databases, internal databases and their predictive models. Using our novel benchmark database, we perform comparative empirical analysis of predictive performance of seven types of representative predictors that utilize each type of similarity individually and all possible combinations of similarities. We assess predictive quality at the database-wide DPI level and we are the first to also include evaluation over individual drugs. Our comprehensive analysis shows that predictors that use more similarity types outperform methods that employ fewer similarities, and that the model combining all three types of similarities secures area under the receiver operating characteristic curve of 0.93. We offer a comprehensive analysis of sensitivity of predictive performance to intrinsic and extrinsic characteristics of the considered predictors. We find that predictive performance is sensitive to low levels of similarities between sequences of the drug targets and several extrinsic properties of the input drug structures, drug profiles and drug targets. The benchmark database and a webserver for the seven predictors are freely available at http://biomine.cs.vcu.edu/servers/CONNECTOR/.
Collapse
Affiliation(s)
- Chen Wang
- Computer Science Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Computer Science Department, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
24
|
Meng F, Wang C, Kurgan L. fDETECT webserver: fast predictor of propensity for protein production, purification, and crystallization. BMC Bioinformatics 2018; 18:580. [PMID: 29295714 PMCID: PMC6389161 DOI: 10.1186/s12859-017-1995-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/06/2017] [Indexed: 02/26/2023] Open
Abstract
Background Development of predictors of propensity of protein sequences for successful crystallization has been actively pursued for over a decade. A few novel methods that expanded the scope of these predictions to address additional steps of protein production and structure determination pipelines were released in recent years. The predictive performance of the current methods is modest. This is because the only input that they use is the protein sequence and since the experimental annotations of these data might be inconsistent given that they were collected across many laboratories and centers. However, even these modest levels of predictive quality are still practical compared to the reported low success rates of crystallization, which are below 10%. We focus on another important aspect related to a high computational cost of running the predictors that offer the expanded scope. Results We introduce a novel fDETECT webserver that provides very fast and modestly accurate predictions of the success of protein production, purification, crystallization, and structure determination. Empirical tests on two datasets demonstrate that fDETECT is more accurate than the only other similarly fast method, and similarly accurate and three orders of magnitude faster than the currently most accurate predictors. Our method predicts a single protein in about 120 milliseconds and needs less than an hour to generate the four predictions for an entire human proteome. Moreover, we empirically show that fDETECT secures similar levels of predictive performance when compared with four representative methods that only predict success of crystallization, while it also provides the other three predictions. A webserver that implements fDETECT is available at http://biomine.cs.vcu.edu/servers/fDETECT/. Conclusions fDETECT is a computational tool that supports target selection for protein production and X-ray crystallography-based structure determination. It offers predictive quality that matches or exceeds other state-of-the-art tools and is especially suitable for the analysis of large protein sets.
Collapse
Affiliation(s)
- Fanchi Meng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | - Chen Wang
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
25
|
Sam E, Athri P. Web-based drug repurposing tools: a survey. Brief Bioinform 2017; 20:299-316. [DOI: 10.1093/bib/bbx125] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Elizabeth Sam
- Department of Computer Science & Engineering Amrita, University Bengaluru, India
| | - Prashanth Athri
- Department of Computer Science & Engineering Amrita, University Bengaluru, India
| |
Collapse
|
26
|
Chartier M, Morency LP, Zylber MI, Najmanovich RJ. Large-scale detection of drug off-targets: hypotheses for drug repurposing and understanding side-effects. BMC Pharmacol Toxicol 2017; 18:18. [PMID: 28449705 PMCID: PMC5408384 DOI: 10.1186/s40360-017-0128-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/28/2017] [Indexed: 01/21/2023] Open
Abstract
Background Promiscuity in molecular interactions between small-molecules, including drugs, and proteins is widespread. Such unintended interactions can be exploited to suggest drug repurposing possibilities as well as to identify potential molecular mechanisms responsible for observed side-effects. Methods We perform a large-scale analysis to detect binding-site molecular interaction field similarities between the binding-sites of the primary target of 400 drugs against a dataset of 14082 cavities within 7895 different proteins representing a non-redundant dataset of all proteins with known structure. Statistically-significant cases with high levels of similarities represent potential cases where the drugs that bind the original target may in principle bind the suggested off-target. Such cases are further analysed with docking simulations to verify if indeed the drug could, in principle, bind the off-target. Diverse sources of data are integrated to associated potential cross-reactivity targets with side-effects. Results We observe that promiscuous binding-sites tend to display higher levels of hydrophobic and aromatic similarities. Focusing on the most statistically significant similarities (Z-score ≥ 3.0) and corroborating docking results (RMSD < 2.0 Å), we find 2923 cases involving 140 unique drugs and 1216 unique potential cross-reactivity protein targets. We highlight a few cases with a potential for drug repurposing (acetazolamide as a chorismate pyruvate lyase inhibitor, raloxifene as a bacterial quorum sensing inhibitor) as well as to explain the side-effects of zanamivir and captopril. A web-interface permits to explore the detected similarities for each of the 400 binding-sites of the primary drug targets and visualise them for the most statistically significant cases. Conclusions The detection of molecular interaction field similarities provide the opportunity to suggest drug repurposing opportunities as well as to identify potential molecular mechanisms responsible for side-effects. All methods utilized are freely available and can be readily applied to new query binding-sites. All data is freely available and represents an invaluable source to identify further candidates for repurposing and suggest potential mechanisms responsible for side-effects. Electronic supplementary material The online version of this article (doi:10.1186/s40360-017-0128-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthieu Chartier
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Louis-Philippe Morency
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - María Inés Zylber
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Rafael J Najmanovich
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada. .,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Québec, Canada.
| |
Collapse
|
27
|
Abstract
Systems pharmacology aims to holistically understand mechanisms of drug actions to support drug discovery and clinical practice. Systems pharmacology modeling (SPM) is data driven. It integrates an exponentially growing amount of data at multiple scales (genetic, molecular, cellular, organismal, and environmental). The goal of SPM is to develop mechanistic or predictive multiscale models that are interpretable and actionable. The current explosions in genomics and other omics data, as well as the tremendous advances in big data technologies, have already enabled biologists to generate novel hypotheses and gain new knowledge through computational models of genome-wide, heterogeneous, and dynamic data sets. More work is needed to interpret and predict a drug response phenotype, which is dependent on many known and unknown factors. To gain a comprehensive understanding of drug actions, SPM requires close collaborations between domain experts from diverse fields and integration of heterogeneous models from biophysics, mathematics, statistics, machine learning, and semantic webs. This creates challenges in model management, model integration, model translation, and knowledge integration. In this review, we discuss several emergent issues in SPM and potential solutions using big data technology and analytics. The concurrent development of high-throughput techniques, cloud computing, data science, and the semantic web will likely allow SPM to be findable, accessible, interoperable, reusable, reliable, interpretable, and actionable.
Collapse
Affiliation(s)
- Lei Xie
- Department of Computer Science, Hunter College, The City University of New York, New York, NY 10065; .,The Graduate Center, The City University of New York, New York, NY 10016
| | - Eli J Draizen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894; .,Program in Bioinformatics, Boston University, Boston, Massachusetts 02215
| | - Philip E Bourne
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894; .,Office of the Director, National Institutes of Health, Bethesda, Maryland 20894
| |
Collapse
|
28
|
Tan Z, Chaudhai R, Zhang S. Polypharmacology in Drug Development: A Minireview of Current Technologies. ChemMedChem 2016; 11:1211-8. [PMID: 27154144 DOI: 10.1002/cmdc.201600067] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/21/2016] [Indexed: 01/09/2023]
Abstract
Polypharmacology, the process in which a single drug is able to bind to multiple targets specifically and simultaneously, is an emerging paradigm in drug development. The potency of a given drug can be increased through the engagement of multiple targets involved in a certain disease. Polypharmacology may also help identify novel applications of existing drugs through drug repositioning. However, many problems and challenges remain in this field. Rather than covering all aspects of polypharmacology, this Minireview is focused primarily on recently reported techniques, from bioinformatics technologies to cheminformatics approaches as well as text-mining-based methods, all of which have made significant contributions to the research of polypharmacology.
Collapse
Affiliation(s)
- Zhi Tan
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Rajan Chaudhai
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shuxing Zhang
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|