1
|
Bean EL, Smith JL, Grossman AD. Identification of insertion sites for the integrative and conjugative element Tn916 in the Bacillus subtilis chromosome. PLoS One 2025; 20:e0318964. [PMID: 40378350 PMCID: PMC12084037 DOI: 10.1371/journal.pone.0318964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/14/2025] [Indexed: 05/18/2025] Open
Abstract
Integrative and conjugative elements (ICEs) are found in many bacterial species and are mediators of horizontal gene transfer. Tn916 is an ICE found in several Gram-positive genera, including Enterococcus, Staphylococcus, Streptococcus, and Clostridioides (previously Clostridium). In contrast to the many ICEs that preferentially integrate into a single site, Tn916 can integrate into many sites in the host chromosome. The consensus integration motif for Tn916, based on analyses of approximately 200 independent insertions, is an approximately 16 bp AT-rich sequence. Here, we describe the identification and mapping of approximately 105 independent Tn916 insertions in the Bacillus subtilis chromosome. The insertions were distributed between 1,554 chromosomal sites, and approximately 99% of the insertions were in 303 sites and 65% were in only ten sites. One region, between ykuC and ykyB (kre), was a 'hotspot' for integration with ~22% of the insertions in that single location. In almost all of the top 99% of sites, Tn916 was found with similar frequencies in both orientations relative to the chromosome and relative to the direction of transcription, with a few notable exceptions. Using the sequences of all insertion regions, we determined a consensus motif which is similar to that previously identified for C. difficile. The insertion sites are largely AT-rich, and some sites overlap with regions bound by the nucleoid-associated protein Rok, a functional analog of H-NS of Gram-negative bacteria. Rok functions as a negative regulator of at least some horizontally acquired genes. We found that the presence or absence of Rok had little or no effect on insertion site specificity of Tn916.
Collapse
Affiliation(s)
- Emily L. Bean
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA.
| | - Janet L. Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA.
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA.
| |
Collapse
|
2
|
Nolan LM, Webber MA, Filloux A. Throwing a spotlight on genomic dark matter: the power and potential of transposon-insertion sequencing. J Biol Chem 2025:110231. [PMID: 40378959 DOI: 10.1016/j.jbc.2025.110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/29/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025] Open
Abstract
Linking genotype to phenotype is a central goal in biology. In the microbiological field, transposon mutagenesis is a technique that has been widely used since the 1970's to facilitate this connection. The development of modern 'omics approaches and next-generation sequencing, have allowed high-throughput association between genes and their putative function. In 2009, four different variations of modern transposon-insertion sequencing (TIS) approaches were published, being referred to as transposon-directed insertion-site sequencing (TraDIS), transposon sequencing (Tn-seq), insertion sequencing (INSeq) and high-throughput insertion tracking by deep sequencing (HITS). These approaches exploit a similar concept to allow estimation of the essentiality or contribution to fitness of each gene in any bacterial genome. The main rationale is to perform a comparative analysis of the abundance of specific transposon mutants under one or more selective conditions. The approaches themselves only vary in the transposon used for mutagenesis, and in the methodology used for sequencing library preparation. In this review, we discuss how TIS approaches have been used to facilitate a major shift in our fundamental understanding of bacterial biology in a range of areas. We focus on several aspects including pathogenesis, biofilm development, polymicrobial interactions in various ecosystems, and antimicrobial resistance. These studies have provided new insight into bacterial physiology and revealed predicted functions for hundreds of genes previously representing genomic 'dark matter'. We also discuss how TIS approaches have been used to understand complex bacterial systems and interactions and how future developments of TIS could continue to accelerate and enrich our understanding of bacterial biology.
Collapse
Affiliation(s)
- Laura M Nolan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore; Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norwich Medical School, Norwich Research Park, Norwich, UK; Center for Microbial Interactions, Norwich Research Park, Norwich, UK
| | - Alain Filloux
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore; Lee Kon Chian School of Medicine, Nanyang Technological University, Singapore; Imperial, Centre for Bacterial Resistance Biology, London, UK
| |
Collapse
|
3
|
Shiver AL, Sun J, Culver R, Violette A, Wynter C, Nieckarz M, Mattiello SP, Sekhon PK, Bottacini F, Friess L, Carlson HK, Wong DPGH, Higginbottom S, Weglarz M, Wang W, Knapp BD, Guiberson E, Sanchez J, Huang PH, Garcia PA, Buie CR, Good BH, DeFelice B, Cava F, Scaria J, Sonnenburg JL, Van Sinderen D, Deutschbauer AM, Huang KC. Genome-scale resources in the infant gut symbiont Bifidobacterium breve reveal genetic determinants of colonization and host-microbe interactions. Cell 2025; 188:2003-2021.e19. [PMID: 40068681 DOI: 10.1016/j.cell.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/08/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025]
Abstract
Bifidobacteria represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest in bifidobacteria as a live biotic therapy, our understanding of colonization, host-microbe interactions, and the health-promoting effects of bifidobacteria is limited. To address these major knowledge gaps, we used a large-scale genetic approach to create a mutant fitness compendium in Bifidobacterium breve. First, we generated a high-density randomly barcoded transposon insertion pool and used it to determine fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. Second, to enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1,462 genes. We leveraged these tools to reveal community- and diet-specific requirements for colonization and to connect the production of immunomodulatory molecules to growth benefits. These resources will catalyze future investigations of this important beneficial microbe.
Collapse
Affiliation(s)
- Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Rebecca Culver
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Arvie Violette
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Char Wynter
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Marta Nieckarz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Umeå University, Umeå 90187, Sweden
| | - Samara Paula Mattiello
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; College of Mathematics and Science, The University of Tennessee Southern, Pulaski, TN 38478, USA
| | - Prabhjot Kaur Sekhon
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA; Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Francesca Bottacini
- School of Microbiology, University College Cork, Cork, Ireland; Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Lisa Friess
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel P G H Wong
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meredith Weglarz
- Stanford Shared FACS Facility, Center for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305, USA
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Benjamin D Knapp
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Emma Guiberson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Juan Sanchez
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Paulo A Garcia
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Cullen R Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Umeå University, Umeå 90187, Sweden
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Douwe Van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Ma Y, Pirolo M, Giarratana L, Leth Nielsen K, Häussler S, Guardabassi L. Chromosomal genes modulating fosfomycin susceptibility in uropathogenic Escherichia coli: a genome-wide analysis. Antimicrob Agents Chemother 2025; 69:e0141724. [PMID: 39998293 PMCID: PMC11963563 DOI: 10.1128/aac.01417-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Escherichia coli acquires fosfomycin resistance through chromosomal mutations that reduce drug uptake and by drug-inactivating enzymes. However, the complete resistance mechanisms remain to be elucidated. The aim of this study was to elucidate the genetic mechanisms regulating fosfomycin susceptibility in uropathogenic E. coli (UPEC). We constructed a highly saturated transposon mutant library containing >340,000 unique Tn5 insertions in a clinical UPEC strain. We conducted transposon-directed insertion site sequencing (TraDIS) to screen for chromosomal genes whose mutations are beneficial for bacterial growth and survival in the presence of fosfomycin at 4 and 32 µg/mL. TraDIS analysis identified 67 genes including known resistance determinants (n = 13) as well as a set of novel genes modulating fosfomycin susceptibility (n = 54). These genes are involved in pyruvate metabolism, pentose phosphate pathway, nucleotide biosynthesis, DNA repair, protein translation, cellular iron homeostasis, and biotin biosynthesis. Deletion of 16 selected genes in the wild-type strain resulted in growth advantages and decreased susceptibility when exposed to fosfomycin. Notably, deletion of DNA repair genes (i.e., mutL and mutS) and purine synthesis genes (i.e., purB and its upstream gene hflD) led to the most significant advantages in competitive and non-competitive growth in the presence of fosfomycin, as well as the highest increase of fosfomycin MIC (8- to 16-fold). These findings provide a genome-wide overview of genes required for maintaining fosfomycin susceptibility in E. coli, highlighting new mutations and functional pathways that may be used by UPEC to develop clinical resistance.
Collapse
Affiliation(s)
- Yibing Ma
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mattia Pirolo
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lily Giarratana
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Karen Leth Nielsen
- Department of Clinical Microbiology, Rigshospitalet, København Ø, Denmark
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
5
|
Alzheimer M, Froschauer K, Svensson SL, König F, Hopp E, Drobnič T, Henderson LD, Ribardo DA, Hendrixson DR, Bischler T, Beeby M, Sharma CM. Functional genomics of Campylobacter -host interactions in an intestinal tissue model reveals a small lipoprotein essential for flagellar assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646747. [PMID: 40236077 PMCID: PMC11996450 DOI: 10.1101/2025.04.02.646747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Campylobacter jejuni is currently the most common cause of bacterial gastroenteritis worldwide. However, its genome provides few clues about how it interacts with the host. Moreover, infection screens have often been limited to classical cell culture or animal models. To identify C. jejuni genes involved in host cell interactions, we applied transposon sequencing in a humanized 3D intestinal infection model based on tissue engineering. This revealed key proteins required for host cell adherence and/or internalization, including an Rrf2 family transcriptional regulator as well as three so far uncharacterized genes ( pflC / Cj1643 , pflD / Cj0892c , pflE / Cj0978c ), which we demonstrate to encode factors essential for motility. Deletion mutants of pflC / D / E are non-motile but retain intact, paralysed flagella filaments. We demonstrate that two of these newly identified motility proteins, PflC and PflD, are components of the C. jejuni 's periplasmic disk structures of the high torque motor. The third gene, pflE , encodes a small protein of only 57 aa. Using CryoET imaging we uncovered that the small protein has a striking effect on motor biogenesis, leading to a complete loss of the flagellar disk and motor structures upon its deletion. While PflE does not appear to be a structural component of the motor itself, our data suggests that it is a lipoprotein and supports localization of the main basal disk protein FlgP, which is the first assembly step of the flagellar disk structure. Despite being annotated as a lipoprotein, we find that C. jejuni FlgP instead relies on PflE for its association with the outer membrane. Overall, our genome-wide screen revealed novel C. jejuni host interaction factors including a transcriptional regulator as well as two structural components and a small protein crucial for biogenesis of the C. jejuni high torque flagella motor. Since the flagella machinery is a critical virulence determining factor for C. jejuni , our work demonstrates how such a small protein can, quite literally, bring a bacterial pathogen to a halt.
Collapse
|
6
|
Antunes CA, Goodall ECA, Henderson IR, Wild D, Mehltretter A, Ott P, Hölzl M, Ott L, Seidel G, Burkovski A. Genome-wide high-throughput transposon mutagenesis unveils key factors for acidic pH adaptation of Corynebacterium diphtheriae. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001554. [PMID: 40272866 PMCID: PMC12022263 DOI: 10.1099/mic.0.001554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
Corynebacterium diphtheriae, a notable pathogen responsible for the life-threatening disease diphtheria, encounters harsh intracellular environments within the host, particularly within macrophages where acidic conditions prevail. To elucidate the genetic and molecular mechanisms underlying its acid stress response, we employed a Transposon Directed Insertion-site Sequencing approach. This comprehensive study identified crucial genes and pathways facilitating C. diphtheriae's survival at low pH. In subsequent experiments, the Ktr potassium transport system was identified as a putative key factor for maintaining pH homeostasis and growth under acidic stress. A ktrBA deletion strain exhibited significantly reduced growth at pH 5, which could be restored by ktrBA expression in trans. The deletion strain showed unchanged uptake and survival in macrophages compared to the wild-type, indicating that the Ktr system is not crucial for the survival of C. diphtheriae in phagocytes. These findings advance our understanding of C. diphtheriae's pathophysiology, further delineating the intricate survival strategies of C. diphtheriae in hostile environments.
Collapse
Affiliation(s)
- Camila Azevedo Antunes
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Emily C. A. Goodall
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Ian R. Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David Wild
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Alexander Mehltretter
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Philipp Ott
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Markus Hölzl
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Lisa Ott
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Gerald Seidel
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, Erlangen, Germany
| |
Collapse
|
7
|
Wong BC, Ling FY, Ayub Q, Tan HS. Transposon mutagenesis identifies acid resistance and biofilm genes as Shigella sonnei virulence factors in Caenorhabditis elegans infection. Biochem Biophys Res Commun 2025; 754:151546. [PMID: 40023989 DOI: 10.1016/j.bbrc.2025.151546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Identifying essential genes in bacterial pathogens during infection can enhance knowledge and provide novel targets for antimicrobial agents' development. Currently, only Shigella flexneri essential genes during in vitro growth have been experimentally identified. This study used transposon insertion sequencing (TIS) to identify Shigella sonnei essential genes during Caenorhabditis elegans infection. 498 genes were predicted to be essential in S. sonnei during growth on nutrient-rich media. Some genes previously predicted to be essential in Shigella were found non-essential in S. sonnei, such as acetyl metabolism genes (aceEF, lpdA) and sulphate transport genes (cysA, cyst, cysW). Finally, 217 genes were predicted as S. sonnei virulence genes during infection, including acid resistance and biofilm formation genes which was not linked to S. sonnei virulence previously.
Collapse
Affiliation(s)
- Bao Chi Wong
- School of Science, Monash University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Fong Yoke Ling
- Monash University Malaysia Genomics Platform, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Qasim Ayub
- School of Science, Monash University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Monash University Malaysia Genomics Platform, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Hock Siew Tan
- School of Science, Monash University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
8
|
Padilla JJ, da Gama MAS, Barphagha I, Ham JH. Characterization of the Antibiotic and Copper Resistance of Emergent Species of Onion-Pathogenic Burkholderia Through Genome Sequence Analysis and High-Throughput Sequencing of Differentially Enriched Random Transposon Mutants. Pathogens 2025; 14:226. [PMID: 40137711 PMCID: PMC11946587 DOI: 10.3390/pathogens14030226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
The prevalence of antimicrobial resistance (AMR) in bacterial pathogens resulting from the intensive usage of antibiotics and antibiotic compounds is acknowledged as a significant global concern that impacts both human and animal health. In this study, we sequenced and analyzed the genomes of two emergent onion-pathogenic species of Burkholderia, B. cenocepacia CCRMBC56 and B. orbicola CCRMBC23, focusing on genes that are potentially associated with their high level of antibiotic and copper resistance. We also identified genes contributing to the copper resistance of B. cenocepacia CCRMBC56 through high-throughput analysis of mutated genes in random transposon mutant populations that were differentially enriched in a copper-containing medium. The results indicated that genes involved in DNA integration, recombination, and cation transport are important for the survival of B. cenocepacia CCRMBC56 in copper-stressed conditions. Furthermore, the fitness effect analysis identified additional genes crucial for copper resistance, which are involved in functions associated with the oxidative stress response, the ABC transporter complex, and the cell outer membrane. In the same analysis, genes related to penicillin binding, the TCA cycle, and FAD binding were found to hinder bacterial adaptation to copper toxicity. This study provides potential targets for reducing the copper resistance of B. cenocepacia and other copper-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Jonas J. Padilla
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.J.P.); (I.B.)
| | - Marco A. S. da Gama
- Department of Agronomy, Universidade Federal Rural de Pernambuco, Recife 52171-900, PE, Brazil;
| | - Inderjit Barphagha
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.J.P.); (I.B.)
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.J.P.); (I.B.)
| |
Collapse
|
9
|
Bean EL, Smith JL, Grossman AD. Identification of insertion sites for the integrative and conjugative element Tn9 16 in the Bacillus subtilis chromosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635231. [PMID: 39975115 PMCID: PMC11838328 DOI: 10.1101/2025.01.28.635231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Integrative and conjugative elements (ICEs) are found in many bacterial species and are mediators of horizontal gene transfer. Tn916 is an ICE found in several Gram-positive genera, including Enterococcus, Staphylococcus, Streptococcus, and Clostridum. In contrast to the many ICEs that preferentially integrate into a single site, Tn916 can integrate into many sites in the host chromosome. The consensus integration motif for Tn916, based on analyses of approximately 200 independent insertions, is an approximately 16 bp AT-rich sequence. Here, we describe the identification and mapping of approximately 105 independent Tn916 insertions in the Bacillus subtilis chromosome. The insertions were distributed between 1,554 chromosomal sites, and approximately 99% of the insertions were in 303 sites and 65% were in only ten sites. One region, between ykuC and ykyB (kre), was a 'hotspot' for integration with ~22% of the insertions in that single location. In almost all of the top 99% of sites, Tn916 was found with similar frequencies in both orientations relative to the chromosome and relative to the direction of transcription, with a few notable exceptions. Using the sequences of all insertion regions, we determined a consensus motif which is similar to that previously identified for Clostridium difficile. The insertion sites are largely AT-rich, and some sites overlap with regions bound by the nucleoid-associated protein Rok, a functional analog of H-NS of Gram-negative bacteria. Rok functions as a negative regulator of at least some horizontally acquired genes. We found that the presence or absence of Rok had little or no effect on insertion site specificity of Tn916.
Collapse
Affiliation(s)
| | | | - Alan D. Grossman
- Department of Biology Massachusetts Institute of Technology Cambridge, MA 02139
| |
Collapse
|
10
|
Harding K, Malone L, Kyte NP, Jackson S, Smith L, Fineran P. Genome-wide identification of bacterial genes contributing to nucleus-forming jumbo phage infection. Nucleic Acids Res 2025; 53:gkae1194. [PMID: 39694477 PMCID: PMC11797060 DOI: 10.1093/nar/gkae1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
The Chimalliviridae family of bacteriophages (phages) form a proteinaceous nucleus-like structure during infection of their bacterial hosts. This phage 'nucleus' compartmentalises phage DNA replication and transcription, and shields the phage genome from DNA-targeting defence systems such as CRISPR-Cas and restriction-modification. Their insensitivity to DNA-targeting defences makes nucleus-forming jumbo phages attractive for phage therapy. However, little is known about the bacterial gene requirements during the infectious cycle of nucleus-forming phages or how phage resistance may emerge. To address this, we used the Serratia nucleus-forming jumbo phage PCH45 and exploited a combination of high-throughput transposon mutagenesis and deep sequencing (Tn-seq), and CRISPR interference (CRISPRi). We identified over 90 host genes involved in nucleus-forming phage infection, the majority of which were either involved in the biosynthesis of the primary receptor, flagella, or influenced swimming motility. In addition, the bacterial outer membrane lipopolysaccharide contributed to PCH45 adsorption. Other unrelated Serratia-flagellotropic phages used similar host genes as the nucleus-forming phage, indicating that phage resistance can lead to cross-resistance against diverse phages. Our findings demonstrate that resistance to nucleus-forming jumbo phages can readily emerge via bacterial surface receptor mutation and this should be a major factor when designing strategies for their use in phage therapy.
Collapse
Affiliation(s)
- Kate R Harding
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Lucia M Malone
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Natalie A P Kyte
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Leah M Smith
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
11
|
Abdelmalek N, Yousief SW, Bojer MS, Alobaidallah MSA, Olsen JE, Paglietti B. The Secondary Resistome of Methicillin-Resistant Staphylococcus aureus to β-Lactam Antibiotics. Antibiotics (Basel) 2025; 14:112. [PMID: 40001356 PMCID: PMC11851648 DOI: 10.3390/antibiotics14020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Therapeutic strategies for methicillin-resistant Staphylococcus aureus (MRSA) are increasingly limited due to the ability of the pathogen to evade conventional treatments such as vancomycin and daptomycin. This challenge has shifted the focus towards novel strategies, including the resensitization of β-lactams, which are still used as first-line treatments for methicillin-susceptible Staphylococcus aureus (MSSA). To achieve this, it is essential to identify the secondary resistome associated with the clinically relevant β-lactam antibiotics. Methods: Transposon-Directed Insertion Site Sequencing (TraDIS) was employed to assess conditional essentiality by analyzing the depletion of mutants from a highly saturated transposon library of MRSA USA300 JE2 exposed to ½ minimal inhibitory concentration (MIC) of oxacillin or cefazolin. Results: TraDIS analysis led to the identification of 52 shared fitness genes involved in β-lactam resistance that are primarily linked to cell wall metabolism and regulatory systems. Among these, both known resistance factors and novel conditionally essential genes were highlighted. As proof of concept, transposon mutants corresponding to nine genes (sagB, SAUSA300_0657, SAUSA300_0957, SAUSA300_1683, SAUSA300_1964, SAUSA300_1966, SAUSA300_1967, SAUSA300_1692, and mazF) were grown in the presence of β-lactam antibiotics and their MICs were determined. All mutants showed significantly reduced resistance to β-lactam antibiotics. Conclusions: This comprehensive genome-wide investigation provides novel insights into the resistance mechanisms of β-lactam antibiotics, and suggests potential therapeutic targets for combination therapies with helper drugs.
Collapse
Affiliation(s)
- Nader Abdelmalek
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (N.A.); (S.W.Y.)
| | - Sally Waheed Yousief
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (N.A.); (S.W.Y.)
| | - Martin Saxtorph Bojer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (M.S.B.); (M.S.A.A.); (J.E.O.)
| | - Mosaed Saleh A. Alobaidallah
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (M.S.B.); (M.S.A.A.); (J.E.O.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (M.S.B.); (M.S.A.A.); (J.E.O.)
| | - Bianca Paglietti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (N.A.); (S.W.Y.)
| |
Collapse
|
12
|
Akintunde O, Tucker T, Carabetta VJ. The Evolution of Next-Generation Sequencing Technologies. Methods Mol Biol 2025; 2866:3-29. [PMID: 39546194 DOI: 10.1007/978-1-0716-4192-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The genetic information that dictates the structure and function of all life forms is encoded in the DNA. In 1953, Watson and Crick first presented the double helical structure of a DNA molecule. Their findings unearthed the desire to elucidate the exact composition and sequence of DNA molecules. Discoveries and the subsequent development and optimization of techniques that allowed for deciphering the DNA sequence has opened new doors in research, biotech, and healthcare. The application of high-throughput sequencing technologies in these industries has positively impacted and will continue to contribute to the betterment of humanity and the global economy. Improvements, such as the use of radioactive molecules for DNA sequencing to the use of florescent dyes and the implementation of polymerase chain reaction (PCR) for amplification, led to sequencing a few hundred base pairs in days, to automation, where sequencing of thousands of base pairs in hours became possible. Significant advances have been made, but there is still room for improvement. Here, we look at the history and the technology of the currently available next-generation sequencing platforms and the possible applications of such technologies to biomedical research and beyond.
Collapse
Affiliation(s)
- Olaitan Akintunde
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Trichina Tucker
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
13
|
Thung TY, Hall A, Jati AP, White ME, Bamert RS, Tan KS, Press C, Taiaroa G, Short FL, Dunstan RA, Lithgow T. Genetic variation in individuals from a population of the minimalist bacteriophage Merri-merri-uth nyilam marra-natj driving evolution of the virus. mBio 2024; 15:e0256424. [PMID: 39475328 PMCID: PMC11633184 DOI: 10.1128/mbio.02564-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024] Open
Abstract
In a survey of a waterway on Wurundjeri land, two sub-populations of the bacteriophage Merri-merri-uth nyilam marra-natj (phage MMNM) were isolated on a permissive host, Klebsiella B5055 of capsule-type K2, but were distinguished by minor phenotypic differences. The variant phage MMNM(Ala134) showed an inhibited activity against Klebsiella AJ174-2, and this was used as a basis to select for further variation through experimental evolution. Over the course of an evolution experiment, 20 phages that evolved distinct phenotypes in terms of the morphologies of plaques formed when they infected host Klebsiella were subject to whole-genome sequencing. The evolved phages had mutations in a small set of proteins that contribute to the baseplate portion of the phage virion. Phages MMNM and MMNM(Ala134) are minimalist phages, with baseplates formed from only five predicted subunits, akin to other minimalist phages Pam3 and XM1. The homology between all three minimalist phages provided a structural framework to interpret the two classes of mutations derived through evolution in the presence of the semi-permissive host: those that affect the interfacial surfaces between baseplate subunits, and those in a base-plate associated tail-fiber. This study evidences that multiple small mutations can be fixed into a sub-population of phage to provide a basis for phenotypic variation that we suggest could ultimately provide for a shift of virus properties, as an alternative evolutionary scenario to the major genetic events that result in more well-studied evolutionary mechanism of phage mosaicism. IMPORTANCE Bacteriophages (phages) are viruses that prey on bacteria. This study sampled natural phage populations to test the hypothesis that untapped genetic variation within a population can be the basis for the selection of phages to diversify their host-range. Sampling of a freshwater site revealed two populations of the phage Merri-merri-uth nyilam marra-natj (phage MMNM), differing by a variant residue (Val134Ala) in the baseplate protein MMNM_26. This sequence variation modulated bacterial killing in plaques, and further evolution of the phages on a semi-permissive bacterial host led to a new generation of phages with more diverse phenotypes in killing the bacterium Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Tze Y. Thung
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Alex Hall
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Afif P. Jati
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Murray E. White
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Rebecca S. Bamert
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Kher Shing Tan
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Cara Press
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - George Taiaroa
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Parkville, Australia
| | - Francesca L. Short
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Rhys A. Dunstan
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Trevor Lithgow
- Center to Impact AMR, Monash University, Clayton, Australia
- Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
14
|
Jahn M, Crang N, Gynnå AH, Kabova D, Frielingsdorf S, Lenz O, Charpentier E, Hudson EP. The energy metabolism of Cupriavidus necator in different trophic conditions. Appl Environ Microbiol 2024; 90:e0074824. [PMID: 39320125 PMCID: PMC11540253 DOI: 10.1128/aem.00748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
The "knallgas" bacterium Cupriavidus necator is attracting interest due to its extremely versatile metabolism. C. necator can use hydrogen or formic acid as an energy source, fixes CO2 via the Calvin-Benson-Bassham (CBB) cycle, and grows on organic acids and sugars. Its tripartite genome is notable for its size and duplications of key genes (CBB cycle, hydrogenases, and nitrate reductases). Little is known about which of these isoenzymes and their cofactors are actually utilized for growth on different substrates. Here, we investigated the energy metabolism of C. necator H16 by growing a barcoded transposon knockout library on succinate, fructose, hydrogen (H2/CO2), and formic acid. The fitness contribution of each gene was determined from enrichment or depletion of the corresponding mutants. Fitness analysis revealed that (i) some, but not all, molybdenum cofactor biosynthesis genes were essential for growth on formate and nitrate respiration. (ii) Soluble formate dehydrogenase (FDH) was the dominant enzyme for formate oxidation, not membrane-bound FDH. (iii) For hydrogenases, both soluble and membrane-bound enzymes were utilized for lithoautotrophic growth. (iv) Of the six terminal respiratory complexes in C. necator H16, only some are utilized, and utilization depends on the energy source. (v) Deletion of hydrogenase-related genes boosted heterotrophic growth, and we show that the relief from associated protein cost is responsible for this phenomenon. This study evaluates the contribution of each of C. necator's genes to fitness in biotechnologically relevant growth regimes. Our results illustrate the genomic redundancy of this generalist bacterium and inspire future engineering strategies.IMPORTANCEThe soil bacterium Cupriavidus necator can grow on gas mixtures of CO2, H2, and O2. It also consumes formic acid as carbon and energy source and various other substrates. This metabolic flexibility comes at a price, for example, a comparatively large genome (6.6 Mb) and a significant background expression of lowly utilized genes. In this study, we mutated every non-essential gene in C. necator using barcoded transposons in order to determine their effect on fitness. We grew the mutant library in various trophic conditions including hydrogen and formate as the sole energy source. Fitness analysis revealed which of the various energy-generating iso-enzymes are actually utilized in which condition. For example, only a few of the six terminal respiratory complexes are used, and utilization depends on the substrate. We also show that the protein cost for the various lowly utilized enzymes represents a significant growth disadvantage in specific conditions, offering a route to rational engineering of the genome. All fitness data are available in an interactive app at https://m-jahn.shinyapps.io/ShinyLib/.
Collapse
Affiliation(s)
- Michael Jahn
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
- Max Planck Unit for
the Science of Pathogens,
Berlin, Germany
| | - Nick Crang
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| | - Arvid H. Gynnå
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| | - Deria Kabova
- Department of
Chemistry, Technical University Berlin,
Berlin, Germany
| | | | - Oliver Lenz
- Department of
Chemistry, Technical University Berlin,
Berlin, Germany
| | - Emmanuelle Charpentier
- Max Planck Unit for
the Science of Pathogens,
Berlin, Germany
- Humboldt-Universität
zu Berlin, Institute for Biology,
Berlin, Germany
| | - Elton P. Hudson
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| |
Collapse
|
15
|
Mediati DG, Blair TA, Costas A, Monahan LG, Söderström B, Charles IG, Duggin IG. Genetic requirements for uropathogenic E. coli proliferation in the bladder cell infection cycle. mSystems 2024; 9:e0038724. [PMID: 39287381 PMCID: PMC11495030 DOI: 10.1128/msystems.00387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) requires an adaptable physiology to survive the wide range of environments experienced in the host, including gut and urinary tract surfaces. To identify UPEC genes required during intracellular infection, we developed a transposon-directed insertion-site sequencing approach for cellular infection models and searched for genes in a library of ~20,000 UTI89 transposon-insertion mutants that are specifically required at the distinct stages of infection of cultured bladder epithelial cells. Some of the bacterial functional requirements apparent in host bladder cell growth overlapped with those for M9-glycerol, notably nutrient utilization, polysaccharide and macromolecule precursor biosynthesis, and cell envelope stress tolerance. Two genes implicated in the intracellular bladder cell infection stage were confirmed through independent gene deletion studies: neuC (sialic acid capsule biosynthesis) and hisF (histidine biosynthesis). Distinct sets of UPEC genes were also implicated in bacterial dispersal, where UPEC erupts from bladder cells in highly filamentous or motile forms upon exposure to human urine, and during recovery from infection in a rich medium. We confirm that the dedD gene linked to septal peptidoglycan remodeling is required during UPEC dispersal from human bladder cells and may help stabilize cell division or the cell wall during envelope stress created by host cells. Our findings support a view that the host intracellular environment and infection cycle are multi-nutrient limited and create stress that demands an array of biosynthetic, cell envelope integrity, and biofilm-related functions of UPEC. IMPORTANCE Urinary tract infections (UTIs) are one of the most frequent infections worldwide. Uropathogenic Escherichia coli (UPEC), which accounts for ~80% of UTIs, must rapidly adapt to highly variable host environments, such as the gut, bladder sub-surface, and urine. In this study, we searched for UPEC genes required for bacterial growth and survival throughout the cellular infection cycle. Genes required for de novo synthesis of biomolecules and cell envelope integrity appeared to be important, and other genes were also implicated in bacterial dispersal and recovery from infection of cultured bladder cells. With further studies of individual gene function, their potential as therapeutic targets may be realized. This study expands knowledge of the UTI cycle and establishes an approach to genome-wide functional analyses of stage-resolved microbial infections.
Collapse
Affiliation(s)
- Daniel G. Mediati
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Tamika A. Blair
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Ariana Costas
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
- Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Leigh G. Monahan
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Ian G. Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Iain G. Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
16
|
A. Ghomi F, Jung JJ, Langridge GC, Cain AK, Boinett CJ, Abd El Ghany M, Pickard DJ, Kingsley RA, Thomson NR, Parkhill J, Gardner PP, Barquist L. High-throughput transposon mutagenesis in the family Enterobacteriaceae reveals core essential genes and rapid turnover of essentiality. mBio 2024; 15:e0179824. [PMID: 39207104 PMCID: PMC11481867 DOI: 10.1128/mbio.01798-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The Enterobacteriaceae are a scientifically and medically important clade of bacteria, containing the model organism Escherichia coli, as well as major human pathogens including Salmonella enterica and Klebsiella pneumoniae. Essential gene sets have been determined for several members of the Enterobacteriaceae, with the Keio E. coli single-gene deletion library often regarded as a gold standard. However, it remains unclear how gene essentiality varies between related strains and species. To investigate this, we have assembled a collection of 13 sequenced high-density transposon mutant libraries from five genera within the Enterobacteriaceae. We first assess several gene essentiality prediction approaches, investigate the effects of transposon density on essentiality prediction, and identify biases in transposon insertion sequencing data. Based on these investigations, we develop a new classifier for gene essentiality. Using this new classifier, we define a core essential genome in the Enterobacteriaceae of 201 universally essential genes. Despite the presence of a large cohort of variably essential genes, we find an absence of evidence for genus-specific essential genes. A clear example of this sporadic essentiality is given by the set of genes regulating the σE extracytoplasmic stress response, which appears to have independently acquired essentiality multiple times in the Enterobacteriaceae. Finally, we compare our essential gene sets to the natural experiment of gene loss in obligate insect endosymbionts that have emerged from within the Enterobacteriaceae. This isolates a remarkably small set of genes absolutely required for survival and identifies several instances of essential stress responses masked by redundancy in free-living bacteria.IMPORTANCEThe essential genome, that is the set of genes absolutely required to sustain life, is a core concept in genetics. Essential genes in bacteria serve as drug targets, put constraints on the engineering of biological chassis for technological or industrial purposes, and are key to constructing synthetic life. Despite decades of study, relatively little is known about how gene essentiality varies across related bacteria. In this study, we have collected gene essentiality data for 13 bacteria related to the model organism Escherichia coli, including several human pathogens, and investigated the conservation of essentiality. We find that approximately a third of the genes essential in any particular strain are non-essential in another related strain. Surprisingly, we do not find evidence for essential genes unique to specific genera; rather it appears a substantial fraction of the essential genome rapidly gains or loses essentiality during evolution. This suggests that essentiality is not an immutable characteristic but depends crucially on the genomic context. We illustrate this through a comparison of our essential genes in free-living bacteria to genes conserved in 34 insect endosymbionts with naturally reduced genomes, finding several cases where genes generally regarded as being important for specific stress responses appear to have become essential in endosymbionts due to a loss of functional redundancy in the genome.
Collapse
Affiliation(s)
- Fatemeh A. Ghomi
- Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jakob J. Jung
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Gemma C. Langridge
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| | | | - Moataz Abd El Ghany
- The Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
- School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Derek J. Pickard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Robert A. Kingsley
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Department of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Paul P. Gardner
- Biomolecular Interactions Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry, Otago University, Dunedin, New Zealand
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| |
Collapse
|
17
|
Rooke JL, Goodall ECA, Pullela K, Da Costa R, Martinelli N, Smith C, Mora M, Cunningham AF, Henderson IR. Genome-wide fitness analysis of Salmonella enterica reveals aroA mutants are attenuated due to iron restriction in vitro. mBio 2024; 15:e0331923. [PMID: 39287440 PMCID: PMC11481492 DOI: 10.1128/mbio.03319-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Salmonella enterica is a globally disseminated pathogen that is the cause of over 100 million infections per year. The resulting diseases are dependent upon host susceptibility and the infecting serovar. As S. enterica serovar Typhimurium induces a typhoid-like disease in mice, this model has been used extensively to illuminate various aspects of Salmonella infection and host responses. Due to the severity of infection in this model, researchers often use strains of mice resistant to infection or attenuated Salmonella. Despite decades of research, many aspects of Salmonella infection and fundamental biology remain poorly understood. Here, we use a transposon insertion sequencing technique to interrogate the essential genomes of widely used isogenic wild-type and attenuated S. Typhimurium strains. We reveal differential essential pathways between strains in vitro and provide a direct link between iron starvation, DNA synthesis, and bacterial membrane integrity.IMPORTANCESalmonella enterica is an important clinical pathogen that causes a high number of deaths and is increasingly resistant to antibiotics. Importantly, S. enterica is used widely as a model to understand host responses to infection. Understanding how Salmonella survives in vivo is important for the design of new vaccines to combat this pathogen. Live attenuated vaccines have been used clinically for decades. A widely used mutation, aroA, is thought to attenuate Salmonella by restricting the ability of the bacterium to access particular amino acids. Here we show that this mutation limits the ability of Salmonella to acquire iron. These observations have implications for the interpretation of many previous studies and for the use of aroA in vaccine development.
Collapse
Affiliation(s)
- Jessica L Rooke
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Emily C A Goodall
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Karthik Pullela
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Rochelle Da Costa
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Nicole Martinelli
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Chelsie Smith
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Maria Mora
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|
18
|
Yousief SW, Abdelmalek N, Paglietti B. Optimizing phage-based mutant recovery and minimizing heat effect in the construction of transposon libraries in Staphylococcus aureus. Sci Rep 2024; 14:22831. [PMID: 39354068 PMCID: PMC11445466 DOI: 10.1038/s41598-024-73731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Staphylococcus aureus (S. aureus), particularly Methicillin-resistant S. aureus (MRSA), poses a significant global public health threat, necessitating advanced methodologies to enhance our understanding of this organism at the omics levels. This study introduces a refined protocol for constructing and curing high-density transposon mutant (tn-mutant) libraries in S. aureus, addressing the challenges associated with low transductant yields, and the complex genetic manipulation mechanism in Gram-positive bacteria. Our methodology employs a Himar1 transposon based on a two-plasmid system, leveraging Himar1's high insertional efficiency in AT-rich organisms. Enhanced transduction efficiency was achieved through chloramphenicol pre-treatment and the use of modified enriched media. Complementing this, an optimized plasmid curing procedure ensured a representative and stable tn-mutant library. The protocol was successfully applied to multiple S. aureus strains, demonstrating an increase in mutant recovery and reduced post-curing impact. The method offers a robust approach for Transposon Insertion Sequencing (TIS) applications in S. aureus, enabling deeper insights into survival, resistance, and pathogenicity mechanisms. This protocol holds a significant potential for accelerating the construction of tn-mutant libraries in various S. aureus strains.
Collapse
Affiliation(s)
- Sally W Yousief
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
| | - Nader Abdelmalek
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
| | - Bianca Paglietti
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy.
| |
Collapse
|
19
|
Gray J, Torres VVL, Goodall E, McKeand SA, Scales D, Collins C, Wetherall L, Lian ZJ, Bryant JA, Milner MT, Dunne KA, Icke C, Rooke JL, Schneiders T, Lund PA, Cunningham AF, Cole JA, Henderson IR. Transposon mutagenesis screen in Klebsiella pneumoniae identifies genetic determinants required for growth in human urine and serum. eLife 2024; 12:RP88971. [PMID: 39189918 PMCID: PMC11349299 DOI: 10.7554/elife.88971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Klebsiella pneumoniae is a global public health concern due to the rising myriad of hypervirulent and multidrug-resistant clones both alarmingly associated with high mortality. The molecular mechanisms underpinning these recalcitrant K. pneumoniae infection, and how virulence is coupled with the emergence of lineages resistant to nearly all present-day clinically important antimicrobials, are unclear. In this study, we performed a genome-wide screen in K. pneumoniae ECL8, a member of the endemic K2-ST375 pathotype most often reported in Asia, to define genes essential for growth in a nutrient-rich laboratory medium (Luria-Bertani [LB] medium), human urine, and serum. Through transposon directed insertion-site sequencing (TraDIS), a total of 427 genes were identified as essential for growth on LB agar, whereas transposon insertions in 11 and 144 genes decreased fitness for growth in either urine or serum, respectively. These studies not only provide further knowledge on the genetics of this pathogen but also provide a strong impetus for discovering new antimicrobial targets to improve current therapeutic options for K. pneumoniae infections.
Collapse
Affiliation(s)
- Jessica Gray
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Von Vergel L Torres
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Emily Goodall
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Samantha A McKeand
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Danielle Scales
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Christy Collins
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Laura Wetherall
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Zheng Jie Lian
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Jack A Bryant
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Matthew T Milner
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Karl A Dunne
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Christopher Icke
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Jessica L Rooke
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| | - Thamarai Schneiders
- Division of Infection Medicine, University of EdinburghEdinburghUnited Kingdom
| | - Peter A Lund
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of BirminghamBirminghamUnited Kingdom
| | - Jeff A Cole
- Institute of Microbiology and Infection, University of BirminghamBirminghamUnited Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of QueenslandBrisbaneAustralia
| |
Collapse
|
20
|
Ma Y, Pirolo M, Jana B, Mebus VH, Guardabassi L. The intrinsic macrolide resistome of Escherichia coli. Antimicrob Agents Chemother 2024; 68:e0045224. [PMID: 38940570 PMCID: PMC11304742 DOI: 10.1128/aac.00452-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Intrinsic resistance to macrolides in Gram-negative bacteria is primarily attributed to the low permeability of the outer membrane, though the underlying genetic and molecular mechanisms remain to be fully elucidated. Here, we used transposon directed insertion-site sequencing (TraDIS) to identify chromosomal non-essential genes involved in Escherichia coli intrinsic resistance to a macrolide antibiotic, tilmicosin. We constructed two highly saturated transposon mutant libraries of >290,000 and >390,000 unique Tn5 insertions in a clinical enterotoxigenic strain (ETEC5621) and in a laboratory strain (K-12 MG1655), respectively. TraDIS analysis identified genes required for growth of ETEC5621 and MG1655 under 1/8 MIC (n = 15 and 16, respectively) and 1/4 MIC (n = 38 and 32, respectively) of tilmicosin. For both strains, 23 genes related to lipopolysaccharide biosynthesis, outer membrane assembly, the Tol-Pal system, efflux pump, and peptidoglycan metabolism were enriched in the presence of the antibiotic. Individual deletion of genes (n = 10) in the wild-type strains led to a 64- to 2-fold reduction in MICs of tilmicosin, erythromycin, and azithromycin, validating the results of the TraDIS analysis. Notably, deletion of surA or waaG, which impairs the outer membrane, led to the most significant decreases in MICs of all three macrolides in ETEC5621. Our findings contribute to a genome-wide understanding of intrinsic macrolide resistance in E. coli, shedding new light on the potential role of the peptidoglycan layer. They also provide an in vitro proof of concept that E. coli can be sensitized to macrolides by targeting proteins maintaining the outer membrane such as SurA and WaaG.
Collapse
Affiliation(s)
- Yibing Ma
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mattia Pirolo
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Bimal Jana
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Viktor Hundtofte Mebus
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
21
|
Holden ER, Abi Assaf J, Al-Khanaq H, Vimont N, Webber MA, Trampari E. Identification of pathways required for Salmonella to colonize alfalfa using TraDIS- Xpress. Appl Environ Microbiol 2024; 90:e0013924. [PMID: 38904400 PMCID: PMC11267905 DOI: 10.1128/aem.00139-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Enteropathogenic bacteria, such as Salmonella, have been linked to numerous fresh produce outbreaks, posing a significant public health threat. The ability of Salmonella to persist on fresh produce for extended periods is partly attributed to its capacity to form biofilms, which pose a challenge to food decontamination and can increase pathogenic bacterial load in the food chain. Preventing Salmonella colonization of food products and food processing environments is crucial for reducing the incidence of foodborne outbreaks. Understanding the mechanisms of establishment on fresh produce will inform the development of decontamination approaches. We used Transposon-Directed Insertion site Sequencing (TraDIS-Xpress) to investigate the mechanisms used by Salmonella enterica serovar Typhimurium to colonize and establish on fresh produce over time. We established an alfalfa colonization model and compared the findings to those obtained from glass surfaces. Our research identified distinct mechanisms required for Salmonella establishment on alfalfa compared with glass surfaces over time. These include the type III secretion system (sirC), Fe-S cluster assembly (iscA), curcumin degradation (curA), and copper tolerance (cueR). Shared pathways across surfaces included NADH hydrogenase synthesis (nuoA and nuoB), fimbrial regulation (fimA and fimZ), stress response (rpoS), LPS O-antigen synthesis (rfbJ), iron acquisition (ybaN), and ethanolamine utilization (eutT and eutQ). Notably, flagellum biosynthesis differentially impacted the colonization of biotic and abiotic environments over time. Understanding the genetic underpinnings of Salmonella establishment on both biotic and abiotic surfaces over time offers valuable insights that can inform the development of targeted antibacterial therapeutics, ultimately enhancing food safety throughout the food processing chain. IMPORTANCE Salmonella is the second most costly foodborne illness in the United Kingdom, accounting for £0.2 billion annually, with numerous outbreaks linked to fresh produce, such as leafy greens, cucumbers, tomatoes, and alfalfa sprouts. The ability of Salmonella to colonize and establish itself in fresh produce poses a significant challenge, hindering decontamination efforts and increasing the risk of illness. Understanding the key mechanisms of Salmonella to colonize plants over time is key to finding new ways to prevent and control contamination of fresh produce. This study identified genes and pathways important for Salmonella colonization of alfalfa and compared those with colonization of glass using a genome-wide screen. Genes with roles in flagellum biosynthesis, lipopolysaccharide production, and stringent response regulation varied in their significance between plants and glass. This work deepens our understanding of the requirements for plant colonization by Salmonella, revealing how gene essentiality changes over time and in different environments. This knowledge is key to developing effective strategies to reduce the risk of foodborne disease.
Collapse
Affiliation(s)
- Emma R. Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Justin Abi Assaf
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Haider Al-Khanaq
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Noemie Vimont
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Mark A. Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Eleftheria Trampari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
22
|
Delarouzée A, Lopes Ferreira N, Baum C, Wasels F. Gene essentiality in the solventogenic Clostridium acetobutylicum DSM 792. Appl Environ Microbiol 2024; 90:e0028224. [PMID: 38864631 PMCID: PMC11267918 DOI: 10.1128/aem.00282-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
Clostridium acetobutylicum is a solventogenic, anaerobic, gram-positive bacterium that is commonly considered the model organism for studying acetone-butanol-ethanol fermentation. The need to produce these chemicals sustainably and with a minimal impact on the environment has revived the interest in research on this bacterium. The recent development of efficient genetic tools allows to better understand the physiology of this micro-organism, aiming at improving its fermentation capacities. Knowledge about gene essentiality would guide the future genetic editing strategies and support the understanding of crucial cellular functions in this bacterium. In this work, we applied a transposon insertion site sequencing method to generate large mutant libraries containing millions of independent mutants that allowed us to identify a core group of 418 essential genes needed for in vitro development. Future research on this significant biocatalyst will be guided by the data provided in this work, which will serve as a valuable resource for the community. IMPORTANCE Clostridium acetobutylicum is a leading candidate to synthesize valuable compounds like three and four carbons alcohols. Its ability to convert carbohydrates into a mixture of acetone, butanol, and ethanol as well as other chemicals of interest upon genetic engineering makes it an advantageous organism for the valorization of lignocellulose-derived sugar mixtures. Since, genetic optimization depends on the fundamental insights supplied by accurate gene function assignment, gene essentiality analysis is of great interest as it can shed light on the function of many genes whose functions are still to be confirmed. The data obtained in this study will be of great value for the research community aiming to develop C. acetobutylicum as a platform organism for the production of chemicals of interest.
Collapse
Affiliation(s)
| | | | - Chloé Baum
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Paris, France
| | | |
Collapse
|
23
|
Ben-Porat N, Ohayon A, Rosenberg T, Musa A, Petersen E, Mills E. Utilizing nutrient type compounds as anti-bacterial compounds: arginine and cysteine inhibit Salmonella survival in egg white. Front Bioeng Biotechnol 2024; 12:1404218. [PMID: 39015136 PMCID: PMC11250598 DOI: 10.3389/fbioe.2024.1404218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/03/2024] [Indexed: 07/18/2024] Open
Abstract
Because of growing levels of antibiotic resistance, new methods to combat bacteria are needed. We hypothesized that because bacteria evolved to survive in specific environments, the addition of compounds, including nutrient type compounds, to an environment, might result in a modification of that environment that will disrupt bacterial growth or in maladaptive bacterial behavior, i.e., gene expression. As a proof of concept, we focused on the egg white environment and the pathogen Salmonella. Despite egg white's antibacterial nature, Salmonella is able to survive and grow in egg white, and this ability of Salmonella leads to infection of chicks and humans. Here, the 20 L-amino-acids were screened for their ability to affect the growth of Salmonella in egg white. L-arginine and L-cysteine were found to reduce growth in egg white in physiologically relevant concentrations. To determine the mechanism behind L-arginine inhibition TnSeq was utilized. TnSeq identified many Salmonella genes required for survival in egg white including genes required for iron import, biotin synthesis, stress responses, cell integrity, and DNA repair. However, a comparison of Salmonella in egg white with and without L-arginine identified only a few differences in the frequency of transposon insertions, including the possible contribution of perturbations in the cell envelope to the inhibition mechanism. Finally, both D-arginine and D-cysteine were found to inhibit Salmonella in egg white. This implied that the effect of arginine and cysteine in egg white is chemical rather than biological, likely on the egg white environment or on the bacterial outer membrane. To conclude, these results show that this approach of addition of compounds, including nutrient type compounds, to an environment can be used to limit bacterial growth. Importantly, these compounds have no inherent anti-bacterial properties, are used as nutrients by animals and bacteria, and only become anti-bacterial in a specific environmental context. Future research screening for the effects of compounds in relevant environments might uncover new ways to reduce pathogen levels in the poultry industry and beyond.
Collapse
Affiliation(s)
- Nir Ben-Porat
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amital Ohayon
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Rosenberg
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Abdulafiz Musa
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Erik Petersen
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Erez Mills
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
24
|
Torres M, Paszti S, Eberl L. Shedding light on bacteria-host interactions with the aid of TnSeq approaches. mBio 2024; 15:e0039024. [PMID: 38722161 PMCID: PMC11237515 DOI: 10.1128/mbio.00390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Bacteria are highly adaptable and grow in diverse niches, where they often interact with eukaryotic organisms. These interactions with different hosts span the entire spectrum from symbiosis to pathogenicity and thus determine the lifestyle of the bacterium. Knowledge of the genetic determinants involved in animal and plant host colonization by pathogenic and mutualistic bacteria is not only crucial to discover new drug targets for disease management but also for developing novel biostimulant strategies. In the last decades, significant progress in genome-wide high-throughput technologies such as transposon insertion sequencing has led to the identification of pathways that enable efficient host colonization. However, the extent to which similar genes play a role in this process in different bacteria is yet unclear. This review highlights the commonalities and specificities of bacterial determinants important for bacteria-host interaction.
Collapse
Affiliation(s)
- Marta Torres
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Sarah Paszti
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
25
|
Sullivan GJ, Barquist L, Cain AK. A method to correct for local alterations in DNA copy number that bias functional genomics assays applied to antibiotic-treated bacteria. mSystems 2024; 9:e0066523. [PMID: 38470252 PMCID: PMC11019837 DOI: 10.1128/msystems.00665-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Functional genomics techniques, such as transposon insertion sequencing and RNA-sequencing, are key to studying relative differences in bacterial mutant fitness or gene expression under selective conditions. However, certain stress conditions, mutations, or antibiotics can directly interfere with DNA synthesis, resulting in systematic changes in local DNA copy numbers along the chromosome. This can lead to artifacts in sequencing-based functional genomics data when comparing antibiotic treatment to an unstressed control. Further, relative differences in gene-wise read counts may result from alterations in chromosomal replication dynamics, rather than selection or direct gene regulation. We term this artifact "chromosomal location bias" and implement a principled statistical approach to correct it by calculating local normalization factors along the chromosome. These normalization factors are then directly incorporated into statistical analyses using standard RNA-sequencing analysis methods without modifying the read counts themselves, preserving important information about the mean-variance relationship in the data. We illustrate the utility of this approach by generating and analyzing a ciprofloxacin-treated transposon insertion sequencing data set in Escherichia coli as a case study. We show that ciprofloxacin treatment generates chromosomal location bias in the resulting data, and we further demonstrate that failing to correct for this bias leads to false predictions of mutant drug sensitivity as measured by minimum inhibitory concentrations. We have developed an R package and user-friendly graphical Shiny application, ChromoCorrect, that detects and corrects for chromosomal bias in read count data, enabling the application of functional genomics technologies to the study of antibiotic stress.IMPORTANCEAltered gene dosage due to changes in DNA replication has been observed under a variety of stresses with a variety of experimental techniques. However, the implications of changes in gene dosage for sequencing-based functional genomics assays are rarely considered. We present a statistically principled approach to correcting for the effect of changes in gene dosage, enabling testing for differences in the fitness effects or regulation of individual genes in the presence of confounding differences in DNA copy number. We show that failing to correct for these effects can lead to incorrect predictions of resistance phenotype when applying functional genomics assays to investigate antibiotic stress, and we provide a user-friendly application to detect and correct for changes in DNA copy number.
Collapse
Affiliation(s)
- Geraldine J. Sullivan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Lars Barquist
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
26
|
Kyono Y, Tolwinski M, Flowers SA. Technical considerations for cost-effective transposon directed insertion-site sequencing (TraDIS). Sci Rep 2024; 14:6756. [PMID: 38514891 PMCID: PMC10958030 DOI: 10.1038/s41598-024-57537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
Transposon directed insertion-site sequencing (TraDIS), a variant of transposon insertion sequencing commonly known as Tn-Seq, is a high-throughput assay that defines essential bacterial genes across diverse growth conditions. However, the variability between laboratory environments often requires laborious, time-consuming modifications to its protocol. In this technical study, we aimed to refine the protocol by identifying key parameters that can impact the complexity of mutant libraries. Firstly, we discovered that adjusting electroporation parameters including transposome concentration, transposome assembly conditions, and cell densities can significantly improve the recovery of viable mutants for different Escherichia coli strains. Secondly, we found that post-electroporation conditions, such as recovery time and the use of different mediums for selecting mutants may also impact the complexity of viable mutants in the library. Finally, we developed a simplified sequencing library preparation workflow based on a Nextera-TruSeq hybrid design where ~ 80% of sequenced reads correspond to transposon-DNA junctions. The technical improvements presented in our study aim to streamline TraDIS protocols, making this powerful technique more accessible for a wider scientific audience.
Collapse
Affiliation(s)
- Yasuhiro Kyono
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 S Wood St. #125B, Chicago, IL, 60612, USA
| | - Madeline Tolwinski
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 S Wood St. #125B, Chicago, IL, 60612, USA
| | - Stephanie A Flowers
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, 833 S Wood St. #125B, Chicago, IL, 60612, USA.
| |
Collapse
|
27
|
Acton L, Pye HV, Thilliez G, Kolenda R, Matthews M, Turner AK, Yasir M, Holden E, Al-Khanaq H, Webber M, Adriaenssens EM, Kingsley RA. Collateral sensitivity increases the efficacy of a rationally designed bacteriophage combination to control Salmonella enterica. J Virol 2024; 98:e0147623. [PMID: 38376991 PMCID: PMC10949491 DOI: 10.1128/jvi.01476-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
The ability of virulent bacteriophages to lyse bacteria influences bacterial evolution, fitness, and population structure. Knowledge of both host susceptibility and resistance factors is crucial for the successful application of bacteriophages as biological control agents in clinical therapy, food processing, and agriculture. In this study, we isolated 12 bacteriophages termed SPLA phage which infect the foodborne pathogen Salmonella enterica. To determine phage host range, a diverse collection of Enterobacteriaceae and Salmonella enterica was used and genes involved in infection by six SPLA phages were identified using Salmonella Typhimurium strain ST4/74. Candidate host receptors included lipopolysaccharide (LPS), cellulose, and BtuB. Lipopolysaccharide was identified as a susceptibility factor for phage SPLA1a and mutations in LPS biosynthesis genes spontaneously emerged during culture with S. Typhimurium. Conversely, LPS was a resistance factor for phage SPLA5b which suggested that emergence of LPS mutations in culture with SPLA1a represented collateral sensitivity to SPLA5b. We show that bacteria-phage co-culture with SPLA1a and SPLA5b was more successful in limiting the emergence of phage resistance compared to single phage co-culture. Identification of host susceptibility and resistance genes and understanding infection dynamics are critical steps in the rationale design of phage cocktails against specific bacterial pathogens.IMPORTANCEAs antibiotic resistance continues to emerge in bacterial pathogens, bacterial viruses (phage) represent a potential alternative or adjunct to antibiotics. One challenge for their implementation is the predisposition of bacteria to rapidly acquire resistance to phages. We describe a functional genomics approach to identify mechanisms of susceptibility and resistance for newly isolated phages that infect and lyse Salmonella enterica and use this information to identify phage combinations that exploit collateral sensitivity, thus increasing efficacy. Collateral sensitivity is a phenomenon where resistance to one class of antibiotics increases sensitivity to a second class of antibiotics. We report a functional genomics approach to rationally design a phage combination with a collateral sensitivity dynamic which resulted in increased efficacy. Considering such evolutionary trade-offs has the potential to manipulate the outcome of phage therapy in favor of resolving infection without selecting for escape mutants and is applicable to other virus-host interactions.
Collapse
Affiliation(s)
- Luke Acton
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| | - Hannah V. Pye
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| | - Gaëtan Thilliez
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Rafał Kolenda
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Michaela Matthews
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - A. Keith Turner
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Muhammad Yasir
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Emma Holden
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Haider Al-Khanaq
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Mark Webber
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| | | | - Robert A. Kingsley
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
28
|
Fabian B, Foster C, Asher A, Hassan K, Paulsen I, Tetu S. Identifying the suite of genes central to swimming in the biocontrol bacterium Pseudomonas protegens Pf-5. Microb Genom 2024; 10:001212. [PMID: 38546328 PMCID: PMC11004494 DOI: 10.1099/mgen.0.001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/20/2024] [Indexed: 04/12/2024] Open
Abstract
Swimming motility is a key bacterial trait, important to success in many niches. Biocontrol bacteria, such as Pseudomonas protegens Pf-5, are increasingly used in agriculture to control crop diseases, where motility is important for colonization of the plant rhizosphere. Swimming motility typically involves a suite of flagella and chemotaxis genes, but the specific gene set employed for both regulation and biogenesis can differ substantially between organisms. Here we used transposon-directed insertion site sequencing (TraDIS), a genome-wide approach, to identify 249 genes involved in P. protegens Pf-5 swimming motility. In addition to the expected flagella and chemotaxis, we also identified a suite of additional genes important for swimming, including genes related to peptidoglycan turnover, O-antigen biosynthesis, cell division, signal transduction, c-di-GMP turnover and phosphate transport, and 27 conserved hypothetical proteins. Gene knockout mutants and TraDIS data suggest that defects in the Pst phosphate transport system lead to enhanced swimming motility. Overall, this study expands our knowledge of pseudomonad motility and highlights the utility of a TraDIS-based approach for analysing the functions of thousands of genes. This work sets a foundation for understanding how swimming motility may be related to the inconsistency in biocontrol bacteria performance in the field.
Collapse
Affiliation(s)
- B.K. Fabian
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - C. Foster
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - A. Asher
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - K.A. Hassan
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | - I.T. Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - S.G. Tetu
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
29
|
Wellner SM, Alobaidallah MSA, Fei X, Herrero-Fresno A, Olsen JE. Genome-wide identification of fitness-genes in aminoglycoside-resistant Escherichia coli during antibiotic stress. Sci Rep 2024; 14:4163. [PMID: 38378700 PMCID: PMC10879529 DOI: 10.1038/s41598-024-54169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Resistance against aminoglycosides is widespread in bacteria. This study aimed to identify genes that are important for growth of E. coli during aminoglycoside exposure, since such genes may be targeted to re-sensitize resistant E. coli to treatment. We constructed three transposon mutant libraries each containing > 230.000 mutants in E. coli MG1655 strains harboring streptomycin (aph(3″)-Ib/aph(6)-Id), gentamicin (aac(3)-IV), or neomycin (aph(3″)-Ia) resistance gene(s). Transposon Directed Insertion-site Sequencing (TraDIS), a combination of transposon mutagenesis and high-throughput sequencing, identified 56 genes which were deemed important for growth during streptomycin, 39 during gentamicin and 32 during neomycin exposure. Most of these fitness-genes were membrane-located (n = 55) and involved in either cell division, ATP-synthesis or stress response in the streptomycin and gentamicin exposed libraries, and enterobacterial common antigen biosynthesis or magnesium sensing/transport in the neomycin exposed library. For validation, eight selected fitness-genes/gene-clusters were deleted (minCDE, hflCK, clsA and cpxR associated with streptomycin and gentamicin resistance, and phoPQ, wecA, lpp and pal associated with neomycin resistance), and all mutants were shown to be growth attenuated upon exposure to the corresponding antibiotics. In summary, we identified genes that are advantageous in aminoglycoside-resistant E. coli during antibiotic stress. In addition, we increased the understanding of how aminoglycoside-resistant E. coli respond to antibiotic exposure.
Collapse
Affiliation(s)
- Sandra Marina Wellner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Mosaed Saleh A Alobaidallah
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, 21423, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, 22384, Jeddah, Saudi Arabia
| | - Xiao Fei
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Ana Herrero-Fresno
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Universidade da Santiago de Compostela (USC), Campus Terra, 27002, Lugo, Spain.
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| |
Collapse
|
30
|
Stoakes E, Chen X, Kalmar L, Baker D, Evans R, Rudder S, Grant AJ. Identification of Campylobacter jejuni and Campylobacter coli genes contributing to oxidative stress response using TraDIS analysis. BMC Microbiol 2024; 24:46. [PMID: 38302896 PMCID: PMC10832277 DOI: 10.1186/s12866-024-03201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Campylobacter jejuni and Campylobacter coli are the major causative agents of bacterial gastroenteritis worldwide and are known obligate microaerophiles. Despite being sensitive to oxygen and its reduction products, both species are readily isolated from animal food products kept under atmospheric conditions where they face high oxygen tension levels. RESULTS In this study, Transposon Directed Insertion-site Sequencing (TraDIS) was used to investigate the ability of one C. jejuni strain and two C. coli strains to overcome oxidative stress, using H2O2 to mimic oxidative stress. Genes were identified that were required for oxidative stress resistance for each individual strain but also allowed a comparison across the three strains. Mutations in the perR and ahpC genes were found to increase Campylobacter tolerance to H2O2. The roles of these proteins in oxidative stress were previously known in C. jejuni, but this data indicates that they most likely play a similar role in C. coli. Mutation of czcD decreased Campylobacter tolerance to H2O2. The role of CzcD, which functions as a zinc exporter, has not previously been linked to oxidative stress. The TraDIS data was confirmed using defined deletions of perR and czcD in C. coli 15-537360. CONCLUSIONS This is the first study to investigate gene fitness in both C. jejuni and C. coli under oxidative stress conditions and highlights both similar roles for certain genes for both species and highlights other genes that have a role under oxidative stress.
Collapse
Affiliation(s)
- Emily Stoakes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Xuanlin Chen
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Dave Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Steven Rudder
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK.
| |
Collapse
|
31
|
Smith LM, Hampton HG, Yevstigneyeva MS, Mahler M, Paquet ZM, Fineran PC. CRISPR-Cas immunity is repressed by the LysR-type transcriptional regulator PigU. Nucleic Acids Res 2024; 52:755-768. [PMID: 38059344 PMCID: PMC10810281 DOI: 10.1093/nar/gkad1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Bacteria protect themselves from infection by bacteriophages (phages) using different defence systems, such as CRISPR-Cas. Although CRISPR-Cas provides phage resistance, fitness costs are incurred, such as through autoimmunity. CRISPR-Cas regulation can optimise defence and minimise these costs. We recently developed a genome-wide functional genomics approach (SorTn-seq) for high-throughput discovery of regulators of bacterial gene expression. Here, we applied SorTn-seq to identify loci influencing expression of the two type III-A Serratia CRISPR arrays. Multiple genes affected CRISPR expression, including those involved in outer membrane and lipopolysaccharide synthesis. By comparing loci affecting type III CRISPR arrays and cas operon expression, we identified PigU (LrhA) as a repressor that co-ordinately controls both arrays and cas genes. By repressing type III-A CRISPR-Cas expression, PigU shuts off CRISPR-Cas interference against plasmids and phages. PigU also represses interference and CRISPR adaptation by the type I-F system, which is also present in Serratia. RNA sequencing demonstrated that PigU is a global regulator that controls secondary metabolite production and motility, in addition to CRISPR-Cas immunity. Increased PigU also resulted in elevated expression of three Serratia prophages, indicating their likely induction upon sensing PigU-induced cellular changes. In summary, PigU is a major regulator of CRISPR-Cas immunity in Serratia.
Collapse
Affiliation(s)
- Leah M Smith
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Hannah G Hampton
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Mariya S Yevstigneyeva
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Marina Mahler
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Zacharie S M Paquet
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
32
|
Tan CAZ, Chong KKL, Yeong DYX, Ng CHM, Ismail MH, Yap ZH, Khetrapal V, Tay VSY, Drautz-Moses DI, Ali Y, Chen SL, Kline KA. Purine and carbohydrate availability drive Enterococcus faecalis fitness during wound and urinary tract infections. mBio 2024; 15:e0238423. [PMID: 38078746 PMCID: PMC10790769 DOI: 10.1128/mbio.02384-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/24/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Although E. faecalis is a common wound pathogen, its pathogenic mechanisms during wound infection are unexplored. Here, combining a mouse wound infection model with in vivo transposon and RNA sequencing approaches, we identified the E. faecalis purine biosynthetic pathway and galactose/mannose MptABCD phosphotransferase system as essential for E. faecalis acute replication and persistence during wound infection, respectively. The essentiality of purine biosynthesis and the MptABCD PTS is driven by the consumption of purine metabolites by E. faecalis during acute replication and changing carbohydrate availability during the course of wound infection. Overall, our findings reveal the importance of the wound microenvironment in E. faecalis wound pathogenesis and how these metabolic pathways can be targeted to better control wound infections.
Collapse
Affiliation(s)
- Casandra Ai Zhu Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore, Singapore
| | - Kelvin Kian Long Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore, Singapore
| | - Daryl Yu Xuan Yeong
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Celine Hui Min Ng
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Muhammad Hafiz Ismail
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore, Singapore
| | - Zhei Hwee Yap
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore, Singapore
| | - Varnica Khetrapal
- Infectious Diseases Translational Research Programme, Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vanessa Shi Yun Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Daniela I. Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore, Singapore
| | - Yusuf Ali
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore General Hospital, Singapore, Singapore
| | - Swaine L. Chen
- Infectious Diseases Translational Research Programme, Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Laboratory of Bacterial Genomics, Genome Institute of Singapore, Singapore, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
33
|
Alobaidallah MSA, García V, Wellner SM, Thomsen LE, Herrero-Fresno A, Olsen JE. Enhancing the Efficacy of Chloramphenicol Therapy for Escherichia coli by Targeting the Secondary Resistome. Antibiotics (Basel) 2024; 13:73. [PMID: 38247632 PMCID: PMC10812820 DOI: 10.3390/antibiotics13010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The increasing prevalence of antimicrobial resistance and the limited availability of new antimicrobial agents have created an urgent need for new approaches to combat these issues. One such approach involves reevaluating the use of old antibiotics to ensure their appropriate usage and maximize their effectiveness, as older antibiotics could help alleviate the burden on newer agents. An example of such an antibiotic is chloramphenicol (CHL), which is rarely used due to its hematological toxicity. In the current study, we employed a previously published transposon mutant library in MG1655/pTF2::blaCTX-M-1, containing over 315,000 unique transposon insertions, to identify the genetic factors that play an important role during growth in the presence of CHL. The list of conditionally essential genes, collectively referred to as the secondary resistome (SR), included 67 genes. To validate our findings, we conducted gene knockout experiments on six genes: arcA, hfq, acrZ, cls, mdfA, and nlpI. Deleting these genes resulted in increased susceptibility to CHL as demonstrated by MIC estimations and growth experiments, suggesting that targeting the products encoded from these genes may reduce the dose of CHL needed for treatment and hence reduce the toxicity associated with CHL treatment. Thus, the gene products are indicated as targets for antibiotic adjuvants to favor the use of CHL in modern medicine.
Collapse
Affiliation(s)
- Mosaed Saleh A. Alobaidallah
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (M.S.A.A.); (V.G.); (S.M.W.); (L.E.T.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - Vanesa García
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (M.S.A.A.); (V.G.); (S.M.W.); (L.E.T.)
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade da Santiago de Compostela (USC), 27002 Lugo, Spain
| | - Sandra M. Wellner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (M.S.A.A.); (V.G.); (S.M.W.); (L.E.T.)
| | - Line E. Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (M.S.A.A.); (V.G.); (S.M.W.); (L.E.T.)
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (M.S.A.A.); (V.G.); (S.M.W.); (L.E.T.)
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Campus Terra, Universidade da Santiago de Compostela (USC), 27002 Lugo, Spain
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (M.S.A.A.); (V.G.); (S.M.W.); (L.E.T.)
| |
Collapse
|
34
|
Li L, Short FL, Hassan KA, Naidu V, Pokhrel A, Nagy SS, Prity FT, Shah BS, Afrin N, Baker S, Parkhill J, Cain AK, Paulsen IT. Systematic analyses identify modes of action of ten clinically relevant biocides and antibiotic antagonism in Acinetobacter baumannii. Nat Microbiol 2023; 8:1995-2005. [PMID: 37814070 DOI: 10.1038/s41564-023-01474-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/11/2023] [Indexed: 10/11/2023]
Abstract
Concerns exist that widespread use of antiseptic or disinfectant biocides could contribute to the emergence and spread of multidrug-resistant bacteria. To investigate this, we performed transposon-directed insertion-site sequencing (TraDIS) on the multidrug-resistant pathogen, Acinetobacter baumannii, exposed to a panel of ten structurally diverse and clinically relevant biocides. Multiple gene targets encoding cell envelope or cytoplasmic proteins involved in processes including fatty acid biogenesis, multidrug efflux, the tricarboxylic acid cycle, cell respiration and cell division, were identified to have effects on bacterial fitness upon biocide exposure, suggesting that these compounds may have intracellular targets in addition to their known effects on the cell envelope. As cell respiration genes are required for A. baumannii fitness in biocides, we confirmed that sub-inhibitory concentrations of the biocides that dissipate membrane potential can promote A. baumannii tolerance to antibiotics that act intracellularly. Our results support the concern that residual biocides might promote antibiotic resistance in pathogenic bacteria.
Collapse
Affiliation(s)
- Liping Li
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Francesca L Short
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Karl A Hassan
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Varsha Naidu
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alaska Pokhrel
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- Australian Institute for Microbiology and Infection (AIMI), University of Technology, Sydney, New South Wales, Australia
| | - Stephanie S Nagy
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Farzana T Prity
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Bhumika S Shah
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Nusrat Afrin
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Cambridge, UK
| | - Julian Parkhill
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia.
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia.
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
35
|
Shearer HL, Pace PE, Smith LM, Fineran PC, Matthews AJ, Camilli A, Dickerhof N, Hampton MB. Identification of Streptococcus pneumoniae genes associated with hypothiocyanous acid tolerance through genome-wide screening. J Bacteriol 2023; 205:e0020823. [PMID: 37791755 PMCID: PMC10601753 DOI: 10.1128/jb.00208-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Streptococcus pneumoniae is a commensal bacterium and invasive pathogen that causes millions of deaths worldwide. The pneumococcal vaccine offers limited protection, and the rise of antimicrobial resistance will make treatment increasingly challenging, emphasizing the need for new antipneumococcal strategies. One possibility is to target antioxidant defenses to render S. pneumoniae more susceptible to oxidants produced by the immune system. Human peroxidase enzymes will convert bacterial-derived hydrogen peroxide to hypothiocyanous acid (HOSCN) at sites of colonization and infection. Here, we used saturation transposon mutagenesis and deep sequencing to identify genes that enable S. pneumoniae to tolerate HOSCN. We identified 37 genes associated with S. pneumoniae HOSCN tolerance, including genes involved in metabolism, membrane transport, DNA repair, and oxidant detoxification. Single-gene deletion mutants of the identified antioxidant defense genes sodA, spxB, trxA, and ahpD were generated and their ability to survive HOSCN was assessed. With the exception of ΔahpD, all deletion mutants showed significantly greater sensitivity to HOSCN, validating the result of the genome-wide screen. The activity of hypothiocyanous acid reductase or glutathione reductase, known to be important for S. pneumoniae tolerance of HOSCN, was increased in three of the mutants, highlighting the compensatory potential of antioxidant systems. Double deletion of the gene encoding glutathione reductase and sodA sensitized the bacteria significantly more than single deletion. The HOSCN defense systems identified in this study may be viable targets for novel therapeutics against this deadly pathogen. IMPORTANCE Streptococcus pneumoniae is a human pathogen that causes pneumonia, bacteremia, and meningitis. Vaccination provides protection only against a quarter of the known S. pneumoniae serotypes, and the bacterium is rapidly becoming resistant to antibiotics. As such, new treatments are required. One strategy is to sensitize the bacteria to killing by the immune system. In this study, we performed a genome-wide screen to identify genes that help this bacterium resist oxidative stress exerted by the host at sites of colonization and infection. By identifying a number of critical pneumococcal defense mechanisms, our work provides novel targets for antimicrobial therapy.
Collapse
Affiliation(s)
- Heather L. Shearer
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Otago, New Zealand
| | - Paul E. Pace
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Leah M. Smith
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Peter C. Fineran
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Otago, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| | - Allison J. Matthews
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Nina Dickerhof
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Otago, New Zealand
| | - Mark B. Hampton
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Otago, New Zealand
| |
Collapse
|
36
|
Shee S, Veetil RT, Mohanraj K, Das M, Malhotra N, Bandopadhyay D, Beig H, Birua S, Niphadkar S, Nagarajan SN, Sinha VK, Thakur C, Rajmani RS, Chandra N, Laxman S, Singh M, Samal A, Seshasayee AN, Singh A. Biosensor-integrated transposon mutagenesis reveals rv0158 as a coordinator of redox homeostasis in Mycobacterium tuberculosis. eLife 2023; 12:e80218. [PMID: 37642294 PMCID: PMC10501769 DOI: 10.7554/elife.80218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is evolutionarily equipped to resist exogenous reactive oxygen species (ROS) but shows vulnerability to an increase in endogenous ROS (eROS). Since eROS is an unavoidable consequence of aerobic metabolism, understanding how Mtb manages eROS levels is essential yet needs to be characterized. By combining the Mrx1-roGFP2 redox biosensor with transposon mutagenesis, we identified 368 genes (redoxosome) responsible for maintaining homeostatic levels of eROS in Mtb. Integrating redoxosome with a global network of transcriptional regulators revealed a hypothetical protein (Rv0158) as a critical node managing eROS in Mtb. Disruption of rv0158 (rv0158 KO) impaired growth, redox balance, respiration, and metabolism of Mtb on glucose but not on fatty acids. Importantly, rv0158 KO exhibited enhanced growth on propionate, and the Rv0158 protein directly binds to methylmalonyl-CoA, a key intermediate in propionate catabolism. Metabolite profiling, ChIP-Seq, and gene-expression analyses indicate that Rv0158 manages metabolic neutralization of propionate toxicity by regulating the methylcitrate cycle. Disruption of rv0158 enhanced the sensitivity of Mtb to oxidative stress, nitric oxide, and anti-TB drugs. Lastly, rv0158 KO showed poor survival in macrophages and persistence defect in mice. Our results suggest that Rv0158 is a metabolic integrator for carbon metabolism and redox balance in Mtb.
Collapse
Affiliation(s)
- Somnath Shee
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | | | - Karthikeyan Mohanraj
- The Institute of Mathematical Sciences, A CI of Homi Bhabha National InstituteChennaiIndia
| | - Mayashree Das
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | | | | | - Hussain Beig
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Shalini Birua
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Shreyas Niphadkar
- Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Sathya Narayanan Nagarajan
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Vikrant Kumar Sinha
- Molecular Biophysics Unit, Indian Institute of Science BangaloreBangaloreIndia
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Raju S Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science BangaloreBangaloreIndia
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative MedicineBangaloreIndia
| | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science BangaloreBangaloreIndia
| | - Areejit Samal
- The Institute of Mathematical Sciences, A CI of Homi Bhabha National InstituteChennaiIndia
| | | | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science BangaloreBangaloreIndia
- Centre for Infectious Disease Research, Indian Institute of Science BangaloreKarnatakaIndia
| |
Collapse
|
37
|
Maharjan RP, Sullivan GJ, Adams F, Shah B, Hawkey J, Delgado N, Semenec L, Dinh H, Li L, Short F, Parkhill J, Paulsen I, Barquist L, Eijkelkamp B, Cain A. DksA is a conserved master regulator of stress response in Acinetobacter baumannii. Nucleic Acids Res 2023; 51:6101-6119. [PMID: 37158230 PMCID: PMC10325922 DOI: 10.1093/nar/gkad341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
Coordination of bacterial stress response mechanisms is critical for long-term survival in harsh environments for successful host infection. The general and specific stress responses of well-studied Gram-negative pathogens like Escherichia coli are controlled by alternative sigma factors, archetypically RpoS. The deadly hospital pathogen Acinetobacter baumannii is notoriously resistant to environmental stresses, yet it lacks RpoS, and the molecular mechanisms driving this incredible stress tolerance remain poorly defined. Here, using functional genomics, we identified the transcriptional regulator DksA as a master regulator for broad stress protection and virulence in A. baumannii. Transcriptomics, phenomics and in vivo animal studies revealed that DksA controls ribosomal protein expression, metabolism, mutation rates, desiccation, antibiotic resistance, and host colonization in a niche-specific manner. Phylogenetically, DksA was highly conserved and well-distributed across Gammaproteobacteria, with 96.6% containing DksA, spanning 88 families. This study lays the groundwork for understanding DksA as a major regulator of general stress response and virulence in this important pathogen.
Collapse
Affiliation(s)
- Ram P Maharjan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Geraldine J Sullivan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Felise G Adams
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Bhumika S Shah
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Jane Hawkey
- Department of Infectious Diseases, Central Clinical School, Monash University, Victoria, Australia
| | - Natasha Delgado
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Hue Dinh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Liping Li
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Francesca L Short
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC3800, Australia
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080Würzburg, Germany
- Faculty of Medicine, University of Würzburg, 97080Würzburg, Germany
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| |
Collapse
|
38
|
Dunstan RA, Bamert RS, Tan KS, Imbulgoda U, Barlow CK, Taiaroa G, Pickard DJ, Schittenhelm RB, Dougan G, Short FL, Lithgow T. Epitopes in the capsular polysaccharide and the porin OmpK36 receptors are required for bacteriophage infection of Klebsiella pneumoniae. Cell Rep 2023; 42:112551. [PMID: 37224021 DOI: 10.1016/j.celrep.2023.112551] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/09/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
To kill bacteria, bacteriophages (phages) must first bind to a receptor, triggering the release of the phage DNA into the bacterial cell. Many bacteria secrete polysaccharides that had been thought to shield bacterial cells from phage attack. We use a comprehensive genetic screen to distinguish that the capsule is not a shield but is instead a primary receptor enabling phage predation. Screening of a transposon library to select phage-resistant Klebsiella shows that the first receptor-binding event docks to saccharide epitopes in the capsule. We discover a second step of receptor binding, dictated by specific epitopes in an outer membrane protein. This additional and necessary event precedes phage DNA release to establish a productive infection. That such discrete epitopes dictate two essential binding events for phages has profound implications for understanding the evolution of phage resistance and what dictates host range, two issues critically important to translating knowledge of phage biology into phage therapies.
Collapse
Affiliation(s)
- Rhys A Dunstan
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.
| | - Rebecca S Bamert
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Kher Shing Tan
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Uvini Imbulgoda
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Christopher K Barlow
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - George Taiaroa
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Clayton, VIC, Australia
| | - Derek J Pickard
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Francesca L Short
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia; Department of Medicine, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
39
|
Alobaidallah MSA, García V, De Mets R, Wellner SM, Thomsen LE, Herrero-Fresno A, Olsen JE. Uncovering the Important Genetic Factors for Growth during Cefotaxime-Gentamicin Combination Treatment in blaCTX-M-1 Encoding Escherichia coli. Antibiotics (Basel) 2023; 12:993. [PMID: 37370312 DOI: 10.3390/antibiotics12060993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Due to the rapid spread of CTX-M type ESBLs, the rate of resistance to third-generation cephalosporin has increased among Gram-negative bacteria, especially in Escherichia coli, and there is a need to find ways to re-sensitize ESBL E. coli to cephalosporin treatment. A previous study showed that genes involved in protein synthesis were significantly up-regulated in the presence of subinhibitory concentration of cefotaxime (CTX) in a CTX-M-1-producing E. coli. In this study, the interaction between CTX and gentamicin (GEN), targeting protein synthesis, was evaluated in MG1655/pTF2, and the MIC of CTX was strongly reduced (128-fold) in the presence of this combnation therapy. Since the underlying mechanism behind this synergy is not known, we constructed a saturated transposon mutant library in MG1655/pTF2::blaCTX-M-1 containing 315,925 unique transposon insertions to measure mutant depletion upon exposure to CTX, GEN, and combination treatment of CTX and GEN by Transposon Directed Insertion-site Sequencing (TraDIS). We identified 57 genes that were depleted (log2FC ≤ -2 and with q.value ≤ 0.01) during exposure to CTX, 18 for GEN, and 31 for combination treatment of CTX and GEN. For validation, we deleted eight genes that were either uniquely identified in combination treatment, overlapped with monotherapy of GEN, or were shared between combination treatment and monotherapy with CTX and GEN. Of these genes, we found that the inactivation of dnaK, mnmA, rsgA, and ybeD increased the efficacy of both CTX and GEN treatment, the inactivation of cpxR and yafN increased the efficacy of only CTX, and the inactivation of mnmA, rsgA, and ybeD resulted in increased synergy between CTX and GEN. Thus, the study points to putative targets for helper drugs that can restore susceptibility to these important drugs, and it indicates that genes involved in protein synthesis are essential for the synergy between these two drugs. In summary, the study identified mutants that sensitize ESBL-producing E. coli to CTX and a combination of CTX and GEN, and it increased our understanding of the mechanism behind synergy between β-lactam and aminoglycoside drugs. This forms a framework for developing new strategies to combat infections caused by resistant bacteria.
Collapse
Affiliation(s)
- Mosaed Saleh A Alobaidallah
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - Vanesa García
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain
| | - Richard De Mets
- Department of Biomedical Sciences, Core Facility for Integrated Microscopy, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sandra M Wellner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Line E Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| |
Collapse
|
40
|
Yee WX, Yasir M, Turner AK, Baker DJ, Cehovin A, Tang CM. Evolution, persistence, and host adaption of a gonococcal AMR plasmid that emerged in the pre-antibiotic era. PLoS Genet 2023; 19:e1010743. [PMID: 37186602 DOI: 10.1371/journal.pgen.1010743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Plasmids are diverse extrachromosomal elements significantly contributing to interspecies dissemination of antimicrobial resistance (AMR) genes. However, within clinically important bacteria, plasmids can exhibit unexpected narrow host ranges, a phenomenon that has scarcely been examined. Here we show that pConj is largely restricted to the human-specific pathogen, Neisseria gonorrhoeae. pConj can confer tetracycline resistance and is central to the dissemination of other AMR plasmids. We tracked pConj evolution from the pre-antibiotic era 80 years ago to the modern day and demonstrate that, aside from limited gene acquisition and loss events, pConj is remarkably conserved. Notably, pConj has remained prevalent in gonococcal populations despite cessation of tetracycline use, thereby demonstrating pConj adaptation to its host. Equally, pConj imposes no measurable fitness costs and is stably inherited by the gonococcus. Its maintenance depends on the co-operative activity of plasmid-encoded Toxin:Antitoxin (TA) and partitioning systems rather than host factors. An orphan VapD toxin encoded on pConj forms a split TA with antitoxins expressed from an ancestral co-resident plasmid or a horizontally-acquired chromosomal island, potentially explaining pConj's limited distribution. Finally, ciprofloxacin can induce loss of this highly stable plasmid, reflecting epidemiological evidence of transient local falls in pConj prevalence when fluoroquinolones were introduced to treat gonorrhoea.
Collapse
Affiliation(s)
- Wearn-Xin Yee
- Sir William Dunn School of Pathology, University of Oxford, OXFORD, United Kingdom
| | | | | | | | - Ana Cehovin
- Sir William Dunn School of Pathology, University of Oxford, OXFORD, United Kingdom
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, OXFORD, United Kingdom
| |
Collapse
|
41
|
Fong WY, Canals R, Predeus AV, Perez-Sepulveda B, Wenner N, Lacharme-Lora L, Feasey N, Wigley P, Hinton JCD. Genome-wide fitness analysis identifies genes required for in vitro growth and macrophage infection by African and global epidemic pathovariants of Salmonella enterica Enteritidis. Microb Genom 2023; 9:mgen001017. [PMID: 37219927 PMCID: PMC10272866 DOI: 10.1099/mgen.0.001017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/17/2023] [Indexed: 05/24/2023] Open
Abstract
Salmonella enterica Enteritidis is the second most common serovar associated with invasive non-typhoidal Salmonella (iNTS) disease in sub-Saharan Africa. Previously, genomic and phylogenetic characterization of S . enterica Enteritidis isolates from the human bloodstream led to the discovery of the Central/Eastern African clade (CEAC) and West African clade, which were distinct from the gastroenteritis-associated global epidemic clade (GEC). The African S . enterica Enteritidis clades have unique genetic signatures that include genomic degradation, novel prophage repertoires and multi-drug resistance, but the molecular basis for the enhanced propensity of African S . enterica Enteritidis to cause bloodstream infection is poorly understood. We used transposon insertion sequencing (TIS) to identify the genetic determinants of the GEC representative strain P125109 and the CEAC representative strain D7795 for growth in three in vitro conditions (LB or minimal NonSPI2 and InSPI2 growth media), and for survival and replication in RAW 264.7 murine macrophages. We identified 207 in vitro -required genes that were common to both S . enterica Enteritidis strains and also required by S . enterica Typhimurium, S . enterica Typhi and Escherichia coli , and 63 genes that were only required by individual S . enterica Enteritidis strains. Similar types of genes were required by both P125109 and D7795 for optimal growth in particular media. Screening the transposon libraries during macrophage infection identified 177 P125109 and 201 D7795 genes that contribute to bacterial survival and replication in mammalian cells. The majority of these genes have proven roles in Salmonella virulence. Our analysis uncovered candidate strain-specific macrophage fitness genes that could encode novel Salmonella virulence factors.
Collapse
Affiliation(s)
- Wai Yee Fong
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Present address: Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, USA
| | - Rocío Canals
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Present address: GSK Vaccines Institute for Global Health S.R.L., Siena, Italy
| | - Alexander V. Predeus
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Present address: Wellcome Trust Sanger Institute, Cambridge, UK
| | - Blanca Perez-Sepulveda
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nicolas Wenner
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Present address: Biozentrum, University of Basel, Basel, Switzerland
| | - Lizeth Lacharme-Lora
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Nicholas Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Malawi-Liverpool-Wellcome Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Paul Wigley
- Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, UK
- Present address: Bristol Veterinary School,University of Bristol, Langford Campus, UK
| | - Jay C. D. Hinton
- Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
42
|
Stoakes E, Turner K, Baker DJ, Suau Sans M, Yasir M, Kalmar L, Costigan R, Lott M, Grant AJ. Application of TraDIS to define the core essential genome of Campylobacter jejuni and Campylobacter coli. BMC Microbiol 2023; 23:97. [PMID: 37024800 PMCID: PMC10077673 DOI: 10.1186/s12866-023-02835-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Campylobacter species are the major cause of bacterial gastroenteritis. As there is no effective vaccine, combined with the rapid increase in antimicrobial resistant strains, there is a need to identify new targets for intervention. Essential genes are those that are necessary for growth and/or survival, making these attractive targets. In this study, comprehensive transposon mutant libraries were created in six C. jejuni strains, four C. coli strains and one C. lari and C. hyointestinalis strain, allowing for those genes that cannot tolerate a transposon insertion being called as essential. Comparison of essential gene lists using core genome analysis can highlight those genes which are common across multiple strains and/or species. Comparison of C. jejuni and C. coli, the two species that cause the most disease, identified 316 essential genes. Genes of interest highlighted members of the purine pathway being essential for C. jejuni whilst also finding that a functional potassium uptake system is essential. Protein-protein interaction networks using these essential gene lists also highlighted proteins in the purine pathway being major 'hub' proteins which have a large number of interactors across the network. When adding in two more species (C. lari and C. hyointestinalis) the essential gene list reduces to 261. Within these 261 essential genes, there are many genes that have been found to be essential in other bacteria. These include htrB and PEB4, which have previously been found as core virulence genes across Campylobacter species in other studies. There were 21 genes which have no known function with eight of these being associated with the membrane. These surface-associated essential genes may provide attractive targets. The essential gene lists presented will help to prioritise targets for the development of novel therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Emily Stoakes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Keith Turner
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Dave J Baker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Maria Suau Sans
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lajos Kalmar
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Ruby Costigan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Martin Lott
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK.
| |
Collapse
|
43
|
English MA, Alcantar MA, Collins JJ. A self‐propagating, barcoded transposon system for the dynamic rewiring of genomic networks. Mol Syst Biol 2023:e11398. [DOI: 10.15252/msb.202211398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
|
44
|
Ba X, Matuszewska M, Kalmar L, Fan J, Zou G, Corander D, Raisen CL, Li S, Li L, Weinert LA, Tucker AW, Grant AJ, Zhou R, Holmes MA. High-Throughput Mutagenesis Reveals a Role for Antimicrobial Resistance- and Virulence-Associated Mobile Genetic Elements in Staphylococcus aureus Host Adaptation. Microbiol Spectr 2023; 11:e0421322. [PMID: 36815781 PMCID: PMC10101091 DOI: 10.1128/spectrum.04213-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) clonal-complex 398 (CC398) is the dominant livestock-associated (LA) MRSA lineage in European livestock and an increasing cause of difficult-to-treat human disease. LA-CC398 MRSA evolved from a diverse human-associated methicillin-sensitive population, and this transition from humans to livestock was associated with three mobile genetic elements (MGEs). In this study, we apply transposon-directed insertion site sequencing (TraDIS), a high-throughput transposon mutagenesis approach, to investigate genetic signatures that contribute to LA-CC398 causing disease in humans. We identified 26 genes associated with LA-CC398 survival in human blood and 47 genes in porcine blood. We carried out phylogenetic reconstruction on 1,180 CC398 isolates to investigate the genetic context of all identified genes. We found that all genes associated with survival in human blood were part of the CC398 core genome, while 2/47 genes essential for survival in porcine blood were located on MGEs. Gene SAPIG0966 was located on the previously identified Tn916 transposon carrying a tetracycline resistance gene, which has been shown to be stably inherited within LA-CC398. Gene SAPIG1525 was carried on a phage element, which in part, matched phiSa2wa_st1, a previously identified bacteriophage carrying the Panton-Valentine leucocidin (PVL) virulence factor. Gene deletion mutants constructed in two LA-CC398 strains confirmed that the SAPIG0966 carrying Tn916 and SAPIG1525 were important for CC398 survival in porcine blood. Our study shows that MGEs that carry antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for host adaptation. IMPORTANCE CC398 is the dominant type of methicillin-resistant Staphylococcus aureus (MRSA) in European livestock and a growing cause of human infections. Previous studies have suggested MRSA CC398 evolved from human-associated methicillin-sensitive Staphylococcus aureus and is capable of rapidly readapting to human hosts while maintaining antibiotic resistance. Using high-throughput transposon mutagenesis, our study identified 26 and 47 genes important for MRSA CC398 survival in human and porcine blood, respectively. Two of the genes important for MRSA CC398 survival in porcine blood were located on mobile genetic elements (MGEs) carrying resistance or virulence genes. Our study shows that these MGEs carrying antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for blood infection and host adaptation.
Collapse
Affiliation(s)
- Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lajos Kalmar
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jingyan Fan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - Desirée Corander
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Claire L. Raisen
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
- Cooperative Innovation Centre of Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alexander W. Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University College of Veterinary Medicine, Wuhan, China
- Cooperative Innovation Centre of Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
45
|
Gregg KA, Wang Y, Warfel J, Schoenfeld E, Jankowska E, Cipollo JF, Mayho M, Boinett C, Prasad D, Brickman TJ, Armstrong SK, Parkhill J, Da Silva Antunes R, Sette A, Papin JF, Wolf R, Merkel TJ. Antigen Discovery for Next-Generation Pertussis Vaccines Using Immunoproteomics and Transposon-Directed Insertion Sequencing. J Infect Dis 2023; 227:583-591. [PMID: 36575950 PMCID: PMC10169431 DOI: 10.1093/infdis/jiac502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Despite high vaccination rates, the United States has experienced a resurgence in reported cases of pertussis after switching to the acellular pertussis vaccine, indicating a need for improved vaccines that enhance infection control. METHODS Bordetella pertussis antigens recognized by convalescent-baboon serum and nasopharyngeal wash were identified by immunoproteomics and their subcellular localization predicted. Genes essential or important for persistence in the baboon airway were identified by transposon-directed insertion-site sequencing (TraDIS) analysis. RESULTS In total, 314 B. pertussis antigens were identified by convalescent baboon serum and 748 by nasopharyngeal wash. Thirteen antigens were identified as immunogenic in baboons, essential for persistence in the airway by TraDIS, and membrane-localized: BP0840 (OmpP), Pal, OmpA2, BP1485, BamA, Pcp, MlaA, YfgL, BP2197, BP1569, MlaD, ComL, and BP0183. CONCLUSIONS The B. pertussis antigens identified as immunogenic, essential for persistence in the airway, and membrane-localized warrant further investigation for inclusion in vaccines designed to reduce or prevent carriage of bacteria in the airway of vaccinated individuals.
Collapse
Affiliation(s)
- Kelsey A Gregg
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yihui Wang
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jason Warfel
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Elizabeth Schoenfeld
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ewa Jankowska
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - John F Cipollo
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | - Deepika Prasad
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - James F Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Roman Wolf
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Tod J Merkel
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
46
|
Wang M, Zhu H, Wei J, Jiang L, Jiang L, Liu Z, Li R, Wang Z. Uncovering the determinants of model Escherichia coli strain C600 susceptibility and resistance to lytic T4-like and T7-like phage. Virus Res 2023; 325:199048. [PMID: 36681192 DOI: 10.1016/j.virusres.2023.199048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
As antimicrobial resistance (AMR) continues to increase, the therapeutic use of phages has re-emerged as an attractive alternative. However, knowledge of phage resistance development and bacterium-phage interaction complexity are still not fully interpreted. In this study, two lytic T4-like and T7-like phage infecting model Escherichia coli strain C600 are selected, and host genetic determinants involved in phage susceptibility and resistance are also identified using TraDIS strategy. Isolation and identification of the lytic T7-like show that though it belongs to the phage T7 family, genes encoding replication and transcription protein exhibit high differences. The TraDIS results identify a huge number of previously unidentified genes involved in phage infection, and a subset (six in susceptibility and nine in resistance) are shared under pressure of the two kinds of lytic phage. Susceptible gene wbbL has the highest value and implies the important role in phage susceptibility. Importantly, two susceptible genes QseE (QseE/QseF) and RstB (RstB/RstA), encoding the similar two-component system sensor histidine kinase (HKs), also identified. Conversely and strangely, outer membrane protein gene ompW, unlike the gene ompC encoding receptor protein of T4 phage, was shown to provide phage resistance. Overall, this study exploited a genome-wide fitness assay to uncover susceptibility and resistant genes, even the shared genes, important for the E. coli strain of both most popular high lytic T4-like and T7-like phages. This knowledge of the genetic determinants can be further used to analysis the behind function signatures to screen the potential agents to aid phage killing of MDR pathogens, which will greatly be valuable in improving the phage therapy outcome in fighting with microbial resistance.
Collapse
Affiliation(s)
- Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China.
| | - Heng Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Jingyi Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Li Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Lei Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Yangzhou 225009, China; International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
47
|
Metters G, Hemsley C, Norville I, Titball R. Identification of essential genes in Coxiella burnetii. Microb Genom 2023; 9:mgen000944. [PMID: 36723494 PMCID: PMC9997736 DOI: 10.1099/mgen.0.000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Coxiella burnetii is an intracellular pathogen responsible for causing Q fever in humans, a disease with varied presentations ranging from a mild flu-like sickness to a debilitating illness that can result in endocarditis. The intracellular lifestyle of C. burnetii is unique, residing in an acidic phagolysosome-like compartment within host cells. An understanding of the core molecular biology of C. burnetii will greatly increase our understanding of C. burnetii growth, survival and pathogenesis. We used transposon-directed insertion site sequencing (TraDIS) to reveal C. burnetii Nine Mile Phase II genes fundamental for growth and in vitro survival. Screening a transposon library containing >10 000 unique transposon mutants revealed 512 predicted essential genes. Essential routes of synthesis were identified for the mevalonate pathway, as well as peptidoglycan and biotin synthesis. Some essential genes identified (e.g. predicted type IV secretion system effector genes) are typically considered to be associated with C. burnetii virulence, a caveat concerning the axenic media used in the study. Investigation into the conservation of the essential genes identified revealed that 78 % are conserved across all C. burnetii strains sequenced to date, which probably play critical functions. This is the first report of a whole genome transposon screen in C. burnetii that has been undertaken for the identification of essential genes.
Collapse
Affiliation(s)
- Georgie Metters
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Defence Science and Technology Laboratories, CBR Division, Porton Down, Salisbury SP4 0JQ, UK
| | - Claudia Hemsley
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Present address: Molecular Microbiology Division, School of Life Sciences, University of Dundee, Dundee, DD1 5AA, UK
| | - Isobel Norville
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.,Defence Science and Technology Laboratories, CBR Division, Porton Down, Salisbury SP4 0JQ, UK
| | - Richard Titball
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
48
|
Holden ER, Yasir M, Turner AK, Wain J, Charles IG, Webber MA. Genome-wide analysis of genes involved in efflux function and regulation within Escherichia coli and Salmonella enterica serovar Typhimurium. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36745554 DOI: 10.1099/mic.0.001296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of multidrug-resistant bacteria is increasing globally, with efflux pumps being a fundamental platform limiting drug access and synergizing with other mechanisms of resistance. Increased expression of efflux pumps is a key feature of most cells that are resistant to multiple antibiotics. Whilst expression of efflux genes can confer benefits, production of complex efflux systems is energetically costly and the expression of efflux is highly regulated, with cells balancing benefits against costs. This study used TraDIS-Xpress, a genome-wide transposon mutagenesis technology, to identify genes in Escherichia coli and Salmonella Typhimurium involved in drug efflux and its regulation. We exposed mutant libraries to the canonical efflux substrate acriflavine in the presence and absence of the efflux inhibitor phenylalanine-arginine β-naphthylamide. Comparisons between conditions identified efflux-specific and drug-specific responses. Known efflux-associated genes were easily identified, including acrAB, tolC, marRA, ramRA and soxRS, confirming the specificity of the response. Further genes encoding cell envelope maintenance enzymes and products involved with stringent response activation, DNA housekeeping, respiration and glutathione biosynthesis were also identified as affecting efflux activity in both species. This demonstrates the deep relationship between efflux regulation and other cellular regulatory networks. We identified a conserved set of pathways crucial for efflux activity in these experimental conditions, which expands the list of genes known to impact on efflux efficacy. Responses in both species were similar and we propose that these common results represent a core set of genes likely to be relevant to efflux control across the Enterobacteriaceae.
Collapse
Affiliation(s)
- Emma R Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - A Keith Turner
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - John Wain
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Ian G Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
49
|
Breaching the Barrier: Genome-Wide Investigation into the Role of a Primary Amine in Promoting E. coli Outer-Membrane Passage and Growth Inhibition by Ampicillin. Microbiol Spectr 2022; 10:e0359322. [PMID: 36409154 PMCID: PMC9769794 DOI: 10.1128/spectrum.03593-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gram-negative bacteria are problematic for antibiotic development due to the low permeability of their cell envelopes. To rationally design new antibiotics capable of breaching this barrier, more information is required about the specific components of the cell envelope that prevent the passage of compounds with different physiochemical properties. Ampicillin and benzylpenicillin are β-lactam antibiotics with identical chemical structures except for a clever synthetic addition of a primary amine group in ampicillin, which promotes its accumulation in Gram-negatives. Previous work showed that ampicillin is better able to pass through the outer membrane porin OmpF in Escherichia coli compared to benzylpenicillin. It is not known, however, how the primary amine may affect interaction with other cell envelope components. This study applied TraDIS to identify genes that affect E. coli fitness in the presence of equivalent subinhibitory concentrations of ampicillin and benzylpenicillin, with a focus on the cell envelope. Insertions that compromised the outer membrane, particularly the lipopolysaccharide layer, were found to decrease fitness under benzylpenicillin exposure, but had less effect on fitness under ampicillin treatment. These results align with expectations if benzylpenicillin is poorly able to pass through porins. Disruption of genes encoding the AcrAB-TolC efflux system were detrimental to survival under both antibiotics, but particularly ampicillin. Indeed, insertions in these genes and regulators of acrAB-tolC expression were differentially selected under ampicillin treatment to a greater extent than insertions in ompF. These results suggest that maintaining ampicillin efflux may be more significant to E. coli survival than full inhibition of OmpF-mediated uptake. IMPORTANCE Due to the growing antibiotic resistance crisis, there is a critical need to develop new antibiotics, particularly compounds capable of targeting high-priority antibiotic-resistant Gram-negative pathogens. In order to develop new compounds capable of overcoming resistance a greater understanding of how Gram-negative bacteria are able to prevent the uptake and accumulation of many antibiotics is required. This study used a novel genome wide approach to investigate the significance of a primary amine group as a chemical feature that promotes the uptake and accumulation of compounds in the Gram-negative model organism Escherichia coli. The results support previous biochemical observations that the primary amine promotes passage through the outer membrane porin OmpF, but also highlight active efflux as a major resistance factor.
Collapse
|
50
|
Genome-Wide Transposon Mutagenesis Screens Identify Group A Streptococcus Genes Affecting Susceptibility to β-Lactam Antibiotics. J Bacteriol 2022; 204:e0028722. [PMID: 36374114 PMCID: PMC9765115 DOI: 10.1128/jb.00287-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Group A streptococcus (GAS) is a Gram-positive human bacterial pathogen responsible for more than 700 million infections annually worldwide. Beta-lactam antibiotics are the primary agents used to treat GAS infections. Naturally occurring GAS clinical isolates with decreased susceptibility to beta-lactam antibiotics attributed to mutations in PBP2X have recently been documented. This prompted us to perform a genome-wide screen to identify GAS genes that alter beta-lactam susceptibility in vitro. Using saturated transposon mutagenesis, we screened for GAS gene mutations conferring altered in vitro susceptibility to penicillin G and/or ceftriaxone, two beta-lactam antibiotics commonly used to treat GAS infections. In the aggregate, we found that inactivating mutations in 150 GAS genes are associated with altered susceptibility to penicillin G and/or ceftriaxone. Many of the genes identified were previously not known to alter beta-lactam susceptibility or affect cell wall biosynthesis. Using isogenic mutant strains, we confirmed that inactivation of clpX (Clp protease ATP-binding subunit) or cppA (CppA proteinase) resulted in decreased in vitro susceptibility to penicillin G and ceftriaxone. Deletion of murA1 (UDP-N-acetylglucosamine 1-carboxyvinyltransferase) conferred increased susceptibility to ceftriaxone. Our results provide new information about the GAS genes affecting susceptibility to beta-lactam antibiotics. IMPORTANCE Beta-lactam antibiotics are the primary drugs prescribed to treat infections caused by group A streptococcus (GAS), an important human pathogen. However, the molecular mechanisms of GAS interactions with beta-lactam antibiotics are not fully understood. In this study, we performed a genome-wide mutagenesis screen to identify GAS mutations conferring altered susceptibility to beta-lactam antibiotics. In the aggregate, we discovered that mutations in 150 GAS genes were associated with altered beta-lactam susceptibility. Many identified genes were previously not known to alter beta-lactam susceptibility or affect cell wall biosynthesis. Our results provide new information about the molecular mechanisms of GAS interaction with beta-lactam antibiotics.
Collapse
|