1
|
Vosper KR, Velyvis A, Vahidi S. HDgraphiX: A Web-Based Tool for Visualization of Hydrogen/Deuterium Exchange Mass Spectrometry Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:1200-1203. [PMID: 40329740 DOI: 10.1021/jasms.5c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) investigates protein structural changes by measuring deuterium incorporation into the protein amide backbone. Due to the richness of information provided on protein conformational dynamics, HDX-MS data can be challenging to visualize effectively. To address this, we have developed HDgraphiX, a web-based tool that visualizes HDX-MS data by processing outputs from several popular analysis software packages including DynamX, HDExaminer, and HDX Workbench. HDgraphiX performs statistical analyses, filters data based on statistical significance, and presents the results as user-friendly publication-quality visualizations, including heatmaps (Chiclet plots), Woods plots, ladder plots, and volcano plots. Users can optionally generate PyMOL and ChimeraX coloring scripts to map deuterium uptake differences onto protein structures. Additionally, HDgraphiX offers numerous advanced options for customizing data processing and plotting without the need for manual data editing. To improve usability, users have the option to download a file containing all input settings, which can be reuploaded alongside HDX-MS data to avoid manual re-entry of custom settings.
Collapse
Affiliation(s)
- Kent R Vosper
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Algirdas Velyvis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
2
|
Briday M, Carvalho N, Oganesyan N, Chang MJ, Lees A, Brier S, Chenal A. Comparative analysis of the structural dynamics of diphtheria toxin and CRM 197 carrier proteins used in the development of conjugate vaccines. Int J Pharm 2025; 675:125535. [PMID: 40169064 DOI: 10.1016/j.ijpharm.2025.125535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Carrier proteins are chemically linked to poorly immunogenic antigens to generate conjugate vaccines, significantly improving immunogenicity. CRM197, a genetically detoxified diphtheria toxin (DT) mutant carrying the G52E mutation, is a widely used carrier protein as it retains lysine residues for antigen conjugation. In the past, CRM197 has been expressed in Corynebacterium diphtheriae, but low yields and high costs have prompted the exploration of alternative expression systems. Although high-yield expression and native refolding of CRM197 in E. coli are challenging due to its reducing cytoplasm, recent advances have enabled the production of soluble and well-folded recombinant CRM197 proteins, namely EcoCRM® and EcoCRM®(-Met). In this study, we use Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) to compare the structural dynamics of EcoCRM and EcoCRM(-Met) with DT wild-type. Our HDX-MS data show that the presence or the absence of the N-terminal methionine does not affect the structural dynamics of the two recombinant EcoCRM proteins. Furthermore, our results elucidate the molecular mechanism underlying the lack of toxicity of CRM197 compared to DT wild-type: the G52E mutation in the CRM197 proteins exclusively alters the stability of the NAD-binding pocket and induces allosteric effects within the receptor-binding domain. Altogether, these insights support the substitution of CRM197 produced by C. diphtheriae with the recombinant EcoCRM and EcoCRM(-Met) proteins produced in E. coli, offering a cost-effective solution for use in conjugate vaccines. Data are available via ProteomeXchange with identifier PXD057388.
Collapse
Affiliation(s)
- Mathilde Briday
- Institut Pasteur, Université Paris Cité, BioNMR and HDX-MS Facility, Centre for Technological Resources and Research, Chemistry and Structural Biology Department, UMR CNRS 3528, F-75015 Paris, France
| | - Nicolas Carvalho
- Institut Pasteur, Université Paris Cité, Biochemistry of Macromolecular Interactions Unit, Chemistry and Structural Biology Department, UMR CNRS 3528, F-75015 Paris, France
| | - Natalia Oganesyan
- Fina BioSolutions LLC, 9430 Key West Avenue, Suite 200, Rockville, MD 20850, USA
| | - Min-Ju Chang
- Fina BioSolutions LLC, 9430 Key West Avenue, Suite 200, Rockville, MD 20850, USA
| | - Andrew Lees
- Fina BioSolutions LLC, 9430 Key West Avenue, Suite 200, Rockville, MD 20850, USA
| | - Sébastien Brier
- Institut Pasteur, Université Paris Cité, BioNMR and HDX-MS Facility, Centre for Technological Resources and Research, Chemistry and Structural Biology Department, UMR CNRS 3528, F-75015 Paris, France.
| | - Alexandre Chenal
- Institut Pasteur, Université Paris Cité, Biochemistry of Macromolecular Interactions Unit, Chemistry and Structural Biology Department, UMR CNRS 3528, F-75015 Paris, France.
| |
Collapse
|
3
|
McLaughlin NK, Rincon Pabon JP, Gies S, Dastvan R, Gross ML. Kingfisher: An open-sourced web-based platform for the analysis of hydrogen exchange mass spectrometry data. Protein Sci 2025; 34:e70096. [PMID: 40099873 PMCID: PMC11915630 DOI: 10.1002/pro.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/25/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is now a critical tool in molecular biology and structural proteomics. It is routinely used to probe protein and conformational dynamics through a well-established experiment where amide hydrogens exchange with deuterium atoms in a buffer containing D2O. Although there have been numerous advances in the field, data analysis still poses challenges mainly due to the need for manual curation of the data and the lack of standardized statistics and accessible software. In response, we developed Kingfisher, an open-source, user-friendly, web-based solution that facilitates downstream analysis using well-established statistics and provides advanced high-resolution representations of the HDX results. Kingfisher is able to read data directly as exported from common software packages and usually takes less than a minute to run the analysis, without the need to download the raw code or install any software. We foresee Kingfisher as a valuable tool for both newcomers and experts in the field of Hydrogen Exchange Mass Spectrometry. Kingfisher is available to all users as an interactive web application at https://kingfisher.wustl.edu/.
Collapse
Affiliation(s)
- Nolan K. McLaughlin
- Department of ChemistryWashington University in St. LouisSt. LouisMissouriUSA
| | - Juan P. Rincon Pabon
- Department of ChemistryWashington University in St. LouisSt. LouisMissouriUSA
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Samantha Gies
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Department of Biochemistry and Molecular BiologySt. Louis UniversitySt. LouisMissouriUSA
| | - Reza Dastvan
- Department of Biochemistry and Molecular BiologySt. Louis UniversitySt. LouisMissouriUSA
| | - Michael L. Gross
- Department of ChemistryWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
4
|
Coppens S, Gogishvili D, Faustinelli V, Scollo E, Hopley C, Abeln S, Dalby P, Goenaga-Infante H, Luckau L, Vialaret J, Lehmann S, Hirtz C, Illes-Toth E. Neurofilament Light Chain under the Lens of Structural Mass Spectrometry. ACS Chem Neurosci 2025; 16:141-151. [PMID: 39746934 PMCID: PMC11740998 DOI: 10.1021/acschemneuro.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Neurofilament light chain (NfL) is an early nonspecific biomarker in neurodegenerative diseases and traumatic brain injury, indicating axonal damage. This work describes the detailed structural characterization of a selected primary calibrator with the potential to be used in future reference measurement procedure (RMP) development for the accurate quantification of NfL. As a part of the described workflow, the sequence, higher-order structure as well as solvent accessibility, and hydrogen-bonding profile were assessed under three different conditions in KPBS, artificial cerebrospinal fluid, and artificial cerebrospinal fluid in the presence of human serum albumin. The results revealed that NfL is a structurally heterogeneous protein, eliciting a large conformational flexibility. Its structural ensemble changed when it was diluted with an aqueous buffer versus a surrogate matrix, artificial cerebrospinal fluid (aCSF), and/or aCSF with human serum albumin. Various regions of protection and deprotection in the protein head, central helical, and tail domains that experienced altered solvent accessibility and conformational changes caused by different solvent conditions were identified. Moreover, interfacial residues, which may play a role in a potential direct interaction between NfL and human serum albumin, emerged from hydrogen-deuterium exchange mass spectrometry (HDX-MS). These data pinpointed distinct regions of the protein that may participate in such an interaction. Overall, critical quality attributes of a potential primary calibrator for NfL measurements are provided. These findings will ultimately inform ongoing biochemical and clinical assay development procedures and manufacturing practices, giving careful consideration during sample handling and method development.
Collapse
Affiliation(s)
- Salomé Coppens
- National
Measurement Laboratory, LGC, Queens Road, TW11 0LY Teddington, U.K.
- PPC,
IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier 34295, France
| | - Dea Gogishvili
- Bioinformatics,
Computer Science Department, Vrije Universiteit
Amsterdam, Amsterdam 1081 HV, Netherlands
- AI
Technology for Life, Department of Computing and Information Sciences,
Biology Department, Utrecht University, Utrecht 3584 CS, Netherlands
| | - Valentina Faustinelli
- National
Measurement Laboratory, LGC, Queens Road, TW11 0LY Teddington, U.K.
- Department
of Biochemical Engineering, University College
London, Bernard Katz Building, Gower Street, WC1E 6BT London, U.K.
| | - Emanuele Scollo
- National
Measurement Laboratory, LGC, Queens Road, TW11 0LY Teddington, U.K.
| | - Christopher Hopley
- National
Measurement Laboratory, LGC, Queens Road, TW11 0LY Teddington, U.K.
| | - Sanne Abeln
- Bioinformatics,
Computer Science Department, Vrije Universiteit
Amsterdam, Amsterdam 1081 HV, Netherlands
| | - Paul Dalby
- Department
of Biochemical Engineering, University College
London, Bernard Katz Building, Gower Street, WC1E 6BT London, U.K.
| | | | - Luise Luckau
- National
Measurement Laboratory, LGC, Queens Road, TW11 0LY Teddington, U.K.
| | - Jérôme Vialaret
- PPC,
IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier 34295, France
| | - Sylvain Lehmann
- PPC,
IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier 34295, France
| | - Christophe Hirtz
- PPC,
IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier 34295, France
| | - Eva Illes-Toth
- National
Measurement Laboratory, LGC, Queens Road, TW11 0LY Teddington, U.K.
| |
Collapse
|
5
|
Stofella M, Grimaldi A, Smit JH, Claesen J, Paci E, Sobott F. Computational Tools for Hydrogen-Deuterium Exchange Mass Spectrometry Data Analysis. Chem Rev 2024; 124:12242-12263. [PMID: 39481095 PMCID: PMC11565574 DOI: 10.1021/acs.chemrev.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Hydrogen-deuterium exchange (HDX) has become a pivotal method for investigating the structural and dynamic properties of proteins. The versatility and sensitivity of mass spectrometry (MS) made the technique the ideal companion for HDX, and today HDX-MS is addressing a growing number of applications in both academic research and industrial settings. The prolific generation of experimental data has spurred the concurrent development of numerous computational tools, designed to automate parts of the workflow while employing different strategies to achieve common objectives. Various computational methods are available to perform automated peptide searches and identification; different statistical tests have been implemented to quantify differences in the exchange pattern between two or more experimental conditions; alternative strategies have been developed to deconvolve and analyze peptides showing multimodal behavior; and different algorithms have been proposed to computationally increase the resolution of HDX-MS data, with the ultimate aim to provide information at the level of the single residue. This review delves into a comprehensive examination of the merits and drawbacks associated with the diverse strategies implemented by software tools for the analysis of HDX-MS data.
Collapse
Affiliation(s)
- Michele Stofella
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury
Centre for Structural Molecular Biology, University of Leeds, LS2
9JT Leeds, United
Kingdom
| | - Antonio Grimaldi
- Dipartimento
di Fisica e Astronomia, Universita’
di Bologna, 40127 Bologna, Italy
| | - Jochem H. Smit
- Department
of Microbiology and Immunology, Rega Institute for Medical Research,
Laboratory of Molecular Bacteriology, KU
Leuven, 3000 Leuven, Belgium
| | - Jürgen Claesen
- Epidemiology
and Data Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Emanuele Paci
- Dipartimento
di Fisica e Astronomia, Universita’
di Bologna, 40127 Bologna, Italy
| | - Frank Sobott
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
- Astbury
Centre for Structural Molecular Biology, University of Leeds, LS2
9JT Leeds, United
Kingdom
| |
Collapse
|
6
|
Langford JB, Ahmed E, Fang M, Cupp-Sutton K, Smith K, Wu S. Strategies for Top-Down Hydrogen Deuterium Exchange-Mass Spectrometry: A Mini Review and Perspective. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5097. [PMID: 39402881 PMCID: PMC11736408 DOI: 10.1002/jms.5097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 01/16/2025]
Abstract
Hydrogen deuterium-exchange mass spectrometry (HDX-MS) is commonly used in the study of protein dynamics and protein interactions. By measuring the isotopic exchange of backbone amide hydrogens in solution, HDX-MS offers valuable structural insights into challenging biological systems. Traditional HDX-MS approaches utilize bottom-up (BU) proteomics, in which deuterated proteins are digested before MS analysis. BU-HDX enables the characterization of proteins with various sizes in simple protein mixtures or complex biological samples such as cell lysates. However, BU methods are inherently limited by the inability to resolve protein sub-populations arising from different protein conformations, such as those arising from post-translational modifications (PTMs). Alternatively, top-down (TD) HDX-MS detects the global deuterium uptake at the intact proteoform level, allowing direct probing of structural changes due to protein-protein interactions, PTMs, or conformational changes. Combining TD-HDX-MS with electron-based fragmentation techniques, such as electron capture dissociation (ECD) and electron transfer dissociation (ETD), has demonstrated the feasibility of studying intact protein interactions with amino acid-level resolution. Here, we present a brief overview of methodologies, limitations, and applications of TD-HDX-MS using direct infusion techniques and LC-based approaches. Furthermore, we conclude with a perspective on the future directions for TD-HDX-MS.
Collapse
Affiliation(s)
- Joel B. Langford
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Elizabeth Ahmed
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Kellye Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL 35487, USA
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL 35487, USA
| |
Collapse
|
7
|
Janowska MK, Reiter K, Magala P, Guttman M, Klevit RE. HDXBoxeR: an R package for statistical analysis and visualization of multiple Hydrogen-Deuterium Exchange Mass-Spectrometry datasets of different protein states. Bioinformatics 2024; 40:btae479. [PMID: 39078213 PMCID: PMC11310453 DOI: 10.1093/bioinformatics/btae479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024] Open
Abstract
SUMMARY Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) is a powerful protein characterization technique that provides insights into protein dynamics and flexibility at the peptide level. However, analyzing HDX-MS data presents a significant challenge due to the wealth of information it generates. Each experiment produces data for hundreds of peptides, often measured in triplicate across multiple time points. Comparisons between different protein states create distinct datasets containing thousands of peptides that require matching, rigorous statistical evaluation, and visualization. Our open-source R package, HDXBoxeR, is a comprehensive tool designed to facilitate statistical analysis and comparison of multiple sets among samples and time points for different protein states, along with data visualization. AVAILABILITY AND IMPLEMENTATION HDXBoxeR is accessible as the R package (https://cran.r-project.org/web//packages/HDXBoxeR) and GitHub: mkajano/HDXBoxeR.
Collapse
Affiliation(s)
- Maria K Janowska
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
| | - Katherine Reiter
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
- Lyterian Therapeutics, South San Francisco, CA, 94080, United States
| | - Pearl Magala
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, United States
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, United States
| |
Collapse
|
8
|
Li Z, Wang Z, Zhong C, Zhang H, Liu R, An P, Ma Z, Lu J, Pan C, Zhang Z, Cao Z, Hu J, Xing D, Fei Y, Ding Y, Lu B. P53 upregulation by USP7-engaging molecular glues. Sci Bull (Beijing) 2024; 69:1936-1953. [PMID: 38734583 DOI: 10.1016/j.scib.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 05/13/2024]
Abstract
Molecular glues are typically small chemical molecules that act at the interface between a target protein and degradation machinery to trigger ternary complex formation. Identifying molecular glues is challenging. There is a scarcity of target-specific upregulating molecular glues, which are highly anticipated for numerous targets, including P53. P53 is degraded in proteasomes through polyubiquitination by specific E3 ligases, whereas deubiquitinases (DUBs) remove polyubiquitination conjugates to counteract these E3 ligases. Thus, small-molecular glues that enhance P53 anchoring to DUBs may stabilize P53 through deubiquitination. Here, using small-molecule microarray-based technology and unbiased screening, we identified three potential molecular glues that may tether P53 to the DUB, USP7, and elevate the P53 level. Among the molecular glues, bromocriptine (BC) is an FDA-approved drug with the most robust effects. BC was further verified to increase P53 stability via the predicted molecular glue mechanism engaging USP7. Consistent with P53 upregulation in cancer cells, BC was shown to inhibit the proliferation of cancer cells in vitro and suppress tumor growth in a xenograft model. In summary, we established a potential screening platform and identified potential molecular glues upregulating P53. Similar strategies could be applied to the identification of other types of molecular glues that may benefit drug discovery and chemical biology studies.
Collapse
Affiliation(s)
- Zhaoyang Li
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Ziying Wang
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chao Zhong
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hang Zhang
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200438, China
| | - Rui Liu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ping An
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiqiang Ma
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Junmei Lu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chengfang Pan
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhaolin Zhang
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhiyuan Cao
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianyi Hu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200438, China.
| | - Yu Ding
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Boxun Lu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Huashan Hospital, the Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
9
|
O'Brien DP, Jones HBL, Guenther F, Murphy EJ, England KS, Vendrell I, Anderson M, Brennan PE, Davis JB, Pinto-Fernández A, Turnbull AP, Kessler BM. Structural Premise of Selective Deubiquitinase USP30 Inhibition by Small-Molecule Benzosulfonamides. Mol Cell Proteomics 2023; 22:100609. [PMID: 37385347 PMCID: PMC10400906 DOI: 10.1016/j.mcpro.2023.100609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/07/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023] Open
Abstract
Dampening functional levels of the mitochondrial deubiquitylating enzyme Ubiquitin-specific protease 30 (USP30) has been suggested as an effective therapeutic strategy against neurodegenerative disorders such as Parkinson's Disease. USP30 inhibition may counteract the deleterious effects of impaired turnover of damaged mitochondria, which is inherent to both familial and sporadic forms of the disease. Small-molecule inhibitors targeting USP30 are currently in development, but little is known about their precise nature of binding to the protein. We have integrated biochemical and structural approaches to gain novel mechanistic insights into USP30 inhibition by a small-molecule benzosulfonamide-containing compound, USP30inh. Activity-based protein profiling mass spectrometry confirmed target engagement, high selectivity, and potency of USP30inh for USP30 against 49 other deubiquitylating enzymes in a neuroblastoma cell line. In vitro characterization of USP30inh enzyme kinetics inferred slow and tight binding behavior, which is comparable with features of covalent modification of USP30. Finally, we blended hydrogen-deuterium exchange mass spectrometry and computational docking to elucidate the molecular architecture and geometry of USP30 complex formation with USP30inh, identifying structural rearrangements at the cleft of the USP30 thumb and palm subdomains. These studies suggest that USP30inh binds to this thumb-palm cleft, which guides the ubiquitin C terminus into the active site, thereby preventing ubiquitin binding and isopeptide bond cleavage, and confirming its importance in the inhibitory process. Our data will pave the way for the design and development of next-generation inhibitors targeting USP30 and associated deubiquitinylases.
Collapse
Affiliation(s)
- Darragh P O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
| | - Hannah B L Jones
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Franziska Guenther
- ARUK-Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Emma J Murphy
- ARUK-Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Katherine S England
- ARUK-Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | | | - Paul E Brennan
- ARUK-Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - John B Davis
- ARUK-Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Adán Pinto-Fernández
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | | | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK; Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.
| |
Collapse
|
10
|
Sartre C, Peurois F, Ley M, Kryszke MH, Zhang W, Courilleau D, Fischmeister R, Ambroise Y, Zeghouf M, Cianferani S, Ferrandez Y, Cherfils J. Membranes prime the RapGEF EPAC1 to transduce cAMP signaling. Nat Commun 2023; 14:4157. [PMID: 37438343 DOI: 10.1038/s41467-023-39894-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
EPAC1, a cAMP-activated GEF for Rap GTPases, is a major transducer of cAMP signaling and a therapeutic target in cardiac diseases. The recent discovery that cAMP is compartmentalized in membrane-proximal nanodomains challenged the current model of EPAC1 activation in the cytosol. Here, we discover that anionic membranes are a major component of EPAC1 activation. We find that anionic membranes activate EPAC1 independently of cAMP, increase its affinity for cAMP by two orders of magnitude, and synergize with cAMP to yield maximal GEF activity. In the cell cytosol, where cAMP concentration is low, EPAC1 must thus be primed by membranes to bind cAMP. Examination of the cell-active chemical CE3F4 in this framework further reveals that it targets only fully activated EPAC1. Together, our findings reformulate previous concepts of cAMP signaling through EPAC proteins, with important implications for drug discovery.
Collapse
Affiliation(s)
- Candice Sartre
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - François Peurois
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Marie Ley
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, IPHC, CNRS UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Marie-Hélène Kryszke
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Wenhua Zhang
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Delphine Courilleau
- Université Paris-Saclay, IPSIT-CIBLOT, Inserm US31, CNRS UAR3679, 91400, Orsay, France
| | | | - Yves Ambroise
- Université Paris-Saclay, CEA, Service de Chimie Bioorganique et de Marquage, 91191, Gif-sur-Yvette, France
| | - Mahel Zeghouf
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, IPHC, CNRS UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Yann Ferrandez
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Jacqueline Cherfils
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Jethva PN, Gross ML. Hydrogen Deuterium Exchange and other Mass Spectrometry-based Approaches for Epitope Mapping. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1118749. [PMID: 37746528 PMCID: PMC10512744 DOI: 10.3389/frans.2023.1118749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antigen-antibody interactions are a fundamental subset of protein-protein interactions responsible for the "survival of the fittest". Determining the interacting interface of the antigen, called an epitope, and that on the antibody, called a paratope, is crucial to antibody development. Because each antigen presents multiple epitopes (unique footprints), sophisticated approaches are required to determine the target region for a given antibody. Although X-ray crystallography, Cryo-EM, and nuclear magnetic resonance can provide atomic details of an epitope, they are often laborious, poor in throughput, and insensitive. Mass spectrometry-based approaches offer rapid turnaround, intermediate structural resolution, and virtually no size limit for the antigen, making them a vital approach for epitope mapping. In this review, we describe in detail the principles of hydrogen deuterium exchange mass spectrometry in application to epitope mapping. We also show that a combination of MS-based approaches can assist or complement epitope mapping and push the limit of structural resolution to the residue level. We describe in detail the MS methods used in epitope mapping, provide our perspective about the approaches, and focus on elucidating the role that HDX-MS is playing now and in the future by organizing a discussion centered around several improvements in prototype instrument/applications used for epitope mapping. At the end, we provide a tabular summary of the current literature on HDX-MS-based epitope mapping.
Collapse
Affiliation(s)
- Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|
12
|
Cupp-Sutton KA, Welborn T, Fang M, Langford JB, Wang Z, Smith K, Wu S. The Deuterium Calculator: An Open-Source Tool for Hydrogen-Deuterium Exchange Mass Spectrometry Analysis. J Proteome Res 2023; 22:532-538. [PMID: 36695755 DOI: 10.1021/acs.jproteome.2c00558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a powerful protein footprinting technique to study protein dynamics and binding; however, HDX-MS data analysis is often challenging and time-consuming. Moreover, the HDX community is expanding to investigate multiprotein and highly complex protein systems which further complicates data analysis. Thus, a simple, open-source software package designed to analyze large and highly complex protein systems is needed. In this vein, we have developed "The Deuterium Calculator", a Python-based software package for HDX-MS data analysis. The Deuterium Calculator is capable of differential and nondifferential HDX-MS analysis, produces standardized data files according to recommendations from the International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX) to increase transparency in data analysis, and generates Woods' plots for statistical analysis and data visualization. This standard output can be used to perform time dependent deuteration studies and for the study of protein folding kinetics or differential uptake. Moreover, The Deuterium Calculator is capable of performing these analyses on large HDX-MS data sets (e.g., LC-HDX-MS from cell lysate digest). The Deuterium Calculator is freely available for download at https://github.com/OUWuLab/TheDeuteriumCalculator.git. Data are available via ProteomeXchange with identifier PXD036813.
Collapse
Affiliation(s)
- Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Thomas Welborn
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Joel B Langford
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma73104, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma73012, United States
| |
Collapse
|
13
|
Léger C, Pitard I, Sadi M, Carvalho N, Brier S, Mechaly A, Raoux-Barbot D, Davi M, Hoos S, Weber P, Vachette P, Durand D, Haouz A, Guijarro JI, Ladant D, Chenal A. Dynamics and structural changes of calmodulin upon interaction with the antagonist calmidazolium. BMC Biol 2022; 20:176. [PMID: 35945584 PMCID: PMC9361521 DOI: 10.1186/s12915-022-01381-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Calmodulin (CaM) is an evolutionarily conserved eukaryotic multifunctional protein that functions as the major sensor of intracellular calcium signaling. Its calcium-modulated function regulates the activity of numerous effector proteins involved in a variety of physiological processes in diverse organs, from proliferation and apoptosis, to memory and immune responses. Due to the pleiotropic roles of CaM in normal and pathological cell functions, CaM antagonists are needed for fundamental studies as well as for potential therapeutic applications. Calmidazolium (CDZ) is a potent small molecule antagonist of CaM and one the most widely used inhibitors of CaM in cell biology. Yet, CDZ, as all other CaM antagonists described thus far, also affects additional cellular targets and its lack of selectivity hinders its application for dissecting calcium/CaM signaling. A better understanding of CaM:CDZ interaction is key to design analogs with improved selectivity. Here, we report a molecular characterization of CaM:CDZ complexes using an integrative structural biology approach combining SEC-SAXS, X-ray crystallography, HDX-MS, and NMR. RESULTS We provide evidence that binding of a single molecule of CDZ induces an open-to-closed conformational reorientation of the two domains of CaM and results in a strong stabilization of its structural elements associated with a reduction of protein dynamics over a large time range. These CDZ-triggered CaM changes mimic those induced by CaM-binding peptides derived from physiological protein targets, despite their distinct chemical natures. CaM residues in close contact with CDZ and involved in the stabilization of the CaM:CDZ complex have been identified. CONCLUSION Our results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists. Calmidazolium is a potent and widely used inhibitor of calmodulin, a major mediator of calcium-signaling in eukaryotic cells. Structural characterization of calmidazolium-binding to calmodulin reveals that it triggers open-to-closed conformational changes similar to those induced by calmodulin-binding peptides derived from enzyme targets. These results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists.
Collapse
Affiliation(s)
- Corentin Léger
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Irène Pitard
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Mirko Sadi
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
- Université Paris Cité, Paris, France
| | - Nicolas Carvalho
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
- Université Paris Cité, Paris, France
| | - Sébastien Brier
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Ariel Mechaly
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Dorothée Raoux-Barbot
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Maryline Davi
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Sylviane Hoos
- Plateforme de Biophysique Moléculaire, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Patrick Weber
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Patrice Vachette
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Dominique Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ahmed Haouz
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - J Iñaki Guijarro
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Daniel Ladant
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France.
| | - Alexandre Chenal
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
14
|
Crook OM, Chung CW, Deane CM. Empirical Bayes functional models for hydrogen deuterium exchange mass spectrometry. Commun Biol 2022; 5:588. [PMID: 35705679 PMCID: PMC9200815 DOI: 10.1038/s42003-022-03517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/20/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a technique to explore differential protein structure by examining the rate of deuterium incorporation for specific peptides. This rate will be altered upon structural perturbation and detecting significant changes to this rate requires a statistical test. To determine rates of incorporation, HDX-MS measurements are frequently made over a time course. However, current statistical testing procedures ignore the correlations in the temporal dimension of the data. Using tools from functional data analysis, we develop a testing procedure that explicitly incorporates a model of hydrogen deuterium exchange. To further improve statistical power, we develop an empirical Bayes version of our method, allowing us to borrow information across peptides and stabilise variance estimates for low sample sizes. Our approach has increased power, reduces false positives and improves interpretation over linear model-based approaches. Due to the improved flexibility of our method, we can apply it to a multi-antibody epitope-mapping experiment where current approaches are inapplicable due insufficient flexibility. Hence, our approach allows HDX-MS to be applied in more experimental scenarios and reduces the burden on experimentalists to produce excessive replicates. Our approach is implemented in the R-package “hdxstats”: https://github.com/ococrook/hdxstats. A statistical analysis approach for HDX-MS time series data incorporates correlations in time, reducing false positives and improving statistical power and data interpretation.
Collapse
Affiliation(s)
- Oliver M Crook
- Department of Statistics, University of Oxford, Oxford, OX1 3LB, UK.
| | - Chun-Wa Chung
- Structural and Biophysical Sciences, GlaxoSmithKline R&D, Stevenage, SG1 2NY, UK
| | | |
Collapse
|
15
|
Yandrofski K, Mouchahoir T, De Leoz ML, Duewer D, Hudgens JW, Anderson KW, Arbogast L, Delaglio F, Brinson RG, Marino JP, Phinney K, Tarlov M, Schiel JE. Interlaboratory Studies Using the NISTmAb to Advance Biopharmaceutical Structural Analytics. Front Mol Biosci 2022; 9:876780. [PMID: 35601836 PMCID: PMC9117750 DOI: 10.3389/fmolb.2022.876780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 01/18/2023] Open
Abstract
Biopharmaceuticals such as monoclonal antibodies are required to be rigorously characterized using a wide range of analytical methods. Various material properties must be characterized and well controlled to assure that clinically relevant features and critical quality attributes are maintained. A thorough understanding of analytical method performance metrics, particularly emerging methods designed to address measurement gaps, is required to assure methods are appropriate for their intended use in assuring drug safety, stability, and functional activity. To this end, a series of interlaboratory studies have been conducted using NISTmAb, a biopharmaceutical-representative and publicly available monoclonal antibody test material, to report on state-of-the-art method performance, harmonize best practices, and inform on potential gaps in the analytical measurement infrastructure. Reported here is a summary of the study designs, results, and future perspectives revealed from these interlaboratory studies which focused on primary structure, post-translational modifications, and higher order structure measurements currently employed during biopharmaceutical development.
Collapse
Affiliation(s)
- Katharina Yandrofski
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, MD, United States
- *Correspondence: Katharina Yandrofski,
| | - Trina Mouchahoir
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, MD, United States
| | | | - David Duewer
- National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Jeffrey W. Hudgens
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, MD, United States
| | - Kyle W. Anderson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, MD, United States
| | - Luke Arbogast
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, MD, United States
| | - Frank Delaglio
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, MD, United States
| | - Robert G. Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, MD, United States
| | - John P. Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, MD, United States
| | - Karen Phinney
- National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Michael Tarlov
- National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - John E. Schiel
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, MD, United States
| |
Collapse
|
16
|
Gransagne M, Aymé G, Brier S, Chauveau-Le Friec G, Meriaux V, Nowakowski M, Dejardin F, Levallois S, Dias de Melo G, Donati F, Prot M, Brûlé S, Raynal B, Bellalou J, Goncalves P, Montagutelli X, Di Santo JP, Lazarini F, England P, Petres S, Escriou N, Lafaye P. Development of a highly specific and sensitive VHH-based sandwich immunoassay for the detection of the SARS-CoV-2 nucleoprotein. J Biol Chem 2021; 298:101290. [PMID: 34678315 PMCID: PMC8526496 DOI: 10.1016/j.jbc.2021.101290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
The current COVID-19 pandemic illustrates the importance of obtaining reliable methods for the rapid detection of SARS-CoV-2. A highly specific and sensitive diagnostic test able to differentiate the SARS-CoV-2 virus from common human coronaviruses is therefore needed. Coronavirus nucleoprotein (N) localizes to the cytoplasm and the nucleolus and is required for viral RNA synthesis. N is the most abundant coronavirus protein, so it is of utmost importance to develop specific antibodies for its detection. In this study, we developed a sandwich immunoassay to recognize the SARS-CoV-2 N protein. We immunized one alpaca with recombinant SARS-CoV-2 N and constructed a large single variable domain on heavy chain (VHH) antibody library. After phage display selection, seven VHHs recognizing the full N protein were identified by ELISA. These VHHs did not recognize the nucleoproteins of the four common human coronaviruses. Hydrogen Deuterium eXchange–Mass Spectrometry (HDX-MS) analysis also showed that these VHHs mainly targeted conformational epitopes in either the C-terminal or the N-terminal domains. All VHHs were able to recognize SARS-CoV-2 in infected cells or on infected hamster tissues. Moreover, the VHHs could detect the SARS variants B.1.17/alpha, B.1.351/beta, and P1/gamma. We propose that this sandwich immunoassay could be applied to specifically detect the SARS-CoV-2 N in human nasal swabs.
Collapse
Affiliation(s)
| | - Gabriel Aymé
- Plateforme d'Ingénierie des Anticorps, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Sébastien Brier
- Plateforme technologique de RMN biologique, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | | | - Véronique Meriaux
- Plateforme d'Ingénierie des Anticorps, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Mireille Nowakowski
- Plateforme Technologique Production et Purification de Protéines Recombinantes, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - François Dejardin
- Plateforme Technologique Production et Purification de Protéines Recombinantes, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Sylvain Levallois
- Biology of Infection Unit, Institut Pasteur, Inserm U1117, Paris, France
| | | | - Flora Donati
- Molecular Genetics of RNA viruses, UMR 3569 CNRS, University of Paris, Institut Pasteur, Paris, France; National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Matthieu Prot
- Evolutionary Genomics of RNA viruses, Institut Pasteur, Paris, France
| | - Sébastien Brûlé
- Plateforme de Biophysique Moléculaire, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Bertrand Raynal
- Plateforme de Biophysique Moléculaire, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Jacques Bellalou
- Plateforme Technologique Production et Purification de Protéines Recombinantes, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Pedro Goncalves
- Unité d'Immunité Innée, Institut Pasteur, Paris, France; INSERM U1223, Paris, France
| | | | - James P Di Santo
- Unité d'Immunité Innée, Institut Pasteur, Paris, France; INSERM U1223, Paris, France
| | - Françoise Lazarini
- Perception and Memory Unit, Institut Pasteur, CNRS UMR 3571, Paris, France
| | - Patrick England
- Plateforme de Biophysique Moléculaire, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Stéphane Petres
- Plateforme Technologique Production et Purification de Protéines Recombinantes, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Nicolas Escriou
- Département de Santé Globale, Institut Pasteur, Paris, France
| | - Pierre Lafaye
- Plateforme d'Ingénierie des Anticorps, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France.
| |
Collapse
|
17
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
18
|
Groves K, Ashcroft AE, Cryar A, Sula A, Wallace BA, Stocks BB, Burns C, Cooper-Shepherd D, De Lorenzi E, Rodriguez E, Zhang H, Ault JR, Ferguson J, Phillips JJ, Pacholarz K, Thalassinos K, Luckau L, Ashton L, Durrant O, Barran P, Dalby P, Vicedo P, Colombo R, Davis R, Parakra R, Upton R, Hill S, Wood V, Soloviev Z, Quaglia M. Reference Protocol to Assess Analytical Performance of Higher Order Structural Analysis Measurements: Results from an Interlaboratory Comparison. Anal Chem 2021; 93:9041-9048. [PMID: 34165299 DOI: 10.1021/acs.analchem.0c04625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Measurements of protein higher order structure (HOS) provide important information on stability, potency, efficacy, immunogenicity, and biosimilarity of biopharmaceuticals, with a significant number of techniques and methods available to perform these measurements. The comparison of the analytical performance of HOS methods and the standardization of the results is, however, not a trivial task, due to the lack of reference protocols and reference measurement procedures. Here, we developed a protocol to structurally alter and compare samples of somatropin, a recombinant biotherapeutic, and describe the results obtained by using a number of techniques, methods and in different laboratories. This, with the final aim to provide tools and generate a pool of data to compare and benchmark analytical platforms and define method sensitivity to structural changes. Changes in somatropin HOS, induced by the presence of zinc at increasing concentrations, were observed, both globally and at more localized resolution, across many of the methods utilized in this study and with different sensitivities, suggesting the suitability of the protocol to improve understanding of inter- and cross-platform measurement comparability and assess analytical performance as appropriate.
Collapse
Affiliation(s)
- K Groves
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - A E Ashcroft
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - A Cryar
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - A Sula
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, U.K
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, U.K
| | - B B Stocks
- National Research Council Canada, 1200 Montreal Road, Ottawa K1A 0R6, Canada
| | - C Burns
- Biotherapeutics Division, National Institute for Biological Standards and Control, Blanche Lane South Mimms, Potters Bar, Hertfordshire EN6 3QG, U.K
| | - D Cooper-Shepherd
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - E De Lorenzi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - E Rodriguez
- UCB Celltech, 216 Bath Road, Slough, Berkshire SL1 3WE, U.K
| | - H Zhang
- Department of Biochemical Engineering, University College London, London WC1E 6BT, U.K
| | - J R Ault
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - J Ferguson
- Biotherapeutics Division, National Institute for Biological Standards and Control, Blanche Lane South Mimms, Potters Bar, Hertfordshire EN6 3QG, U.K
| | - J J Phillips
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, , U.K
| | - K Pacholarz
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - K Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6AR, U.K
| | - L Luckau
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - L Ashton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - O Durrant
- UCB Celltech, 216 Bath Road, Slough, Berkshire SL1 3WE, U.K
| | - P Barran
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - P Dalby
- Department of Biochemical Engineering, University College London, London WC1E 6BT, U.K
| | - P Vicedo
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - R Colombo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - R Davis
- UCB Celltech, 216 Bath Road, Slough, Berkshire SL1 3WE, U.K
| | - R Parakra
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, , U.K
| | - R Upton
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - S Hill
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - V Wood
- Department of Biochemical Engineering, University College London, London WC1E 6BT, U.K
| | - Z Soloviev
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6AR, U.K
| | - M Quaglia
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| |
Collapse
|
19
|
Meng H, Wu G, Zhao X, Wang A, Li D, Tong Y, Jin T, Cao Y, Shan B, Hu S, Li Y, Pan L, Tian X, Wu P, Peng C, Yuan J, Li G, Tan L, Wang Z, Li Y. Discovery of a cooperative mode of inhibiting RIPK1 kinase. Cell Discov 2021; 7:41. [PMID: 34075030 PMCID: PMC8169668 DOI: 10.1038/s41421-021-00278-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
RIPK1, a death domain-containing kinase, has been recognized as an important therapeutic target for inhibiting apoptosis, necroptosis, and inflammation under pathological conditions. RIPK1 kinase inhibitors have been advanced into clinical studies for the treatment of various human diseases. One of the current bottlenecks in developing RIPK1 inhibitors is to discover new approaches to inhibit this kinase as only limited chemotypes have been developed. Here we describe Necrostatin-34 (Nec-34), a small molecule that inhibits RIPK1 kinase with a mechanism distinct from known RIPK1 inhibitors such as Nec-1s. Mechanistic studies suggest that Nec-34 stabilizes RIPK1 kinase in an inactive conformation by occupying a distinct binding pocket in the kinase domain. Furthermore, we show that Nec-34 series of compounds can synergize with Nec-1s to inhibit RIPK1 in vitro and in vivo. Thus, Nec-34 defines a new strategy to target RIPK1 kinase and provides a potential option of combinatorial therapy for RIPK1-mediated diseases.
Collapse
Affiliation(s)
- Huyan Meng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guowei Wu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinsuo Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Anhui Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Dekang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yilun Tong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Taijie Jin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ye Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Shichen Hu
- University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ying Li
- University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Lifeng Pan
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxu Tian
- National Facility for Protein Science, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ping Wu
- National Facility for Protein Science, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Guohui Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Zhaoyin Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
20
|
Lau AM, Claesen J, Hansen K, Politis A. Deuteros 2.0: peptide-level significance testing of data from hydrogen deuterium exchange mass spectrometry. Bioinformatics 2021; 37:270-272. [PMID: 32722756 PMCID: PMC8055227 DOI: 10.1093/bioinformatics/btaa677] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 01/07/2023] Open
Abstract
Summary Hydrogen deuterium exchange mass spectrometry (HDX-MS) is becoming increasing routine for monitoring changes in the structural dynamics of proteins. Differential HDX-MS allows comparison of protein states, such as in the absence or presence of a ligand. This can be used to attribute changes in conformation to binding events, allowing the mapping of entire conformational networks. As such, the number of necessary cross-state comparisons quickly increases as additional states are introduced to the system of study. There are currently very few software packages available that offer quick and informative comparison of HDX-MS datasets and even fewer which offer statistical analysis and advanced visualization. Following the feedback from our original software Deuteros, we present Deuteros 2.0 which has been redesigned from the ground up to fulfill a greater role in the HDX-MS analysis pipeline. Deuteros 2.0 features a repertoire of facilities for back exchange correction, data summarization, peptide-level statistical analysis and advanced data plotting features. Availability and implementation Deuteros 2.0 can be downloaded for both Windows and MacOS from https://github.com/andymlau/Deuteros_2.0 under the Apache 2.0 license.
Collapse
Affiliation(s)
- Andy M Lau
- Department of Chemistry, King's College London, London SE1 1DB, UK
| | - Jürgen Claesen
- Institute for Environment, Health and Safety, Microbiology Unit, SCK•CEN, Mol 2600, Belgium.,I-Biostat, Data Science Institute, Hasselt University, Hasselt 3500, Belgium
| | - Kjetil Hansen
- Department of Chemistry, King's College London, London SE1 1DB, UK
| | - Argyris Politis
- Department of Chemistry, King's College London, London SE1 1DB, UK
| |
Collapse
|
21
|
The box C/D snoRNP assembly factor Bcd1 interacts with the histone chaperone Rtt106 and controls its transcription dependent activity. Nat Commun 2021; 12:1859. [PMID: 33767140 PMCID: PMC7994586 DOI: 10.1038/s41467-021-22077-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoproteins initiates co-transcriptionally and requires the action of the assembly machinery including the Hsp90/R2TP complex, the Rsa1p:Hit1p heterodimer and the Bcd1 protein. We present genetic interactions between the Rsa1p-encoding gene and genes involved in chromatin organization including RTT106 that codes for the H3-H4 histone chaperone Rtt106p controlling H3K56ac deposition. We show that Bcd1p binds Rtt106p and controls its transcription-dependent recruitment by reducing its association with RNA polymerase II, modulating H3K56ac levels at gene body. We reveal the 3D structures of the free and Rtt106p-bound forms of Bcd1p using nuclear magnetic resonance and X-ray crystallography. The interaction is also studied by a combination of biophysical and proteomic techniques. Bcd1p interacts with a region that is distinct from the interaction interface between the histone chaperone and histone H3. Our results are evidence for a protein interaction interface for Rtt106p that controls its transcription-associated activity. Biogenesis of small nucleolar RNAs ribonucleoproteins (snoRNPs) requires dedicated assembly machinery. Here, the authors show that a subset of snoRNP assembly factors interacts, genetically or directly, with factors modulating chromatin architecture, suggesting a link between ribosome formation and chromatin functions.
Collapse
|
22
|
Raval S, Sarpe V, Hepburn M, Crowder DA, Zhang T, Viner R, Schriemer DC. Improving Spectral Validation Rates in Hydrogen-Deuterium Exchange Data Analysis. Anal Chem 2021; 93:4246-4254. [PMID: 33592142 DOI: 10.1021/acs.analchem.0c05045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The data analysis practices associated with hydrogen-deuterium exchange mass spectrometry (HX-MS) lag far behind that of most other MS-based protein analysis tools. A reliance on external tools from other fields and a persistent need for manual data validation restrict this powerful technology to the expert user. Here, we provide an extensive upgrade to the HX data analysis suite available in the Mass Spec Studio in the form of two new apps (HX-PIPE and HX-DEAL), completing a workflow that provides an HX-tailored peptide identification capability, accelerated validation routines, automated spectral deconvolution strategies, and a rich set of exportable graphics and statistical reports. With these new tools, we demonstrate that the peptide identifications obtained from undeuterated samples generated at the start of a project contain information that helps predict and control the extent of manual validation required. We also uncover a large fraction of HX-usable peptides that remains unidentified in most experiments. We show that automated spectral deconvolution routines can identify exchange regimes in a project-wide manner, although they remain difficult to accurately assign in all scenarios. Taken together, these new tools provide a robust and complete solution suitable for the analysis of high-complexity HX-MS data.
Collapse
Affiliation(s)
- Shaunak Raval
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N-4N1
| | - Vladimir Sarpe
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N-4N1
| | - Morgan Hepburn
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N-4N1
| | - D Alex Crowder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N-4N1
| | - Terry Zhang
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Rosa Viner
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - David C Schriemer
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N-4N1.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N-4N1
| |
Collapse
|
23
|
Puchała W, Burdukiewicz M, Kistowski M, Dąbrowska KA, Badaczewska-Dawid AE, Cysewski D, Dadlez M. HaDeX: an R package and web-server for analysis of data from hydrogen-deuterium exchange mass spectrometry experiments. Bioinformatics 2021; 36:4516-4518. [PMID: 32579220 PMCID: PMC7575049 DOI: 10.1093/bioinformatics/btaa587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 02/03/2023] Open
Abstract
Motivation Hydrogen–deuterium mass spectrometry (HDX-MS) is a rapidly developing technique for monitoring dynamics and interactions of proteins. The development of new devices has to be followed with new software suites addressing emerging standards in data analysis. Results We propose HaDeX, a novel tool for processing, analysis and visualization of HDX-MS experiments. HaDeX supports a reproducible analytical process, including data exploration, quality control and generation of publication-quality figures. Availability and implementation HaDeX is available primarily as a web-server (http://mslab-ibb.pl/shiny/HaDeX/), but its all functionalities are also accessible as the R package (https://CRAN.R-project.org/package=HaDeX) and standalone software (https://sourceforge.net/projects/HaDeX/). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Weronika Puchała
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Michał Burdukiewicz
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw 00-662, Poland
| | - Michał Kistowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Katarzyna A Dąbrowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | | | - Dominik Cysewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
24
|
Rovito D, Belorusova AY, Chalhoub S, Rerra AI, Guiot E, Molin A, Linglart A, Rochel N, Laverny G, Metzger D. Cytosolic sequestration of the vitamin D receptor as a therapeutic option for vitamin D-induced hypercalcemia. Nat Commun 2020; 11:6249. [PMID: 33288743 PMCID: PMC7721737 DOI: 10.1038/s41467-020-20069-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 11/12/2020] [Indexed: 11/09/2022] Open
Abstract
The bioactive vitamin D3, 1α,25(OH)2D3, plays a central role in calcium homeostasis by controlling the activity of the vitamin D receptor (VDR) in various tissues. Hypercalcemia secondary to high circulating levels of vitamin D3 leads to hypercalciuria, nephrocalcinosis and renal dysfunctions. Current therapeutic strategies aim at limiting calcium intake, absorption and resorption, or 1α,25(OH)2D3 synthesis, but are poorly efficient. In this study, we identify WBP4 as a new VDR interactant, and demonstrate that it controls VDR subcellular localization. Moreover, we show that the vitamin D analogue ZK168281 enhances the interaction between VDR and WBP4 in the cytosol, and normalizes the expression of VDR target genes and serum calcium levels in 1α,25(OH)2D3-intoxicated mice. As ZK168281 also blunts 1α,25(OH)2D3-induced VDR signaling in fibroblasts of a patient with impaired vitamin D degradation, this VDR antagonist represents a promising therapeutic option for 1α,25(OH)2D3-induced hypercalcemia. Current therapeutic strategies for vitamin D-induced hypercalcemia are poorly efficient. Here the authors identify a new interaction between the vitamin D receptor (VDR) and WBP4 controlling the subcellular localization of VDR and show that ZK168281, a VDR antagonist, enhances the interaction between VDR and WBP4 blunting VDR signalling and normalizing calcium levels in vitamin D-intoxicated mice.
Collapse
Affiliation(s)
- Daniela Rovito
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Anna Y Belorusova
- Medicinal Chemistry, Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sandra Chalhoub
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Anna-Isavella Rerra
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Elvire Guiot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Arnaud Molin
- Université de Normandie, UNICAEN, CHU de Caen Normandie, Service de Génétique, EA 7450 BIOTARGEN, Caen, France.,Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism (OSCAR), Paris, France
| | - Agnès Linglart
- Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism (OSCAR), Paris, France.,Université de Paris Saclay, AP-HP, Hôpital Bicêtre, DMU SEA, INSERM, U1185, Le Kremlin Bicêtre, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Gilles Laverny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| |
Collapse
|
25
|
Belorusova AY, Bourguet M, Hessmann S, Chalhoub S, Kieffer B, Cianférani S, Rochel N. Molecular determinants of MED1 interaction with the DNA bound VDR-RXR heterodimer. Nucleic Acids Res 2020; 48:11199-11213. [PMID: 32990725 PMCID: PMC7641746 DOI: 10.1093/nar/gkaa775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
The MED1 subunit of the Mediator complex is an essential coactivator of nuclear receptor-mediated transcriptional activation. While structural requirements for ligand-dependent binding of classical coactivator motifs of MED1 to numerous nuclear receptor ligand-binding domains have been fully elucidated, the recognition of the full-length or truncated coactivator by full nuclear receptor complexes remain unknown. Here we present structural details of the interaction between a large part of MED1 comprising its structured N-terminal and the flexible receptor-interacting domains and the mutual heterodimer of the vitamin D receptor (VDR) and the retinoid X receptor (RXR) bound to their cognate DNA response element. Using a combination of structural and biophysical methods we show that the ligand-dependent interaction between VDR and the second coactivator motif of MED1 is crucial for complex formation and we identify additional, previously unseen, interaction details. In particular, we identified RXR regions involved in the interaction with the structured N-terminal domain of MED1, as well as VDR regions outside the classical coactivator binding cleft affected by coactivator recruitment. These findings highlight important roles of each receptor within the heterodimer in selective recognition of MED1 and contribute to our understanding of the nuclear receptor-coregulator complexes.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maxime Bourguet
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Steve Hessmann
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Sandra Chalhoub
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bruno Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
26
|
Osz J, McEwen AG, Bourguet M, Przybilla F, Peluso-Iltis C, Poussin-Courmontagne P, Mély Y, Cianférani S, Jeffries CM, Svergun DI, Rochel N. Structural basis for DNA recognition and allosteric control of the retinoic acid receptors RAR-RXR. Nucleic Acids Res 2020; 48:9969-9985. [PMID: 32974652 PMCID: PMC7515732 DOI: 10.1093/nar/gkaa697] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid receptors (RARs) as a functional heterodimer with retinoid X receptors (RXRs), bind a diverse series of RA-response elements (RAREs) in regulated genes. Among them, the non-canonical DR0 elements are bound by RXR–RAR with comparable affinities to DR5 elements but DR0 elements do not act transcriptionally as independent RAREs. In this work, we present structural insights for the recognition of DR5 and DR0 elements by RXR–RAR heterodimer using x-ray crystallography, small angle x-ray scattering, and hydrogen/deuterium exchange coupled to mass spectrometry. We solved the crystal structures of RXR–RAR DNA-binding domain in complex with the Rarb2 DR5 and RXR–RXR DNA-binding domain in complex with Hoxb13 DR0. While cooperative binding was observed on DR5, the two molecules bound non-cooperatively on DR0 on opposite sides of the DNA. In addition, our data unveil the structural organization and dynamics of the multi-domain RXR–RAR DNA complexes providing evidence for DNA-dependent allosteric communication between domains. Differential binding modes between DR0 and DR5 were observed leading to differences in conformation and structural dynamics of the multi-domain RXR–RAR DNA complexes. These results reveal that the topological organization of the RAR binding element confer regulatory information by modulating the overall topology and structural dynamics of the RXR–RAR heterodimers.
Collapse
Affiliation(s)
- Judit Osz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM) U1258, Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Alastair G McEwen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM) U1258, Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maxime Bourguet
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Frédéric Przybilla
- Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Carole Peluso-Iltis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM) U1258, Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pierre Poussin-Courmontagne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM) U1258, Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS UMR 7178, IPHC, Strasbourg, France
| | - Cy M Jeffries
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM) U1258, Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
27
|
Engen JR, Botzanowski T, Peterle D, Georgescauld F, Wales TE. Developments in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal Chem 2020; 93:567-582. [DOI: 10.1021/acs.analchem.0c04281] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas Botzanowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Daniele Peterle
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Florian Georgescauld
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
Belorusova AY, Chalhoub S, Rovito D, Rochel N. Structural Analysis of VDR Complex with ZK168281 Antagonist. J Med Chem 2020; 63:9457-9463. [PMID: 32787090 DOI: 10.1021/acs.jmedchem.0c00656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vitamin D receptor (VDR) antagonists prevent the VDR activation function helix 12 from folding into its active conformation, thus affecting coactivator recruitment and antagonizing the transcriptional regulation induced by 1α,25-dihydroxyvitamin D3. Here, we report the crystal structure of the zebrafish VDR ligand-binding domain in complex with the ZK168281 antagonist, revealing that the ligand prevents optimal folding of the C-terminal region of VDR. This interference was confirmed by hydrogen-deuterium exchange mass spectrometry (HDX-MS) in solution.
Collapse
Affiliation(s)
- Anna Y Belorusova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM), U1258, 67400 Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France.,Medicinal Chemistry, Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Sandra Chalhoub
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM), U1258, 67400 Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Daniela Rovito
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM), U1258, 67400 Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France.,Institut National de La Santé et de La Recherche Médicale (INSERM), U1258, 67400 Illkirch, France.,Centre National de Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France.,Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
29
|
Volant S, Lechat P, Woringer P, Motreff L, Campagne P, Malabat C, Kennedy S, Ghozlane A. SHAMAN: a user-friendly website for metataxonomic analysis from raw reads to statistical analysis. BMC Bioinformatics 2020; 21:345. [PMID: 32778056 PMCID: PMC7430814 DOI: 10.1186/s12859-020-03666-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/16/2020] [Indexed: 01/04/2023] Open
Abstract
Background Comparing the composition of microbial communities among groups of interest (e.g., patients vs healthy individuals) is a central aspect in microbiome research. It typically involves sequencing, data processing, statistical analysis and graphical display. Such an analysis is normally obtained by using a set of different applications that require specific expertise for installation, data processing and in some cases, programming skills. Results Here, we present SHAMAN, an interactive web application we developed in order to facilitate the use of (i) a bioinformatic workflow for metataxonomic analysis, (ii) a reliable statistical modelling and (iii) to provide the largest panel of interactive visualizations among the applications that are currently available. SHAMAN is specifically designed for non-expert users. A strong benefit is to use an integrated version of the different analytic steps underlying a proper metagenomic analysis. The application is freely accessible at http://shaman.pasteur.fr/, and may also work as a standalone application with a Docker container (aghozlane/shaman), conda and R. The source code is written in R and is available at https://github.com/aghozlane/shaman. Using two different datasets (a mock community sequencing and a published 16S rRNA metagenomic data), we illustrate the strengths of SHAMAN in quickly performing a complete metataxonomic analysis. Conclusions With SHAMAN, we aim at providing the scientific community with a platform that simplifies reproducible quantitative analysis of metagenomic data.
Collapse
Affiliation(s)
- Stevenn Volant
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 Rue Du Docteur Roux, Paris, 75015, France
| | - Pierre Lechat
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 Rue Du Docteur Roux, Paris, 75015, France
| | - Perrine Woringer
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 Rue Du Docteur Roux, Paris, 75015, France
| | - Laurence Motreff
- Biomics - Département Génomes et Génétique, Institut Pasteur, 28 Rue du Docteur Roux, Paris, 75015, France
| | - Pascal Campagne
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 Rue Du Docteur Roux, Paris, 75015, France
| | - Christophe Malabat
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 Rue Du Docteur Roux, Paris, 75015, France
| | - Sean Kennedy
- Biomics - Département Génomes et Génétique, Institut Pasteur, 28 Rue du Docteur Roux, Paris, 75015, France
| | - Amine Ghozlane
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, 28 Rue Du Docteur Roux, Paris, 75015, France. .,Biomics - Département Génomes et Génétique, Institut Pasteur, 28 Rue du Docteur Roux, Paris, 75015, France.
| |
Collapse
|
30
|
Bouyssié D, Lesne J, Locard-Paulet M, Albigot R, Burlet-Schiltz O, Marcoux J. HDX-Viewer: interactive 3D visualization of hydrogen-deuterium exchange data. Bioinformatics 2020; 35:5331-5333. [PMID: 31287496 PMCID: PMC6954641 DOI: 10.1093/bioinformatics/btz550] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 11/26/2022] Open
Abstract
Summary With the advent of fully automated sample preparation robots for Hydrogen–Deuterium eXchange coupled to Mass Spectrometry (HDX-MS), this method has become paramount for ligand binding or epitope mapping screening, both in academic research and biopharmaceutical industries. However, bridging the gap between commercial HDX-MS software (for raw data interpretation) and molecular viewers (to map experiment results onto a 3D structure for biological interpretation) remains laborious and requires simple but sometimes limiting coding skills. We solved this bottleneck by developing HDX-Viewer, an open-source web-based application that facilitates and quickens HDX-MS data analysis. This user-friendly application automatically incorporates HDX-MS data from a custom template or commercial HDX-MS software in PDB files, and uploads them to an online 3D molecular viewer, thereby facilitating their visualization and biological interpretation. Availability and implementation The HDX-Viewer web application is released under the CeCILL (http://www.cecill.info) and GNU LGPL licenses and can be found at https://masstools.ipbs.fr/hdx-viewer. The source code is available at https://github.com/david-bouyssie/hdx-viewer.
Collapse
Affiliation(s)
- David Bouyssié
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean Lesne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Albigot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
31
|
Structural predictions of the functions of membrane proteins from HDX-MS. Biochem Soc Trans 2020; 48:971-979. [PMID: 32597490 PMCID: PMC7329338 DOI: 10.1042/bst20190880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
HDX-MS has emerged as a powerful tool to interrogate the structure and dynamics of proteins and their complexes. Recent advances in the methodology and instrumentation have enabled the application of HDX-MS to membrane proteins. Such targets are challenging to investigate with conventional strategies. Developing new tools are therefore pertinent for improving our fundamental knowledge of how membrane proteins function in the cell. Importantly, investigating this central class of biomolecules within their native lipid environment remains a challenge but also a key goal ahead. In this short review, we outline recent progresses in dissecting the conformational mechanisms of membrane proteins using HDX-MS. We further describe how the use of computational strategies can aid the interpretation of experimental data and enable visualisation of otherwise intractable membrane protein states. This unique integration of experiments with computations holds significant potential for future applications.
Collapse
|
32
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
33
|
Cyclic di-GMP Signaling in Bacillus subtilis Is Governed by Direct Interactions of Diguanylate Cyclases and Cognate Receptors. mBio 2020; 11:mBio.03122-19. [PMID: 32156823 PMCID: PMC7064775 DOI: 10.1128/mbio.03122-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Second messengers are free to diffuse through the cells and to activate all responsive elements. Cyclic di-GMP (c-di-GMP) signaling plays an important role in the determination of the life style transition between motility and sessility/biofilm formation but involves numerous distinct synthetases (diguanylate cyclases [DGCs]) or receptor pathways that appear to act in an independent manner. Using Bacillus subtilis as a model organism, we show that for two c-di-GMP pathways, DGCs and receptor molecules operate via direct interactions, where a synthesized dinucleotide appears to be directly used for the protein-protein interaction. We show that very few DGC molecules exist within cells; in the case of exopolysaccharide (EPS) formation via membrane protein DgcK, the DGC molecules act at a single site, setting up a single signaling pool within the cell membrane. Using single-molecule tracking, we show that the soluble DGC DgcP arrests at the cell membrane, interacting with its receptor, DgrA, which slows down motility. DgrA also directly binds to DgcK, showing that divergent as well as convergent modules exist in B. subtilis. Thus, local-pool signal transduction operates extremely efficiently and specifically. Bacillus subtilis contains two known cyclic di-GMP (c-di-GMP)-dependent receptors, YdaK and DgrA, as well as three diguanylate cyclases (DGCs): soluble DgcP and membrane-integral DgcK and DgcW. DgrA regulates motility, while YdaK is responsible for the formation of a putative exopolysaccharide, dependent on the activity of DgcK. Using single-molecule tracking, we show that a majority of DgcK molecules are statically positioned in the cell membrane but significantly less so in the absence of YdaK but more so upon overproduction of YdaK. The soluble domains of DgcK and of YdaK show a direct interaction in vitro, which depends on an intact I-site within the degenerated GGDEF domain of YdaK. These experiments suggest a direct handover of a second messenger at a single subcellular site. Interestingly, all three DGC proteins contribute toward downregulation of motility via the PilZ protein DgrA. Deletion of dgrA also affects the mobility of DgcK within the membrane and also that of DgcP, which arrests less often at the membrane in the absence of DgrA. Both, DgcK and DgcP interact with DgrA in vitro, showing that divergent as well as convergent direct connections exist between cyclases and their effector proteins. Automated determination of molecule numbers in live cells revealed that DgcK and DgcP are present at very low copy numbers of 6 or 25 per cell, respectively, such that for DgcK, a part of the cell population does not contain any DgcK molecule, rendering signaling via c-di-GMP extremely efficient.
Collapse
|
34
|
O'Brien DP, Hourdel V, Chenal A, Brier S. Hydrogen/Deuterium Exchange Mass Spectrometry for the Structural Analysis of Detergent-Solubilized Membrane Proteins. Methods Mol Biol 2020; 2127:339-358. [PMID: 32112332 DOI: 10.1007/978-1-0716-0373-4_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Integral membrane proteins are involved in numerous biological functions and represent important drug targets. Despite their abundance in the human proteome, the number of integral membrane protein structures is largely underrepresented in the Protein Data Bank. The challenges associated with the biophysical characterization of such biological systems are well known. Most structural approaches, including X-ray crystallography, SAXS, or mass spectrometry (MS), require the complete solubilization of membrane proteins in aqueous solutions. Detergents are frequently used for this task, but may interfere with the analysis, as is the case with MS. The use of "MS-friendly" detergents, such as non-ionic alkyl glycoside detergents, has greatly facilitated the analysis of detergent-solubilized membrane proteins. Here, we describe a protocol, which we have successfully implemented in our laboratory to study the structure and dynamics of detergent-solubilized integral membrane proteins by Hydrogen/Deuterium eXchange and Mass Spectrometry (HDX-MS). The procedure does not require detergent removal prior to MS analysis, instead taking advantage of the ultra-high pressure chromatographic system to separate deuterated peptides from "MS-friendly" detergents.
Collapse
Affiliation(s)
- Darragh P O'Brien
- Biochemistry of Macromolecular Interaction Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Véronique Hourdel
- Environment and Infectious Risks Unit, Department of Infection and Epidemiology, Institut Pasteur, Paris, France
| | - Alexandre Chenal
- Biochemistry of Macromolecular Interaction Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Sébastien Brier
- Biological NMR Technological Platform, Center for Technological Resources and Research, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France.
| |
Collapse
|
35
|
Lumpkin RJ, Komives EA. DECA, A Comprehensive, Automatic Post-processing Program for HDX-MS Data. Mol Cell Proteomics 2019; 18:2516-2523. [PMID: 31594786 PMCID: PMC6885705 DOI: 10.1074/mcp.tir119.001731] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/17/2019] [Indexed: 11/06/2022] Open
Abstract
Amide hydrogen-deuterium exchange mass spectrometry (HDX-MS) has become widely popular for mapping protein-ligand interfaces, for understanding protein-protein interactions, and for discovering dynamic allostery. Several platforms are now available which provide large data sets of amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data. Although many of these platforms provide some down-stream processing, a comprehensive software that provides the most commonly used down-stream processing tools such as automatic back-exchange correction options, analysis of overlapping peptides, calculations of relative deuterium uptake into regions of the protein after such corrections, rigorous statistical analysis of the significance of uptake differences, and generation of high quality figures for data presentation is not yet available. Here we describe the Deuterium Exchange Correction and Analysis (DECA) software package, which provides all these downstream processing options for data from the most popular mass spectrometry platforms. The major functions of the software are demonstrated on sample data.
Collapse
Affiliation(s)
- Ryan J Lumpkin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378.
| |
Collapse
|
36
|
Belorusova AY, Evertsson E, Hovdal D, Sandmark J, Bratt E, Maxvall I, Schulman IG, Åkerblad P, Lindstedt EL. Structural analysis identifies an escape route from the adverse lipogenic effects of liver X receptor ligands. Commun Biol 2019; 2:431. [PMID: 31799433 PMCID: PMC6874530 DOI: 10.1038/s42003-019-0675-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
Liver X receptors (LXRs) are attractive drug targets for cardiovascular disease treatment due to their role in regulating cholesterol homeostasis and immunity. The anti-atherogenic properties of LXRs have prompted development of synthetic ligands, but these cause major adverse effects-such as increased lipogenesis-which are challenging to dissect from their beneficial activities. Here we show that LXR compounds displaying diverse functional responses in animal models induce distinct receptor conformations. Combination of hydrogen/deuterium exchange mass spectrometry and multivariate analysis allowed identification of LXR regions differentially correlating with anti-atherogenic and lipogenic activities of ligands. We show that lipogenic compounds stabilize active states of LXRα and LXRβ while the anti-atherogenic expression of the cholesterol transporter ABCA1 is associated with the ligand-induced stabilization of LXRα helix 3. Our data indicates that avoiding ligand interaction with the activation helix 12 while engaging helix 3 may provide directions for development of ligands with improved therapeutic profiles.
Collapse
Affiliation(s)
- Anna Y. Belorusova
- Medicinal Chemistry, Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma Evertsson
- Medicinal Chemistry, Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Hovdal
- Preclinical and Translational PK & PKPD, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jenny Sandmark
- Structure, Biophysics & Fragment Based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma Bratt
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Maxvall
- Translational Science and Experimental Medicine, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
| | - Ira G. Schulman
- Department of Pharmacology, University of Virginia, Charlottesville, VA USA
| | - Peter Åkerblad
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D AstraZeneca, Gothenburg, Sweden
- Present Address: Albireo Pharma, Gothenburg, Sweden
| | - Eva-Lotte Lindstedt
- Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
37
|
Bardiaux B, Cordier F, Brier S, López-Castilla A, Izadi-Pruneyre N, Nilges M. Dynamics of a type 2 secretion system pseudopilus unraveled by complementary approaches. JOURNAL OF BIOMOLECULAR NMR 2019; 73:293-303. [PMID: 31124002 PMCID: PMC6692295 DOI: 10.1007/s10858-019-00246-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Secretion pili, bacterial fibers responsible for transporting proteins to the extracellular milieu in some secretion systems, are very strong structures but at the same time highly flexible. Their flexibility and helical symmetry make structure determination at atomic resolution a challenging task. We have previously used an integrative structural biology approach including liquid-state NMR, cryo-electron microscopy (cryo-EM), and modeling to determine the pseudo-atomic resolution structure of the type 2 secretion system pseudopilus in a mutant form, where we employed NMR to determine the high resolution structure of the pilin (the monomer building block of the pilus). In this work, we determine the pseudo-atomic structure of the wild type pilus, and compare the dynamics of wild type and mutant pili by normal mode analysis. We present a detailed NMR analysis of the dynamics of the pilin in isolation, and compare dynamics and solvent accessibility of isolated and assembled pilins by Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS). These complementary approaches provide a comprehensive view of internal and overall dynamics of pili, crucial for their function.
Collapse
Affiliation(s)
- Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France
| | - Florence Cordier
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France
- Biological NMR Technological Platform, Center for Technological Resources and Research, Department of Structural Biology and Chemistry, Institut Pasteur; CNRS UMR3528, Paris, France
| | - Sébastien Brier
- Biological NMR Technological Platform, Center for Technological Resources and Research, Department of Structural Biology and Chemistry, Institut Pasteur; CNRS UMR3528, Paris, France
| | - Aracelys López-Castilla
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France.
| | - Michael Nilges
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756, Paris, France.
| |
Collapse
|
38
|
Rochel N, Krucker C, Coutos-Thévenot L, Osz J, Zhang R, Guyon E, Zita W, Vanthong S, Hernandez OA, Bourguet M, Badawy KA, Dufour F, Peluso-Iltis C, Heckler-Beji S, Dejaegere A, Kamoun A, de Reyniès A, Neuzillet Y, Rebouissou S, Béraud C, Lang H, Massfelder T, Allory Y, Cianférani S, Stote RH, Radvanyi F, Bernard-Pierrot I. Recurrent activating mutations of PPARγ associated with luminal bladder tumors. Nat Commun 2019; 10:253. [PMID: 30651555 PMCID: PMC6335423 DOI: 10.1038/s41467-018-08157-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 12/18/2018] [Indexed: 11/21/2022] Open
Abstract
The upregulation of PPARγ/RXRα transcriptional activity has emerged as a key event in luminal bladder tumors. It renders tumor cell growth PPARγ-dependent and modulates the tumor microenvironment to favor escape from immuno-surveillance. The activation of the pathway has been linked to PPARG gains/amplifications resulting in PPARγ overexpression and to recurrent activating point mutations of RXRα. Here, we report recurrent mutations of PPARγ that also activate the PPARγ/RXRα pathway, conferring PPARγ-dependency and supporting a crucial role of PPARγ in luminal bladder cancer. These mutations are found throughout the protein—including N-terminal, DNA-binding and ligand-binding domains—and most of them enhance protein activity. Structure-function studies of PPARγ variants with mutations in the ligand-binding domain allow identifying structural elements that underpin their gain-of-function. Our study reveals genomic alterations of PPARG that lead to pro-tumorigenic PPARγ/RXRα pathway activation in luminal bladder tumors and may open the way towards alternative options for treatment. Activation of the PPARγ/RXRα pathway in luminal bladder cancers has mainly been linked to PPARG gene amplifications and activating point mutations in RXRα. Here, the authors identify recurrent PPARγ mutations with similar effects and elucidate the structural basis for this mutational PPARγ activation.
Collapse
Affiliation(s)
- Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, 67404 Illkirch, France.
| | - Clémentine Krucker
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, 75005, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
| | - Laure Coutos-Thévenot
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, 75005, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
| | - Judit Osz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, 67404 Illkirch, France
| | - Ruiyun Zhang
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, 75005, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France.,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Elodie Guyon
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, 75005, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
| | - Wayne Zita
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, 67404 Illkirch, France
| | - Séverin Vanthong
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, 67404 Illkirch, France
| | - Oscar Alba Hernandez
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Maxime Bourguet
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Kays Al Badawy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, 67404 Illkirch, France
| | - Florent Dufour
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, 75005, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
| | - Carole Peluso-Iltis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, 67404 Illkirch, France
| | - Syrine Heckler-Beji
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, 67404 Illkirch, France
| | - Annick Dejaegere
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, 67404 Illkirch, France
| | - Aurélie Kamoun
- Ligue Nationale Contre le Cancer, Programme Cartes d'Identité des Tumeurs (CIT), 75013 Paris, France
| | - Aurélien de Reyniès
- Ligue Nationale Contre le Cancer, Programme Cartes d'Identité des Tumeurs (CIT), 75013 Paris, France
| | - Yann Neuzillet
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, 75005, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
| | - Sandra Rebouissou
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, 75005, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France.,INSERM, UMR-1162 "Génomique Fonctionnelle des tumeurs solides", 75010, Paris, France
| | - Claire Béraud
- UROLEAD SAS, School of Medicine, 67085, Strasbourg, France
| | - Hervé Lang
- Department of Urology, Nouvel Hôpital Civil Hôpitaux Universitaires de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091, Strasbourg, France
| | - Thierry Massfelder
- INSERM UMRS1113, Section of Cell Signalization and Communication in Kidney and Prostate Cancer, INSERM and University of Strasbourg, School of Medicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), 67085, Strasbourg, France
| | - Yves Allory
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, 75005, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000, Strasbourg, France
| | - Roland H Stote
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U1258/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, 67404 Illkirch, France
| | - François Radvanyi
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, 75005, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France
| | - Isabelle Bernard-Pierrot
- Institut Curie, PSL Research University, CNRS, UMR144, Equipe Labellisée Ligue contre le Cancer, 75005, Paris, France. .,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR144, 75005, Paris, France.
| |
Collapse
|
39
|
Cirri E, Brier S, Assal R, Canul-Tec JC, Chamot-Rooke J, Reyes N. Consensus designs and thermal stability determinants of a human glutamate transporter. eLife 2018; 7:40110. [PMID: 30334738 PMCID: PMC6209432 DOI: 10.7554/elife.40110] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/17/2018] [Indexed: 11/25/2022] Open
Abstract
Human excitatory amino acid transporters (EAATs) take up the neurotransmitter glutamate in the brain and are essential to maintain excitatory neurotransmission. Our understanding of the EAATs’ molecular mechanisms has been hampered by the lack of stability of purified protein samples for biophysical analyses. Here, we present approaches based on consensus mutagenesis to obtain thermostable EAAT1 variants that share up to ~95% amino acid identity with the wild type transporters, and remain natively folded and functional. Structural analyses of EAAT1 and the consensus designs using hydrogen-deuterium exchange linked to mass spectrometry show that small and highly cooperative unfolding events at the inter-subunit interface rate-limit their thermal denaturation, while the transport domain unfolds at a later stage in the unfolding pathway. Our findings provide structural insights into the kinetic stability of human glutamate transporters, and introduce general approaches to extend the lifetime of human membrane proteins for biophysical analyses.
Collapse
Affiliation(s)
- Erica Cirri
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Sébastien Brier
- Mass Spectrometry for Biology Unit, Institut Pasteur, Paris, France.,USR 2000, CNRS, Institut Pasteur, Paris, France
| | - Reda Assal
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Juan Carlos Canul-Tec
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, Institut Pasteur, Paris, France.,USR 2000, CNRS, Institut Pasteur, Paris, France
| | - Nicolas Reyes
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, Paris, France.,UMR 3528, CNRS, Institut Pasteur, Paris, France
| |
Collapse
|
40
|
van Erp PBG, Patterson A, Kant R, Berry L, Golden SM, Forsman BL, Carter J, Jackson RN, Bothner B, Wiedenheft B. Conformational Dynamics of DNA Binding and Cas3 Recruitment by the CRISPR RNA-Guided Cascade Complex. ACS Chem Biol 2018; 13:481-490. [PMID: 29035497 DOI: 10.1021/acschembio.7b00649] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacteria and archaea rely on CRISPR (clustered regularly interspaced short palindromic repeats) RNA-guided adaptive immune systems for sequence specific elimination of foreign nucleic acids. In Escherichia coli, short CRISPR-derived RNAs (crRNAs) assemble with Cas (CRISPR-associated) proteins into a 405-kilodalton multisubunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade binds foreign DNA complementary to the crRNA guide and recruits Cas3, a trans-acting nuclease-helicase required for target degradation. Structural models of Cascade have captured static snapshots of the complex in distinct conformational states, but conformational dynamics of the 11-subunit surveillance complex have not been measured. Here, we use hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) to map conformational dynamics of Cascade onto the three-dimensional structure. New insights from structural dynamics are used to make functional predictions about the mechanisms of the R-loop coordination and Cas3 recruitment. We test these predictions in vivo and in vitro. Collectively, we show how mapping conformational dynamics onto static 3D-structures adds an additional dimension to the functional understanding of this biological machine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ryan N. Jackson
- Department
of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | | | | |
Collapse
|
41
|
O’Brien DP, Durand D, Voegele A, Hourdel V, Davi M, Chamot-Rooke J, Vachette P, Brier S, Ladant D, Chenal A. Calmodulin fishing with a structurally disordered bait triggers CyaA catalysis. PLoS Biol 2017; 15:e2004486. [PMID: 29287065 PMCID: PMC5764468 DOI: 10.1371/journal.pbio.2004486] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/11/2018] [Accepted: 12/07/2017] [Indexed: 11/18/2022] Open
Abstract
Once translocated into the cytosol of target cells, the catalytic domain (AC) of the adenylate cyclase toxin (CyaA), a major virulence factor of Bordetella pertussis, is potently activated by binding calmodulin (CaM) to produce supraphysiological levels of cAMP, inducing cell death. Using a combination of small-angle X-ray scattering (SAXS), hydrogen/deuterium exchange mass spectrometry (HDX-MS), and synchrotron radiation circular dichroism (SR-CD), we show that, in the absence of CaM, AC exhibits significant structural disorder, and a 75-residue-long stretch within AC undergoes a disorder-to-order transition upon CaM binding. Beyond this local folding, CaM binding induces long-range allosteric effects that stabilize the distant catalytic site, whilst preserving catalytic loop flexibility. We propose that the high enzymatic activity of AC is due to a tight balance between the CaM-induced decrease of structural flexibility around the catalytic site and the preservation of catalytic loop flexibility, allowing for fast substrate binding and product release. The CaM-induced dampening of AC conformational disorder is likely relevant to other CaM-activated enzymes. Calmodulin is a widespread and highly conserved protein that interacts with a wide variety of eukaryotic proteins and enzymes, controlling their activities in response to calcium. The adenylate cyclase toxin (CyaA) of Bordetella pertussis, the causative agent of whooping cough, is one such calmodulin target. Once transported across the plasma membrane of eukaryotic cells, the catalytic domain (AC) of CyaA is activated by calmodulin, producing high levels of cAMP, which can induce cell death. We use an integrative structural biology approach combining several biophysical techniques to characterize the structural rearrangements in AC upon calmodulin binding and to elucidate their relationship to CyaA activation. We show that a disordered stretch of 75 amino acid residues in AC serves as a bait for calmodulin capture. Binding induces significant folding within this region, a prerequisite for CyaA activation. Calmodulin binding promotes the stabilization of the distant catalytic site, whilst maintaining its catalytic loop in a flexible and exposed state. Both phenomena contribute to the high enzymatic activity of AC, allowing for fast substrate binding and cAMP release. The calmodulin-induced reduction of AC conformational disorder is likely relevant to other calmodulin-activated enzymes.
Collapse
Affiliation(s)
- Darragh P. O’Brien
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, Paris, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- * E-mail: (A.C.); (D.L.); (D.D.); (S.B.)
| | - Alexis Voegele
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, Paris, France
| | - Véronique Hourdel
- Institut Pasteur, USR CNRS 2000, Chemistry and Structural Biology Department, CITECH, Paris, France
| | - Marilyne Davi
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, Paris, France
| | - Julia Chamot-Rooke
- Institut Pasteur, USR CNRS 2000, Chemistry and Structural Biology Department, CITECH, Paris, France
| | - Patrice Vachette
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Sébastien Brier
- Institut Pasteur, USR CNRS 2000, Chemistry and Structural Biology Department, CITECH, Paris, France
- * E-mail: (A.C.); (D.L.); (D.D.); (S.B.)
| | - Daniel Ladant
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, Paris, France
- * E-mail: (A.C.); (D.L.); (D.D.); (S.B.)
| | - Alexandre Chenal
- Institut Pasteur, UMR CNRS 3528, Chemistry and Structural Biology Department, Paris, France
- * E-mail: (A.C.); (D.L.); (D.D.); (S.B.)
| |
Collapse
|
42
|
Structural disorder and induced folding within two cereal, ABA stress and ripening (ASR) proteins. Sci Rep 2017; 7:15544. [PMID: 29138428 PMCID: PMC5686140 DOI: 10.1038/s41598-017-15299-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
Abscisic acid (ABA), stress and ripening (ASR) proteins are plant-specific proteins involved in plant response to multiple abiotic stresses. We previously isolated the ASR genes and cDNAs from durum wheat (TtASR1) and barley (HvASR1). Here, we show that HvASR1 and TtASR1 are consistently predicted to be disordered and further confirm this experimentally. Addition of glycerol, which mimics dehydration, triggers a gain of structure in both proteins. Limited proteolysis showed that they are highly sensitive to protease degradation. Addition of 2,2,2-trifluoroethanol (TFE) however, results in a decreased susceptibility to proteolysis that is paralleled by a gain of structure. Mass spectrometry analyses (MS) led to the identification of a protein fragment resistant to proteolysis. Addition of zinc also induces a gain of structure and Hydrogen/Deuterium eXchange-Mass Spectrometry (HDX-MS) allowed identification of the region involved in the disorder-to-order transition. This study is the first reported experimental characterization of HvASR1 and TtASR1 proteins, and paves the way for future studies aimed at unveiling the functional impact of the structural transitions that these proteins undergo in the presence of zinc and at achieving atomic-resolution conformational ensemble description of these two plant intrinsically disordered proteins (IDPs).
Collapse
|
43
|
Terral G, Champion T, Debaene F, Colas O, Bourguet M, Wagner-Rousset E, Corvaia N, Beck A, Cianferani S. Epitope characterization of anti-JAM-A antibodies using orthogonal mass spectrometry and surface plasmon resonance approaches. MAbs 2017; 9:1317-1326. [PMID: 28933642 DOI: 10.1080/19420862.2017.1380762] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells and associated with cancer progression. We present here the extensive characterization of immune complexes involving JAM-A antigen and three monoclonal antibodies (mAbs), including hz6F4-2, a humanized version of anti-tumoral 6F4 mAb identified by a functional and proteomic approach in our laboratory. A specific workflow that combines orthogonal approaches has been designed to determine binding stoichiometries along with JAM-A epitope mapping determination at high resolution for these three mAbs. Native mass spectrometry experiments revealed different binding stoichiometries and affinities, with two molecules of JAM-A being able to bind to hz6F4-2 and F11 Fab, while only one JAM-A was bound to J10.4. Surface plasmon resonance indirect competitive binding assays suggested epitopes located in close proximity for hz6F4-2 and F11. Finally, hydrogen-deuterium exchange mass spectrometry was used to precisely identify epitopes for all mAbs. The results obtained by orthogonal biophysical approaches showed a clear correlation between the determined epitopes and JAM-A binding characteristics, allowing the basis for molecular recognition of JAM-A by hz6F4-2 to be definitively established for the first time. Taken together, our results highlight the power of MS-based structural approaches for epitope mapping and mAb conformational characterization.
Collapse
Affiliation(s)
- Guillaume Terral
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| | - Thierry Champion
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - François Debaene
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| | - Olivier Colas
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Maxime Bourguet
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| | - Elsa Wagner-Rousset
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Nathalie Corvaia
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Alain Beck
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Sarah Cianferani
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| |
Collapse
|
44
|
Cryar A, Groves K, Quaglia M. Online Hydrogen-Deuterium Exchange Traveling Wave Ion Mobility Mass Spectrometry (HDX-IM-MS): a Systematic Evaluation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1192-1202. [PMID: 28374315 PMCID: PMC5438439 DOI: 10.1007/s13361-017-1633-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 05/11/2023]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is an important tool for measuring and monitoring protein structure. A bottom-up approach to HDX-MS provides peptide level deuterium uptake values and a more refined localization of deuterium incorporation compared with global HDX-MS measurements. The degree of localization provided by HDX-MS is proportional to the number of peptides that can be identified and monitored across an exchange experiment. Ion mobility spectrometry (IMS) has been shown to improve MS-based peptide analysis of biological samples through increased separation capacity. The integration of IMS within HDX-MS workflows has been commercialized but presently its adoption has not been widespread. The potential benefits of IMS, therefore, have not yet been fully explored. We herein describe a comprehensive evaluation of traveling wave ion mobility integrated within an online-HDX-MS system and present the first reported example of UDMSE acquisition for HDX analysis. Instrument settings required for optimal peptide identifications are described and the effects of detector saturation due to peak compression are discussed. A model system is utilized to confirm the comparability of HDX-IM-MS and HDX-MS uptake values prior to an evaluation of the benefits of IMS at increasing sample complexity. Interestingly, MS and IM-MS acquisitions were found to identify distinct populations of peptides that were unique to the respective methods, a property that can be utilized to increase the spatial resolution of HDX-MS experiments by >60%. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Adam Cryar
- LGC, Queens Road, Teddington, London, TW11 0LY, UK.
| | - Kate Groves
- LGC, Queens Road, Teddington, London, TW11 0LY, UK
| | | |
Collapse
|
45
|
Analysis of phosphoinositide 3-kinase inhibitors by bottom-up electron-transfer dissociation hydrogen/deuterium exchange mass spectrometry. Biochem J 2017; 474:1867-1877. [PMID: 28381646 PMCID: PMC5544108 DOI: 10.1042/bcj20170127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 12/22/2022]
Abstract
Until recently, one of the major limitations of hydrogen/deuterium exchange mass spectrometry (HDX-MS) was the peptide-level resolution afforded by proteolytic digestion. This limitation can be selectively overcome through the use of electron-transfer dissociation to fragment peptides in a manner that allows the retention of the deuterium signal to produce hydrogen/deuterium exchange tandem mass spectrometry (HDX-MS/MS). Here, we describe the application of HDX-MS/MS to structurally screen inhibitors of the oncogene phosphoinositide 3-kinase catalytic p110α subunit. HDX-MS/MS analysis is able to discern a conserved mechanism of inhibition common to a range of inhibitors. Owing to the relatively minor amounts of protein required, this technique may be utilised in pharmaceutical development for screening potential therapeutics.
Collapse
|
46
|
Canul-Tec JC, Assal R, Cirri E, Legrand P, Brier S, Chamot-Rooke J, Reyes N. Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature 2017; 544:446-451. [PMID: 28424515 PMCID: PMC5410168 DOI: 10.1038/nature22064] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/10/2017] [Indexed: 12/24/2022]
Abstract
Human members of the solute carrier 1 (SLC1) family of transporters take up excitatory neurotransmitters in the brain and amino acids in peripheral organs. Dysregulation of the function of SLC1 transporters is associated with neurodegenerative disorders and cancer. Here we present crystal structures of a thermostabilized human SLC1 transporter, the excitatory amino acid transporter 1 (EAAT1), with and without allosteric and competitive inhibitors bound. The structures reveal architectural features of the human transporters, such as intra- and extracellular domains that have potential roles in transport function, regulation by lipids and post-translational modifications. The coordination of the allosteric inhibitor in the structures and the change in the transporter dynamics measured by hydrogen-deuterium exchange mass spectrometry reveal a mechanism of inhibition, in which the transporter is locked in the outward-facing states of the transport cycle. Our results provide insights into the molecular mechanisms underlying the function and pharmacology of human SLC1 transporters.
Collapse
Affiliation(s)
- Juan C Canul-Tec
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Reda Assal
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Erica Cirri
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Sébastien Brier
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Julia Chamot-Rooke
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - Nicolas Reyes
- Molecular Mechanisms of Membrane Transport Laboratory, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
47
|
Guilvout I, Brier S, Chami M, Hourdel V, Francetic O, Pugsley AP, Chamot-Rooke J, Huysmans GHM. Prepore Stability Controls Productive Folding of the BAM-independent Multimeric Outer Membrane Secretin PulD. J Biol Chem 2016; 292:328-338. [PMID: 27903652 DOI: 10.1074/jbc.m116.759498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/21/2016] [Indexed: 12/19/2022] Open
Abstract
Members of a group of multimeric secretion pores that assemble independently of any known membrane-embedded insertase in Gram-negative bacteria fold into a prepore before membrane-insertion occurs. The mechanisms and the energetics that drive the folding of these proteins are poorly understood. Here, equilibrium unfolding and hydrogen/deuterium exchange monitored by mass spectrometry indicated that a loss of 4-5 kJ/mol/protomer in the N3 domain that is peripheral to the membrane-spanning C domain in the dodecameric secretin PulD, the founding member of this class, prevents pore formation by destabilizing the prepore into a poorly structured dodecamer as visualized by electron microscopy. Formation of native PulD-multimers by mixing protomers that differ in N3 domain stability, suggested that the N3 domain forms a thermodynamic seal onto the prepore. This highlights the role of modest free energy changes in the folding of pre-integration forms of a hyperstable outer membrane complex and reveals a key driving force for assembly independently of the β-barrel assembly machinery.
Collapse
Affiliation(s)
- Ingrid Guilvout
- From the Molecular Genetics Unit, CNRS ERL 3526.,Laboratory of Macromolecular Systems and Signaling and
| | - Sébastien Brier
- Structural Mass Spectrometry and Proteomics Unit, CNRS UMR 3528, Institut Pasteur, 75724 Paris Cedex 15, France and
| | - Mohamed Chami
- the BioEM lab, Biozentrum, University of Basel, CH 4058 Basel, Switzerland
| | - Véronique Hourdel
- Structural Mass Spectrometry and Proteomics Unit, CNRS UMR 3528, Institut Pasteur, 75724 Paris Cedex 15, France and
| | - Olivera Francetic
- From the Molecular Genetics Unit, CNRS ERL 3526.,Laboratory of Macromolecular Systems and Signaling and
| | | | - Julia Chamot-Rooke
- Structural Mass Spectrometry and Proteomics Unit, CNRS UMR 3528, Institut Pasteur, 75724 Paris Cedex 15, France and
| | | |
Collapse
|