1
|
Li K, Lauschke VM, Zhou Y. Molecular docking to investigate HLA-associated idiosyncratic drug reactions. Drug Metab Rev 2025; 57:67-90. [PMID: 39811883 DOI: 10.1080/03602532.2025.2453521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Idiosyncratic drug reactions (IDRs) pose severe threats to patient health. Unlike conventionally dose-dependent side effects, they are unpredictable and more frequently manifest as life-threatening conditions, such as severe cutaneous adverse reactions (SCARs) and drug-induced liver injury (DILI). Some HLA alleles, such as HLA-B*57:01, HLA-B*15:02, and HLA-B*58:01, are known risk factors for adverse reactions induced by multiple drugs. However, the structural basis underlying most HLA-associated adverse events remains poorly understood. This review summarizes the application of molecular docking to reveal the mechanisms of IDR-related HLA associations, covering studies using this technique to examine drug-HLA binding pockets and identify key binding residues. We provide a comprehensive overview of risk HLA alleles associated with IDRs, followed by a discussion of the utility and limitations of commonly used molecular docking tools in simulating complex molecular interactions within the HLA binding pocket. Through examples, including the binding of abacavir and flucloxacillin to HLA-B*57:01, carbamazepine to HLA-B*15:02, and allopurinol to HLA-B*58:01, we demonstrate how docking analyses can provide insights into the drug and HLA allele-specificity of adverse events. Furthermore, the use of molecular docking to screen drugs with unknown IDR liability is examined, targeting either multiple HLA variants or a single specific variant. Despite multiple challenges, molecular docking presents a promising toolkit for investigating drug-HLA interactions and understanding IDR mechanisms, with significant implications for preemptive HLA typing and safer drug development.
Collapse
Affiliation(s)
- Kejun Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Margarete Fischer-Bosch Institute of Clinical Pharmacology (IKP), Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Fasoulis R, Paliouras G, Kavraki LE. RankMHC: Learning to Rank Class-I Peptide-MHC Structural Models. J Chem Inf Model 2024; 64:8729-8742. [PMID: 39555889 PMCID: PMC11633655 DOI: 10.1021/acs.jcim.4c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
The binding of peptides to class-I Major Histocompability Complex (MHC) receptors and their subsequent recognition downstream by T-cell receptors are crucial processes for most multicellular organisms to be able to fight various diseases. Thus, the identification of peptide antigens that can elicit an immune response is of immense importance for developing successful therapies for bacterial and viral infections, even cancer. Recently, studies have demonstrated the importance of peptide-MHC (pMHC) structural analysis, with pMHC structural modeling methods gradually becoming more popular in peptide antigen identification workflows. Most of the pMHC structural modeling tools provide an ensemble of candidate peptide poses in the MHC-I cleft, each associated with a score stemming from a scoring function, with the top scoring pose assumed to be the most representative of the ensemble. However, identifying the binding mode, that is, the peptide pose from the ensemble that is closer to an unavailable native structure, is not trivial. Oftentimes, the peptide poses characterized as best by a protein-ligand scoring function are not the ones that are the most representative of the actual structure. In this work, we frame the peptide binding pose identification problem as a Learning-to-Rank (LTR) problem. We present RankMHC, an LTR-based pMHC binding mode identification predictor, which is specifically trained to predict the most accurate ranking of an ensemble of pMHC conformations. RankMHC outperforms classical peptide-ligand scoring functions, as well as previous Machine Learning (ML)-based binding pose predictors. We further demonstrate that RankMHC can be used with many pMHC structural modeling tools that use different structural modeling protocols.
Collapse
Affiliation(s)
- Romanos Fasoulis
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
| | - Georgios Paliouras
- Institute
of Informatics and Telecommunications, NCSR
Demokritos, Athens 15341, Greece
| | - Lydia E. Kavraki
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
- Ken
Kennedy Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Fasoulis R, Rigo MM, Lizée G, Antunes DA, Kavraki LE. APE-Gen2.0: Expanding Rapid Class I Peptide-Major Histocompatibility Complex Modeling to Post-Translational Modifications and Noncanonical Peptide Geometries. J Chem Inf Model 2024; 64:1730-1750. [PMID: 38415656 PMCID: PMC10936522 DOI: 10.1021/acs.jcim.3c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
The recognition of peptides bound to class I major histocompatibility complex (MHC-I) receptors by T-cell receptors (TCRs) is a determinant of triggering the adaptive immune response. While the exact molecular features that drive the TCR recognition are still unknown, studies have suggested that the geometry of the joint peptide-MHC (pMHC) structure plays an important role. As such, there is a definite need for methods and tools that accurately predict the structure of the peptide bound to the MHC-I receptor. In the past few years, many pMHC structural modeling tools have emerged that provide high-quality modeled structures in the general case. However, there are numerous instances of non-canonical cases in the immunopeptidome that the majority of pMHC modeling tools do not attend to, most notably, peptides that exhibit non-standard amino acids and post-translational modifications (PTMs) or peptides that assume non-canonical geometries in the MHC binding cleft. Such chemical and structural properties have been shown to be present in neoantigens; therefore, accurate structural modeling of these instances can be vital for cancer immunotherapy. To this end, we have developed APE-Gen2.0, a tool that improves upon its predecessor and other pMHC modeling tools, both in terms of modeling accuracy and the available modeling range of non-canonical peptide cases. Some of the improvements include (i) the ability to model peptides that have different types of PTMs such as phosphorylation, nitration, and citrullination; (ii) a new and improved anchor identification routine in order to identify and model peptides that exhibit a non-canonical anchor conformation; and (iii) a web server that provides a platform for easy and accessible pMHC modeling. We further show that structures predicted by APE-Gen2.0 can be used to assess the effects that PTMs have in binding affinity in a more accurate manner than just using solely the sequence of the peptide. APE-Gen2.0 is freely available at https://apegen.kavrakilab.org.
Collapse
Affiliation(s)
- Romanos Fasoulis
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
| | - Mauricio M. Rigo
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
| | - Gregory Lizée
- Department
of Melanoma Medical Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Dinler A. Antunes
- Department
of Biology and Biochemistry, University
of Houston, Houston, Texas 77004, United States
| | - Lydia E. Kavraki
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Gupta S, Nerli S, Kutti Kandy S, Mersky GL, Sgourakis NG. HLA3DB: comprehensive annotation of peptide/HLA complexes enables blind structure prediction of T cell epitopes. Nat Commun 2023; 14:6349. [PMID: 37816745 PMCID: PMC10564892 DOI: 10.1038/s41467-023-42163-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
The class I proteins of the major histocompatibility complex (MHC-I) display epitopic peptides derived from endogenous proteins on the cell surface for immune surveillance. Accurate modeling of peptides bound to the human MHC, HLA, has been mired by conformational diversity of the central peptide residues, which are critical for recognition by T cell receptors. Here, analysis of X-ray crystal structures within our curated database (HLA3DB) shows that pHLA complexes encompassing multiple HLA allotypes present a discrete set of peptide backbone conformations. Leveraging these backbones, we employ a regression model trained on terms of a physically relevant energy function to develop a comparative modeling approach for nonamer pHLA structures named RepPred. Our method outperforms the top pHLA modeling approach by up to 19% in structural accuracy, and consistently predicts blind targets not included in our training set. Insights from our work may be applied towards predicting antigen immunogenicity, and receptor cross-reactivity.
Collapse
Affiliation(s)
- Sagar Gupta
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Santrupti Nerli
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sreeja Kutti Kandy
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Glenn L Mersky
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Gupta S, Nerli S, Kandy SK, Mersky GL, Sgourakis NG. HLA3DB: comprehensive annotation of peptide/HLA complexes enables blind structure prediction of T cell epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533510. [PMID: 36993660 PMCID: PMC10055217 DOI: 10.1101/2023.03.20.533510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The class I proteins of the major histocompatibility complex (MHC-I) display epitopic peptides derived from endogenous proteins on the cell surface for immune surveillance. Accurate modeling of peptide/HLA (pHLA, the human MHC) structures has been mired by conformational diversity of the central peptide residues, which are critical for recognition by T cell receptors. Here, analysis of X-ray crystal structures within a curated database (HLA3DB) shows that pHLA complexes encompassing multiple HLA allotypes present a discrete set of peptide backbone conformations. Leveraging these representative backbones, we employ a regression model trained on terms of a physically relevant energy function to develop a comparative modeling approach for nonamer peptide/HLA structures named RepPred. Our method outperforms the top pHLA modeling approach by up to 19% in terms of structural accuracy, and consistently predicts blind targets not included in our training set. Insights from our work provide a framework for linking conformational diversity with antigen immunogenicity and receptor cross-reactivity.
Collapse
|
6
|
Marzella DF, Crocioni G, Parizi FM, Xue LC. The PANDORA Software for Anchor-Restrained Peptide:MHC Modeling. Methods Mol Biol 2023; 2673:251-271. [PMID: 37258920 DOI: 10.1007/978-1-0716-3239-0_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Major histocompatibility complexes (MHC) play a key role in the immune surveillance system in all jawed vertebrates. MHC class I molecules randomly sample cytosolic peptides from inside the cell, while MHC class II sample exogenous peptides. Both types of peptide:MHC complex are then presented on the cell surface for recognition by αβ T cells (CD8+ and CD4+, respectively). The three-dimensional structure of such complexes can give crucial insights in the presentation and recognition mechanisms. For this reason, softwares like PANDORA have been developed to rapidly and accurately generate peptide:MHC (pMHC) 3D structures. In this chapter, we describe the protocol of PANDORA. PANDORA exploits the structural knowledge on anchor pockets that MHC molecules use to dock peptides. PANDORA provides anchor positions as restraints to guide the modeling process. This allows PANDORA to generate twenty 3D models in just about 5 min. PANDORA is highly customizable, easy to install, supports parallel processing, and is suitable to provide large datasets for deep learning algorithms.
Collapse
Affiliation(s)
- Dario F Marzella
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | | | - Farzaneh M Parizi
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Li C Xue
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Conev A, Devaurs D, Rigo MM, Antunes DA, Kavraki LE. 3pHLA-score improves structure-based peptide-HLA binding affinity prediction. Sci Rep 2022; 12:10749. [PMID: 35750701 PMCID: PMC9232595 DOI: 10.1038/s41598-022-14526-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
Binding of peptides to Human Leukocyte Antigen (HLA) receptors is a prerequisite for triggering immune response. Estimating peptide-HLA (pHLA) binding is crucial for peptide vaccine target identification and epitope discovery pipelines. Computational methods for binding affinity prediction can accelerate these pipelines. Currently, most of those computational methods rely exclusively on sequence-based data, which leads to inherent limitations. Recent studies have shown that structure-based data can address some of these limitations. In this work we propose a novel machine learning (ML) structure-based protocol to predict binding affinity of peptides to HLA receptors. For that, we engineer the input features for ML models by decoupling energy contributions at different residue positions in peptides, which leads to our novel per-peptide-position protocol. Using Rosetta's ref2015 scoring function as a baseline we use this protocol to develop 3pHLA-score. Our per-peptide-position protocol outperforms the standard training protocol and leads to an increase from 0.82 to 0.99 of the area under the precision-recall curve. 3pHLA-score outperforms widely used scoring functions (AutoDock4, Vina, Dope, Vinardo, FoldX, GradDock) in a structural virtual screening task. Overall, this work brings structure-based methods one step closer to epitope discovery pipelines and could help advance the development of cancer and viral vaccines.
Collapse
Affiliation(s)
- Anja Conev
- grid.21940.3e0000 0004 1936 8278Department of Computer Science, Rice University, Houston, 77005 USA
| | - Didier Devaurs
- grid.4305.20000 0004 1936 7988MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Mauricio Menegatti Rigo
- grid.21940.3e0000 0004 1936 8278Department of Computer Science, Rice University, Houston, 77005 USA
| | | | - Lydia E. Kavraki
- grid.21940.3e0000 0004 1936 8278Department of Computer Science, Rice University, Houston, 77005 USA
| |
Collapse
|
8
|
Keller GLJ, Weiss LI, Baker BM. Physicochemical Heuristics for Identifying High Fidelity, Near-Native Structural Models of Peptide/MHC Complexes. Front Immunol 2022; 13:887759. [PMID: 35547730 PMCID: PMC9084917 DOI: 10.3389/fimmu.2022.887759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
There is long-standing interest in accurately modeling the structural features of peptides bound and presented by class I MHC proteins. This interest has grown with the advent of rapid genome sequencing and the prospect of personalized, peptide-based cancer vaccines, as well as the development of molecular and cellular therapeutics based on T cell receptor recognition of peptide-MHC. However, while the speed and accessibility of peptide-MHC modeling has improved substantially over the years, improvements in accuracy have been modest. Accuracy is crucial in peptide-MHC modeling, as T cell receptors are highly sensitive to peptide conformation and capturing fine details is therefore necessary for useful models. Studying nonameric peptides presented by the common class I MHC protein HLA-A*02:01, here we addressed a key question common to modern modeling efforts: from a set of models (or decoys) generated through conformational sampling, which is best? We found that the common strategy of decoy selection by lowest energy can lead to substantial errors in predicted structures. We therefore adopted a data-driven approach and trained functions capable of predicting near native decoys with exceptionally high accuracy. Although our implementation is limited to nonamer/HLA-A*02:01 complexes, our results serve as an important proof of concept from which improvements can be made and, given the significance of HLA-A*02:01 and its preference for nonameric peptides, should have immediate utility in select immunotherapeutic and other efforts for which structural information would be advantageous.
Collapse
Affiliation(s)
| | | | - Brian M. Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
9
|
Perez MAS, Cuendet MA, Röhrig UF, Michielin O, Zoete V. Structural Prediction of Peptide-MHC Binding Modes. Methods Mol Biol 2022; 2405:245-282. [PMID: 35298818 DOI: 10.1007/978-1-0716-1855-4_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The immune system is constantly protecting its host from the invasion of pathogens and the development of cancer cells. The specific CD8+ T-cell immune response against virus-infected cells and tumor cells is based on the T-cell receptor recognition of antigenic peptides bound to class I major histocompatibility complexes (MHC) at the surface of antigen presenting cells. Consequently, the peptide binding specificities of the highly polymorphic MHC have important implications for the design of vaccines, for the treatment of autoimmune diseases, and for personalized cancer immunotherapy. Evidence-based machine-learning approaches have been successfully used for the prediction of peptide binders and are currently being developed for the prediction of peptide immunogenicity. However, understanding and modeling the structural details of peptide/MHC binding is crucial for a better understanding of the molecular mechanisms triggering the immunological processes, estimating peptide/MHC affinity using universal physics-based approaches, and driving the design of novel peptide ligands. Unfortunately, due to the large diversity of MHC allotypes and possible peptides, the growing number of 3D structures of peptide/MHC (pMHC) complexes in the Protein Data Bank only covers a small fraction of the possibilities. Consequently, there is a growing need for rapid and efficient approaches to predict 3D structures of pMHC complexes. Here, we review the key characteristics of the 3D structure of pMHC complexes before listing databases and other sources of information on pMHC structures and MHC specificities. Finally, we discuss some of the most prominent pMHC docking software.
Collapse
Affiliation(s)
- Marta A S Perez
- Computer-aided Molecular Engineering Group, Department of Oncology UNIL-CHUV, Lausanne University, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michel A Cuendet
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Precision Oncology Center, Lausanne, Switzerland
| | - Ute F Röhrig
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Precision Oncology Center, Lausanne, Switzerland.
| | - Vincent Zoete
- Computer-aided Molecular Engineering Group, Department of Oncology UNIL-CHUV, Lausanne University, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.
- Molecular Modelling Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
10
|
Abella JR, Antunes D, Jackson K, Lizée G, Clementi C, Kavraki LE. Markov state modeling reveals alternative unbinding pathways for peptide-MHC complexes. Proc Natl Acad Sci U S A 2020; 117:30610-30618. [PMID: 33184174 PMCID: PMC7720115 DOI: 10.1073/pnas.2007246117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peptide binding to major histocompatibility complexes (MHCs) is a central component of the immune system, and understanding the mechanism behind stable peptide-MHC binding will aid the development of immunotherapies. While MHC binding is mostly influenced by the identity of the so-called anchor positions of the peptide, secondary interactions from nonanchor positions are known to play a role in complex stability. However, current MHC-binding prediction methods lack an analysis of the major conformational states and might underestimate the impact of secondary interactions. In this work, we present an atomically detailed analysis of peptide-MHC binding that can reveal the contributions of any interaction toward stability. We propose a simulation framework that uses both umbrella sampling and adaptive sampling to generate a Markov state model (MSM) for a coronavirus-derived peptide (QFKDNVILL), bound to one of the most prevalent MHC receptors in humans (HLA-A24:02). While our model reaffirms the importance of the anchor positions of the peptide in establishing stable interactions, our model also reveals the underestimated importance of position 4 (p4), a nonanchor position. We confirmed our results by simulating the impact of specific peptide mutations and validated these predictions through competitive binding assays. By comparing the MSM of the wild-type system with those of the D4A and D4P mutations, our modeling reveals stark differences in unbinding pathways. The analysis presented here can be applied to any peptide-MHC complex of interest with a structural model as input, representing an important step toward comprehensive modeling of the MHC class I pathway.
Collapse
Affiliation(s)
- Jayvee R Abella
- Department of Computer Science, Rice University, Houston, TX 77005
| | - Dinler Antunes
- Department of Computer Science, Rice University, Houston, TX 77005
| | - Kyle Jackson
- Department of Melanoma Medical Oncology-Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Gregory Lizée
- Department of Melanoma Medical Oncology-Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Cecilia Clementi
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Chemistry, Rice University, Houston, TX 77005
| | - Lydia E Kavraki
- Department of Computer Science, Rice University, Houston, TX 77005;
| |
Collapse
|
11
|
Nerli S, Sgourakis NG. Structure-Based Modeling of SARS-CoV-2 Peptide/HLA-A02 Antigens. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:553478. [PMID: 35047875 PMCID: PMC8757863 DOI: 10.3389/fmedt.2020.553478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/07/2020] [Indexed: 11/13/2022] Open
Abstract
SARS-CoV-2-specific CD4 and CD8 T cells have been shown to be present in individuals with acute, mild, and asymptomatic Coronavirus disease (COVID-19). Toward the development of diagnostic and therapeutic tools to fight COVID-19, it is important to predict and characterize T cell epitopes expressed by SARS-CoV-2. Here, we use RosettaMHC, a comparative modeling approach which leverages existing structures of peptide/MHC complexes available in the Protein Data Bank, to derive accurate 3D models for putative SARS-CoV-2 CD8 epitopes. We outline an application of our method to model 8-10 residue epitopic peptides predicted to bind to the common allele HLA-A*02:01, and we make our models publicly available through an online database (https://rosettamhc.chemistry.ucsc.edu). We further compare electrostatic surfaces with models of homologous peptide/HLA-A*02:01 complexes from human common cold coronavirus strains to identify epitopes which may be recognized by a shared pool of cross-reactive TCRs. As more detailed studies on antigen-specific T cell recognition become available, RosettaMHC models can be used to understand the link between peptide/HLA complex structure and surface chemistry with immunogenicity, in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Santrupti Nerli
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Nikolaos G. Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
12
|
Abella JR, Antunes DA, Clementi C, Kavraki LE. Large-Scale Structure-Based Prediction of Stable Peptide Binding to Class I HLAs Using Random Forests. Front Immunol 2020; 11:1583. [PMID: 32793224 PMCID: PMC7387700 DOI: 10.3389/fimmu.2020.01583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/15/2020] [Indexed: 01/13/2023] Open
Abstract
Prediction of stable peptide binding to Class I HLAs is an important component for designing immunotherapies. While the best performing predictors are based on machine learning algorithms trained on peptide-HLA (pHLA) sequences, the use of structure for training predictors deserves further exploration. Given enough pHLA structures, a predictor based on the residue-residue interactions found in these structures has the potential to generalize for alleles with little or no experimental data. We have previously developed APE-Gen, a modeling approach able to produce pHLA structures in a scalable manner. In this work we use APE-Gen to model over 150,000 pHLA structures, the largest dataset of its kind, which were used to train a structure-based pan-allele model. We extract simple, homogenous features based on residue-residue distances between peptide and HLA, and build a random forest model for predicting stable pHLA binding. Our model achieves competitive AUROC values on leave-one-allele-out validation tests using significantly less data when compared to popular sequence-based methods. Additionally, our model offers an interpretation analysis that can reveal how the model composes the features to arrive at any given prediction. This interpretation analysis can be used to check if the model is in line with chemical intuition, and we showcase particular examples. Our work is a significant step toward using structure to achieve generalizable and more interpretable prediction for stable pHLA binding.
Collapse
Affiliation(s)
- Jayvee R. Abella
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Dinler A. Antunes
- Department of Computer Science, Rice University, Houston, TX, United States
| | - Cecilia Clementi
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Chemistry, Rice University, Houston, TX, United States
| | - Lydia E. Kavraki
- Department of Computer Science, Rice University, Houston, TX, United States
| |
Collapse
|
13
|
Antunes DA, Abella JR, Hall-Swan S, Devaurs D, Conev A, Moll M, Lizée G, Kavraki LE. HLA-Arena: A Customizable Environment for the Structural Modeling and Analysis of Peptide-HLA Complexes for Cancer Immunotherapy. JCO Clin Cancer Inform 2020; 4:623-636. [PMID: 32667823 PMCID: PMC7397777 DOI: 10.1200/cci.19.00123] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE HLA protein receptors play a key role in cellular immunity. They bind intracellular peptides and display them for recognition by T-cell lymphocytes. Because T-cell activation is partially driven by structural features of these peptide-HLA complexes, their structural modeling and analysis are becoming central components of cancer immunotherapy projects. Unfortunately, this kind of analysis is limited by the small number of experimentally determined structures of peptide-HLA complexes. Overcoming this limitation requires developing novel computational methods to model and analyze peptide-HLA structures. METHODS Here we describe a new platform for the structural modeling and analysis of peptide-HLA complexes, called HLA-Arena, which we have implemented using Jupyter Notebook and Docker. It is a customizable environment that facilitates the use of computational tools, such as APE-Gen and DINC, which we have previously applied to peptide-HLA complexes. By integrating other commonly used tools, such as MODELLER and MHCflurry, this environment includes support for diverse tasks in structural modeling, analysis, and visualization. RESULTS To illustrate the capabilities of HLA-Arena, we describe 3 example workflows applied to peptide-HLA complexes. Leveraging the strengths of our tools, DINC and APE-Gen, the first 2 workflows show how to perform geometry prediction for peptide-HLA complexes and structure-based binding prediction, respectively. The third workflow presents an example of large-scale virtual screening of peptides for multiple HLA alleles. CONCLUSION These workflows illustrate the potential benefits of HLA-Arena for the structural modeling and analysis of peptide-HLA complexes. Because HLA-Arena can easily be integrated within larger computational pipelines, we expect its potential impact to vastly increase. For instance, it could be used to conduct structural analyses for personalized cancer immunotherapy, neoantigen discovery, or vaccine development.
Collapse
Affiliation(s)
| | | | - Sarah Hall-Swan
- Department of Computer Science, Rice University, Houston, TX
| | | | - Anja Conev
- Department of Computer Science, Rice University, Houston, TX
| | - Mark Moll
- Department of Computer Science, Rice University, Houston, TX
| | - Gregory Lizée
- Department of Melanoma Medical Oncology–Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
14
|
Uncovering the Tumor Antigen Landscape: What to Know about the Discovery Process. Cancers (Basel) 2020; 12:cancers12061660. [PMID: 32585818 PMCID: PMC7352969 DOI: 10.3390/cancers12061660] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/11/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
According to the latest available data, cancer is the second leading cause of death, highlighting the need for novel cancer therapeutic approaches. In this context, immunotherapy is emerging as a reliable first-line treatment for many cancers, particularly metastatic melanoma. Indeed, cancer immunotherapy has attracted great interest following the recent clinical approval of antibodies targeting immune checkpoint molecules, such as PD-1, PD-L1, and CTLA-4, that release the brakes of the immune system, thus reviving a field otherwise poorly explored. Cancer immunotherapy mainly relies on the generation and stimulation of cytotoxic CD8 T lymphocytes (CTLs) within the tumor microenvironment (TME), priming T cells and establishing efficient and durable anti-tumor immunity. Therefore, there is a clear need to define and identify immunogenic T cell epitopes to use in therapeutic cancer vaccines. Naturally presented antigens in the human leucocyte antigen-1 (HLA-I) complex on the tumor surface are the main protagonists in evocating a specific anti-tumor CD8+ T cell response. However, the methodologies for their identification have been a major bottleneck for their reliable characterization. Consequently, the field of antigen discovery has yet to improve. The current review is intended to define what are today known as tumor antigens, with a main focus on CTL antigenic peptides. We also review the techniques developed and employed to date for antigen discovery, exploring both the direct elution of HLA-I peptides and the in silico prediction of epitopes. Finally, the last part of the review analyses the future challenges and direction of the antigen discovery field.
Collapse
|
15
|
Serçinoğlu O, Ozbek P. Sequence-structure-function relationships in class I MHC: A local frustration perspective. PLoS One 2020; 15:e0232849. [PMID: 32421728 PMCID: PMC7233585 DOI: 10.1371/journal.pone.0232849] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Class I Major Histocompatibility Complex (MHC) binds short antigenic peptides with the help of Peptide Loading Complex (PLC), and presents them to T-cell Receptors (TCRs) of cytotoxic T-cells and Killer-cell Immunglobulin-like Receptors (KIRs) of Natural Killer (NK) cells. With more than 10000 alleles, human MHC (Human Leukocyte Antigen, HLA) is the most polymorphic protein in humans. This allelic diversity provides a wide coverage of peptide sequence space, yet does not affect the three-dimensional structure of the complex. Moreover, TCRs mostly interact with HLA in a common diagonal binding mode, and KIR-HLA interaction is allele-dependent. With the aim of establishing a framework for understanding the relationships between polymorphism (sequence), structure (conserved fold) and function (protein interactions) of the human MHC, we performed here a local frustration analysis on pMHC homology models covering 1436 HLA I alleles. An analysis of local frustration profiles indicated that (1) variations in MHC fold are unlikely due to minimally-frustrated and relatively conserved residues within the HLA peptide-binding groove, (2) high frustration patches on HLA helices are either involved in or near interaction sites of MHC with the TCR, KIR, or tapasin of the PLC, and (3) peptide ligands mainly stabilize the F-pocket of HLA binding groove.
Collapse
Affiliation(s)
- Onur Serçinoğlu
- Department of Bioengineering, Recep Tayyip Erdogan University, Faculty of Engineering, Fener, Rize, Turkey
| | - Pemra Ozbek
- Department of Bioengineering, Marmara University, Faculty of Engineering, Goztepe, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
16
|
Nerli S, Sgourakis NG. Structure-based modeling of SARS-CoV-2 peptide/HLA-A02 antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511353 DOI: 10.1101/2020.03.23.004176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As a first step toward the development of diagnostic and therapeutic tools to fight the Coronavirus disease (COVID-19), it is important to characterize CD8+ T cell epitopes in the SARS-CoV-2 peptidome that can trigger adaptive immune responses. Here, we use RosettaMHC, a comparative modeling approach which leverages existing high-resolution X-ray structures from peptide/MHC complexes available in the Protein Data Bank, to derive physically realistic 3D models for high-affinity SARS-CoV-2 epitopes. We outline an application of our method to model 439 9mer and 279 10mer predicted epitopes displayed by the common allele HLA-A*02:01, and we make our models publicly available through an online database ( https://rosettamhc.chemistry.ucsc.edu ). As more detailed studies on antigen-specific T cell recognition become available, RosettaMHC models of antigens from different strains and HLA alleles can be used as a basis to understand the link between peptide/HLA complex structure and surface chemistry with immunogenicity, in the context of SARS-CoV-2 infection.
Collapse
|
17
|
Rizzuti B, Grande F. Virtual screening in drug discovery: a precious tool for a still-demanding challenge. PROTEIN HOMEOSTASIS DISEASES 2020:309-327. [DOI: 10.1016/b978-0-12-819132-3.00014-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Bunsuz A, Serçinoğlu O, Ozbek P. Computational investigation of peptide binding stabilities of HLA-B*27 and HLA-B*44 alleles. Comput Biol Chem 2019; 84:107195. [PMID: 31877499 DOI: 10.1016/j.compbiolchem.2019.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 11/27/2022]
Abstract
Major Histocompatibility Complex (MHC) is a cell surface glycoprotein that binds to foreign antigens and presents them to T lymphocyte cells on the surface of Antigen Presenting Cells (APCs) for appropriate immune recognition. Recently, studies focusing on peptide-based vaccine design have allowed a better understanding of peptide immunogenicity mechanisms, which is defined as the ability of a peptide to stimulate CTL-mediated immune response. Peptide immunogenicity is also known to be related to the stability of peptide-loaded MHC (pMHC) complex. In this study, ENCoM server was used for structure-based estimation of the impact of single point mutations on pMHC complex stabilities. For this purpose, two human MHC molecules from the HLA-B*27 group (HLA-B*27:05 and HLA-B*27:09) in complex with four different peptides (GRFAAAIAK, RRKWRRWHL, RRRWRRLTV and IRAAPPPLF) and three HLA-B*44 molecules (HLA-B*44:02, HLA-B*44:03 and HLA-B*44:05) in complex with two different peptides (EEYLQAFTY and EEYLKAWTF) were analyzed. We found that the stability of pMHC complexes is dependent on both peptide sequence and MHC allele. Furthermore, we demonstrate that allele-specific peptide-binding preferences can be accurately revealed using structure-based computational methods predicting the effect of mutations on protein stability.
Collapse
Affiliation(s)
- Asuman Bunsuz
- Department of Bioengineering, Institute of Pure and Applied Sciences, Marmara University, Istanbul, Turkey
| | - Onur Serçinoğlu
- Department of Bioengineering, Faculty of Engineering, Recep Tayyip Erdogan University, Rize, Turkey
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.
| |
Collapse
|
19
|
Mösch A, Raffegerst S, Weis M, Schendel DJ, Frishman D. Machine Learning for Cancer Immunotherapies Based on Epitope Recognition by T Cell Receptors. Front Genet 2019; 10:1141. [PMID: 31798635 PMCID: PMC6878726 DOI: 10.3389/fgene.2019.01141] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
In the last years, immunotherapies have shown tremendous success as treatments for multiple types of cancer. However, there are still many obstacles to overcome in order to increase response rates and identify effective therapies for every individual patient. Since there are many possibilities to boost a patient's immune response against a tumor and not all can be covered, this review is focused on T cell receptor-mediated therapies. CD8+ T cells can detect and destroy malignant cells by binding to peptides presented on cell surfaces by MHC (major histocompatibility complex) class I molecules. CD4+ T cells can also mediate powerful immune responses but their peptide recognition by MHC class II molecules is more complex, which is why the attention has been focused on CD8+ T cells. Therapies based on the power of T cells can, on the one hand, enhance T cell recognition by introducing TCRs that preferentially direct T cells to tumor sites (so called TCR-T therapy) or through vaccination to induce T cells in vivo. On the other hand, T cell activity can be improved by immune checkpoint inhibition or other means that help create a microenvironment favorable for cytotoxic T cell activity. The manifold ways in which the immune system and cancer interact with each other require not only the use of large omics datasets from gene, to transcript, to protein, and to peptide but also make the application of machine learning methods inevitable. Currently, discovering and selecting suitable TCRs is a very costly and work intensive in vitro process. To facilitate this process and to additionally allow for highly personalized therapies that can simultaneously target multiple patient-specific antigens, especially neoepitopes, breakthrough computational methods for predicting antigen presentation and TCR binding are urgently required. Particularly, potential cross-reactivity is a major consideration since off-target toxicity can pose a major threat to patient safety. The current speed at which not only datasets grow and are made available to the public, but also at which new machine learning methods evolve, is assuring that computational approaches will be able to help to solve problems that immunotherapies are still facing.
Collapse
Affiliation(s)
- Anja Mösch
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, Germany
| | - Silke Raffegerst
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, Germany
| | - Manon Weis
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, Germany
| | - Dolores J. Schendel
- Medigene Immunotherapies GmbH, a subsidiary of Medigene AG, Planegg, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
20
|
Abella JR, Antunes DA, Clementi C, Kavraki LE. APE-Gen: A Fast Method for Generating Ensembles of Bound Peptide-MHC Conformations. Molecules 2019; 24:E881. [PMID: 30832312 PMCID: PMC6429480 DOI: 10.3390/molecules24050881] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 11/16/2022] Open
Abstract
The Class I Major Histocompatibility Complex (MHC) is a central protein in immunology as it binds to intracellular peptides and displays them at the cell surface for recognition by T-cells. The structural analysis of bound peptide-MHC complexes (pMHCs) holds the promise of interpretable and general binding prediction (i.e., testing whether a given peptide binds to a given MHC). However, structural analysis is limited in part by the difficulty in modelling pMHCs given the size and flexibility of the peptides that can be presented by MHCs. This article describes APE-Gen (Anchored Peptide-MHC Ensemble Generator), a fast method for generating ensembles of bound pMHC conformations. APE-Gen generates an ensemble of bound conformations by iterated rounds of (i) anchoring the ends of a given peptide near known pockets in the binding site of the MHC, (ii) sampling peptide backbone conformations with loop modelling, and then (iii) performing energy minimization to fix steric clashes, accumulating conformations at each round. APE-Gen takes only minutes on a standard desktop to generate tens of bound conformations, and we show the ability of APE-Gen to sample conformations found in X-ray crystallography even when only sequence information is used as input. APE-Gen has the potential to be useful for its scalability (i.e., modelling thousands of pMHCs or even non-canonical longer peptides) and for its use as a flexible search tool. We demonstrate an example for studying cross-reactivity.
Collapse
Affiliation(s)
- Jayvee R Abella
- Department of Computer Science, Rice University, Houston, TX 77005, USA.
| | - Dinler A Antunes
- Department of Computer Science, Rice University, Houston, TX 77005, USA.
| | - Cecilia Clementi
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | - Lydia E Kavraki
- Department of Computer Science, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
21
|
Jabbar B, Rafique S, Salo-Ahen OMH, Ali A, Munir M, Idrees M, Mirza MU, Vanmeert M, Shah SZ, Jabbar I, Rana MA. Antigenic Peptide Prediction From E6 and E7 Oncoproteins of HPV Types 16 and 18 for Therapeutic Vaccine Design Using Immunoinformatics and MD Simulation Analysis. Front Immunol 2018; 9:3000. [PMID: 30619353 PMCID: PMC6305797 DOI: 10.3389/fimmu.2018.03000] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Human papillomavirus (HPV) induced cervical cancer is the second most common cause of death, after breast cancer, in females. Three prophylactic vaccines by Merck Sharp & Dohme (MSD) and GlaxoSmithKline (GSK) have been confirmed to prevent high-risk HPV strains but these vaccines have been shown to be effective only in girls who have not been exposed to HPV previously. The constitutively expressed HPV oncoproteins E6 and E7 are usually used as target antigens for HPV therapeutic vaccines. These early (E) proteins are involved, for example, in maintaining the malignant phenotype of the cells. In this study, we predicted antigenic peptides of HPV types 16 and 18, encoded by E6 and E7 genes, using an immunoinformatics approach. To further evaluate the immunogenic potential of the predicted peptides, we studied their ability to bind to class I major histocompatibility complex (MHC-I) molecules in a computational docking study that was supported by molecular dynamics (MD) simulations and estimation of the free energies of binding of the peptides at the MHC-I binding cleft. Some of the predicted peptides exhibited comparable binding free energies and/or pattern of binding to experimentally verified MHC-I-binding epitopes that we used as references in MD simulations. Such peptides with good predicted affinity may serve as candidate epitopes for the development of therapeutic HPV peptide vaccines.
Collapse
Affiliation(s)
- Basit Jabbar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, Turku, Finland
| | - Amjad Ali
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Mobeen Munir
- Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Muhammad Idrees
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| | - Muhammad Usman Mirza
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Michiel Vanmeert
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Syed Zawar Shah
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Iqra Jabbar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
22
|
Antunes DA, Abella JR, Devaurs D, Rigo MM, Kavraki LE. Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes. Curr Top Med Chem 2018; 18:2239-2255. [PMID: 30582480 PMCID: PMC6361695 DOI: 10.2174/1568026619666181224101744] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 12/26/2022]
Abstract
Understanding the mechanisms involved in the activation of an immune response is essential to many fields in human health, including vaccine development and personalized cancer immunotherapy. A central step in the activation of the adaptive immune response is the recognition, by T-cell lymphocytes, of peptides displayed by a special type of receptor known as Major Histocompatibility Complex (MHC). Considering the key role of MHC receptors in T-cell activation, the computational prediction of peptide binding to MHC has been an important goal for many immunological applications. Sequence- based methods have become the gold standard for peptide-MHC binding affinity prediction, but structure-based methods are expected to provide more general predictions (i.e., predictions applicable to all types of MHC receptors). In addition, structural modeling of peptide-MHC complexes has the potential to uncover yet unknown drivers of T-cell activation, thus allowing for the development of better and safer therapies. In this review, we discuss the use of computational methods for the structural modeling of peptide-MHC complexes (i.e., binding mode prediction) and for the structure-based prediction of binding affinity.
Collapse
Affiliation(s)
| | - Jayvee R. Abella
- Computer Science Department, Rice University, Houston, Texas, USA
| | - Didier Devaurs
- Computer Science Department, Rice University, Houston, Texas, USA
| | - Maurício M. Rigo
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lydia E. Kavraki
- Computer Science Department, Rice University, Houston, Texas, USA
| |
Collapse
|