1
|
Bhushan V, Nita-Lazar A. Recent Advancements in Subcellular Proteomics: Growing Impact of Organellar Protein Niches on the Understanding of Cell Biology. J Proteome Res 2024; 23:2700-2722. [PMID: 38451675 PMCID: PMC11296931 DOI: 10.1021/acs.jproteome.3c00839] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The mammalian cell is a complex entity, with membrane-bound and membrane-less organelles playing vital roles in regulating cellular homeostasis. Organellar protein niches drive discrete biological processes and cell functions, thus maintaining cell equilibrium. Cellular processes such as signaling, growth, proliferation, motility, and programmed cell death require dynamic protein movements between cell compartments. Aberrant protein localization is associated with a wide range of diseases. Therefore, analyzing the subcellular proteome of the cell can provide a comprehensive overview of cellular biology. With recent advancements in mass spectrometry, imaging technology, computational tools, and deep machine learning algorithms, studies pertaining to subcellular protein localization and their dynamic distributions are gaining momentum. These studies reveal changing interaction networks because of "moonlighting proteins" and serve as a discovery tool for disease network mechanisms. Consequently, this review aims to provide a comprehensive repository for recent advancements in subcellular proteomics subcontexting methods, challenges, and future perspectives for method developers. In summary, subcellular proteomics is crucial to the understanding of the fundamental cellular mechanisms and the associated diseases.
Collapse
Affiliation(s)
- Vanya Bhushan
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Aleksandra Nita-Lazar
- Functional Cellular Networks Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
2
|
Huang HX, Inglese P, Tang J, Yagoubi R, Correia GDS, Horneffer-van der Sluis VM, Camuzeaux S, Wu V, Kopanitsa MV, Willumsen N, Jackson JS, Barron AM, Saito T, Saido TC, Gentlemen S, Takats Z, Matthews PM. Mass spectrometry imaging highlights dynamic patterns of lipid co-expression with Aβ plaques in mouse and human brains. J Neurochem 2024; 168:1193-1214. [PMID: 38372586 DOI: 10.1111/jnc.16042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 02/20/2024]
Abstract
Lipids play crucial roles in the susceptibility and brain cellular responses to Alzheimer's disease (AD) and are increasingly considered potential soluble biomarkers in cerebrospinal fluid (CSF) and plasma. To delineate the pathological correlations of distinct lipid species, we conducted a comprehensive characterization of both spatially localized and global differences in brain lipid composition in AppNL-G-F mice with spatial and bulk mass spectrometry lipidomic profiling, using human amyloid-expressing (h-Aβ) and WT mouse brains controls. We observed age-dependent increases in lysophospholipids, bis(monoacylglycerol) phosphates, and phosphatidylglycerols around Aβ plaques in AppNL-G-F mice. Immunohistology-based co-localization identified associations between focal pro-inflammatory lipids, glial activation, and autophagic flux disruption. Likewise, in human donors with varying Braak stages, similar studies of cortical sections revealed co-expression of lysophospholipids and ceramides around Aβ plaques in AD (Braak stage V/VI) but not in earlier Braak stage controls. Our findings in mice provide evidence of temporally and spatially heterogeneous differences in lipid composition as local and global Aβ-related pathologies evolve. Observing similar lipidomic changes associated with pathological Aβ plaques in human AD tissue provides a foundation for understanding differences in CSF lipids with reported clinical stage or disease severity.
Collapse
Affiliation(s)
- Helen Xuexia Huang
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
| | - Paolo Inglese
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jiabin Tang
- Department of Brain Sciences, Imperial College London, London, UK
| | - Riad Yagoubi
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
| | - Gonçalo D S Correia
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Stephane Camuzeaux
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Vincen Wu
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Maksym V Kopanitsa
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
| | - Nanet Willumsen
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Johanna S Jackson
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Anna M Barron
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Steve Gentlemen
- Department of Brain Sciences, Imperial College London, London, UK
| | - Zoltan Takats
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Paul M Matthews
- UK Dementia Research Institute at Imperial College London, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
3
|
Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics. MASS SPECTROMETRY REVIEWS 2024; 43:235-268. [PMID: 36065601 PMCID: PMC9986357 DOI: 10.1002/mas.21804] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 05/09/2023]
Abstract
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Kreuzaler P, Inglese P, Ghanate A, Gjelaj E, Wu V, Panina Y, Mendez-Lucas A, MacLachlan C, Patani N, Hubert CB, Huang H, Greenidge G, Rueda OM, Taylor AJ, Karali E, Kazanc E, Spicer A, Dexter A, Lin W, Thompson D, Silva Dos Santos M, Calvani E, Legrave N, Ellis JK, Greenwood W, Green M, Nye E, Still E, Barry S, Goodwin RJA, Bruna A, Caldas C, MacRae J, de Carvalho LPS, Poulogiannis G, McMahon G, Takats Z, Bunch J, Yuneva M. Vitamin B 5 supports MYC oncogenic metabolism and tumor progression in breast cancer. Nat Metab 2023; 5:1870-1886. [PMID: 37946084 PMCID: PMC10663155 DOI: 10.1038/s42255-023-00915-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Tumors are intrinsically heterogeneous and it is well established that this directs their evolution, hinders their classification and frustrates therapy1-3. Consequently, spatially resolved omics-level analyses are gaining traction4-9. Despite considerable therapeutic interest, tumor metabolism has been lagging behind this development and there is a paucity of data regarding its spatial organization. To address this shortcoming, we set out to study the local metabolic effects of the oncogene c-MYC, a pleiotropic transcription factor that accumulates with tumor progression and influences metabolism10,11. Through correlative mass spectrometry imaging, we show that pantothenic acid (vitamin B5) associates with MYC-high areas within both human and murine mammary tumors, where its conversion to coenzyme A fuels Krebs cycle activity. Mechanistically, we show that this is accomplished by MYC-mediated upregulation of its multivitamin transporter SLC5A6. Notably, we show that SLC5A6 over-expression alone can induce increased cell growth and a shift toward biosynthesis, whereas conversely, dietary restriction of pantothenic acid leads to a reversal of many MYC-mediated metabolic changes and results in hampered tumor growth. Our work thus establishes the availability of vitamins and cofactors as a potential bottleneck in tumor progression, which can be exploited therapeutically. Overall, we show that a spatial understanding of local metabolism facilitates the identification of clinically relevant, tractable metabolic targets.
Collapse
Affiliation(s)
- Peter Kreuzaler
- The Francis Crick Institute, London, UK.
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany.
| | - Paolo Inglese
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, UK
| | | | | | - Vincen Wu
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, UK
| | | | - Andres Mendez-Lucas
- The Francis Crick Institute, London, UK
- Department of Physiological Sciences, University of Barcelona, Barcelona, Spain
| | | | | | | | - Helen Huang
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, UK
| | | | - Oscar M Rueda
- University of Cambridge, MRC Biostatistics Unit, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Evdoxia Karali
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Emine Kazanc
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | | | - Alex Dexter
- The National Physical Laboratory, Teddington, UK
| | - Wei Lin
- The Francis Crick Institute, London, UK
| | | | | | | | | | | | - Wendy Greenwood
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | | | - Emma Nye
- The Francis Crick Institute, London, UK
| | | | - Simon Barry
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Richard J A Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Alejandra Bruna
- Modelling of Paediatric Cancer Evolution, Centre for Paediatric Oncology, Experimental Medicine, Centre for Cancer Evolution: Molecular Pathology Division, The Institute of Cancer Research, Belmont, Sutton, London, UK
| | - Carlos Caldas
- University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, UK
| | | | | | - George Poulogiannis
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Greg McMahon
- The National Physical Laboratory, Teddington, UK
| | - Zoltan Takats
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, UK
| | - Josephine Bunch
- The National Physical Laboratory, Teddington, UK
- The Rosalind Franklin Institute, Harwell Campus, Didcot, UK
| | | |
Collapse
|
5
|
Chung HH, Huang P, Chen CL, Lee C, Hsu CC. Next-generation pathology practices with mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2023; 42:2446-2465. [PMID: 35815718 DOI: 10.1002/mas.21795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique that reveals the spatial distribution of various molecules in biological samples, and it is widely used in pathology-related research. In this review, we summarize common MSI techniques, including matrix-assisted laser desorption/ionization and desorption electrospray ionization MSI, and their applications in pathological research, including disease diagnosis, microbiology, and drug discovery. We also describe the improvements of MSI, focusing on the accumulation of imaging data sets, expansion of chemical coverage, and identification of biological significant molecules, that have prompted the evolution of MSI to meet the requirements of pathology practices. Overall, this review details the applications and improvements of MSI techniques, demonstrating the potential of integrating MSI techniques into next-generation pathology practices.
Collapse
Affiliation(s)
- Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Penghsuan Huang
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chih-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chuping Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
6
|
González-Fernández A, Dexter A, Nikula CJ, Bunch J. NECTAR: A New Algorithm for Characterizing and Correcting Noise in QToF-Mass Spectrometry Imaging Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2443-2453. [PMID: 37819737 PMCID: PMC10623552 DOI: 10.1021/jasms.3c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
A typical mass spectrometry imaging experiment yields a very high number of detected peaks, many of which are noise and thus unwanted. To select only peaks of interest, data preprocessing tasks are applied to raw data. A statistical study to characterize three types of noise in MSI QToF data (random, chemical, and background noise) is presented through NECTAR, a new NoisE CorrecTion AlgoRithm. Random noise is confirmed to be dominant at lower m/z values (∼50-400 Da) while systematic chemical noise dominates at higher m/z values (>400 Da). A statistical approach is presented to demonstrate that chemical noise can be corrected to reduce its presence by a factor of ∼3. Reducing this effect helps to determine a more reliable baseline in the spectrum and therefore a more reliable noise level. Peaks are classified according to their spatial S/N on the single ion images, and background noise is thus removed from the list of peaks of interest. This new algorithm was applied to MALDI and DESI QToF data generated from the analysis of a mouse pancreatic tissue section to demonstrate its applicability and ability to filter out these types of noise in a relevant data set. PCA and t-SNE multivariate analysis reviews of the top 4000 peaks and the final 744 and 299 denoised peak list for MALDI and DESI, respectively, suggests an effective removal of uninformative peaks and proper selection of relevant peaks.
Collapse
Affiliation(s)
| | - Alex Dexter
- National
Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K.
| | | | - Josephine Bunch
- National
Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K.
| |
Collapse
|
7
|
Zhang Z, Bao C, Jiang L, Wang S, Wang K, Lu C, Fang H. When cancer drug resistance meets metabolomics (bulk, single-cell and/or spatial): Progress, potential, and perspective. Front Oncol 2023; 12:1054233. [PMID: 36686803 PMCID: PMC9854130 DOI: 10.3389/fonc.2022.1054233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Resistance to drug treatment is a critical barrier in cancer therapy. There is an unmet need to explore cancer hallmarks that can be targeted to overcome this resistance for therapeutic gain. Over time, metabolic reprogramming has been recognised as one hallmark that can be used to prevent therapeutic resistance. With the advent of metabolomics, targeting metabolic alterations in cancer cells and host patients represents an emerging therapeutic strategy for overcoming cancer drug resistance. Driven by technological and methodological advances in mass spectrometry imaging, spatial metabolomics involves the profiling of all the metabolites (metabolomics) so that the spatial information is captured bona fide within the sample. Spatial metabolomics offers an opportunity to demonstrate the drug-resistant tumor profile with metabolic heterogeneity, and also poses a data-mining challenge to reveal meaningful insights from high-dimensional spatial information. In this review, we discuss the latest progress, with the focus on currently available bulk, single-cell and spatial metabolomics technologies and their successful applications in pre-clinical and translational studies on cancer drug resistance. We provide a summary of metabolic mechanisms underlying cancer drug resistance from different aspects; these include the Warburg effect, altered amino acid/lipid/drug metabolism, generation of drug-resistant cancer stem cells, and immunosuppressive metabolism. Furthermore, we propose solutions describing how to overcome cancer drug resistance; these include early detection during cancer initiation, monitoring of clinical drug response, novel anticancer drug and target metabolism, immunotherapy, and the emergence of spatial metabolomics. We conclude by describing the perspectives on how spatial omics approaches (integrating spatial metabolomics) could be further developed to improve the management of drug resistance in cancer patients.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaohui Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Lu
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Hu H, Laskin J. Emerging Computational Methods in Mass Spectrometry Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203339. [PMID: 36253139 PMCID: PMC9731724 DOI: 10.1002/advs.202203339] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/17/2022] [Indexed: 05/10/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful analytical technique that generates maps of hundreds of molecules in biological samples with high sensitivity and molecular specificity. Advanced MSI platforms with capability of high-spatial resolution and high-throughput acquisition generate vast amount of data, which necessitates the development of computational tools for MSI data analysis. In addition, computation-driven MSI experiments have recently emerged as enabling technologies for further improving the MSI capabilities with little or no hardware modification. This review provides a critical summary of computational methods and resources developed for MSI data analysis and interpretation along with computational approaches for improving throughput and molecular coverage in MSI experiments. This review is focused on the recently developed artificial intelligence methods and provides an outlook for a future paradigm shift in MSI with transformative computational methods.
Collapse
Affiliation(s)
- Hang Hu
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN47907USA
| | - Julia Laskin
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN47907USA
| |
Collapse
|
9
|
Next Generation Digital Pathology: Emerging Trends and Measurement Challenges for Molecular Pathology. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3030014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Digital pathology is revolutionising the analysis of histological features and is becoming more and more widespread in both the clinic and research. Molecular pathology extends the tissue morphology information provided by conventional histopathology by providing spatially resolved molecular information to complement the structural information provided by histopathology. The multidimensional nature of the molecular data poses significant challenge for data processing, mining, and analysis. One of the key challenges faced by new and existing pathology practitioners is how to choose the most suitable molecular pathology technique for a given diagnosis. By providing a comparison of different methods, this narrative review aims to introduce the field of molecular pathology, providing a high-level overview of many different methods. Since each pixel of an image contains a wealth of molecular information, data processing in molecular pathology is more complex. The key data processing steps and variables, and their effect on the data, are also discussed.
Collapse
|
10
|
Multi-omics profiling of collagen-induced arthritis mouse model reveals early metabolic dysregulation via SIRT1 axis. Sci Rep 2022; 12:11830. [PMID: 35821263 PMCID: PMC9276706 DOI: 10.1038/s41598-022-16005-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by joint infiltration of immune cells and synovial inflammation which leads to progressive disability. Current treatments improve the disease outcome, but the unmet medical need is still high. New discoveries over the last decade have revealed the major impact of cellular metabolism on immune cell functions. So far, a comprehensive understanding of metabolic changes during disease development, especially in the diseased microenvironment, is still limited. Therefore, we studied the longitudinal metabolic changes during the development of murine arthritis by integrating metabolomics and transcriptomics data. We identified an early change in macrophage pathways which was accompanied by oxidative stress, a drop in NAD+ level and induction of glucose transporters. We discovered inhibition of SIRT1, a NAD-dependent histone deacetylase and confirmed its dysregulation in human macrophages and synovial tissues of RA patients. Mining this database should enable the discovery of novel metabolic targets and therapy opportunities in RA.
Collapse
|
11
|
Isberg OG, Giunchiglia V, McKenzie JS, Takats Z, Jonasson JG, Bodvarsdottir SK, Thorsteinsdottir M, Xiang Y. Automated Cancer Diagnostics via Analysis of Optical and Chemical Images by Deep and Shallow Learning. Metabolites 2022; 12:455. [PMID: 35629959 PMCID: PMC9143055 DOI: 10.3390/metabo12050455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Optical microscopy has long been the gold standard to analyse tissue samples for the diagnostics of various diseases, such as cancer. The current diagnostic workflow is time-consuming and labour-intensive, and manual annotation by a qualified pathologist is needed. With the ever-increasing number of tissue blocks and the complexity of molecular diagnostics, new approaches have been developed as complimentary or alternative solutions for the current workflow, such as digital pathology and mass spectrometry imaging (MSI). This study compares the performance of a digital pathology workflow using deep learning for tissue recognition and an MSI approach utilising shallow learning to annotate formalin-fixed and paraffin-embedded (FFPE) breast cancer tissue microarrays (TMAs). Results show that both deep learning algorithms based on conventional optical images and MSI-based shallow learning can provide automated diagnostics with F1-scores higher than 90%, with the latter intrinsically built on biochemical information that can be used for further analysis.
Collapse
Affiliation(s)
- Olof Gerdur Isberg
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (O.G.I.); (V.G.); (J.S.M.); (Z.T.)
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland
- Biomedical Center, School of Health Sciences, University of Iceland, 101 Reykjavik, Iceland;
| | - Valentina Giunchiglia
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (O.G.I.); (V.G.); (J.S.M.); (Z.T.)
| | - James S. McKenzie
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (O.G.I.); (V.G.); (J.S.M.); (Z.T.)
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (O.G.I.); (V.G.); (J.S.M.); (Z.T.)
| | - Jon Gunnlaugur Jonasson
- Department of Pathology, Landspitali the National University Hospital, Hringbraut, 101 Reykjavik, Iceland;
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | | | - Margret Thorsteinsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland
- Biomedical Center, School of Health Sciences, University of Iceland, 101 Reykjavik, Iceland;
| | - Yuchen Xiang
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; (O.G.I.); (V.G.); (J.S.M.); (Z.T.)
| |
Collapse
|
12
|
Inglese P, Huang HX, Wu V, Lewis MR, Takats Z. Mass recalibration for desorption electrospray ionization mass spectrometry imaging using endogenous reference ions. BMC Bioinformatics 2022; 23:133. [PMID: 35428194 DOI: 10.1101/2021.03.29.437482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/30/2022] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Mass spectrometry imaging (MSI) data often consist of tens of thousands of mass spectra collected from a sample surface. During the time necessary to perform a single acquisition, it is likely that uncontrollable factors alter the validity of the initial mass calibration of the instrument, resulting in mass errors of magnitude significantly larger than their theoretical values. This phenomenon has a two-fold detrimental effect: (a) it reduces the ability to interpret the results based on the observed signals, (b) it can affect the quality of the observed signal spatial distributions. RESULTS We present a post-acquisition computational method capable of reducing the observed mass drift by up to 60 ppm in biological samples, exploiting the presence of typical molecules with a known mass-to-charge ratio. The procedure, tested on time-of-flight and Orbitrap mass spectrometry analyzers interfaced to a desorption electrospray ionization (DESI) source, improves the molecular annotation quality and the spatial distributions of the detected ions. CONCLUSION The presented method represents a robust and accurate tool for performing post-acquisition mass recalibration of DESI-MSI datasets and can help to increase the reliability of the molecular assignment and the data quality.
Collapse
Affiliation(s)
- Paolo Inglese
- National Phenome Centre, Imperial College London, Hammersmith Campus, IRDB Building, London, W12 0NN, UK.
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Helen Xuexia Huang
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Vincen Wu
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Matthew R Lewis
- National Phenome Centre, Imperial College London, Hammersmith Campus, IRDB Building, London, W12 0NN, UK
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Zoltan Takats
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
13
|
Inglese P, Huang HX, Wu V, Lewis MR, Takats Z. Mass recalibration for desorption electrospray ionization mass spectrometry imaging using endogenous reference ions. BMC Bioinformatics 2022; 23:133. [PMID: 35428194 PMCID: PMC9013061 DOI: 10.1186/s12859-022-04671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mass spectrometry imaging (MSI) data often consist of tens of thousands of mass spectra collected from a sample surface. During the time necessary to perform a single acquisition, it is likely that uncontrollable factors alter the validity of the initial mass calibration of the instrument, resulting in mass errors of magnitude significantly larger than their theoretical values. This phenomenon has a two-fold detrimental effect: (a) it reduces the ability to interpret the results based on the observed signals, (b) it can affect the quality of the observed signal spatial distributions. RESULTS We present a post-acquisition computational method capable of reducing the observed mass drift by up to 60 ppm in biological samples, exploiting the presence of typical molecules with a known mass-to-charge ratio. The procedure, tested on time-of-flight and Orbitrap mass spectrometry analyzers interfaced to a desorption electrospray ionization (DESI) source, improves the molecular annotation quality and the spatial distributions of the detected ions. CONCLUSION The presented method represents a robust and accurate tool for performing post-acquisition mass recalibration of DESI-MSI datasets and can help to increase the reliability of the molecular assignment and the data quality.
Collapse
Affiliation(s)
- Paolo Inglese
- National Phenome Centre, Imperial College London, Hammersmith Campus, IRDB Building, London, W12 0NN, UK.
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Helen Xuexia Huang
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Vincen Wu
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Matthew R Lewis
- National Phenome Centre, Imperial College London, Hammersmith Campus, IRDB Building, London, W12 0NN, UK
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Zoltan Takats
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
14
|
Strittmatter N, Kanvatirth P, Inglese P, Race AM, Nilsson A, Dannhorn A, Kudo H, Goldin RD, Ling S, Wong E, Seeliger F, Serra MP, Hoffmann S, Maglennon G, Hamm G, Atkinson J, Jones S, Bunch J, Andrén PE, Takats Z, Goodwin RJA, Mastroeni P. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2791-2802. [PMID: 34767352 DOI: 10.1021/jasms.1c00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A more complete and holistic view on host-microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
Collapse
Affiliation(s)
- Nicole Strittmatter
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Panchali Kanvatirth
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| | - Paolo Inglese
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Alan M Race
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Andreas Dannhorn
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Hiromi Kudo
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
| | - Robert D Goldin
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
- Department of Cellular Pathology, Charing Cross Hospital, London W6 8RF, U.K
| | - Stephanie Ling
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Edmond Wong
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Frank Seeliger
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Maria Paola Serra
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Scott Hoffmann
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Gareth Maglennon
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory Hamm
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - James Atkinson
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stewart Jones
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Josephine Bunch
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Richard J A Goodwin
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| |
Collapse
|
15
|
Isberg OG, Xiang Y, Bodvarsdottir SK, Jonasson JG, Thorsteinsdottir M, Takats Z. The effect of sample age on the metabolic information extracted from formalin-fixed and paraffin embedded tissue samples using desorption electrospray ionization mass spectrometry imaging. J Mass Spectrom Adv Clin Lab 2021; 22:50-55. [PMID: 34939055 PMCID: PMC8662337 DOI: 10.1016/j.jmsacl.2021.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Metabolites, especially lipids, have been shown to be promising therapeutic targets. In conjugation with genes and proteins they can be used to identify phenotypes of disease and support the development of targeted treatments. The majority of clinically collected tissue samples are stored in formalin-fixed and paraffin embedded (FFPE) blocks due to their tissue conservation ability and indefinite storage capacity. For metabolic analysis, however, fresh frozen (FF) samples are currently preferred over FFPE samples due to concerns of metabolic information being lost when preparing the samples. With little or no sample preparation, desorption electrospray ionisation mass spectrometry imaging (DESI-MSI) allows for the study of spatial as well as spectral information. Methods: DESI-MSI analysis was performed on FFPE breast cancer tissue microarray samples from 213 patients collected between the years 1935-2013. Logistic regression (LR) models were built to classify samples based on age and FF samples were used for feature validation. Results: LR models developed on the FFPE samples achieved an average classification accuracy of 96% when predicting their age with a 10-year grouping. Closer examination of the metabolic change over time revealed that the mean signal intensities for the lower mass range (100 - 500 m/z) linearly decrease over time, while the mean intensities for the higher mass range (500 - 900 m/z), remained relatively constant. Conclusions: In our samples, which span over 70 years, sample age has a weak yet quantifiable impact on metabolite content in FFPE samples, while the higher mass range is seemingly unaffected. FFPE samples thus provide an alternative avenue for metabolic analysis of lipids.
Collapse
Affiliation(s)
- Olof Gerdur Isberg
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland
- Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Yuchen Xiang
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Jon Gunnlaugur Jonasson
- Pathology, Landspitali-National University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Margret Thorsteinsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland
- Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
A versatile deep learning architecture for classification and label-free prediction of hyperspectral images. NAT MACH INTELL 2021; 3:306-315. [PMID: 34676358 PMCID: PMC8528004 DOI: 10.1038/s42256-021-00309-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyperspectral imaging is a technique that provides rich chemical or compositional information not regularly available to traditional imaging modalities such as intensity imaging or color imaging based on the reflection, transmission, or emission of light. Analysis of hyperspectral imaging often relies on machine learning methods to extract information. Here, we present a new flexible architecture, the U-within-U-Net, that can perform classification, segmentation, and prediction of orthogonal imaging modalities on a variety of hyperspectral imaging techniques. Specifically, we demonstrate feature segmentation and classification on the Indian Pines hyperspectral dataset and simultaneous location prediction of multiple drugs in mass spectrometry imaging of rat liver tissue. We further demonstrate label-free fluorescence image prediction from hyperspectral stimulated Raman scattering microscopy images. The applicability of the U-within-U-Net architecture on diverse datasets with widely varying input and output dimensions and data sources suggest that it has great potential in advancing the use of hyperspectral imaging across many different application areas ranging from remote sensing, to medical imaging, to microscopy.
Collapse
|
17
|
Eriksson JO, Rezeli M, Hefner M, Marko-Varga G, Horvatovich P. Clusterwise Peak Detection and Filtering Based on Spatial Distribution To Efficiently Mine Mass Spectrometry Imaging Data. Anal Chem 2019; 91:11888-11896. [PMID: 31403280 PMCID: PMC6751525 DOI: 10.1021/acs.analchem.9b02637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Mass
spectrometry imaging (MSI) has the potential to reveal the
localization of thousands of biomolecules such as metabolites and
lipids in tissue sections. The increase in both mass and spatial resolution
of today’s instruments brings on considerable challenges in
terms of data processing; accurately extracting meaningful signals
from the large data sets generated by MSI without losing information
that could be clinically relevant is one of the most fundamental tasks
of analysis software. Ion images of the biomolecules are generated
by visualizing their intensities in 2-D space using mass spectra collected
across the tissue section. The intensities are often calculated by
summing each compound’s signal between predefined sets of borders
(bins) in the m/z dimension. This
approach, however, can result in mixed signals from different compounds
in the same bin or splitting the signal from one compound between
two adjacent bins, leading to low quality ion images. To remedy this
problem, we propose a novel data processing approach. Our approach
consists of a sensitive peak detection method able to discover both
faint and localized signals by utilizing clusterwise kernel density
estimates (KDEs) of peak distributions. We show that our method can
recall more ground-truth molecules, molecule fragments, and isotopes
than existing methods based on binning. Furthermore, it automatically
detects previously reported molecular ions of lipids, including those
close in m/z, in an experimental
data set.
Collapse
Affiliation(s)
| | - Melinda Rezeli
- Lund University , Department of Biomedical Engineering , Lund , Sweden
| | - Max Hefner
- Lund University , Department of Biomedical Engineering , Lund , Sweden
| | | | - Peter Horvatovich
- Lund University , Department of Biomedical Engineering , Lund , Sweden.,University of Groningen, Department of Analytical Biochemistry , Groningen Research Institute of Pharmacy , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| |
Collapse
|
18
|
Inglese P, Correia G, Pruski P, Glen RC, Takats Z. Colocalization Features for Classification of Tumors Using Desorption Electrospray Ionization Mass Spectrometry Imaging. Anal Chem 2019; 91:6530-6540. [PMID: 31013058 PMCID: PMC6533599 DOI: 10.1021/acs.analchem.8b05598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Supervised modeling of mass spectrometry imaging (MSI) data is a crucial component for the detection of the distinct molecular characteristics of cancerous tissues. Currently, two types of supervised analyses are mainly used on MSI data: pixel-wise segmentation of sample images and whole-sample-based classification. A large number of mass spectra associated with each MSI sample can represent a challenge for designing models that simultaneously preserve the overall molecular content while capturing valuable information contained in the MSI data. Furthermore, intensity-related batch effects can introduce biases in the statistical models. Here we introduce a method based on ion colocalization features that allows the classification of whole tissue specimens using MSI data, which naturally preserves the spatial information associated the with the mass spectra and is less sensitive to possible batch effects. Finally, we propose data visualization strategies for the inspection of the derived networks, which can be used to assess whether the correlation differences are related to coexpression/suppression or disjoint spatial localization patterns and can suggest hypotheses based on the underlying mechanisms associated with the different classes of analyzed samples.
Collapse
Affiliation(s)
- Paolo Inglese
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London SW7 2AZ , United Kingdom
| | - Gonçalo Correia
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London SW7 2AZ , United Kingdom
| | - Pamela Pruski
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London SW7 2AZ , United Kingdom
| | - Robert C Glen
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London SW7 2AZ , United Kingdom
| | - Zoltan Takats
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London SW7 2AZ , United Kingdom
| |
Collapse
|