1
|
Vishwakarma R, Sgarlata GM, Soriano-Paños D, Rasteiro R, Maié T, Paixão T, Tournebize R, Chikhi L. Species-Specific Traits Shape Genetic Diversity During an Expansion-Contraction Cycle and Bias Demographic History Reconstruction. Mol Ecol 2025; 34:e17597. [PMID: 39663680 DOI: 10.1111/mec.17597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024]
Abstract
Species ranges are dynamic, experiencing expansions, contractions or shifts in response to habitat changes driven by extrinsic factors such as climate change or human activities. While existing research examines the genetic consequences of spatial processes, few studies integrate species-specific traits to analyse how habitat changes affect co-existing species. In this study, we address this gap by investigating how genetic diversity patterns vary among species with different traits (such as generation length, population density and dispersal) experiencing similar habitat changes. Using spatial simulations and a simpler panmictic population model, we investigate the temporal genetic diversity in refugium populations undergoing range expansion of their habitat, followed by stationary and contraction periods. By varying habitat contraction speed and species traits, we identified three distinct temporal dynamics of genetic diversity during contraction: (i) a decrease in genetic diversity, (ii) an initial increase followed by a decrease and (iii) a continuous increase throughout the contraction period. We show that genetic diversity trajectories during population decline can be predicted by comparing sampled population diversity to equilibrium values expected under expanded and contracted habitat ranges. Our study also challenges the belief that high genetic diversity in a refugium population is due to a recent and rapid habitat loss. Instead, we found contrasting effects of contraction speed on genetic diversity depending on the interaction between species-specific traits and the dynamics of habitat change. Finally, using simulated genetic data, we found that demographic histories inferred from effective population size estimates may vary across species, even when they experience similar habitat changes.
Collapse
Affiliation(s)
| | - Gabriele Maria Sgarlata
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California, USA
| | - David Soriano-Paños
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Universitat Rovira i Virgili, Tarragona, Spain
| | - Rita Rasteiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Tiago Maié
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rémi Tournebize
- Centre de Recherche Sur la Biodiversité et l'Environnement, UMR 5300, CNRS, IRD, UPS, Université de Toulouse Midi-Pyrénées, Toulouse, France
- DIADE, IRD, Université de Montpellier, Montpellier, France
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Centre de Recherche Sur la Biodiversité et l'Environnement, UMR 5300, CNRS, IRD, UPS, Université de Toulouse Midi-Pyrénées, Toulouse, France
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| |
Collapse
|
2
|
French CM, Damasceno RP, Vasconcellos MM, Rodrigues MT, Carnaval AC, Hickerson MJ. Elevational Range Impacts Connectivity and Predicted Deme Sizes From Models of Habitat Suitability. Mol Ecol 2025; 34:e17593. [PMID: 39569697 DOI: 10.1111/mec.17593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
In integrative distributional, demographic and coalescent (iDDC) modelling, a critical component is the statistical relationship between habitat suitability and local population sizes. This study explores this relationship in two Enyalius lizard species from the Brazilian Atlantic Forest: the high-elevation E. iheringii and low-elevation E. catenatus and how this transformation affects spatiotemporal demographic inference. Most previous iDDC studies assumed a linear relationship, but this study hypothesises that the relationship may be nonlinear, especially for high-elevation species with broader environmental tolerances. We test two key hypotheses: (1) The habitat suitability to population size relationship is nonlinear for E. iheringii (high-elevation) and linear for E. catenatus (low-elevation); and (2) E. iheringii exhibits higher effective migration across populations than E. catenatus. Our findings provide clear support for hypothesis (2), but mixed support for hypothesis (1), with strong model support for a nonlinear transformation in the high-elevation E. iheringii and some (albeit weak) support for a nonlinear transformation also in E. catenatus. The iDDC models allow us to generate landscape-wide maps of predicted genetic diversity for both species, revealing that genetic diversity predictions for the high-elevation E. iheringii align with estimated patterns of historical range stability, whereas predictions for low-elevation E. catenatus are distinct from range-wide stability predictions. This research highlights the importance of accurately modelling the habitat suitability to population size relationship in iDDC studies, contributing to our understanding of species' demographic responses to environmental changes.
Collapse
Affiliation(s)
- Connor M French
- Biology Department, City College of New York, New York, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, USA
| | - Roberta P Damasceno
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana M Vasconcellos
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Department of Biology, Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Miguel T Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ana C Carnaval
- Biology Department, City College of New York, New York, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, USA
| | - Michael J Hickerson
- Biology Department, City College of New York, New York, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA
| |
Collapse
|
3
|
Guillory WX, de Medeiros Magalhães F, Coelho FEA, Bonatelli IAS, Palma-Silva C, Moraes EM, Garda AA, Burbrink FT, Gehara M. Geoclimatic drivers of diversification in the largest arid and semi-arid environment of the Neotropics: Perspectives from phylogeography. Mol Ecol 2024; 33:e17431. [PMID: 38877815 DOI: 10.1111/mec.17431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
The South American Dry Diagonal, also called the Diagonal of Open Formations, is a large region of seasonally dry vegetation extending from northeastern Brazil to northern Argentina, comprising the Caatinga, Cerrado, and Chaco subregions. A growing body of phylogeography literature has determined that a complex history of climatic changes coupled with more ancient geological events has produced a diverse and endemic-rich Dry Diagonal biota. However, the exact drivers are still under investigation, and their relative strengths and effects are controversial. Pleistocene climatic fluctuations structured lineages via vegetation shifts, refugium formation, and corridors between the Amazon and Atlantic forests. In some taxa, older geological events, such as the reconfiguration of the São Francisco River, uplift of the Central Brazilian Plateau, or the Miocene inundation of the Chaco by marine incursions, were more important. Here, we review the Dry Diagonal phylogeography literature, discussing each hypothesized driver of diversification and assessing degree of support. Few studies statistically test these hypotheses, with most support drawn from associating encountered phylogeographic patterns such as population structure with the timing of ancient geoclimatic events. Across statistical studies, most hypotheses are well supported, with the exception of the Pleistocene Arc Hypothesis. However, taxonomic and regional biases persist, such as a proportional overabundance of herpetofauna studies, and the under-representation of Chaco studies. Overall, both Pleistocene climate change and Neogene geological events shaped the evolution of the Dry Diagonal biota, though the precise effects are regionally and taxonomically varied. We encourage further use of model-based analyses to test evolutionary scenarios, as well as interdisciplinary collaborations to progress the field beyond its current focus on the traditional set of geoclimatic hypotheses.
Collapse
Affiliation(s)
- Wilson X Guillory
- Department of Earth and Environmental Sciences, Rutgers University Newark, Newark, New Jersey, USA
- Department of Biological Sciences, Rutgers University Newark, Newark, New Jersey, USA
| | | | | | - Isabel A S Bonatelli
- Departamento de Ecologia e Biologia Evolutiva, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Clarisse Palma-Silva
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil
| | - Evandro M Moraes
- Departamento de Biologia, Universidade Federal de São Carlos (UFSCar), Sorocaba, São Paulo, Brazil
| | - Adrian Antonio Garda
- Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Frank T Burbrink
- Department of Herpetology, The American Museum of Natural History, New York City, New York, USA
| | - Marcelo Gehara
- Department of Earth and Environmental Sciences, Rutgers University Newark, Newark, New Jersey, USA
| |
Collapse
|
4
|
Petr M, Haller BC, Ralph PL, Racimo F. slendr: a framework for spatio-temporal population genomic simulations on geographic landscapes. PEER COMMUNITY JOURNAL 2023; 3:e121. [PMID: 38984034 PMCID: PMC11233137 DOI: 10.24072/pcjournal.354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
One of the goals of population genetics is to understand how evolutionary forces shape patterns of genetic variation over time. However, because populations evolve across both time and space, most evolutionary processes also have an important spatial component, acting through phenomena such as isolation by distance, local mate choice, or uneven distribution of resources. This spatial dimension is often neglected, partly due to the lack of tools specifically designed for building and evaluating complex spatio-temporal population genetic models. To address this methodological gap, we present a new framework for simulating spatially-explicit genomic data, implemented in a new R package called slendr (www.slendr.net), which leverages a SLiM simulation back-end script bundled with the package. With this framework, the users can programmatically and visually encode spatial population ranges and their temporal dynamics (i.e., population displacements, expansions, and contractions) either on real Earth landscapes or on abstract custom maps, and schedule splits and gene-flow events between populations using a straightforward declarative language. Additionally, slendr can simulate data from traditional, non-spatial models, either with SLiM or using an alternative built-in coalescent msprime back end. Together with its R-idiomatic interface to the tskit library for tree-sequence processing and analysis, slendr opens up the possibility of performing efficient, reproducible simulations of spatio-temporal genomic data entirely within the R environment, leveraging its wealth of libraries for geospatial data analysis, statistics, and visualization. Here, we present the design of the slendr R package and demonstrate its features on several practical example workflows.
Collapse
Affiliation(s)
- Martin Petr
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Denmark
| | - Benjamin C Haller
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Peter L Ralph
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Denmark
| |
Collapse
|
5
|
Quilodrán CS, Rio J, Tsoupas A, Currat M. Past human expansions shaped the spatial pattern of Neanderthal ancestry. SCIENCE ADVANCES 2023; 9:eadg9817. [PMID: 37851812 PMCID: PMC10584333 DOI: 10.1126/sciadv.adg9817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
The worldwide expansion of modern humans (Homo sapiens) started before the extinction of Neanderthals (Homo neanderthalensis). Both species coexisted and interbred, leading to slightly higher introgression in East Asians than in Europeans. This distinct ancestry level has been argued to result from selection, but range expansions of modern humans could provide an alternative explanation. This hypothesis would lead to spatial introgression gradients, increasing with distance from the expansion source. We investigate the presence of Neanderthal introgression gradients after past human expansions by analyzing Eurasian paleogenomes. We show that the out-of-Africa expansion resulted in spatial gradients of Neanderthal ancestry that persisted through time. While keeping the same gradient orientation, the expansion of early Neolithic farmers contributed decisively to reducing the Neanderthal introgression in European populations compared to Asian populations. This is because Neolithic farmers carried less Neanderthal DNA than preceding Paleolithic hunter-gatherers. This study shows that inferences about past human population dynamics can be made from the spatiotemporal variation in archaic introgression.
Collapse
Affiliation(s)
| | - Jérémy Rio
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Alexandros Tsoupas
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Mathias Currat
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Roux C, Vekemans X, Pannell J. Inferring the Demographic History and Inheritance Mode of Tetraploid Species Using ABC. Methods Mol Biol 2023; 2545:325-348. [PMID: 36720821 DOI: 10.1007/978-1-0716-2561-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genomic patterns of diversity and divergence are impacted by certain life history traits, reproductive systems, and demographic history. The latter is characterized by fluctuations in population sizes over time, as well as by temporal patterns of introgression. For a given organism, identifying a demographic history that deviates from the standard neutral model allows a better understanding of its evolution but also helps to reduce the risk of false positives when screening for molecular targets of natural selection. Tetraploid organisms and beyond have demographic histories that are complicated by the mode of polyploidization, the mode of inheritance, and different scenarios of gene flow between sub-genomes and diploid parental species. Here we provide guidelines for experimenters wishing to address these issues through a flexible statistical framework: approximate Bayesian computation (ABC). The emphasis is on the general philosophy of the approach to encourage future users to exploit the enormous flexibility of ABC beyond the limitations imposed by generalist data analysis pipelines.
Collapse
Affiliation(s)
- Camille Roux
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France.
| | | | - John Pannell
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Szép E, Trubenová B, Csilléry K. Using gridCoal to assess whether standard population genetic theory holds in the presence of spatio-temporal heterogeneity in population size. Mol Ecol Resour 2022; 22:2941-2955. [PMID: 35765749 PMCID: PMC9796524 DOI: 10.1111/1755-0998.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 01/01/2023]
Abstract
Spatially explicit population genetic models have long been developed, yet have rarely been used to test hypotheses about the spatial distribution of genetic diversity or the genetic divergence between populations. Here, we use spatially explicit coalescence simulations to explore the properties of the island and the two-dimensional stepping stone models under a wide range of scenarios with spatio-temporal variation in deme size. We avoid the simulation of genetic data, using the fact that under the studied models, summary statistics of genetic diversity and divergence can be approximated from coalescence times. We perform the simulations using gridCoal, a flexible spatial wrapper for the software msprime (Kelleher et al., 2016, Theoretical Population Biology, 95, 13) developed herein. In gridCoal, deme sizes can change arbitrarily across space and time, as well as migration rates between individual demes. We identify different factors that can cause a deviation from theoretical expectations, such as the simulation time in comparison to the effective deme size and the spatio-temporal autocorrelation across the grid. Our results highlight that FST , a measure of the strength of population structure, principally depends on recent demography, which makes it robust to temporal variation in deme size. In contrast, the amount of genetic diversity is dependent on the distant past when Ne is large, therefore longer run times are needed to estimate Ne than FST . Finally, we illustrate the use of gridCoal on a real-world example, the range expansion of silver fir (Abies alba Mill.) since the last glacial maximum, using different degrees of spatio-temporal variation in deme size.
Collapse
Affiliation(s)
- Enikő Szép
- IST Austria (Institute of Science and Technology Austria)KlosterneuburgAustria
| | - Barbora Trubenová
- IST Austria (Institute of Science and Technology Austria)KlosterneuburgAustria,Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | - Katalin Csilléry
- Biodiversity and Conservation BiologySwiss Federal Research Institute WSLBirmensdorfSwitzerland
| |
Collapse
|
8
|
Wellenreuther M, Dudaniec RY, Neu A, Lessard JP, Bridle J, Carbonell JA, Diamond SE, Marshall KE, Parmesan C, Singer MC, Swaegers J, Thomas CD, Lancaster LT. The importance of eco-evolutionary dynamics for predicting and managing insect range shifts. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100939. [PMID: 35644339 DOI: 10.1016/j.cois.2022.100939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Evolutionary change impacts the rate at which insect pests, pollinators, or disease vectors expand or contract their geographic ranges. Although evolutionary changes, and their ecological feedbacks, strongly affect these risks and associated ecological and economic consequences, they are often underappreciated in management efforts. Greater rigor and scope in study design, coupled with innovative technologies and approaches, facilitates our understanding of the causes and consequences of eco-evolutionary dynamics in insect range shifts. Future efforts need to ensure that forecasts allow for demographic and evolutionary change and that management strategies will maximize (or minimize) the adaptive potential of range-shifting insects, with benefits for biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand; School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Rachael Y Dudaniec
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Anika Neu
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | | - Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, UK
| | - José A Carbonell
- Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain; Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Camille Parmesan
- Station d'Écologie Théorique et Expérimentale (SETE), CNRS, 2 route du CNRS, 09200 Moulis, France; Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK; Dept of Geological Sciences, University of Texas at Austin, Austin, Texas 78712
| | - Michael C Singer
- Station d'Écologie Théorique et Expérimentale (SETE), CNRS, 2 route du CNRS, 09200 Moulis, France; Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, Leuven B-3000, Belgium
| | - Chris D Thomas
- Leverhulme Centre for Anthropocene Biodiversity, University of York, Wentworth Way, York YO10 5DD, UK
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen UK AB24 2TZ.
| |
Collapse
|
9
|
Bemmels JB, Haddrath O, Colbourne RM, Robertson HA, Weir JT. Legacy of supervolcanic eruptions on population genetic structure of brown kiwi. Curr Biol 2022; 32:3389-3397.e8. [PMID: 35728597 DOI: 10.1016/j.cub.2022.05.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Supervolcanoes are volcanoes capable of mega-colossal eruptions that emit more than 1,000 km3 of ash and other particles.1 The earth's most recent mega-colossal eruption was the Oruanui eruption of the Taupo supervolcano 25,580 years before present (YBP) on the central North Island of New Zealand.2 This eruption blanketed major swaths of the North Island in thick layers of ash and igneous rock,2,3 devastating habitats and likely causing widespread population extinctions.4-7 An additional devastating super-colossal eruption (>100 km3) of the Taupo supervolcano occurred approximately 1,690 YBP.8 The impacts of such massive but ephemeral natural disasters on contemporary population genetic structure remain underexplored. Here, we combined data for 4,951 SNPs with spatially explicit demographic and coalescent models within an approximate Bayesian computation framework to test the drivers of genetic structure in brown kiwi (Apteryx mantelli). Our results strongly support the importance of eruptions of the Taupo supervolcano in restructuring pre-existing geographic patterns of population differentiation and genetic diversity. Range shifts due to climatic oscillations-a frequent explanation for genetic structure9-are insufficient to fully explain the empirical data. Meanwhile, recent range contraction and fragmentation due to historically documented anthropogenic habitat alteration adds no explanatory power to our models. Our results support a major role for cycles of destruction and post-volcanic recolonization in restructuring the population genomic landscape of brown kiwi and highlight how ancient and ephemeral mega-disasters may leave a lasting legacy on patterns of intraspecific genetic variation.
Collapse
Affiliation(s)
- Jordan B Bemmels
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Oliver Haddrath
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - Rogan M Colbourne
- Department of Conservation, PO Box 10420, Wellington 6140, New Zealand
| | - Hugh A Robertson
- Department of Conservation, PO Box 10420, Wellington 6140, New Zealand
| | - Jason T Weir
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada.
| |
Collapse
|
10
|
Wang Z, Pierce NE. Fine-scale genome-wide signature of Pleistocene glaciation in Thitarodes moths (Lepidoptera: Hepialidae), host of Ophiocordyceps fungus in the Hengduan Mountains. Mol Ecol 2022; 32:2695-2714. [PMID: 35377501 DOI: 10.1111/mec.16457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
The Hengduan Mountains region is a biodiversity hotspot known for its topologically complex, deep valleys and high mountains. While landscape and glacial refugia have been evoked to explain patterns of inter-species divergence, the accumulation of intra-species (i.e. population level) genetic divergence across the mountain-valley landscape in this region has received less attention. We used genome-wide restriction site-associated DNA sequencing (RADseq) to reveal signatures of Pleistocene glaciation in populations of Thitarodes shambalaensis (Lepidoptera: Hepialidae), the host moth of parasitic Ophiocordyceps sinensis (Hypocreales: Ophiocordycipitaceae) or "caterpillar fungus" endemic to the glacier of eastern Mt. Gongga. We used moraine history along the glacier valleys to model the distribution and environmental barriers to gene flow across populations of T. shambalaensis. We found that moth populations separated by less than 10 km exhibited valley-based population genetic clustering and isolation-by-distance (IBD), while gene flow among populations was best explained by models using information about their distributions at the local last glacial maximum (LGML , 58 kya), not their contemporary distribution. Maximum likelihood lineage history among populations, and among subpopulations as little as 500 meters apart, recapitulated glaciation history across the landscape. We also found signals of isolated population expansion following the retreat of LGML glaciers. These results reveal the fine-scale, long-term historical influence of landscape and glaciation on the genetic structuring of populations of an endangered and economically important insect species. Similar mechanisms, given enough time and continued isolation, could explain the contribution of glacier refugia to the generation of species diversity among the Hengduan Mountains.
Collapse
Affiliation(s)
- Zhengyang Wang
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Naomi E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
11
|
Branco C, Kanellou M, González-Martín A, Arenas M. Consequences of the Last Glacial Period on the Genetic Diversity of Southeast Asians. Genes (Basel) 2022; 13:genes13020384. [PMID: 35205429 PMCID: PMC8871837 DOI: 10.3390/genes13020384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
The last glacial period (LGP) promoted a loss of genetic diversity in Paleolithic populations of modern humans from diverse regions of the world by range contractions and habitat fragmentation. However, this period also provided some currently submersed lands, such as the Sunda shelf in Southeast Asia (SEA), that could have favored the expansion of our species. Concerning the latter, still little is known about the influence of the lowering sea level on the genetic diversity of current SEA populations. Here, we applied approximate Bayesian computation, based on extensive spatially explicit computer simulations, to evaluate the fitting of mtDNA data from diverse SEA populations with alternative evolutionary scenarios that consider and ignore the LGP and migration through long-distance dispersal (LDD). We found that both the LGP and migration through LDD should be taken into consideration to explain the currently observed genetic diversity in these populations and supported a rapid expansion of first populations throughout SEA. We also found that temporarily available lands caused by the low sea level of the LGP provided additional resources and migration corridors that favored genetic diversity. We conclude that migration through LDD and temporarily available lands during the LGP should be considered to properly understand and model the first expansions of modern humans.
Collapse
Affiliation(s)
- Catarina Branco
- Centro de Investigaciones Biomédicas (CINBIO), University of Vigo, 36310 Vigo, Spain; (C.B.); (M.K.)
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Marina Kanellou
- Centro de Investigaciones Biomédicas (CINBIO), University of Vigo, 36310 Vigo, Spain; (C.B.); (M.K.)
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonio González-Martín
- Department of Biodiversity, Ecology and Evolution, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Miguel Arenas
- Centro de Investigaciones Biomédicas (CINBIO), University of Vigo, 36310 Vigo, Spain; (C.B.); (M.K.)
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Correspondence: ; Tel.: +34-986-130-047
| |
Collapse
|
12
|
Broccard N, Silva NM, Currat M. Simulated patterns of mitochondrial diversity are consistent with partial population turnover in Bronze Age Central Europe. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 177:134-146. [PMID: 36787792 PMCID: PMC9298224 DOI: 10.1002/ajpa.24431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVES The analysis of ancient mitochondrial DNA from osteological remains has challenged previous conclusions drawn from the analysis of mitochondrial DNA from present populations, notably by revealing an absence of genetic continuity between the Neolithic and modern populations in Central Europe. Our study investigates how to reconcile these contradictions at the mitochondrial level using a modeling approach. MATERIALS AND METHODS We used a spatially explicit computational framework to simulate ancient and modern DNA sequences under various evolutionary scenarios of post Neolithic demographic events and compared the genetic diversity of the simulated and observed mitochondrial sequences. We investigated which-if any-scenarios were able to reproduce statistics of genetic diversity similar to those observed, with a focus on the haplogroup N1a, associated with the spread of early Neolithic farmers. RESULTS Demographic fluctuations during the Neolithic transition or subsequent demographic collapses after this period, that is, due to epidemics such as plague, are not sufficient to explain the signal of population discontinuity detected on the mitochondrial DNA in Central Europe. Only a scenario involving a substantial genetic input due to the arrival of migrants after the Neolithic transition, possibly during the Bronze Age, is compatible with observed patterns of genetic diversity. DISCUSSION Our results corroborate paleogenomic studies, since out of the alternative hypotheses tested, the best one that was able to recover observed patterns of mitochondrial diversity in modern and ancient Central European populations was one were immigration of populations from the Pontic steppes during the Bronze Age was explicitly simulated.
Collapse
Affiliation(s)
- Nicolas Broccard
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution – Anthropology UnitUniversity of GenevaGenevaSwitzerland
| | - Nuno Miguel Silva
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution – Anthropology UnitUniversity of GenevaGenevaSwitzerland
| | - Mathias Currat
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution – Anthropology UnitUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in Geneva (IGE3)University of GenevaGenevaSwitzerland
| |
Collapse
|
13
|
Paredes‐Montero JR, Rizental M, Quintela ED, de Abreu AG, Brown JK. Earlier than expected introductions of the Bemisia tabaci B mitotype in Brazil reveal an unprecedented, rapid invasion history. Ecol Evol 2022; 12:e8557. [PMID: 35127052 PMCID: PMC8796915 DOI: 10.1002/ece3.8557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 11/09/2022] Open
Abstract
During 1991, in Brazil, the presence of the exotic Bemisia tabaci B mitotype was reported in São Paulo state. However, the duration from the time of initial introduction to population upsurges is not known. To investigate whether the 1991 B mitotype outbreaks in Brazil originated in São Paulo or from migrating populations from neighboring introduction sites, country-wide field samples of B. tabaci archived from 1989-2005 collections were subjected to analysis of mitochondrial cytochrome oxidase I (mtCOI) and nuclear RNA-binding protein 15 (RP-15) sequences. The results of mtCOI sequence analysis identified all B. tabaci as the NAFME 8 haplotype of the B mitotype. Phylogenetic analyses of RP-15 sequences revealed that the B mitotype was likely a hybrid between a B type parent related to a haplotype Ethiopian endemism (NAFME 1-3), and an unidentified parent from the North Africa-Middle East (NAF-ME) region. Results provide the first evidence that this widely invasive B mitotype has evolved from a previously undocumented hybridization event. Samples from Rio de Janeiro (1989) and Ceará state (1990), respectively, are the earliest known B mitotype records in Brazil. A simulated migration for the 1989 introduction predicted a dispersal rate of 200-500 km/year, indicating that the population was unlikely to have reached Ceará by 1990. Results implicated two independent introductions of the B mitotype in Brazil in 1989 and 1990, that together were predicted to have contributed to the complete invasion of Brazil in only 30 generations.
Collapse
Affiliation(s)
- Jorge R. Paredes‐Montero
- School of Plant SciencesThe University of ArizonaTucsonArizonaUSA
- Facultad de Ciencias de la VidaEscuela Superior Politécnica del LitoralESPOLGuayaquilEcuador
| | - Muriel Rizental
- Federal University of GoiásGoiâniaBrazil
- EMBRAPA Rice and BeansSanto Antônio de GoiásBrazil
| | | | | | - Judith K. Brown
- School of Plant SciencesThe University of ArizonaTucsonArizonaUSA
| |
Collapse
|
14
|
Ongaro L, Molinaro L, Flores R, Marnetto D, Capodiferro MR, Alarcón-Riquelme ME, Moreno-Estrada A, Mabunda N, Ventura M, Tambets K, Achilli A, Capelli C, Metspalu M, Pagani L, Montinaro F. Evaluating the Impact of Sex-Biased Genetic Admixture in the Americas through the Analysis of Haplotype Data. Genes (Basel) 2021; 12:genes12101580. [PMID: 34680976 PMCID: PMC8535939 DOI: 10.3390/genes12101580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/30/2023] Open
Abstract
A general imbalance in the proportion of disembarked males and females in the Americas has been documented during the Trans-Atlantic Slave Trade and the Colonial Era and, although less prominent, more recently. This imbalance may have left a signature on the genomes of modern-day populations characterised by high levels of admixture. The analysis of the uniparental systems and the evaluation of continental proportion ratio of autosomal and X chromosomes revealed a general sex imbalance towards males for European and females for African and Indigenous American ancestries. However, the consistency and degree of this imbalance are variable, suggesting that other factors, such as cultural and social practices, may have played a role in shaping it. Moreover, very few investigations have evaluated the sex imbalance using haplotype data, containing more critical information than genotypes. Here, we analysed genome-wide data for more than 5000 admixed American individuals to assess the presence, direction and magnitude of sex-biased admixture in the Americas. For this purpose, we applied two haplotype-based approaches, ELAI and NNLS, and we compared them with a genotype-based method, ADMIXTURE. In doing so, besides a general agreement between methods, we unravelled that the post-colonial admixture dynamics show higher complexity than previously described.
Collapse
Affiliation(s)
- Linda Ongaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (L.M.); (R.F.); (D.M.); (K.T.); (M.M.); (L.P.); (F.M.)
- Correspondence:
| | - Ludovica Molinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (L.M.); (R.F.); (D.M.); (K.T.); (M.M.); (L.P.); (F.M.)
| | - Rodrigo Flores
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (L.M.); (R.F.); (D.M.); (K.T.); (M.M.); (L.P.); (F.M.)
| | - Davide Marnetto
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (L.M.); (R.F.); (D.M.); (K.T.); (M.M.); (L.P.); (F.M.)
| | - Marco R. Capodiferro
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.R.C.); (A.A.)
| | - Marta E. Alarcón-Riquelme
- Department of Medical Genomics, GENYO, Centro Pfizer—Universidad de Granada—Junta de Andalucía de Genómica e Investigación Oncológica, Av de la Ilustración 114, Parque Tecnológico de la Salud (PTS), 18016 Granada, Spain;
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36821, Mexico;
| | - Nedio Mabunda
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Província de Maputo, Maputo 1120, Mozambique;
| | - Mario Ventura
- Department of Biology-Genetics, University of Bari, 70126 Bari, Italy;
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (L.M.); (R.F.); (D.M.); (K.T.); (M.M.); (L.P.); (F.M.)
| | - Alessandro Achilli
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.R.C.); (A.A.)
| | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK;
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (L.M.); (R.F.); (D.M.); (K.T.); (M.M.); (L.P.); (F.M.)
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (L.M.); (R.F.); (D.M.); (K.T.); (M.M.); (L.P.); (F.M.)
- Department of Biology, University of Padua, 35131 Padua, Italy
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia; (L.M.); (R.F.); (D.M.); (K.T.); (M.M.); (L.P.); (F.M.)
- Department of Biology-Genetics, University of Bari, 70126 Bari, Italy;
| |
Collapse
|
15
|
Rio J, Quilodrán CS, Currat M. Spatially explicit paleogenomic simulations support cohabitation with limited admixture between Bronze Age Central European populations. Commun Biol 2021; 4:1163. [PMID: 34621003 PMCID: PMC8497574 DOI: 10.1038/s42003-021-02670-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
The Bronze Age is a complex period of social, cultural and economic changes. Recent paleogenomic studies have documented a large and rapid genetic change in early Bronze Age populations from Central Europe. However, the detailed demographic and genetic processes involved in this change are still debated. Here we have used spatially explicit simulations of genomic components to better characterize the demographic and migratory conditions that may have led to this change. We investigated various scenarios representing the expansion of pastoralists from the Pontic steppe, potentially linked to the Yamnaya cultural complex, and their interactions with local populations in Central Europe, considering various eco-evolutionary factors, such as population admixture, competition and long-distance dispersal. Our results do not support direct competition but rather the cohabitation of pastoralists and farmers in Central Europe, with limited gene flow between populations. They also suggest occasional long-distance migrations accompanying the expansion of pastoralists and a demographic decline in both populations following their initial contact. These results link recent archaeological and paleogenomic observations and move further the debate of genomic changes during the early Bronze Age.
Collapse
Affiliation(s)
- Jérémy Rio
- Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - Claudio S Quilodrán
- Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Mathias Currat
- Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.
- Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
16
|
Larsson DJ, Pan D, Schneeweiss GM. Addressing alpine plant phylogeography using integrative distributional, demographic and coalescent modeling. ALPINE BOTANY 2021; 132:5-19. [PMID: 35368907 PMCID: PMC8933363 DOI: 10.1007/s00035-021-00263-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/05/2021] [Indexed: 06/14/2023]
Abstract
Phylogeographic studies of alpine plants have evolved considerably in the last two decades from ad hoc interpretations of genetic data to statistical model-based approaches. In this review we outline the developments in alpine plant phylogeography focusing on the recent approach of integrative distributional, demographic and coalescent (iDDC) modeling. By integrating distributional data with spatially explicit demographic modeling and subsequent coalescent simulations, the history of alpine species can be inferred and long-standing hypotheses, such as species-specific responses to climate change or survival on nunataks during the last glacial maximum, can be efficiently tested as exemplified by available case studies. We also discuss future prospects and improvements of iDDC.
Collapse
Affiliation(s)
- Dennis J. Larsson
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gerald M. Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Excofffier L, Marchi N, Marques DA, Matthey-Doret R, Gouy A, Sousa VC. fastsimcoal2: demographic inference under complex evolutionary scenarios. Bioinformatics 2021; 37:4882-4885. [PMID: 34164653 PMCID: PMC8665742 DOI: 10.1093/bioinformatics/btab468] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 01/25/2023] Open
Abstract
Motivation fastsimcoal2 extends fastsimcoal, a continuous time coalescent-based genetic simulation program, by enabling the estimation of demographic parameters under very complex scenarios from the site frequency spectrum under a maximum-likelihood framework. Results Other improvements include multi-threading, handling of population inbreeding, extended input file syntax facilitating the description of complex demographic scenarios, and more efficient simulations of sparsely structured populations and of large chromosomes. Availability and implementation fastsimcoal2 is freely available on http://cmpg.unibe.ch/software/fastsimcoal2/. It includes console versions for Linux, Windows and MacOS, additional scripts for the analysis and visualization of simulated and estimated scenarios, as well as a detailed documentation and ready-to-use examples.
Collapse
Affiliation(s)
- Laurent Excofffier
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Nina Marchi
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - David Alexander Marques
- Life Science Division, Natural History Museum Basel, 4051 Basel, Switzerland.,Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Department of Fish Ecology and Evolution, EAWAG swiss Federal institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047 Kastanienbaum, Switzerland
| | - Remi Matthey-Doret
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Alexandre Gouy
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Gouy Data Consulting, 1026 Denges, Switzerland
| | - Vitor C Sousa
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
18
|
Sherpa S, Després L. The evolutionary dynamics of biological invasions: A multi-approach perspective. Evol Appl 2021; 14:1463-1484. [PMID: 34178098 PMCID: PMC8210789 DOI: 10.1111/eva.13215] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Biological invasions, the establishment and spread of non-native species in new regions, can have extensive economic and environmental consequences. Increased global connectivity accelerates introduction rates, while climate and land-cover changes may decrease the barriers to invasive populations spread. A detailed knowledge of the invasion history, including assessing source populations, routes of spread, number of independent introductions, and the effects of genetic bottlenecks and admixture on the establishment success, adaptive potential, and further spread, is crucial from an applied perspective to mitigate socioeconomic impacts of invasive species, as well as for addressing fundamental questions on the evolutionary dynamics of the invasion process. Recent advances in genomics together with the development of geographic information systems provide unprecedented large genetic and environmental datasets at global and local scales to link population genomics, landscape ecology, and species distribution modeling into a common framework to study the invasion process. Although the factors underlying population invasiveness have been extensively reviewed, analytical methods currently available to optimally combine molecular and environmental data for inferring invasive population demographic parameters and predicting further spreading are still under development. In this review, we focus on the few recent insect invasion studies that combine different datasets and approaches to show how integrating genetic, observational, ecological, and environmental data pave the way to a more integrative biological invasion science. We provide guidelines to study the evolutionary dynamics of invasions at each step of the invasion process, and conclude on the benefits of including all types of information and up-to-date analytical tools from different research areas into a single framework.
Collapse
Affiliation(s)
- Stéphanie Sherpa
- CNRSLECAUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
| | - Laurence Després
- CNRSLECAUniversité Grenoble AlpesUniversité Savoie Mont BlancGrenobleFrance
| |
Collapse
|
19
|
Bourgeois YXC, Warren BH. An overview of current population genomics methods for the analysis of whole-genome resequencing data in eukaryotes. Mol Ecol 2021; 30:6036-6071. [PMID: 34009688 DOI: 10.1111/mec.15989] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Characterizing the population history of a species and identifying loci underlying local adaptation is crucial in functional ecology, evolutionary biology, conservation and agronomy. The constant improvement of high-throughput sequencing techniques has facilitated the production of whole genome data in a wide range of species. Population genomics now provides tools to better integrate selection into a historical framework, and take into account selection when reconstructing demographic history. However, this improvement has come with a profusion of analytical tools that can confuse and discourage users. Such confusion limits the amount of information effectively retrieved from complex genomic data sets, and impairs the diffusion of the most recent analytical tools into fields such as conservation biology. It may also lead to redundancy among methods. To address these isssues, we propose an overview of more than 100 state-of-the-art methods that can deal with whole genome data. We summarize the strategies they use to infer demographic history and selection, and discuss some of their limitations. A website listing these methods is available at www.methodspopgen.com.
Collapse
Affiliation(s)
| | - Ben H Warren
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, UA, CP 51, Paris, France
| |
Collapse
|
20
|
Ferreiro D, Núñez-Estévez B, Canedo M, Branco C, Arenas M. Evaluating Causes of Current Genetic Gradients of Modern Humans of the Iberian Peninsula. Genome Biol Evol 2021; 13:6219947. [PMID: 33837782 PMCID: PMC8086631 DOI: 10.1093/gbe/evab071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
The history of modern humans in the Iberian Peninsula includes a variety of population arrivals sometimes presenting admixture with resident populations. Genetic data from current Iberian populations revealed an overall east–west genetic gradient that some authors interpreted as a direct consequence of the Reconquista, where Catholic Kingdoms expanded their territories toward the south while displacing Muslims. However, this interpretation has not been formally evaluated. Here, we present a qualitative analysis of the causes of the current genetic gradient observed in the Iberian Peninsula using extensive spatially explicit computer simulations based on a variety of evolutionary scenarios. Our results indicate that the Neolithic range expansion clearly produces the orientation of the observed genetic gradient. Concerning the Reconquista (including political borders among Catholic Kingdoms and regions with different languages), if modeled upon a previous Neolithic expansion, it effectively favored the orientation of the observed genetic gradient and shows local isolation of certain regions (i.e., Basques and Galicia). Despite additional evolutionary scenarios could be evaluated to more accurately decipher the causes of the Iberian genetic gradient, here we show that this gradient has a more complex explanation than that previously hypothesized.
Collapse
Affiliation(s)
- David Ferreiro
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| | - Bernabé Núñez-Estévez
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| | - Mateo Canedo
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| | - Catarina Branco
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| | - Miguel Arenas
- CINBIO, Universidade de Vigo, Spain.,Universidade de Vigo, Departamento de Bioquímica, Xenética e Immunoloxía, Spain
| |
Collapse
|
21
|
Quilodrán CS, Tsoupas A, Currat M. The Spatial Signature of Introgression After a Biological Invasion With Hybridization. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.569620] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The accumulation of genome-wide molecular data has emphasized the important role of hybridization in the evolution of many organisms, which may carry introgressed genomic segments resulting from past admixture events with other taxa. Despite a number of examples of hybridization occurring during biological invasions, the resulting spatial patterns of genomic introgression remain poorly understood. Preliminary simulation studies have suggested a heterogeneous spatial level of introgression for invasive taxa after range expansion. We investigated in detail the robustness of this pattern and its persistence over time for both invasive and local organisms. Using spatially explicit simulations, we explored the spatial distribution of introgression across the area of colonization of an invasive taxon hybridizing with a local taxon. The general pattern for neutral loci supported by our results is an increasing introgression of local genes into the invasive taxon with the increase in the distance from the source of the invasion and a decreasing introgression of invasive genes into the local taxon. However, we also show there is some variation in this general trend depending on the scenario investigated. Spatial heterogeneity of introgression within a given taxon is thus an expected neutral pattern in structured populations after a biological invasion with a low to moderate amount of hybridization. We further show that this pattern is consistent with published empirical observations. Using additional simulations, we argue that the spatial pattern of Neanderthal introgression in modern humans, which has been documented to be higher in Asia than in Europe, can be explained by a model of hybridization with Neanderthals in Eurasia during the range expansion of modern humans from Africa. Our results support the view that weak hybridization during range expansion may explain spatially heterogeneous introgression patterns without the need to invoke selection.
Collapse
|
22
|
Quilodrán CS, Nussberger B, Macdonald DW, Montoya‐Burgos JI, Currat M. Projecting introgression from domestic cats into European wildcats in the Swiss Jura. Evol Appl 2020; 13:2101-2112. [PMID: 32908607 PMCID: PMC7463310 DOI: 10.1111/eva.12968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 02/02/2023] Open
Abstract
Hybridization between wild and domesticated organisms is a worldwide conservation issue. In the Jura Mountains, threatened European wildcats (Felis silvestris) have been demographically spreading for approximately the last 50 years, but this recovery is coupled with hybridization with domestic cats (Felis catus). Here, we project the pattern of future introgression using different spatially explicit scenarios to model the interactions between the two species, including competition and different population sizes. We project the fast introgression of domestic cat genes into the wildcat population under all scenarios if hybridization is not severely restricted. If the current hybridization rate and population sizes remain unchanged, we expect the loss of genetic distinctiveness between wild and domestic cats at neutral nuclear, mitochondrial and Y chromosome markers in one hundred years. However, scenarios involving a competitive advantage for wildcats and a future increase in the wildcat population size project a slower increase in introgression. We recommend that future studies assess the fitness of these hybrids and better characterize their ecological niche and their ecological interactions with parental species to elucidate effective conservation measures.
Collapse
Affiliation(s)
- Claudio S. Quilodrán
- Department of ZoologyUniversity of OxfordOxfordUK
- Department of Genetics and Evolution ‐ Anthropology UnitLaboratory of AnthropologyGenetics and Peopling HistoryUniversity of GenevaGenevaSwitzerland
| | - Beatrice Nussberger
- Institute of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - David W. Macdonald
- Department of ZoologyWildlife Conservation Research UnitThe Recanati‐Kaplan CentreUniversity of OxfordOxfordUK
| | - Juan I. Montoya‐Burgos
- Department of Genetics and EvolutionLaboratory of Vertebrate EvolutionUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in Geneva (IGE3)GenevaSwitzerland
| | - Mathias Currat
- Department of Genetics and Evolution ‐ Anthropology UnitLaboratory of AnthropologyGenetics and Peopling HistoryUniversity of GenevaGenevaSwitzerland
- Institute of Genetics and Genomics in Geneva (IGE3)GenevaSwitzerland
| |
Collapse
|
23
|
Branco C, Ray N, Currat M, Arenas M. Influence of Paleolithic range contraction, admixture and long-distance dispersal on genetic gradients of modern humans in Asia. Mol Ecol 2020; 29:2150-2159. [PMID: 32436243 DOI: 10.1111/mec.15479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Cavalli-Sforza and coauthors originally explored the genetic variation of modern humans throughout the world and observed an overall east-west genetic gradient in Asia. However, the specific environmental and population genetics processes causing this gradient were not formally investigated and promoted discussion in recent studies. Here we studied the influence of diverse environmental and population genetics processes on Asian genetic gradients and identified which could have produced the observed gradient. To do so, we performed extensive spatially-explicit computer simulations of genetic data under the following scenarios: (a) variable levels of admixture between Paleolithic and Neolithic populations, (b) migration through long-distance dispersal (LDD), (c) Paleolithic range contraction induced by the last glacial maximum (LGM), and (d) Neolithic range expansions from one or two geographic origins (the Fertile Crescent and the Yangzi and Yellow River Basins). Next, we estimated genetic gradients from the simulated data and we found that they were sensible to the analysed processes, especially to the range contraction induced by LGM and to the number of Neolithic expansions. Some scenarios were compatible with the observed east-west genetic gradient, such as the Paleolithic expansion with a range contraction induced by the LGM or two Neolithic range expansions from both the east and the west. In general, LDD increased the variance of genetic gradients among simulations. We interpreted the obtained gradients as a consequence of both allele surfing caused by range expansions and isolation by distance along the vast east-west geographic axis of this continent.
Collapse
Affiliation(s)
- Catarina Branco
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Nicolas Ray
- GeoHealth Group, Institute of Global Health, University of Geneva, Geneva, Switzerland.,Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Mathias Currat
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| |
Collapse
|
24
|
Yannic G, Hagen O, Leugger F, Karger DN, Pellissier L. Harnessing paleo-environmental modeling and genetic data to predict intraspecific genetic structure. Evol Appl 2020; 13:1526-1542. [PMID: 32684974 PMCID: PMC7359836 DOI: 10.1111/eva.12986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Spatially explicit simulations of gene flow within complex landscapes could help forecast the responses of populations to global and anthropological changes. Simulating how past climate change shaped intraspecific genetic variation can provide a validation of models in anticipation of their use to predict future changes. We review simulation models that provide inferences on population genetic structure. Existing simulation models generally integrate complex demographic and genetic processes but are less focused on the landscape dynamics. In contrast to previous approaches integrating detailed demographic and genetic processes and only secondarily landscape dynamics, we present a model based on parsimonious biological mechanisms combining habitat suitability and cellular processes, applicable to complex landscapes. The simulation model takes as input (a) the species dispersal capacities as the main biological parameter, (b) the species habitat suitability, and (c) the landscape structure, modulating dispersal. Our model emphasizes the role of landscape features and their temporal dynamics in generating genetic differentiation among populations within species. We illustrate our model on caribou/reindeer populations sampled across the entire species distribution range in the Northern Hemisphere. We show that simulations over the past 21 kyr predict a population genetic structure that matches empirical data. This approach looking at the impact of historical landscape dynamics on intraspecific structure can be used to forecast population structure under climate change scenarios and evaluate how species range shifts might induce erosion of genetic variation within species.
Collapse
Affiliation(s)
- Glenn Yannic
- Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Oskar Hagen
- Landscape Ecology Department of Environmental Systems Sciensce Institute of Terrestrial Ecosystems ETH Zürich Zürich Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research Birmensdorf Switzerland
| | - Flurin Leugger
- Landscape Ecology Department of Environmental Systems Sciensce Institute of Terrestrial Ecosystems ETH Zürich Zürich Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research Birmensdorf Switzerland
| | - Dirk N Karger
- Swiss Federal Institute for Forest, Snow and Landscape Research Birmensdorf Switzerland
| | - Loïc Pellissier
- Landscape Ecology Department of Environmental Systems Sciensce Institute of Terrestrial Ecosystems ETH Zürich Zürich Switzerland.,Swiss Federal Institute for Forest, Snow and Landscape Research Birmensdorf Switzerland
| |
Collapse
|
25
|
Guindon S. Rates and Rocks: Strengths and Weaknesses of Molecular Dating Methods. Front Genet 2020; 11:526. [PMID: 32536940 PMCID: PMC7267027 DOI: 10.3389/fgene.2020.00526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
I present here an in-depth, although non-exhaustive, review of two topics in molecular dating. Clock models, which describe the evolution of the rate of evolution, are considered first. Some of the shortcomings of popular approaches-uncorrelated clock models in particular-are presented and discussed. Autocorrelated models are shown to be more reasonable from a biological perspective. Some of the most recent autocorrelated models also rely on a coherent treatment of instantaneous and average substitution rates while previous models are based on implicit approximations. Second, I provide a brief overview of the processes involved in collecting and preparing fossil data. I then review the main techniques that use this data for calibrating the molecular clock. I argue that, in its current form, the fossilized birth-death process relies on assumptions about the mechanisms underlying fossilization and the data collection process that may negatively impact the date estimates. Node-dating approaches make better use of the data available, even though they rest on paleontologists' intervention to prepare raw fossil data. Altogether, this study provides indications that may help practitioners in selecting appropriate methods for molecular dating. It will also hopefully participate in defining the contour of future methodological developments in the field.
Collapse
Affiliation(s)
- Stéphane Guindon
- Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, CNRS and Université Montpellier (UMR 5506), Montpellier, France
| |
Collapse
|
26
|
Taillebois L, Sabatino S, Manicki A, Daverat F, Nachón DJ, Lepais O. Variable outcomes of hybridization between declining Alosa alosa and Alosa fallax. Evol Appl 2020; 13:636-651. [PMID: 32211057 PMCID: PMC7086104 DOI: 10.1111/eva.12889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Hybridization dynamics between co-occurring species in environments where human-mediated changes take place are important to quantify for furthering our understanding of human impacts on species evolution and for informing management. The allis shad Alosa alosa (Linnaeus, 1758) and twaite shad Alosa fallax (Lacépède, 1803), two clupeids sister species, have been severely impacted by human activities across Europe. The shrinkage of A. alosa distribution range along with the decline of the remaining populations' abundance threatens its persistence. The main objective was to evaluate the extent of hybridization and introgression between those interacting species. We developed a set of 77 species-specific SNP loci that allowed a better resolution than morphological traits as they enabled the detection of hybrids up to the third generation. Variable rates of contemporary hybridization and introgression patterns were detected in 12 studied sites across the French Atlantic coast. Mitochondrial markers revealed a cyto-nuclear discordance almost invariably involving A. alosa individuals with an A. fallax mitochondrial DNA and provided evidence of historical asymmetric introgression. Overall, contemporary and historical introgression revealed by nuclear and mitochondrial markers strongly suggests that a transfer of genes occurs from A. fallax toward A. alosa genome since at least four generations. Moreover, the outcomes of introgression greatly depend on the catchments where local processes are thought to occur. Undoubtedly, interspecific interaction and gene flow should not be overlooked when considering the management of those species.
Collapse
Affiliation(s)
- Laura Taillebois
- ECOBIOPINRAUniversité de Pau et Pays de l’AdourSaint‐Pée‐sur‐NivelleFrance
| | | | - Aurélie Manicki
- ECOBIOPINRAUniversité de Pau et Pays de l’AdourSaint‐Pée‐sur‐NivelleFrance
| | | | - David José Nachón
- EABXIRSTEACestas CedexFrance
- Estación de Hidrobioloxía ‘Encoro do Con’Universidade de Santiago de CompostelaVilagarcía de ArousaSpain
| | - Olivier Lepais
- ECOBIOPINRAUniversité de Pau et Pays de l’AdourSaint‐Pée‐sur‐NivelleFrance
- BIOGECOINRA, Univ. BordeauxCestasFrance
| |
Collapse
|
27
|
Abstract
Despite the efforts made to reconstruct the history of modern humans, there are still poorly explored regions that are key for understanding the phylogeography of our species. One of them is the Philippines, which is crucial to unravel the colonization of Southeast Asia and Oceania but where little is known about when and how the first humans arrived. In order to shed light into this settlement, we collected samples from 157 individuals of the Philippines with the four grandparents belonging to the same region and mitochondrial variants older than 20,000 years. Next, we analyzed the hypervariable I mtDNA region by approximate Bayesian computation based on extensive spatially explicit computer simulations to select among several migration routes towards the Philippines and to estimate population genetic parameters of this colonization. We found that the colonization of the Philippines occurred more than 60,000 years ago, with long-distance dispersal and from both north and south migration routes. Our results also suggest an environmental scenario especially optimal for humans, with large carrying capacity and population growth, in comparison to other regions of Asia. In all, our study suggests a rapid expansion of modern humans towards the Philippines that could be associated with the establisment of maritime technologies and favorable environmental conditions.
Collapse
|
28
|
Pan D, Hülber K, Willner W, Schneeweiss GM. An explicit test of Pleistocene survival in peripheral versus nunatak refugia in two high mountain plant species. Mol Ecol 2019; 29:172-183. [PMID: 31765501 PMCID: PMC7003806 DOI: 10.1111/mec.15316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Pleistocene climate fluctuations had profound influence on the biogeographical history of many biota. As large areas in high mountain ranges were covered by glaciers, biota were forced either to peripheral refugia (and possibly beyond to lowland refugia) or to interior refugia (nunataks). However, nunatak survival remains controversial as it relies solely on correlative genetic evidence. Here, we test hypotheses of glacial survival using two high alpine plant species (the insect‐pollinated Pedicularis asplenifolia and wind‐pollinated Carex fuliginosa) in the European Alps. Employing the iDDC (integrative Distributional, Demographic and Coalescent) approach, which couples species distribution modelling, spatial and temporal demographic simulation and Approximate Bayesian Computation, we explicitly test three hypotheses of glacial survival: (a) peripheral survival only, (b) nunatak survival only and (c) peripheral plus nunatak survival. In P. asplenifolia the peripheral plus nunatak survival hypothesis was supported by Bayes factors (BF> 100), whereas in C. fuliginosa the peripheral survival only hypothesis, although best supported, could not be unambiguously distinguished from the peripheral plus nunatak survival hypothesis (BF = 5.58). These results are consistent with current habitat preferences (P. asplenifolia extends to higher elevations) and the potential for genetic swamping (i.e., replacement of local genotypes via hybridization with immigrating genotypes [expected to be higher in the wind‐pollinated C. fuliginosa]). Although the persistence of plants on nunataks during glacial periods has been debated and studied over decades, this is one of the first studies to explicitly test the hypothesis instead of solely using correlative evidence.
Collapse
Affiliation(s)
- Da Pan
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Karl Hülber
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Wolfgang Willner
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Gerald M Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Illera JC, Arenas M, López-Sánchez CA, Obeso JR, Laiolo P. Gradual Distance Dispersal Shapes the Genetic Structure in an Alpine Grasshopper. Genes (Basel) 2019; 10:E590. [PMID: 31387238 PMCID: PMC6724060 DOI: 10.3390/genes10080590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022] Open
Abstract
The location of the high mountains of southern Europe has been crucial in the phylogeography of most European species, but how extrinsic (topography of sky islands) and intrinsic features (dispersal dynamics) have interacted to shape the genetic structure in alpine restricted species is still poorly known. Here we investigated the mechanisms explaining the colonisation of Cantabrian sky islands in an endemic flightless grasshopper. We scrutinised the maternal genetic variability and haplotype structure, and we evaluated the fitting of two migration models to understand the extant genetic structure in these populations: Long-distance dispersal (LDD) and gradual distance dispersal (GDD). We found that GDD fits the real data better than the LDD model, with an onset of the expansion matching postglacial expansions after the retreat of the ice sheets. Our findings suggest a scenario with small carrying capacity, migration rates, and population growth rates, being compatible with a slow dispersal process. The gradual expansion process along the Cantabrian sky islands found here seems to be conditioned by the suitability of habitats and the presence of alpine corridors. Our findings shed light on our understanding about how organisms which have adapted to live in alpine habitats with limited dispersal abilities have faced new and suitable environmental conditions.
Collapse
Affiliation(s)
- Juan Carlos Illera
- Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University, 33600 Mieres, Spain.
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
| | - Carlos A López-Sánchez
- Department of Biology, Organisms and Systems, GIS-Forest Group, Oviedo University, 33600 Mieres, Spain
| | - José Ramón Obeso
- Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University, 33600 Mieres, Spain
| | - Paola Laiolo
- Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Oviedo University, 33600 Mieres, Spain
| |
Collapse
|