1
|
Du X, Li J, Wang B, Zhang J, Wang T, Wang J. NRGCNMDA: Microbe-Drug Association Prediction Based on Residual Graph Convolutional Networks and Conditional Random Fields. Interdiscip Sci 2025; 17:344-358. [PMID: 39775537 DOI: 10.1007/s12539-024-00678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
The process of discovering new drugs related to microbes through traditional biological methods is lengthy and costly. In response to these issues, a new computational model (NRGCNMDA) is proposed to predict microbe-drug associations. First, Node2vec is used to extract potential associations between microorganisms and drugs, and a heterogeneous network of microbes and drugs is constructed. Then, a Graph Convolutional Network incorporating a fusion residual network mechanism (REGCN) is utilized to learn meaningful high-order similarity features. In addition, conditional random fields (CRF) are applied to ensure that microbes and drugs have similar feature embeddings. Finally, unobserved microbe-drug associations are scored based on combined embeddings. The experimental findings demonstrate that the NRGCNMDA approach outperforms several existing deep learning methods, and its AUC and AUPR values are 95.16% and 93.02%, respectively. The case study demonstrates that NRGCNMDA accurately predicts drugs associated with Enterococcus faecalis and Listeria monocytogenes, as well as microbes associated with ibuprofen and tetracycline.
Collapse
Affiliation(s)
- Xiaoxin Du
- Computer and Control Engineering College, Qiqihar University, Qiqihar, 161006, China.
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, 161006, China.
| | - Jingwei Li
- Computer and Control Engineering College, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, 161006, China
| | - Bo Wang
- Computer and Control Engineering College, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, 161006, China
| | - Jianfei Zhang
- Computer and Control Engineering College, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, 161006, China
| | - Tongxuan Wang
- Computer and Control Engineering College, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, 161006, China
| | - Junqi Wang
- Computer and Control Engineering College, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Key Laboratory of Big Data Network Security Detection and Analysis, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
2
|
Sheng N, Liu Y, Gao L, Wang L, Si C, Huang L, Wang Y. Deep-Learning-Based Integration of Sequence and Structure Information for Efficiently Predicting miRNA-Drug Associations. J Chem Inf Model 2025. [PMID: 40380921 DOI: 10.1021/acs.jcim.5c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
Extensive research has shown that microRNAs (miRNAs) play a crucial role in cancer progression, treatment, and drug resistance. They have been recognized as promising potential therapeutic targets for overcoming drug resistance in cancer treatment. However, limited attention has been paid to predicting the association between miRNAs and drugs by computational methods. Existing approaches typically focus on constructing miRNA-drug interaction graphs, which may result in their performance being limited by interaction density. In this work, we propose a novel deep learning method that integrates sequence and structural information to infer miRNA-drug associations (MDAs), called DLST-MDA. This approach innovates by utilizing attribute information on miRNAs and drugs instead of relying on the commonly used interaction graph information. Specifically, considering the sequence lengths of miRNAs and drugs, DLST-MDA employs multiscale convolutional neural network (CNN) to learn sequence embeddings at different granularity levels from miRNA and drug sequences. Additionally, it leverages the power of graph neural networks to capture structural information from drug molecular graphs, providing a more representational analysis of the drug features. To evaluate DLST-MDA's effectiveness, we manually constructed a benchmark data set for various experiments based on the latest databases. Results indicate that DLST-MDA performs better than other state-of-the-art methods. Furthermore, case studies of three common anticancer drugs can evidence their usefulness in discovering novel MDAs. The data and source code are released at https://github.com/sheng-n/DLST-MDA.
Collapse
Affiliation(s)
- Nan Sheng
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, ChangChun 130012, China
| | - Yunzhi Liu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, ChangChun 130012, China
| | - Ling Gao
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, ChangChun 130012, China
| | - Lei Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, ChangChun 130012, China
| | - Chenxu Si
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, ChangChun 130012, China
| | - Lan Huang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, ChangChun 130012, China
| | - Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, ChangChun 130012, China
| |
Collapse
|
3
|
Lei C, Lei X. Predicting Drug-miRNA Associations Combining SDNE with BiGRU. IEEE J Biomed Health Inform 2025; 29:3805-3816. [PMID: 40030943 DOI: 10.1109/jbhi.2024.3525266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
It is well recognized that abnormal miRNA expression can result in drug resistance and pose a challenge to miRNA-based treatments. However, the drug-miRNA associations (DMA) are still incompletely understood. Conventional biological experiments have a high failure rate, lengthy cycle times, and expensive expenditures. Consequently, deep learning-based techniques for predicting DMA have been developed. In this work, we propose a novel method named SDNEDMA for DMA prediction that combines SDNE with BiGRU. The two-channel approach is used to combine the attribute and topological features of miRNAs and drugs. To be more precise, we first model the associations between drugs and miRNAs through the known bipartite network, and then utilize SDNE to obtain the topological features. Meanwhile, BiGRU is employed to acquire miRNA k-mer sequence features and drug ECFP fingerprints. Subsequently, both the topological and attribute features are fused jointly to form final features which is aimed to predict the association score for both them. Multiple features drugs and miRNAs are used at the same time, more information is fused, and the features are more accurate, so the prediction performance is better. The experiments show that SDNEDMA outperforms other state-of-the-art methods, yielding AUC of 0.9641 when we use 5-fold cross-validation on the ncDR dataset. SDNEDMA is additionally employed in a case study, showing how accurate and dependable it is. To sum up, the SDNEDMA has the ability to predict DMA with high accuracy and effectiveness, which is really important for drug development.
Collapse
|
4
|
Liu Z, Dai Q, Yu X, Duan X, Wang C. Predicting circRNA-Drug Resistance Associations Based on a Multimodal Graph Representation Learning Framework. IEEE J Biomed Health Inform 2025; 29:1838-1848. [PMID: 37498762 DOI: 10.1109/jbhi.2023.3299423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Circular RNA (circRNA) is a class of noncoding RNA that is highly conserved and exhibit exceptional stability. Due to its function as a microRNA sponge, circRNA has gained significant attention as an essential biomarker and potential drug target in the pathogenesis of several cancers. Although many circRNAs have been identified to play a role in cancer resistance, traditional methods are time-consuming and expensive. In this context, computational methods offer a promising way to facilitate the discovery process. However, most existing prediction models focus on the association between circRNAs and drug resistance, without considering the corresponding disease-related information in the circRNA-drug resistance association. Incorporating disease-related information into the prediction of circRNA-drug resistance associations could potentially improve the efficiency and speed of discovering and developing circRNA-targeting drugs. We propose a computational framework, named GraphCDD, for predicting the association between circRNA and drug resistance. Our model utilizes data from three sources, namely circRNA, disease, and drug, to construct three similarity networks that represent the features of circRNA, disease, and drug, respectively. We utilize a multimodal graph neural network to acquire efficient representations of circRNAs, diseases, and drugs by integrating various types of information, and establish a predictive model. The experimental results have validated the effectiveness of our model and provided a promising method in predicting potential associations between circRNA and drug resistance.
Collapse
|
5
|
Ren Z, Zeng X, Lao Y, Zheng H, You Z, Xiang H, Zou Q. A spatial hierarchical network learning framework for drug repositioning allowing interpretation from macro to micro scale. Commun Biol 2024; 7:1413. [PMID: 39478146 PMCID: PMC11525566 DOI: 10.1038/s42003-024-07107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Biomedical network learning offers fresh prospects for expediting drug repositioning. However, traditional network architectures struggle to quantify the relationship between micro-scale drug spatial structures and corresponding macro-scale biomedical networks, limiting their ability to capture key pharmacological properties and complex biomedical information crucial for drug screening and therapeutic discovery. Moreover, challenges such as difficulty in capturing long-range dependencies hinder current network-based approaches. To address these limitations, we introduce the Spatial Hierarchical Network, modeling molecular 3D structures and biological associations into a unified network. We propose an end-to-end framework, SpHN-VDA, integrating spatial hierarchical information through triple attention mechanisms to enhance machine understanding of molecular functionality and improve the accuracy of virus-drug association identification. SpHN-VDA outperforms leading models across three datasets, particularly excelling in out-of-distribution and cold-start scenarios. It also exhibits enhanced robustness against data perturbation, ranging from 20% to 40%. It accurately identifies critical motifs for binding sites, even without protein residue annotations. Leveraging reliability of SpHN-VDA, we have identified 25 potential candidate drugs through gene expression analysis and CMap. Molecular docking experiments with the SARS-CoV-2 spike protein further corroborate the predictions. This research highlights the broad potential of SpHN-VDA to enhance drug repositioning and identify effective treatments for various diseases.
Collapse
Affiliation(s)
- Zhonghao Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Yizhen Lao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Heping Zheng
- College of Biology, Department of Molecular Medicine, Hunan University, Changsha, China
| | - Zhuhong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Hongxin Xiang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
6
|
Zhou Z, Du Z, Jiang X, Zhuo L, Xu Y, Fu X, Liu M, Zou Q. GAM-MDR: probing miRNA-drug resistance using a graph autoencoder based on random path masking. Brief Funct Genomics 2024; 23:475-483. [PMID: 38391194 DOI: 10.1093/bfgp/elae005] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
MicroRNAs (miRNAs) are found ubiquitously in biological cells and play a pivotal role in regulating the expression of numerous target genes. Therapies centered around miRNAs are emerging as a promising strategy for disease treatment, aiming to intervene in disease progression by modulating abnormal miRNA expressions. The accurate prediction of miRNA-drug resistance (MDR) is crucial for the success of miRNA therapies. Computational models based on deep learning have demonstrated exceptional performance in predicting potential MDRs. However, their effectiveness can be compromised by errors in the data acquisition process, leading to inaccurate node representations. To address this challenge, we introduce the GAM-MDR model, which combines the graph autoencoder (GAE) with random path masking techniques to precisely predict potential MDRs. The reliability and effectiveness of the GAM-MDR model are mainly reflected in two aspects. Firstly, it efficiently extracts the representations of miRNA and drug nodes in the miRNA-drug network. Secondly, our designed random path masking strategy efficiently reconstructs critical paths in the network, thereby reducing the adverse impact of noisy data. To our knowledge, this is the first time that a random path masking strategy has been integrated into a GAE to infer MDRs. Our method was subjected to multiple validations on public datasets and yielded promising results. We are optimistic that our model could offer valuable insights for miRNA therapeutic strategies and deepen the understanding of the regulatory mechanisms of miRNAs. Our data and code are publicly available at GitHub:https://github.com/ZZCrazy00/GAM-MDR.
Collapse
Affiliation(s)
- Zhecheng Zhou
- Wenzhou University of Technology, 325000, Wenzhou, China
| | - Zhenya Du
- Guangzhou Xinhua University, 510520, Guangzhou, China
| | - Xin Jiang
- Wenzhou University of Technology, 325000, Wenzhou, China
| | - Linlin Zhuo
- Wenzhou University of Technology, 325000, Wenzhou, China
| | - Yixin Xu
- West China School of Pharmacy Sichuan University, 610041, Chengdu, China
| | - Xiangzheng Fu
- College of Computer Science and Electronic Engineering, Hunan University, 410006, Changsha, China
| | - Mingzhe Liu
- Wenzhou University of Technology, 325000, Wenzhou, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611730, Chengdu, China
| |
Collapse
|
7
|
Zhang W, Zhang P, Sun W, Xu J, Liao L, Cao Y, Han Y. Improving plant miRNA-target prediction with self-supervised k-mer embedding and spectral graph convolutional neural network. PeerJ 2024; 12:e17396. [PMID: 38799058 PMCID: PMC11122044 DOI: 10.7717/peerj.17396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Deciphering the targets of microRNAs (miRNAs) in plants is crucial for comprehending their function and the variation in phenotype that they cause. As the highly cell-specific nature of miRNA regulation, recent computational approaches usually utilize expression data to identify the most physiologically relevant targets. Although these methods are effective, they typically require a large sample size and high-depth sequencing to detect potential miRNA-target pairs, thereby limiting their applicability in improving plant breeding. In this study, we propose a novel miRNA-target prediction framework named kmerPMTF (k-mer-based prediction framework for plant miRNA-target). Our framework effectively extracts the latent semantic embeddings of sequences by utilizing k-mer splitting and a deep self-supervised neural network. We construct multiple similarity networks based on k-mer embeddings and employ graph convolutional networks to derive deep representations of miRNAs and targets and calculate the probabilities of potential associations. We evaluated the performance of kmerPMTF on four typical plant datasets: Arabidopsis thaliana, Oryza sativa, Solanum lycopersicum, and Prunus persica. The results demonstrate its ability to achieve AUPRC values of 84.9%, 91.0%, 80.1%, and 82.1% in 5-fold cross-validation, respectively. Compared with several state-of-the-art existing methods, our framework achieves better performance on threshold-independent evaluation metrics. Overall, our study provides an efficient and simplified methodology for identifying plant miRNA-target associations, which will contribute to a deeper comprehension of miRNA regulatory mechanisms in plants.
Collapse
Affiliation(s)
- Weihan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Ping Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Weicheng Sun
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jinsheng Xu
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Hubei Province, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Zhang Y, Li X. Empowering Graph Neural Networks with Block-Based Dual Adaptive Deep Adjustment for Drug Resistance-Related NcRNA Discovery. J Chem Inf Model 2024; 64:3537-3547. [PMID: 38523272 PMCID: PMC11040722 DOI: 10.1021/acs.jcim.3c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Drug resistance to chemotherapeutic agents remains a formidable challenge in cancer treatment, significantly impacting treatment efficacy. Extensive research has exposed the intimate involvement of noncoding RNAs (ncRNAs) in conferring resistance to cancer drugs. Understanding the intricate associations between ncRNAs and drug resistance is of pivotal importance in advancing clinical interventions and expediting drug development. However, traditional biological experimental methods are hampered by limitations, such as labor intensiveness, time consumption, and constraints in scalability. Addressing these challenges necessitates the development of efficient computational methods for the accurate prediction of potential ncRNA-drug resistance associations (NDRA). However, most existing predictive models primarily focus on known ncRNA-drug resistance associations, often neglecting the critical aspect of similarity information between ncRNAs and drug resistance. This oversight may hinder the accuracy of characterizing these associations. To overcome the limitations of existing computational models, we proposed B-NDRA, a computational framework designed for the discovery of drug resistance-related ncRNA. Initially, we constructed a heterogeneous graph that integrates ncRNA-drug resistance pairs, leveraging both known associations and similarity fusion information between ncRNAs and drug resistance. Subsequently, we employed an attention mechanism to aggregate local features of graph nodes following a dimensionality reduction of node features. Further, a graph neural network (GNN) facilitated the learning of global node embeddings. Notably, the integration of dual adaptive deep adjustment architectures, encompassing intrablock and interblock methodologies, enabled efficient extraction of global features while balancing local and global features. Finally, B-NDRA employed a multilayer perceptron to predict associations between ncRNAs and drug resistance. Through rigorous 5-fold cross-validation, B-NDRA achieved average AUC, AUPR, Accuracy, Precision, Recall, and F1-score values of 92.2%, 91.9%, 84.88%, 86.9%, 82.37%, and 84.44%, respectively. Furthermore, comparative evaluations were conducted on established models, namely, GAEMDA, GRPAMDA, and LRGCPND. The results, obtained through three distinct 5-fold cross-validation strategies, demonstrated a notable performance improvement across almost all metrics for our B-NDRA. Specific case studies targeting Doxorubicin and Imatinib further validated the practicality of our B-NDRA in discovering potential NDRA. These results confirm the potential of our B-NDRA as a valuable tool in advancing cancer research and therapeutic development. The source code and data set of B-NDRA can be found at https://github.com/XuanLi1145/B-NDRA.
Collapse
Affiliation(s)
- Yi Zhang
- Guilin
University of Technology, Guilin 541004, China
- Guangxi
Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin 541004, China
| | - Xuanzhao Li
- Guilin
University of Technology, Guilin 541004, China
- Guangxi
Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
9
|
Zhang P, Zhang W, Sun W, Xu J, Hu H, Wang L, Wong L. Identification of gene biomarkers for brain diseases via multi-network topological semantics extraction and graph convolutional network. BMC Genomics 2024; 25:175. [PMID: 38350848 PMCID: PMC10865627 DOI: 10.1186/s12864-024-09967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Brain diseases pose a significant threat to human health, and various network-based methods have been proposed for identifying gene biomarkers associated with these diseases. However, the brain is a complex system, and extracting topological semantics from different brain networks is necessary yet challenging to identify pathogenic genes for brain diseases. RESULTS In this study, we present a multi-network representation learning framework called M-GBBD for the identification of gene biomarker in brain diseases. Specifically, we collected multi-omics data to construct eleven networks from different perspectives. M-GBBD extracts the spatial distributions of features from these networks and iteratively optimizes them using Kullback-Leibler divergence to fuse the networks into a common semantic space that represents the gene network for the brain. Subsequently, a graph consisting of both gene and large-scale disease proximity networks learns representations through graph convolution techniques and predicts whether a gene is associated which brain diseases while providing associated scores. Experimental results demonstrate that M-GBBD outperforms several baseline methods. Furthermore, our analysis supported by bioinformatics revealed CAMP as a significantly associated gene with Alzheimer's disease identified by M-GBBD. CONCLUSION Collectively, M-GBBD provides valuable insights into identifying gene biomarkers for brain diseases and serves as a promising framework for brain networks representation learning.
Collapse
Affiliation(s)
- Ping Zhang
- College of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277100, Shandong, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weihan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430074, China
| | - Weicheng Sun
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinsheng Xu
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Hu
- College of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277100, Shandong, China.
| | - Lei Wang
- College of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277100, Shandong, China.
- Guangxi Key Lab of Human-Machine Interaction and Intelligent Decision, Guangxi Academy of Sciences, Nanning, 530007, China.
| | - Leon Wong
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
10
|
Qu J, Ni J, Ni TG, Bian ZK, Liang JZ. Prediction of Human Microbe-Drug Association based on Layer Attention Graph Convolutional Network. Curr Med Chem 2024; 31:5097-5109. [PMID: 39225188 DOI: 10.2174/0109298673249941231108091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/20/2023] [Accepted: 10/19/2023] [Indexed: 09/04/2024]
Abstract
Human microbes are closely associated with a variety of complex diseases and have emerged as drug targets. Identification of microbe-related drugs is becoming a key issue in drug development and precision medicine. It can also provide guidance for solving the increasingly serious problem of drug resistance enhancement in viruses. METHODS In this paper, we have proposed a novel model of layer attention graph convolutional network for microbe-drug association prediction. First, multiple biological data have been integrated into a heterogeneous network. Then, the heterogeneous network has been incorporated into a graph convolutional network to determine the embedded microbe and drug. Finally, the microbe-drug association scores have been obtained by decoding the embedding of microbe and drug based on the layer attention mechanism. RESULTS To evaluate the performance of our proposed model, leave-one-out crossvalidation (LOOCV) and 5-fold cross-validation have been implemented on the two datasets of aBiofilm and MDAD. As a result, based on the aBiofilm dataset, our proposed model has attained areas under the curve (AUC) of 0.9178 and 0.9022 on global LOOCV and local LOOCV, respectively. Based on aBiofilm dataset, the proposed model has attained an AUC value of 0.9018 and 0.8902 on global LOOCV and local LOOCV, respectively. In addition, the average AUC and standard deviation of the proposed model for 5- fold cross-validation on the aBiofilm and MDAD datasets were 0.9141±6.8556e-04 and 0.8982±7.5868e-04, respectively. Also, two kinds of case studies have been further conducted to evaluate the proposed models. CONCLUSION Traditional methods for microbe-drug association prediction are timeconsuming and laborious. Therefore, the computational model proposed was used to predict new microbe-drug associations. Several evaluation results have shown the proposed model to achieve satisfactory results and that it can play a role in drug development and precision medicine.
Collapse
Affiliation(s)
- Jia Qu
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, 213164, China
| | - Jie Ni
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, 213164, China
| | - Tong-Guang Ni
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, 213164, China
| | - Ze-Kang Bian
- School of AI & Computer Science, Jiangnan University, Wuxi, 214122, China
| | - Jiu-Zhen Liang
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
11
|
Sharma V, Giammona M, Zubarev D, Tek A, Nugyuen K, Sundberg L, Congiu D, La YH. Formulation Graphs for Mapping Structure-Composition of Battery Electrolytes to Device Performance. J Chem Inf Model 2023; 63:6998-7010. [PMID: 37948621 PMCID: PMC10685446 DOI: 10.1021/acs.jcim.3c01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Advanced computational methods are being actively sought to address the challenges associated with the discovery and development of new combinatorial materials, such as formulations. A widely adopted approach involves domain-informed high-throughput screening of individual components that can be combined together to form a formulation. This manages to accelerate the discovery of new compounds for a target application but still leaves the process of identifying the right "formulation" from the shortlisted chemical space largely a laboratory experiment-driven process. We report a deep learning model, the Formulation Graph Convolution Network (F-GCN), that can map the structure-composition relationship of the formulation constituents to the property of liquid formulation as a whole. Multiple GCNs are assembled in parallel that featurize formulation constituents domain-intuitively on the fly. The resulting molecular descriptors are scaled based on the respective constituent's molar percentage in the formulation, followed by integration into a combined formulation descriptor that represents the complete formulation to an external learning architecture. The use case of the proposed formulation learning model is demonstrated for battery electrolytes by training and testing it on two exemplary data sets representing electrolyte formulations vs battery performance: one data set is sourced from the literature about Li/Cu half-cells, while the other is obtained by lab experiments related to lithium-iodide full-cell chemistry. The model is shown to predict performance metrics such as Coulombic efficiency (CE) and specific capacity of new electrolyte formulations with the lowest reported errors. The best-performing F-GCN model uses molecular descriptors derived from molecular graphs (GCNs) that are informed with HOMO-LUMO and electric moment properties of the molecules using a knowledge transfer technique.
Collapse
Affiliation(s)
- Vidushi Sharma
- IBM Almaden Research Center, 650 Harry Rd, San Jose, California 95120, United States
| | - Maxwell Giammona
- IBM Almaden Research Center, 650 Harry Rd, San Jose, California 95120, United States
| | - Dmitry Zubarev
- IBM Almaden Research Center, 650 Harry Rd, San Jose, California 95120, United States
| | - Andy Tek
- IBM Almaden Research Center, 650 Harry Rd, San Jose, California 95120, United States
| | - Khanh Nugyuen
- IBM Almaden Research Center, 650 Harry Rd, San Jose, California 95120, United States
| | - Linda Sundberg
- IBM Almaden Research Center, 650 Harry Rd, San Jose, California 95120, United States
| | - Daniele Congiu
- IBM Almaden Research Center, 650 Harry Rd, San Jose, California 95120, United States
| | - Young-Hye La
- IBM Almaden Research Center, 650 Harry Rd, San Jose, California 95120, United States
| |
Collapse
|
12
|
Zhong Y, Shen C, Xi X, Luo Y, Ding P, Luo L. Multitask joint learning with graph autoencoders for predicting potential MiRNA-drug associations. Artif Intell Med 2023; 145:102665. [PMID: 37925217 DOI: 10.1016/j.artmed.2023.102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 11/06/2023]
Abstract
The occurrence of many diseases is associated with miRNA abnormalities. Predicting potential drug-miRNA associations is of great importance for both disease treatment and new drug discovery. Most computation-based approaches learn one task at a time, ignoring the information contained in other tasks in the same domain. Multitask learning can effectively enhance the prediction performance of a single task by extending the valid information of related tasks. In this paper, we presented a multitask joint learning framework (MTJL) with a graph autoencoder for predicting the associations between drugs and miRNAs. First, we combined multiple pieces of information to construct a high-quality similarity network of both drugs and miRNAs and then used a graph autoencoder (GAE) to learn their embedding representations separately. Second, to further improve the embedding quality of drugs, we added an auxiliary task to classify drugs using the learned representations. Finally, the embedding representations of drugs and miRNAs were linearly transformed to obtain the predictive association scores between them. A comparison with other state-of-the-art models shows that MTJL has the best prediction performance, and ablation experiments show that the auxiliary task can enhance the embedding quality and improve the robustness of the model. In addition, we show that MTJL has high utility in predicting potential associations between drugs and miRNAs by conducting two case studies.
Collapse
Affiliation(s)
- Yichen Zhong
- School of Computer Science, University of South China, Hengyang 421001, China
| | - Cong Shen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Xiaoting Xi
- School of Computer Science, University of South China, Hengyang 421001, China
| | - Yuxun Luo
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411105, China
| | - Pingjian Ding
- School of Computer Science, University of South China, Hengyang 421001, China
| | - Lingyun Luo
- School of Computer Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
13
|
Ye S, Zhao W, Shen X, Jiang X, He T. An effective multi-task learning framework for drug repurposing based on graph representation learning. Methods 2023; 218:48-56. [PMID: 37516260 DOI: 10.1016/j.ymeth.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
Drug repurposing, which typically applies the procedure of drug-disease associations (DDAs) prediction, is a feasible solution to drug discovery. Compared with traditional methods, drug repurposing can reduce the cost and time for drug development and advance the success rate of drug discovery. Although many methods for drug repurposing have been proposed and the obtained results are relatively acceptable, there is still some room for improving the predictive performance, since those methods fail to consider fully the issue of sparseness in known drug-disease associations. In this paper, we propose a novel multi-task learning framework based on graph representation learning to identify DDAs for drug repurposing. In our proposed framework, a heterogeneous information network is first constructed by combining multiple biological datasets. Then, a module consisting of multiple layers of graph convolutional networks is utilized to learn low-dimensional representations of nodes in the constructed heterogeneous information network. Finally, two types of auxiliary tasks are designed to help to train the target task of DDAs prediction in the multi-task learning framework. Comprehensive experiments are conducted on real data and the results demonstrate the effectiveness of the proposed method for drug repurposing.
Collapse
Affiliation(s)
- Shengwei Ye
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Weizhong Zhao
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China.
| | - Xianjun Shen
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xingpeng Jiang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Tingting He
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China
| |
Collapse
|
14
|
Sun J, Xu M, Ru J, James-Bott A, Xiong D, Wang X, Cribbs AP. Small molecule-mediated targeting of microRNAs for drug discovery: Experiments, computational techniques, and disease implications. Eur J Med Chem 2023; 257:115500. [PMID: 37262996 PMCID: PMC11554572 DOI: 10.1016/j.ejmech.2023.115500] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Small molecules have been providing medical breakthroughs for human diseases for more than a century. Recently, identifying small molecule inhibitors that target microRNAs (miRNAs) has gained importance, despite the challenges posed by labour-intensive screening experiments and the significant efforts required for medicinal chemistry optimization. Numerous experimentally-verified cases have demonstrated the potential of miRNA-targeted small molecule inhibitors for disease treatment. This new approach is grounded in their posttranscriptional regulation of the expression of disease-associated genes. Reversing dysregulated gene expression using this mechanism may help control dysfunctional pathways. Furthermore, the ongoing improvement of algorithms has allowed for the integration of computational strategies built on top of laboratory-based data, facilitating a more precise and rational design and discovery of lead compounds. To complement the use of extensive pharmacogenomics data in prioritising potential drugs, our previous work introduced a computational approach based on only molecular sequences. Moreover, various computational tools for predicting molecular interactions in biological networks using similarity-based inference techniques have been accumulated in established studies. However, there are a limited number of comprehensive reviews covering both computational and experimental drug discovery processes. In this review, we outline a cohesive overview of both biological and computational applications in miRNA-targeted drug discovery, along with their disease implications and clinical significance. Finally, utilizing drug-target interaction (DTIs) data from DrugBank, we showcase the effectiveness of deep learning for obtaining the physicochemical characterization of DTIs.
Collapse
Affiliation(s)
- Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | - Miaoer Xu
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Jinlong Ru
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany
| | - Anna James-Bott
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
15
|
Ma Z, Kuang Z, Deng L. NGCICM: A Novel Deep Learning-Based Method for Predicting circRNA-miRNA Interactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3080-3092. [PMID: 37027645 DOI: 10.1109/tcbb.2023.3248787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The circRNAs and miRNAs play an important role in the development of human diseases, and they can be widely used as biomarkers of diseases for disease diagnosis. In particular, circRNAs can act as sponge adsorbers for miRNAs and act together in certain diseases. However, the associations between the vast majority of circRNAs and diseases and between miRNAs and diseases remain unclear. Computational-based approaches are urgently needed to discover the unknown interactions between circRNAs and miRNAs. In this paper, we propose a novel deep learning algorithm based on Node2vec and Graph ATtention network (GAT), Conditional Random Field (CRF) layer and Inductive Matrix Completion (IMC) to predict circRNAs and miRNAs interactions (NGCICM). We construct a GAT-based encoder for deep feature learning by fusing the talking-heads attention mechanism and the CRF layer. The IMC-based decoder is also constructed to obtain interaction scores. The Area Under the receiver operating characteristic Curve (AUC) of the NGCICM method is 0.9697, 0.9932 and 0.9980, and the Area Under the Precision-Recall curve (AUPR) is 0.9671, 0.9935 and 0.9981, respectively, using 2-fold, 5-fold and 10-fold Cross-Validation (CV) as the benchmark. The experimental results confirm the effectiveness of the NGCICM algorithm in predicting the interactions between circRNAs and miRNAs.
Collapse
|
16
|
Zhang P, Wang Z, Sun W, Xu J, Zhang W, Wu K, Wong L, Li L. RDRGSE: A Framework for Noncoding RNA-Drug Resistance Discovery by Incorporating Graph Skeleton Extraction and Attentional Feature Fusion. ACS OMEGA 2023; 8:27386-27397. [PMID: 37546619 PMCID: PMC10398708 DOI: 10.1021/acsomega.3c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
Identifying noncoding RNAs (ncRNAs)-drug resistance association computationally would have a marked effect on understanding ncRNA molecular function and drug target mechanisms and alleviating the screening cost of corresponding biological wet experiments. Although graph neural network-based methods have been developed and facilitated the detection of ncRNAs related to drug resistance, it remains a challenge to explore a highly trusty ncRNA-drug resistance association prediction framework, due to inevitable noise edges originating from the batch effect and experimental errors. Herein, we proposed a framework, referred to as RDRGSE (RDR association prediction by using graph skeleton extraction and attentional feature fusion), for detecting ncRNA-drug resistance association. Specifically, starting with the construction of the original ncRNA-drug resistance association as a bipartite graph, RDRGSE took advantage of a bi-view skeleton extraction strategy to obtain two types of skeleton views, followed by a graph neural network-based estimator for iteratively optimizing skeleton views aimed at learning high-quality ncRNA-drug resistance edge embedding and optimal graph skeleton structure, jointly. Then, RDRGSE adopted adaptive attentional feature fusion to obtain final edge embedding and identified potential RDRAs under an end-to-end pattern. Comprehensive experiments were conducted, and experimental results indicated the significant advantage of a skeleton structure for ncRNA-drug resistance association discovery. Compared with state-of-the-art approaches, RDRGSE improved the prediction performance by 6.7% in terms of AUC and 6.1% in terms of AUPR. Also, ablation-like analysis and independent case studies corroborated RDRGSE generalization ability and robustness. Overall, RDRGSE provides a powerful computational method for ncRNA-drug resistance association prediction, which can also serve as a screening tool for drug resistance biomarkers.
Collapse
Affiliation(s)
- Ping Zhang
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zilin Wang
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Weicheng Sun
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsheng Xu
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Weihan Zhang
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Wu
- Department
of Biochemistry, University of California
Riverside, Riverside, California 92521, United States
| | - Leon Wong
- Guangxi
Key Lab of Human-Machine Interaction and Intelligent Decision, Guangxi Academy of Sciences, Nanning 530007, China
- Institute
of Machine Learning and Systems Biology, School of Electronics and
Information Engineering, Tongji University, Shanghai 200092, China
| | - Li Li
- Hubei
Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- Hubei
Hongshan Laboratory, Huazhong Agricultural
University, Wuhan 430070, China
| |
Collapse
|
17
|
Yang H, Liu Y, Chen L, Zhao J, Guo M, Zhao X, Wen Z, He Z, Chen C, Xu L. MiRNA-Based Therapies for Lung Cancer: Opportunities and Challenges? Biomolecules 2023; 13:877. [PMID: 37371458 DOI: 10.3390/biom13060877] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer is a commonly diagnosed cancer and the leading cause of cancer-related deaths, posing a serious health risk. Despite new advances in immune checkpoint and targeted therapies in recent years, the prognosis for lung cancer patients, especially those in advanced stages, remains poor. MicroRNAs (miRNAs) have been shown to modulate tumor development at multiple levels, and as such, miRNA mimics and molecules aimed at regulating miRNAs have shown promise in preclinical development. More importantly, miRNA-based therapies can also complement conventional chemoradiotherapy, immunotherapy, and targeted therapies to reverse drug resistance and increase the sensitivity of lung cancer cells. Furthermore, small interfering RNA (siRNA) and miRNA-based therapies have entered clinical trials and have shown favorable development prospects. Therefore, in this paper, we review recent advances in miRNA-based therapies in lung cancer treatment as well as adjuvant therapy and present the current state of clinical lung cancer treatment. We also discuss the challenges facing miRNA-based therapies in the clinical application of lung cancer treatment to provide new ideas for the development of novel lung cancer therapies.
Collapse
Affiliation(s)
- Han Yang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Yufang Liu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Longqing Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Zhenke Wen
- Institute of Biomedical Research, Soochow University, Soochow 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
18
|
Gao M, Shang X. Identification of associations between lncRNA and drug resistance based on deep learning and attention mechanism. Front Microbiol 2023; 14:1147778. [PMID: 37180267 PMCID: PMC10169643 DOI: 10.3389/fmicb.2023.1147778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Abnormal lncRNA expression can lead to the resistance of tumor cells to anticancer drugs, which is a crucial factor leading to high cancer mortality. Studying the relationship between lncRNA and drug resistance becomes necessary. Recently, deep learning has achieved promising results in predicting biomolecular associations. However, to our knowledge, deep learning-based lncRNA-drug resistance associations prediction has yet to be studied. Methods Here, we proposed a new computational model, DeepLDA, which used deep neural networks and graph attention mechanisms to learn lncRNA and drug embeddings for predicting potential relationships between lncRNAs and drug resistance. DeepLDA first constructed similarity networks for lncRNAs and drugs using known association information. Subsequently, deep graph neural networks were utilized to automatically extract features from multiple attributes of lncRNAs and drugs. These features were fed into graph attention networks to learn lncRNA and drug embeddings. Finally, the embeddings were used to predict potential associations between lncRNAs and drug resistance. Results Experimental results on the given datasets show that DeepLDA outperforms other machine learning-related prediction methods, and the deep neural network and attention mechanism can improve model performance. Dicsussion In summary, this study proposes a powerful deep-learning model that can effectively predict lncRNA-drug resistance associations and facilitate the development of lncRNA-targeted drugs. DeepLDA is available at https://github.com/meihonggao/DeepLDA.
Collapse
Affiliation(s)
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
19
|
Jha K, Karmakar S, Saha S. Graph-BERT and language model-based framework for protein-protein interaction identification. Sci Rep 2023; 13:5663. [PMID: 37024543 PMCID: PMC10079975 DOI: 10.1038/s41598-023-31612-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
Identification of protein-protein interactions (PPI) is among the critical problems in the domain of bioinformatics. Previous studies have utilized different AI-based models for PPI classification with advances in artificial intelligence (AI) techniques. The input to these models is the features extracted from different sources of protein information, mainly sequence-derived features. In this work, we present an AI-based PPI identification model utilizing a PPI network and protein sequences. The PPI network is represented as a graph where each node is a protein pair, and an edge is defined between two nodes if there exists a common protein between these nodes. Each node in a graph has a feature vector. In this work, we have used the language model to extract feature vectors directly from protein sequences. The feature vectors for protein in pairs are concatenated and used as a node feature vector of a PPI network graph. Finally, we have used the Graph-BERT model to encode the PPI network graph with sequence-based features and learn the hidden representation of the feature vector for each node. The next step involves feeding the learned representations of nodes to the fully connected layer, the output of which is fed into the softmax layer to classify the protein interactions. To assess the efficacy of the proposed PPI model, we have performed experiments on several PPI datasets. The experimental results demonstrate that the proposed approach surpasses the existing PPI works and designed baselines in classifying PPI.
Collapse
Affiliation(s)
- Kanchan Jha
- Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, 801103, India.
| | - Sourav Karmakar
- Department of Computer Science and Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Sriparna Saha
- Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, 801103, India
| |
Collapse
|
20
|
Tian Z, Fang H, Teng Z, Ye Y. GOGCN: Graph Convolutional Network on Gene Ontology for Functional Similarity Analysis of Genes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1053-1064. [PMID: 35687647 DOI: 10.1109/tcbb.2022.3181300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The measurement of gene functional similarity plays a critical role in numerous biological applications, such as gene clustering, the construction of gene similarity networks. However, most existing approaches still rely heavily on traditional computational strategies, which are not guaranteed to achieve satisfactory performance. In this study, we propose a novel computational approach called GOGCN to measure gene functional similarity by modeling the Gene Ontology (GO) through Graph Convolutional Network (GCN). GOGCN is a graph-based approach that performs sufficient representation learning for terms and relations in the GO graph. First, GOGCN employs the GCN-based knowledge graph embedding (KGE) model to learn vector representations (i.e., embeddings) for all entities (i.e., terms). Second, GOGCN calculates the semantic similarity between two terms based on their corresponding vector representations. Finally, GOGCN estimates gene functional similarity by making use of the pair-wise strategy. During the representation learning period, GOGCN promotes semantic interaction between terms through GCN, thereby capturing the rich structural information of the GO graph. Further experimental results on various datasets suggest that GOGCN is superior to the other state-of-the-art approaches, which shows its reliability and effectiveness.
Collapse
|
21
|
Wang MN, Li Y, Lei LL, Ding DW, Xie XJ. Combining non-negative matrix factorization with graph Laplacian regularization for predicting drug-miRNA associations based on multi-source information fusion. Front Pharmacol 2023; 14:1132012. [PMID: 36817132 PMCID: PMC9931722 DOI: 10.3389/fphar.2023.1132012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Increasing evidences suggest that miRNAs play a key role in the occurrence and progression of many complex human diseases. Therefore, targeting dysregulated miRNAs with small molecule drugs in the clinical has become a new treatment. Nevertheless, it is high cost and time-consuming for identifying miRNAs-targeted with drugs by biological experiments. Thus, more reliable computational method for identification associations of drugs with miRNAs urgently need to be developed. In this study, we proposed an efficient method, called GNMFDMA, to predict potential associations of drug with miRNA by combining graph Laplacian regularization with non-negative matrix factorization. We first calculated the overall similarity matrices of drugs and miRNAs according to the collected different biological information. Subsequently, the new drug-miRNA association adjacency matrix was reformulated based on the K nearest neighbor profiles so as to put right the false negative associations. Finally, graph Laplacian regularization collaborative non-negative matrix factorization was used to calculate the association scores of drugs with miRNAs. In the cross validation, GNMFDMA obtains AUC of 0.9193, which outperformed the existing methods. In addition, case studies on three common drugs (i.e., 5-Aza-CdR, 5-FU and Gemcitabine), 30, 31 and 34 of the top-50 associations inferred by GNMFDMA were verified. These results reveal that GNMFDMA is a reliable and efficient computational approach for identifying the potential drug-miRNA associations.
Collapse
Affiliation(s)
- Mei-Neng Wang
- School of Mathematics and Computer Science, Yichun University, Yichun, China
| | - Yu Li
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, China,*Correspondence: Yu Li,
| | - Li-Lan Lei
- School of Mathematics and Computer Science, Yichun University, Yichun, China
| | - De-Wu Ding
- School of Mathematics and Computer Science, Yichun University, Yichun, China
| | - Xue-Jun Xie
- School of Mathematics and Computer Science, Yichun University, Yichun, China
| |
Collapse
|
22
|
Luo Y, Peng L, Shan W, Sun M, Luo L, Liang W. Machine learning in the development of targeting microRNAs in human disease. Front Genet 2023; 13:1088189. [PMID: 36685965 PMCID: PMC9845262 DOI: 10.3389/fgene.2022.1088189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
A microRNA is a small, single-stranded, non-coding ribonucleic acid that plays a crucial role in RNA silencing and can regulate gene expression. With the in-depth study of miRNA in development and disease, miRNA has become an attractive target for novel therapeutic strategies. Exploring miRNA targeting therapy only through experiments is expensive and laborious, so it is essential to develop novel and efficient computational methods to narrow down the search. Recent advances in machine learning applied in biomedical informatics provide opportunities to explore miRNA-targeting drugs, thus promoting miRNA therapeutics. This review provides an overview of recent advancements in miRNA targeting therapeutic using machine learning. First, we mainly describe the basics of predicting miRNA targeting drugs, including pharmacogenomic data resources and data preprocessing. Then we present primary machine learning algorithms and elaborate their application in discovering relationships among miRNAs, drugs, and diseases. Along with the progress of miRNA targeting therapeutics, we finally analyze and discuss the current challenges and opportunities that machine learning confronts.
Collapse
Affiliation(s)
- Yuxun Luo
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China,Hunan Key Laboratory for Service computing and Novel Software Technology, Xiangtan, China
| | - Li Peng
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China,Hunan Key Laboratory for Service computing and Novel Software Technology, Xiangtan, China
| | - Wenyu Shan
- School of Computer Science, University of South China, Hengyang, China
| | - Mengyue Sun
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, United States
| | - Lingyun Luo
- School of Computer Science, University of South China, Hengyang, China
| | - Wei Liang
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, China,Hunan Key Laboratory for Service computing and Novel Software Technology, Xiangtan, China,*Correspondence: Wei Liang,
| |
Collapse
|
23
|
Deng L, Fan Z, Xiao X, Liu H, Zhang J. Dual-Channel Heterogeneous Graph Neural Network for Predicting microRNA-Mediated Drug Sensitivity. J Chem Inf Model 2022; 62:5929-5937. [PMID: 36413746 DOI: 10.1021/acs.jcim.2c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Many studies have confirmed that microRNAs (miRNAs) are mediated in the sensitivity of tumor cells to anticancer drugs. MiRNAs are emerging as a type of promising therapeutic targets to overcome drug resistance. However, there is limited attention paid to the computational prediction of the associations between miRNAs and drug sensitivity. In this work, we proposed a heterogeneous network-based representation learning method to predict miRNA-drug sensitivity associations (DGNNMDA). An miRNA-drug heterogeneous network was constructed by integrating miRNA similarity network, drug similarity network, and experimentally validated miRNA-drug sensitivity associations. Next, we developed a dual-channel heterogeneous graph neural network model to perform feature propagation among the homogeneous and heterogeneous nodes so that our method can learn expressive representations for miRNA and drug nodes. On two benchmark datasets, our method outperformed other seven competitive methods. We also verified the effectiveness of the feature propagations on homogeneous and heterogeneous nodes. Moreover, we have conducted two case studies to verify the reliability of our methods and tried to reveal the regulatory mechanism of miRNAs mediated in drug sensitivity. The source code and datasets are freely available at https://github.com/19990915fzy/DGNNMDA.
Collapse
Affiliation(s)
- Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Ziyu Fan
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Xiaojun Xiao
- Software School, Xinjiang University, Urumqi830091, China
| | - Hui Liu
- School of Computer Science and Technology, Nanjing Tech University, Nanjing211816, China
| | - Jiaxuan Zhang
- Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, California92161, United States
| |
Collapse
|
24
|
Das B, Kutsal M, Das R. A geometric deep learning model for display and prediction of potential drug-virus interactions against SARS-CoV-2. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS : AN INTERNATIONAL JOURNAL SPONSORED BY THE CHEMOMETRICS SOCIETY 2022; 229:104640. [PMID: 36042844 PMCID: PMC9400382 DOI: 10.1016/j.chemolab.2022.104640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 05/04/2023]
Abstract
Although the coronavirus epidemic spread rapidly with the Omicron variant, it lost its lethality rate with the effect of vaccine and immunity. The hospitalization and intense demand decreased. However, there is no definite information about when this disease will end or how dangerous the different variants could be. In addition, it is not possible to end the risk of variants that will continue to circulate among animals in nature. After this stage, drug-virus interactions should be examined in order to be able to prepare against possible new types of viruses and variants and to rapidly-produce drugs or vaccines against possible viruses. Despite experimental methods that are expensive, laborious, and time-consuming, geometric deep learning(GDL) is an alternative method that can be used to make this process faster and cheaper. In this study, we propose a new model based on geometric deep learning for the prediction of drug-virus interaction against COVID-19. First, we use the antiviral drug data in the SMILES molecular structure representation to generate too many features and better describe the structure of chemical species. Then the data is converted into a molecular representation and then into a graphical structure that the GDL model can understand. The node feature vectors are transferred to a different space with the Message Passing Neural Network (MPNN) for the training process to take place. We develop a geometric neural network architecture where the graph embedding values are passed through the fully connected layer and the prediction is actualized. The results indicate that the proposed method outperforms existing methods with 97% accuracy in predicting drug-virus interactions.
Collapse
Affiliation(s)
- Bihter Das
- Department of Software Engineering, Technology Faculty, Firat University, 23119, Elazig, Turkey
| | - Mucahit Kutsal
- Department of Software Engineering, Technology Faculty, Firat University, 23119, Elazig, Turkey
| | - Resul Das
- Department of Software Engineering, Technology Faculty, Firat University, 23119, Elazig, Turkey
| |
Collapse
|
25
|
Duan T, Kuang Z, Deng L. SVMMDR: Prediction of miRNAs-drug resistance using support vector machines based on heterogeneous network. Front Oncol 2022; 12:987609. [PMID: 36338674 PMCID: PMC9632662 DOI: 10.3389/fonc.2022.987609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
In recent years, the miRNA is considered as a potential high-value therapeutic target because of its complex and delicate mechanism of gene regulation. The abnormal expression of miRNA can cause drug resistance, affecting the therapeutic effect of the disease. Revealing the associations between miRNAs-drug resistance can help in the design of effective drugs or possible drug combinations. However, current conventional experiments for identification of miRNAs-drug resistance are time-consuming and high-cost. Therefore, it’s of pretty realistic value to develop an accurate and efficient computational method to predicting miRNAs-drug resistance. In this paper, a method based on the Support Vector Machines (SVM) to predict the association between MiRNA and Drug Resistance (SVMMDR) is proposed. The SVMMDR integrates miRNAs-drug resistance association, miRNAs sequence similarity, drug chemical structure similarity and other similarities, extracts path-based Hetesim features, and obtains inclined diffusion feature through restart random walk. By combining the multiple feature, the prediction score between miRNAs and drug resistance is obtained based on the SVM. The innovation of the SVMMDR is that the inclined diffusion feature is obtained by inclined restart random walk, the node information and path information in heterogeneous network are integrated, and the SVM is used to predict potential miRNAs-drug resistance associations. The average AUC of SVMMDR obtained is 0.978 in 10-fold cross-validation.
Collapse
|
26
|
Graph Neural Network for Protein-Protein Interaction Prediction: A Comparative Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186135. [PMID: 36144868 PMCID: PMC9501426 DOI: 10.3390/molecules27186135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
Proteins are the fundamental biological macromolecules which underline practically all biological activities. Protein-protein interactions (PPIs), as they are known, are how proteins interact with other proteins in their environment to perform biological functions. Understanding PPIs reveals how cells behave and operate, such as the antigen recognition and signal transduction in the immune system. In the past decades, many computational methods have been developed to predict PPIs automatically, requiring less time and resources than experimental techniques. In this paper, we present a comparative study of various graph neural networks for protein-protein interaction prediction. Five network models are analyzed and compared, including neural networks (NN), graph convolutional neural networks (GCN), graph attention networks (GAT), hyperbolic neural networks (HNN), and hyperbolic graph convolutions (HGCN). By utilizing the protein sequence information, all of these models can predict the interaction between proteins. Fourteen PPI datasets are extracted and utilized to compare the prediction performance of all these methods. The experimental results show that hyperbolic graph neural networks tend to have a better performance than the other methods on the protein-related datasets.
Collapse
|
27
|
Guan YJ, Yu CQ, Li LP, You ZH, Ren ZH, Pan J, Li YC. BNEMDI: A Novel MicroRNA–Drug Interaction Prediction Model Based on Multi-Source Information With a Large-Scale Biological Network. Front Genet 2022; 13:919264. [PMID: 35910223 PMCID: PMC9334674 DOI: 10.3389/fgene.2022.919264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
As a novel target in pharmacy, microRNA (miRNA) can regulate gene expression under specific disease conditions to produce specific proteins. To date, many researchers leveraged miRNA to reveal drug efficacy and pathogenesis at the molecular level. As we all know that conventional wet experiments suffer from many problems, including time-consuming, labor-intensity, and high cost. Thus, there is an urgent need to develop a novel computational model to facilitate the identification of miRNA–drug interactions (MDIs). In this work, we propose a novel bipartite network embedding-based method called BNEMDI to predict MDIs. First, the Bipartite Network Embedding (BiNE) algorithm is employed to learn the topological features from the network. Then, the inherent attributes of drugs and miRNAs are expressed as attribute features by MACCS fingerprints and k-mers. Finally, we feed these features into deep neural network (DNN) for training the prediction model. To validate the prediction ability of the BNEMDI model, we apply it to five different benchmark datasets under five-fold cross-validation, and the proposed model obtained excellent AUC values of 0.9568, 0.9420, 0.8489, 0.8774, and 0.9005 in ncDR, RNAInter, SM2miR1, SM2miR2, and SM2miR MDI datasets, respectively. To further verify the prediction performance of the BNEMDI model, we compare it with some existing powerful methods. We also compare the BiNE algorithm with several different network embedding methods. Furthermore, we carry out a case study on a common drug named 5-fluorouracil. Among the top 50 miRNAs predicted by the proposed model, there were 38 verified by the experimental literature. The comprehensive experiment results demonstrated that our method is effective and robust for predicting MDIs. In the future work, we hope that the BNEMDI model can be a reliable supplement method for the development of pharmacology and miRNA therapeutics.
Collapse
Affiliation(s)
- Yong-Jian Guan
- School of Information Engineering, Xijing University, Xi’an, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi’an, China
- *Correspondence: Li-Ping Li, ; Chang-Qing Yu,
| | - Li-Ping Li
- School of Information Engineering, Xijing University, Xi’an, China
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China
- *Correspondence: Li-Ping Li, ; Chang-Qing Yu,
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Zhong-Hao Ren
- School of Information Engineering, Xijing University, Xi’an, China
| | - Jie Pan
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, China
| | - Yue-Chao Li
- School of Information Engineering, Xijing University, Xi’an, China
| |
Collapse
|
28
|
Feng H, Xiang Y, Wang X, Xue W, Yue Z. MTAGCN: predicting miRNA-target associations in Camellia sinensis var. assamica through graph convolution neural network. BMC Bioinformatics 2022; 23:271. [PMID: 35820798 PMCID: PMC9275082 DOI: 10.1186/s12859-022-04819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background MircoRNAs (miRNAs) play a central role in diverse biological processes of Camellia sinensis var.assamica (CSA) through their associations with target mRNAs, including CSA growth, development and stress response. However, although the experiment methods of CSA miRNA-target identifications are costly and time-consuming, few computational methods have been developed to tackle the CSA miRNA-target association prediction problem. Results In this paper, we constructed a heterogeneous network for CSA miRNA and targets by integrating rich biological information, including a miRNA similarity network, a target similarity network, and a miRNA-target association network. We then proposed a deep learning framework of graph convolution networks with layer attention mechanism, named MTAGCN. In particular, MTAGCN uses the attention mechanism to combine embeddings of multiple graph convolution layers, employing the integrated embedding to score the unobserved CSA miRNA-target associations. Discussion Comprehensive experiment results on two tasks (balanced task and unbalanced task) demonstrated that our proposed model achieved better performance than the classic machine learning and existing graph convolution network-based methods. The analysis of these results could offer valuable information for understanding complex CSA miRNA-target association mechanisms and would make a contribution to precision plant breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04819-3.
Collapse
Affiliation(s)
- Haisong Feng
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Ying Xiang
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaosong Wang
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Wei Xue
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhenyu Yue
- School of Information and Computer, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
29
|
Jha K, Saha S, Singh H. Prediction of protein-protein interaction using graph neural networks. Sci Rep 2022; 12:8360. [PMID: 35589837 PMCID: PMC9120162 DOI: 10.1038/s41598-022-12201-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/18/2022] [Indexed: 01/09/2023] Open
Abstract
Proteins are the essential biological macromolecules required to perform nearly all biological processes, and cellular functions. Proteins rarely carry out their tasks in isolation but interact with other proteins (known as protein-protein interaction) present in their surroundings to complete biological activities. The knowledge of protein-protein interactions (PPIs) unravels the cellular behavior and its functionality. The computational methods automate the prediction of PPI and are less expensive than experimental methods in terms of resources and time. So far, most of the works on PPI have mainly focused on sequence information. Here, we use graph convolutional network (GCN) and graph attention network (GAT) to predict the interaction between proteins by utilizing protein's structural information and sequence features. We build the graphs of proteins from their PDB files, which contain 3D coordinates of atoms. The protein graph represents the amino acid network, also known as residue contact network, where each node is a residue. Two nodes are connected if they have a pair of atoms (one from each node) within the threshold distance. To extract the node/residue features, we use the protein language model. The input to the language model is the protein sequence, and the output is the feature vector for each amino acid of the underlying sequence. We validate the predictive capability of the proposed graph-based approach on two PPI datasets: Human and S. cerevisiae. Obtained results demonstrate the effectiveness of the proposed approach as it outperforms the previous leading methods. The source code for training and data to train the model are available at https://github.com/JhaKanchan15/PPI_GNN.git .
Collapse
Affiliation(s)
- Kanchan Jha
- Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, 801103, India.
| | - Sriparna Saha
- Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna, Bihar, 801103, India
| | - Hiteshi Singh
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| |
Collapse
|
30
|
Li G, Wang D, Zhang Y, Liang C, Xiao Q, Luo J. Using Graph Attention Network and Graph Convolutional Network to Explore Human CircRNA-Disease Associations Based on Multi-Source Data. Front Genet 2022; 13:829937. [PMID: 35198012 PMCID: PMC8859418 DOI: 10.3389/fgene.2022.829937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cumulative research studies have verified that multiple circRNAs are closely associated with the pathogenic mechanism and cellular level. Exploring human circRNA-disease relationships is significant to decipher pathogenic mechanisms and provide treatment plans. At present, several computational models are designed to infer potential relationships between diseases and circRNAs. However, the majority of existing approaches could not effectively utilize the multisource data and achieve poor performance in sparse networks. In this study, we develop an advanced method, GATGCN, using graph attention network (GAT) and graph convolutional network (GCN) to detect potential circRNA-disease relationships. First, several sources of biomedical information are fused via the centered kernel alignment model (CKA), which calculates the corresponding weight of different kernels. Second, we adopt the graph attention network to learn latent representation of diseases and circRNAs. Third, the graph convolutional network is deployed to effectively extract features of associations by aggregating feature vectors of neighbors. Meanwhile, GATGCN achieves the prominent AUC of 0.951 under leave-one-out cross-validation and AUC of 0.932 under 5-fold cross-validation. Furthermore, case studies on lung cancer, diabetes retinopathy, and prostate cancer verify the reliability of GATGCN for detecting latent circRNA-disease pairs.
Collapse
Affiliation(s)
- Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Diancheng Wang
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Yuejin Zhang
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Qiu Xiao
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| |
Collapse
|
31
|
Niu Y, Song C, Gong Y, Zhang W. MiRNA-Drug Resistance Association Prediction Through the Attentive Multimodal Graph Convolutional Network. Front Pharmacol 2022; 12:799108. [PMID: 35095506 PMCID: PMC8790023 DOI: 10.3389/fphar.2021.799108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
MiRNAs can regulate genes encoding specific proteins which are related to the efficacy of drugs, and predicting miRNA-drug resistance associations is of great importance. In this work, we propose an attentive multimodal graph convolution network method (AMMGC) to predict miRNA-drug resistance associations. AMMGC learns the latent representations of drugs and miRNAs from four graph convolution sub-networks with distinctive combinations of features. Then, an attention neural network is employed to obtain attentive representations of drugs and miRNAs, and miRNA-drug resistance associations are predicted by the inner product of learned attentive representations. The computational experiments show that AMMGC outperforms other state-of-the-art methods and baseline methods, achieving the AUPR score of 0.2399 and the AUC score of 0.9467. The analysis demonstrates that leveraging multiple features of drugs and miRNAs can make a contribution to the miRNA-drug resistance association prediction. The usefulness of AMMGC is further validated by case studies.
Collapse
Affiliation(s)
- Yanqing Niu
- School of Mathematics and Statistics, South-Central University for Nationalities, Wuhan, China
| | - Congzhi Song
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yuchong Gong
- School of Computer Science, Wuhan University, Wuhan, China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
Ma Z, Kuang Z, Deng L. CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network. BMC Bioinformatics 2021; 22:551. [PMID: 34772332 PMCID: PMC8588735 DOI: 10.1186/s12859-021-04467-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The existing studies show that circRNAs can be used as a biomarker of diseases and play a prominent role in the treatment and diagnosis of diseases. However, the relationships between the vast majority of circRNAs and diseases are still unclear, and more experiments are needed to study the mechanism of circRNAs. Nowadays, some scholars use the attributes between circRNAs and diseases to study and predict their associations. Nonetheless, most of the existing experimental methods use less information about the attributes of circRNAs, which has a certain impact on the accuracy of the final prediction results. On the other hand, some scholars also apply experimental methods to predict the associations between circRNAs and diseases. But such methods are usually expensive and time-consuming. Based on the above shortcomings, follow-up research is needed to propose a more efficient calculation-based method to predict the associations between circRNAs and diseases. RESULTS In this study, a novel algorithm (method) is proposed, which is based on the Graph Convolutional Network (GCN) constructed with Random Walk with Restart (RWR) and Principal Component Analysis (PCA) to predict the associations between circRNAs and diseases (CRPGCN). In the construction of CRPGCN, the RWR algorithm is used to improve the similarity associations of the computed nodes with their neighbours. After that, the PCA method is used to dimensionality reduction and extract features, it makes the connection between circRNAs with higher similarity and diseases closer. Finally, The GCN algorithm is used to learn the features between circRNAs and diseases and calculate the final similarity scores, and the learning datas are constructed from the adjacency matrix, similarity matrix and feature matrix as a heterogeneous adjacency matrix and a heterogeneous feature matrix. CONCLUSIONS After 2-fold cross-validation, 5-fold cross-validation and 10-fold cross-validation, the area under the ROC curve of the CRPGCN is 0.9490, 0.9720 and 0.9722, respectively. The CRPGCN method has a valuable effect in predict the associations between circRNAs and diseases.
Collapse
Affiliation(s)
- Zhihao Ma
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhufang Kuang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
33
|
Li Y, Wang R, Zhang S, Xu H, Deng L. LRGCPND: Predicting Associations between ncRNA and Drug Resistance via Linear Residual Graph Convolution. Int J Mol Sci 2021; 22:10508. [PMID: 34638849 PMCID: PMC8508984 DOI: 10.3390/ijms221910508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Accurate inference of the relationship between non-coding RNAs (ncRNAs) and drug resistance is essential for understanding the complicated mechanisms of drug actions and clinical treatment. Traditional biological experiments are time-consuming, laborious, and minor in scale. Although several databases provide relevant resources, computational method for predicting this type of association has not yet been developed. In this paper, we leverage the verified association data of ncRNA and drug resistance to construct a bipartite graph and then develop a linear residual graph convolution approach for predicting associations between non-coding RNA and drug resistance (LRGCPND) without introducing or defining additional data. LRGCPND first aggregates the potential features of neighboring nodes per graph convolutional layer. Next, we transform the information between layers through a linear function. Eventually, LRGCPND unites the embedding representations of each layer to complete the prediction. Results of comparison experiments demonstrate that LRGCPND has more reliable performance than seven other state-of-the-art approaches with an average AUC value of 0.8987. Case studies illustrate that LRGCPND is an effective tool for inferring the associations between ncRNA and drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China; (Y.L.); (R.W.); (S.Z.); (H.X.)
| |
Collapse
|
34
|
Zhang XM, Liang L, Liu L, Tang MJ. Graph Neural Networks and Their Current Applications in Bioinformatics. Front Genet 2021; 12:690049. [PMID: 34394185 PMCID: PMC8360394 DOI: 10.3389/fgene.2021.690049] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Graph neural networks (GNNs), as a branch of deep learning in non-Euclidean space, perform particularly well in various tasks that process graph structure data. With the rapid accumulation of biological network data, GNNs have also become an important tool in bioinformatics. In this research, a systematic survey of GNNs and their advances in bioinformatics is presented from multiple perspectives. We first introduce some commonly used GNN models and their basic principles. Then, three representative tasks are proposed based on the three levels of structural information that can be learned by GNNs: node classification, link prediction, and graph generation. Meanwhile, according to the specific applications for various omics data, we categorize and discuss the related studies in three aspects: disease prediction, drug discovery, and biomedical imaging. Based on the analysis, we provide an outlook on the shortcomings of current studies and point out their developing prospect. Although GNNs have achieved excellent results in many biological tasks at present, they still face challenges in terms of low-quality data processing, methodology, and interpretability and have a long road ahead. We believe that GNNs are potentially an excellent method that solves various biological problems in bioinformatics research.
Collapse
Affiliation(s)
- Xiao-Meng Zhang
- School of Information, Yunnan Normal University, Kunming, China
| | - Li Liang
- School of Information, Yunnan Normal University, Kunming, China
| | - Lin Liu
- School of Information, Yunnan Normal University, Kunming, China
- Key Laboratory of Educational Informatization for Nationalities Ministry of Education, Yunnan Normal University, Kunming, China
| | - Ming-Jing Tang
- Key Laboratory of Educational Informatization for Nationalities Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
| |
Collapse
|
35
|
|
36
|
Long Y, Wu M, Kwoh CK, Luo J, Li X. Predicting human microbe-drug associations via graph convolutional network with conditional random field. Bioinformatics 2020; 36:4918-4927. [PMID: 32597948 PMCID: PMC7559035 DOI: 10.1093/bioinformatics/btaa598] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/31/2020] [Accepted: 06/20/2020] [Indexed: 12/23/2022] Open
Abstract
Motivation Human microbes play critical roles in drug development and precision medicine. How to systematically understand the complex interaction mechanism between human microbes and drugs remains a challenge nowadays. Identifying microbe-drug associations can not only provide great insights into understanding the mechanism, but also boost the development of drug discovery and repurposing. Considering the high cost and risk of biological experiments, the computational approach is an alternative choice. However, at present, few computational approaches have been developed to tackle this task. Results In this work, we leveraged rich biological information to construct a heterogeneous network for drugs and microbes, including a microbe similarity network, a drug similarity network, and a microbe-drug interaction network. We then proposed a novel Graph Convolutional Network (GCN) based framework for predicting human Microbe-Drug Associations, named GCNMDA. In the hidden layer of GCN, we further exploited the Conditional Random Field (CRF), which can ensure that similar nodes (i.e., microbes or drugs) have similar representations. To more accurately aggregate representations of neighborhoods, an attention mechanism was designed in the CRF layer. Moreover, we performed a random walk with restart (RWR) based scheme on both drug and microbe similarity networks to learn valuable features for drugs and microbes respectively. Experimental results on three different datasets showed that our GCNMDA model consistently achieved better performance than seven state-of-the-art methods. Case studies for three microbes including SARS-CoV-2 and two antimicrobial drugs (i.e., Ciprofloxacin and Moxifloxacin) further confirmed the effectiveness of GCNMDA in identifying potential microbe-drug associations. Availability Python codes and dataset are available at: https://github.com/longyahui/GCNMDA. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yahui Long
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410000, China.,School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Min Wu
- Machine Intellection Department, Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410000, China
| | - Xiaoli Li
- Machine Intellection Department, Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| |
Collapse
|
37
|
Yuan M, Zhao S, Chen R, Wang G, Bie Y, Wu Q, Cheng J. MicroRNA-138 inhibits tumor growth and enhances chemosensitivity in human cervical cancer by targeting H2AX. Exp Ther Med 2019; 19:630-638. [PMID: 31853324 PMCID: PMC6909785 DOI: 10.3892/etm.2019.8238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-138 (miR-138) acts as a key regulator in the modulation of carcinogenesis in numerous tumor types. Chemoresistance is common and relevant to the failure of multiple treatment strategies for cervical cancer. However, the biological role of miR-138 in the progression and chemosensitivity of cervical cancer is still unclear. The present study aimed to investigate the expression, function and mechanism of miR-138 in cervical cancer. An miR-138 mimic, inhibitor and negative control were transfected into SiHa and C33A cells. The expression of miR-138 and its target were assessed by reverse transcription-PCR, western blotting and immunohistochemistry. The functional significance of miR-138 in tumor progression and chemosensitivity to cisplatin in vitro was examined by Cell Counting Kit-8, flow cytometry, wound healing and Transwell assays. A tumor xenograft model was used to validate the effects in vivo. These results demonstrated that miR-138 was significantly downregulated in cervical cancer cells. Overexpression of miR-138 suppressed cervical cancer cell proliferation, invasion, increased apoptosis and enhanced chemotherapy sensitivity in vivo and in vitro. Furthermore, bioinformatics analysis and dual luciferase reporter assays demonstrated that H2AX served as a target for miR-138, and the rescue experiment revealed that H2AX was a functional target of miR-138. The protective effects of miR-138 overexpression were dependent on H2AX. This study provides evidence that miR-138/H2AX may be a novel therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Min Yuan
- Department of Gynecology, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Shuting Zhao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Pudong New Area, Shanghai 200120, P.R. China
| | - Rui Chen
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Pudong New Area, Shanghai 200120, P.R. China
| | - Guozeng Wang
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Pudong New Area, Shanghai 200120, P.R. China
| | - Yachun Bie
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Pudong New Area, Shanghai 200120, P.R. China
| | - Qianyu Wu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Pudong New Area, Shanghai 200120, P.R. China
| | - Jingxin Cheng
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Pudong New Area, Shanghai 200120, P.R. China
| |
Collapse
|