1
|
Wang B, Yang R, Wan C, Tian Y, Wu J, Roy S, Li S, Shen J, Yin Q. Structural basis of pseudoGTPase-mediated protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620932. [PMID: 39554064 PMCID: PMC11565788 DOI: 10.1101/2024.10.30.620932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
GTPases regulate various cellular processes through conformational changes triggered by GTP or GDP binding. Recently, pseudoGTPases, the catalytically inactive counterparts of GTPases, have been identified across species from bacteria to human, although their functions and mechanisms remain unexplored. In this study, we demonstrate that the N-terminal region of the assembly chaperone AAGAB is a type i pseudoGTPase using biochemistry and X-ray crystallography. Furthermore, we discovered that the AAGAB pseudoGTPase domain (psGD) interacts with the σ subunits of AP1 and AP2 adaptor complexes, heterotetrameric complexes involved in clathrin-mediated membrane trafficking. AAGAB psGD engages the σ subunits via a unique interface distinct from the conventional GTPase interacting regions. Further biochemical and cell-based assays confirmed the crucial role of the newly identified interface in binding and membrane trafficking. Collectively, our results establish AAGAB pseudoGTPase domain as a critical protein-protein interaction module. These findings offer new insight into the structural basis and molecular mechanisms of pseudoGTPases.
Collapse
Affiliation(s)
- Bing Wang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Current address: Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
- These authors contributed equally to the work
| | - Rui Yang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- These authors contributed equally to the work
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
- These authors contributed equally to the work
| | - Yuan Tian
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- These authors contributed equally to the work
| | - Jingyi Wu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Sayantan Roy
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Current address: Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Suzhao Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Qian Yin
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Lead contact
| |
Collapse
|
2
|
Li J, Yin Q, Xuan N, Gan Q, Liu C, Zhang Q, Yang M, Yang C. LYSMD proteins promote activation of Rab32-family GTPases for lysosome-related organelle biogenesis. J Cell Biol 2024; 223:e202402016. [PMID: 39078368 PMCID: PMC11289520 DOI: 10.1083/jcb.202402016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
Lysosome-related organelles (LROs) are specialized lysosomes with cell type-specific roles in organismal homeostasis. Dysregulation of LROs leads to many human disorders, but the mechanisms underlying their biogenesis are not fully understood. Here, we identify a group of LYSMD proteins as evolutionarily conserved regulators of LROs. In Caenorhabditis elegans, mutations of LMD-2, a LysM domain-containing protein, reduce the levels of the Rab32 GTPase ortholog GLO-1 on intestine-specific LROs, the gut granules, leading to their abnormal enlargement and defective biogenesis. LMD-2 interacts with GLO-3, a subunit of GLO-1 guanine nucleotide exchange factor (GEF), thereby promoting GLO-1 activation. Mammalian homologs of LMD-2, LYSMD1, and LYSMD2 can functionally replace LMD-2 in C. elegans. In mammals, LYSMD1/2 physically interact with the HPS1 subunit of BLOC-3, the GEF of Rab32/38, thus promoting Rab32 activation. Inactivation of both LYSMD1 and LYSMD2 reduces Rab32 activation, causing melanosome enlargement and decreased melanin production in mouse melanoma cells. These findings provide important mechanistic insights into LRO biogenesis and functions.
Collapse
Affiliation(s)
- Jinglin Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qiuyuan Yin
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Nan Xuan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qiwen Gan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Chaolian Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qian Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mei Yang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Chonglin Yang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Yunnan University, Kunming, China
| |
Collapse
|
3
|
Khan J, Asif S, Ghani S, Khan H, Arshad MW, Khan SA, Lin S, Baple EL, Salter C, Crosby AH, Rawlins L, Shabbir MI. Mutational spectrum associated with oculocutaneous albinism and Hermansky-Pudlak syndrome in nine Pakistani families. BMC Ophthalmol 2024; 24:345. [PMID: 39143519 PMCID: PMC11325792 DOI: 10.1186/s12886-024-03611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/20/2023] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Oculocutaneous albinism (OCA) is a genetically heterogeneous condition that is associated with reduced or absent melanin pigment in the skin, hair, and eyes, resulting in reduced vision, high sensitivity to light, and rapid and uncontrolled eye movements. To date, seventeen genes have been associated with OCA including syndromic and non-syndromic forms of the condition. METHODS Whole exome sequencing (WES) was performed to identify pathogenic variants in nine Pakistani families with OCA, with validation and segregation of candidate variants performed using Sanger sequencing. Furthermore, the pathogenicity of the identified variants was assessed using various in-silico tools and 3D protein structural analysis software. RESULTS WES identified biallelic variants in three genes explaining the OCA in these families, including four variants in TYR, three in OCA2, and two in HPS1, including two novel variants c.667C > T: p.(Gln223*) in TYR, and c.2009 T > C: p.(Leu670Pro) in HPS1. CONCLUSIONS Overall, this study adds further knowledge of the genetic basis of OCA in Pakistani communities and facilitates improved management and counselling services for families suffering from severe genetic diseases in Pakistan.
Collapse
Affiliation(s)
- Jahangir Khan
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
- Faculty of Basic and Applied Sciences, SA-Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, 45550, Pakistan
| | - Shamsul Ghani
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Hamid Khan
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Muhammad Waqar Arshad
- Department of Psychiatry, Yale University School of Medicine, VA CT Healthcare Center S116A2, West Haven, 06516, USA
| | - Shujaat Ali Khan
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan
| | - Siying Lin
- College of Medicine and Health, RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Emma L Baple
- College of Medicine and Health, RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Claire Salter
- College of Medicine and Health, RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Andrew H Crosby
- College of Medicine and Health, RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Lettie Rawlins
- College of Medicine and Health, RILD Wellcome Wolfson Centre, University of Exeter, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Muhammad Imran Shabbir
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, H-10, Islamabad, 44000, Pakistan.
| |
Collapse
|
4
|
Herrmann E, Schäfer JH, Wilmes S, Ungermann C, Moeller A, Kümmel D. Structure of the metazoan Rab7 GEF complex Mon1-Ccz1-Bulli. Proc Natl Acad Sci U S A 2023; 120:e2301908120. [PMID: 37155863 PMCID: PMC10193976 DOI: 10.1073/pnas.2301908120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
The endosomal system of eukaryotic cells represents a central sorting and recycling compartment linked to metabolic signaling and the regulation of cell growth. Tightly controlled activation of Rab GTPases is required to establish the different domains of endosomes and lysosomes. In metazoans, Rab7 controls endosomal maturation, autophagy, and lysosomal function. It is activated by the guanine nucleotide exchange factor (GEF) complex Mon1-Ccz1-Bulli (MCBulli) of the tri-longin domain (TLD) family. While the Mon1 and Ccz1 subunits have been shown to constitute the active site of the complex, the role of Bulli remains elusive. We here present the cryo-electron microscopy (cryo-EM) structure of MCBulli at 3.2 Å resolution. Bulli associates as a leg-like extension at the periphery of the Mon1 and Ccz1 heterodimers, consistent with earlier reports that Bulli does not impact the activity of the complex or the interactions with recruiter and substrate GTPases. While MCBulli shows structural homology to the related ciliogenesis and planar cell polarity effector (Fuzzy-Inturned-Wdpcp) complex, the interaction of the TLD core subunits Mon1-Ccz1 and Fuzzy-Inturned with Bulli and Wdpcp, respectively, is remarkably different. The variations in the overall architecture suggest divergent functions of the Bulli and Wdpcp subunits. Based on our structural analysis, Bulli likely serves as a recruitment platform for additional regulators of endolysosomal trafficking to sites of Rab7 activation.
Collapse
Affiliation(s)
- Eric Herrmann
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149Münster, Germany
| | - Jan-Hannes Schäfer
- Department of Biology/Chemistry, Structural Biology section, Osnabrück University, 49076Osnabrück, Germany
| | - Stephan Wilmes
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149Münster, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry section, Osnabrück University, 49076Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück, Osnabrück University, 49076Osnabrück, Germany
| | - Arne Moeller
- Department of Biology/Chemistry, Structural Biology section, Osnabrück University, 49076Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück, Osnabrück University, 49076Osnabrück, Germany
| | - Daniel Kümmel
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149Münster, Germany
| |
Collapse
|
5
|
Barrell WB, Adel Al-Lami H, Goos JAC, Swagemakers SMA, van Dooren M, Torban E, van der Spek PJ, Mathijssen IMJ, Liu KJ. Identification of a novel variant of the ciliopathic gene FUZZY associated with craniosynostosis. Eur J Hum Genet 2022; 30:282-290. [PMID: 34719684 PMCID: PMC8904458 DOI: 10.1038/s41431-021-00988-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
Craniosynostosis is a birth defect occurring in approximately one in 2000 live births, where premature fusion of the cranial bones inhibits growth of the skull during critical periods of brain development. The resulting changes in skull shape can lead to compression of the brain, causing severe complications. While we have some understanding of the molecular pathology of craniosynostosis, a large proportion of cases are of unknown genetic aetiology. Based on studies in mouse, we previously proposed that the ciliopathy gene Fuz should be considered a candidate craniosynostosis gene. Here, we report a novel variant of FUZ (c.851 G > C, p.(Arg284Pro)) found in monozygotic twins presenting with craniosynostosis. To investigate whether Fuz has a direct role in regulating osteogenic fate and mineralisation, we cultured primary osteoblasts and mouse embryonic fibroblasts (MEFs) from Fuz mutant mice. Loss of Fuz resulted in increased osteoblastic mineralisation. This suggests that FUZ protein normally acts as a negative regulator of osteogenesis. We then used Fuz mutant MEFs, which lose functional primary cilia, to test whether the FUZ p.(Arg284Pro) variant could restore FUZ function during ciliogenesis. We found that expression of the FUZ p.(Arg284Pro) variant was sufficient to partially restore cilia numbers, but did not mediate a comparable response to Hedgehog pathway activation. Together, this suggests the osteogenic effects of FUZ p.(Arg284Pro) do not depend upon initiation of ciliogenesis.
Collapse
Affiliation(s)
- William B Barrell
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Hadeel Adel Al-Lami
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Bioinformatics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marieke van Dooren
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Elena Torban
- Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
6
|
Structure of the Mon1-Ccz1 complex reveals molecular basis of membrane binding for Rab7 activation. Proc Natl Acad Sci U S A 2022; 119:2121494119. [PMID: 35105815 PMCID: PMC8833172 DOI: 10.1073/pnas.2121494119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
Activation of the GTPase Rab7/Ypt7 by its cognate guanine nucleotide exchange factor (GEF) Mon1-Ccz1 marks organelles such as endosomes and autophagosomes for fusion with lysosomes/vacuoles and degradation of their content. Here, we present a high-resolution cryogenic electron microscopy structure of the Mon1-Ccz1 complex that reveals its architecture in atomic detail. Mon1 and Ccz1 are arranged side by side in a pseudo-twofold symmetrical heterodimer. The three Longin domains of each Mon1 and Ccz1 are triangularly arranged, providing a strong scaffold for the catalytic center of the GEF. At the opposite side of the Ypt7-binding site, a positively charged and relatively flat patch stretches the Longin domains 2/3 of Mon1 and functions as a phosphatidylinositol phosphate-binding site, explaining how the GEF is targeted to membranes. Our work provides molecular insight into the mechanisms of endosomal Rab activation and serves as a blueprint for understanding the function of members of the Tri Longin domain Rab-GEF family.
Collapse
|