1
|
Hu G, Moon J, Hayashi T. Protein Classes Predicted by Molecular Surface Chemical Features: Machine Learning-Assisted Classification of Cytosol and Secreted Proteins. J Phys Chem B 2024; 128:8423-8436. [PMID: 39185763 PMCID: PMC11382266 DOI: 10.1021/acs.jpcb.4c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chemical structures of protein surfaces govern intermolecular interaction, and protein functions include specific molecular recognition, transport, self-assembly, etc. Therefore, the relationship between the chemical structure and protein functions provides insights into the understanding of the mechanism underlying protein functions and developments of new biomaterials. In this study, we analyze protein surface features, including surface amino acid populations and secondary structure ratios, instead of entire sequences as input for the classifier, intending to provide deeper insights into the determination of protein classes (cytosol or secreted). We employed a random forest-based classifier for the prediction of protein locations. Our training and testing data sets consisting of secreted and cytosol proteins were constructed using filtered information from UniProt and 3D structures from AlphaFold. The classifier achieved a testing accuracy of 93.9% with a feature importance ranking and quantitative boundary values for the top three features. We discuss the significance of these features quantitatively and the hidden rules to determine the protein classes (cytosol or secreted).
Collapse
Affiliation(s)
- Guanghao Hu
- Department of Materials Science and Engineering, School of Materials Science and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa-ken 226-8502, Japan
| | - Jooa Moon
- Department of Materials Science and Engineering, School of Materials Science and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa-ken 226-8502, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials Science and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa-ken 226-8502, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
2
|
Wen JW, Zhang HL, Du PF. Vislocas: Vision transformers for identifying protein subcellular mis-localization signatures of different cancer subtypes from immunohistochemistry images. Comput Biol Med 2024; 174:108392. [PMID: 38608321 DOI: 10.1016/j.compbiomed.2024.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
Proteins must be sorted to specific subcellular compartments to perform their functions. Abnormal protein subcellular localizations are related to many diseases. Although many efforts have been made in predicting protein subcellular localization from various static information, including sequences, structures and interactions, such static information cannot predict protein mis-localization events in diseases. On the contrary, the IHC (immunohistochemistry) images, which have been widely applied in clinical diagnosis, contains information that can be used to find protein mis-localization events in disease states. In this study, we create the Vislocas method, which is capable of finding mis-localized proteins from IHC images as markers of cancer subtypes. By combining CNNs and vision transformer encoders, Vislocas can automatically extract image features at both global and local level. Vislocas can be trained with full-sized IHC images from scratch. It is the first attempt to create an end-to-end IHC image-based protein subcellular location predictor. Vislocas achieved comparable or better performances than state-of-the-art methods. We applied Vislocas to find significant protein mis-localization events in different subtypes of glioma, melanoma and skin cancer. The mis-localized proteins, which were found purely from IHC images by Vislocas, are in consistency with clinical or experimental results in literatures. All codes of Vislocas have been deposited in a Github repository (https://github.com/JingwenWen99/Vislocas). All datasets of Vislocas have been deposited in Zenodo (https://zenodo.org/records/10632698).
Collapse
Affiliation(s)
- Jing-Wen Wen
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China.
| | - Han-Lin Zhang
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China.
| | - Pu-Feng Du
- College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Ullah M, Hadi F, Song J, Yu DJ. PScL-2LSAESM: bioimage-based prediction of protein subcellular localization by integrating heterogeneous features with the two-level SAE-SM and mean ensemble method. Bioinformatics 2023; 39:6839969. [PMID: 36413068 PMCID: PMC9947927 DOI: 10.1093/bioinformatics/btac727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
MOTIVATION Over the past decades, a variety of in silico methods have been developed to predict protein subcellular localization within cells. However, a common and major challenge in the design and development of such methods is how to effectively utilize the heterogeneous feature sets extracted from bioimages. In this regards, limited efforts have been undertaken. RESULTS We propose a new two-level stacked autoencoder network (termed 2L-SAE-SM) to improve its performance by integrating the heterogeneous feature sets. In particular, in the first level of 2L-SAE-SM, each optimal heterogeneous feature set is fed to train our designed stacked autoencoder network (SAE-SM). All the trained SAE-SMs in the first level can output the decision sets based on their respective optimal heterogeneous feature sets, known as 'intermediate decision' sets. Such intermediate decision sets are then ensembled using the mean ensemble method to generate the 'intermediate feature' set for the second-level SAE-SM. Using the proposed framework, we further develop a novel predictor, referred to as PScL-2LSAESM, to characterize image-based protein subcellular localization. Extensive benchmarking experiments on the latest benchmark training and independent test datasets collected from the human protein atlas databank demonstrate the effectiveness of the proposed 2L-SAE-SM framework for the integration of heterogeneous feature sets. Moreover, performance comparison of the proposed PScL-2LSAESM with current state-of-the-art methods further illustrates that PScL-2LSAESM clearly outperforms the existing state-of-the-art methods for the task of protein subcellular localization. AVAILABILITY AND IMPLEMENTATION https://github.com/csbio-njust-edu/PScL-2LSAESM. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Matee Ullah
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fazal Hadi
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | | | - Dong-Jun Yu
- To whom correspondence should be addressed. or
| |
Collapse
|
4
|
Hu JX, Yang Y, Xu YY, Shen HB. GraphLoc: a graph neural network model for predicting protein subcellular localization from immunohistochemistry images. Bioinformatics 2022; 38:4941-4948. [DOI: 10.1093/bioinformatics/btac634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Motivation
Recognition of protein subcellular distribution patterns and identification of location biomarker proteins in cancer tissues are important for understanding protein functions and related diseases. Immunohistochemical (IHC) images enable visualizing the distribution of proteins at the tissue level, providing an important resource for the protein localization studies. In the past decades, several image-based protein subcellular location prediction methods have been developed, but the prediction accuracies still have much space to improve due to the complexity of protein patterns resulting from multi-label proteins and variation of location patterns across cell types or states.
Results
Here, we propose a multi-label multi-instance model based on deep graph convolutional neural networks, GraphLoc, to recognize protein subcellular location patterns. GraphLoc builds a graph of multiple IHC images for one protein, learns protein-level representations by graph convolutions, and predicts multi-label information by a dynamic threshold method. Our results show that GraphLoc is a promising model for image-based protein subcellular location prediction with model interpretability. Furthermore, we apply GraphLoc to the identification of candidate location biomarkers and potential members for protein networks. A large portion of the predicted results have supporting evidence from the existing literatures and the new candidates also provide guidance for further experimental screening.
Availability
The dataset and code are available at: www.csbio.sjtu.edu.cn/bioinf/GraphLoc.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jin-Xian Hu
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing , Ministry of Education of China, Shanghai 200240, China
| | - Yang Yang
- Shanghai Jiao Tong University Department of Computer Science and Engineering, Center for Brain-Like Computing and Machine Intelligence, , Shanghai 200240, China
| | - Ying-Ying Xu
- Southern Medical University School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, , Guangzhou 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University , Guangzhou 510515, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing , Ministry of Education of China, Shanghai 200240, China
| |
Collapse
|
5
|
Wu L, Gao S, Yao S, Wu F, Li J, Dong Y, Zhang Y. Gm-PLoc: A Subcellular Localization Model of Multi-Label Protein Based on GAN and DeepFM. Front Genet 2022; 13:912614. [PMID: 35783287 PMCID: PMC9240597 DOI: 10.3389/fgene.2022.912614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying the subcellular localization of a given protein is an essential part of biological and medical research, since the protein must be localized in the correct organelle to ensure physiological function. Conventional biological experiments for protein subcellular localization have some limitations, such as high cost and low efficiency, thus massive computational methods are proposed to solve these problems. However, some of these methods need to be improved further for protein subcellular localization with class imbalance problem. We propose a new model, generating minority samples for protein subcellular localization (Gm-PLoc), to predict the subcellular localization of multi-label proteins. This model includes three steps: using the position specific scoring matrix to extract distinguishable features of proteins; synthesizing samples of the minority category to balance the distribution of categories based on the revised generative adversarial networks; training a classifier with the rebalanced dataset to predict the subcellular localization of multi-label proteins. One benchmark dataset is selected to evaluate the performance of the presented model, and the experimental results demonstrate that Gm-PLoc performs well for the multi-label protein subcellular localization.
Collapse
Affiliation(s)
- Liwen Wu
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Song Gao
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Shaowen Yao
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Feng Wu
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Jie Li
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Yunyun Dong
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
| | - Yunqi Zhang
- Engineering Research Center of Cyberspace, Yunnan University, Kunming, China
- School of Software, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Statistical Modeling and Data Analysis, School of Mathematics and Statistics, Yunnan University, Kunming, China
- *Correspondence: Yunqi Zhang,
| |
Collapse
|
6
|
Nakai K, Wei L. Recent Advances in the Prediction of Subcellular Localization of Proteins and Related Topics. FRONTIERS IN BIOINFORMATICS 2022; 2:910531. [PMID: 36304291 PMCID: PMC9580943 DOI: 10.3389/fbinf.2022.910531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Prediction of subcellular localization of proteins from their amino acid sequences has a long history in bioinformatics and is still actively developing, incorporating the latest advances in machine learning and proteomics. Notably, deep learning-based methods for natural language processing have made great contributions. Here, we review recent advances in the field as well as its related fields, such as subcellular proteomics and the prediction/recognition of subcellular localization from image data.
Collapse
Affiliation(s)
- Kenta Nakai
- Institute of Medical Science, The University of Tokyo, Minato-Ku, Japan
| | - Leyi Wei
- School of Software, Shandong University, Jinan, China
| |
Collapse
|
7
|
Wang G, Xue MQ, Shen HB, Xu YY. Learning protein subcellular localization multi-view patterns from heterogeneous data of imaging, sequence and networks. Brief Bioinform 2022; 23:6499983. [PMID: 35018423 DOI: 10.1093/bib/bbab539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 11/13/2022] Open
Abstract
Location proteomics seeks to provide automated high-resolution descriptions of protein location patterns within cells. Many efforts have been undertaken in location proteomics over the past decades, thereby producing plenty of automated predictors for protein subcellular localization. However, most of these predictors are trained solely from high-throughput microscopic images or protein amino acid sequences alone. Unifying heterogeneous protein data sources has yet to be exploited. In this paper, we present a pipeline called sequence, image, network-based protein subcellular locator (SIN-Locator) that constructs a multi-view description of proteins by integrating multiple data types including images of protein expression in cells or tissues, amino acid sequences and protein-protein interaction networks, to classify the patterns of protein subcellular locations. Proteins were encoded by both handcrafted features and deep learning features, and multiple combining methods were implemented. Our experimental results indicated that optimal integrations can considerately enhance the classification accuracy, and the utility of SIN-Locator has been demonstrated through applying to new released proteins in the human protein atlas. Furthermore, we also investigate the contribution of different data sources and influence of partial absence of data. This work is anticipated to provide clues for reconciliation and combination of multi-source data for protein location analysis.
Collapse
Affiliation(s)
- Ge Wang
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Min-Qi Xue
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200240, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying-Ying Xu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China.,Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Li C, Fan Y, Cai X. PyConvU-Net: a lightweight and multiscale network for biomedical image segmentation. BMC Bioinformatics 2021; 22:14. [PMID: 33413088 PMCID: PMC7788933 DOI: 10.1186/s12859-020-03943-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background With the development of deep learning (DL), more and more methods based on deep learning are proposed and achieve state-of-the-art performance in biomedical image segmentation. However, these methods are usually complex and require the support of powerful computing resources. According to the actual situation, it is impractical that we use huge computing resources in clinical situations. Thus, it is significant to develop accurate DL based biomedical image segmentation methods which depend on resources-constraint computing. Results A lightweight and multiscale network called PyConvU-Net is proposed to potentially work with low-resources computing. Through strictly controlled experiments, PyConvU-Net predictions have a good performance on three biomedical image segmentation tasks with the fewest parameters. Conclusions Our experimental results preliminarily demonstrate the potential of proposed PyConvU-Net in biomedical image segmentation with resources-constraint computing.
Collapse
Affiliation(s)
- Changyong Li
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Yongxian Fan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Xiaodong Cai
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
9
|
Kumar R, Dhanda SK. Bird Eye View of Protein Subcellular Localization Prediction. Life (Basel) 2020; 10:E347. [PMID: 33327400 PMCID: PMC7764902 DOI: 10.3390/life10120347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Proteins are made up of long chain of amino acids that perform a variety of functions in different organisms. The activity of the proteins is determined by the nucleotide sequence of their genes and by its 3D structure. In addition, it is essential for proteins to be destined to their specific locations or compartments to perform their structure and functions. The challenge of computational prediction of subcellular localization of proteins is addressed in various in silico methods. In this review, we reviewed the progress in this field and offered a bird eye view consisting of a comprehensive listing of tools, types of input features explored, machine learning approaches employed, and evaluation matrices applied. We hope the review will be useful for the researchers working in the field of protein localization predictions.
Collapse
Affiliation(s)
- Ravindra Kumar
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Sandeep Kumar Dhanda
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
10
|
Schormann W, Hariharan S, Andrews DW. A reference library for assigning protein subcellular localizations by image-based machine learning. J Cell Biol 2020; 219:133635. [PMID: 31968357 PMCID: PMC7055006 DOI: 10.1083/jcb.201904090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/30/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022] Open
Abstract
Confocal micrographs of EGFP fusion proteins localized at key cell organelles in murine and human cells were acquired for use as subcellular localization landmarks. For each of the respective 789,011 and 523,319 optically validated cell images, morphology and statistical features were measured. Machine learning algorithms using these features permit automated assignment of the localization of other proteins and dyes in both cell types with very high accuracy. Automated assignment of subcellular localizations for model tail-anchored proteins with randomly mutated C-terminal targeting sequences allowed the discovery of motifs responsible for targeting to mitochondria, endoplasmic reticulum, and the late secretory pathway. Analysis of directed mutants enabled refinement of these motifs and characterization of protein distributions in within cellular subcompartments.
Collapse
Affiliation(s)
- Wiebke Schormann
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
| | | | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Xu YY, Zhou H, Murphy RF, Shen HB. Consistency and variation of protein subcellular location annotations. Proteins 2020; 89:242-250. [PMID: 32935893 DOI: 10.1002/prot.26010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/09/2020] [Accepted: 09/13/2020] [Indexed: 11/09/2022]
Abstract
A major challenge for protein databases is reconciling information from diverse sources. This is especially difficult when some information consists of secondary, human-interpreted rather than primary data. For example, the Swiss-Prot database contains curated annotations of subcellular location that are based on predictions from protein sequence, statements in scientific articles, and published experimental evidence. The Human Protein Atlas (HPA) consists of millions of high-resolution microscopic images that show protein spatial distribution on a cellular and subcellular level. These images are manually annotated with protein subcellular locations by trained experts. The image annotations in HPA can capture the variation of subcellular location across different cell lines, tissues, or tissue states. Systematic investigation of the consistency between HPA and Swiss-Prot assignments of subcellular location, which is important for understanding and utilizing protein location data from the two databases, has not been described previously. In this paper, we quantitatively evaluate the consistency of subcellular location annotations between HPA and Swiss-Prot at multiple levels, as well as variation of protein locations across cell lines and tissues. Our results show that annotations of these two databases differ significantly in many cases, leading to proposed procedures for deriving and integrating the protein subcellular location data. We also find that proteins having highly variable locations are more likely to be biomarkers of diseases, providing support for incorporating analysis of subcellular location in protein biomarker identification and screening.
Collapse
Affiliation(s)
- Ying-Ying Xu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China.,Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Hang Zhou
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
| | - Robert F Murphy
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Nagao Y, Sakamoto M, Chinen T, Okada Y, Takao D. Robust classification of cell cycle phase and biological feature extraction by image-based deep learning. Mol Biol Cell 2020; 31:1346-1354. [PMID: 32320349 PMCID: PMC7353138 DOI: 10.1091/mbc.e20-03-0187] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Across the cell cycle, the subcellular organization undergoes major spatiotemporal changes that could in principle contain biological features that could potentially represent cell cycle phase. We applied convolutional neural network-based classifiers to extract such putative features from the fluorescence microscope images of cells stained for the nucleus, the Golgi apparatus, and the microtubule cytoskeleton. We demonstrate that cell images can be robustly classified according to G1/S and G2 cell cycle phases without the need for specific cell cycle markers. Grad-CAM analysis of the classification models enabled us to extract several pairs of quantitative parameters of specific subcellular features as good classifiers for the cell cycle phase. These results collectively demonstrate that machine learning-based image processing is useful to extract biological features underlying cellular phenomena of interest in an unbiased and data-driven manner.
Collapse
Affiliation(s)
- Yukiko Nagao
- Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mika Sakamoto
- Genome Informatics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Takumi Chinen
- Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasushi Okada
- Department of Cell Biology and Anatomy and International Research Center for Neurointelligence (WPI-IRCN), Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,Department of Physics and Universal Biology Institute (UBI), Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.,Laboratory for Cell Polarity Regulation, Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka 565-0874, Japan
| | - Daisuke Takao
- Department of Cell Biology and Anatomy and International Research Center for Neurointelligence (WPI-IRCN), Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|