1
|
Fonseca NM, Maurice-Dror C, Herberts C, Tu W, Fan W, Murtha AJ, Kollmannsberger C, Kwan EM, Parekh K, Schönlau E, Bernales CQ, Donnellan G, Ng SWS, Sumiyoshi T, Vergidis J, Noonan K, Finch DL, Zulfiqar M, Miller S, Parimi S, Lavoie JM, Hardy E, Soleimani M, Nappi L, Eigl BJ, Kollmannsberger C, Taavitsainen S, Nykter M, Tolmeijer SH, Boerrigter E, Mehra N, van Erp NP, De Laere B, Lindberg J, Grönberg H, Khalaf DJ, Annala M, Chi KN, Wyatt AW. Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer. Nat Commun 2024; 15:1828. [PMID: 38418825 PMCID: PMC10902374 DOI: 10.1038/s41467-024-45475-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
No consensus strategies exist for prognosticating metastatic castration-resistant prostate cancer (mCRPC). Circulating tumor DNA fraction (ctDNA%) is increasingly reported by commercial and laboratory tests but its utility for risk stratification is unclear. Here, we intersect ctDNA%, treatment outcomes, and clinical characteristics across 738 plasma samples from 491 male mCRPC patients from two randomized multicentre phase II trials and a prospective province-wide blood biobanking program. ctDNA% correlates with serum and radiographic metrics of disease burden and is highest in patients with liver metastases. ctDNA% strongly predicts overall survival, progression-free survival, and treatment response independent of therapeutic context and outperformed established prognostic clinical factors. Recognizing that ctDNA-based biomarker genotyping is limited by low ctDNA% in some patients, we leverage the relationship between clinical prognostic factors and ctDNA% to develop a clinically-interpretable machine-learning tool that predicts whether a patient has sufficient ctDNA% for informative ctDNA genotyping (available online: https://www.ctDNA.org ). Our results affirm ctDNA% as an actionable tool for patient risk stratification and provide a practical framework for optimized biomarker testing.
Collapse
Affiliation(s)
- Nicolette M Fonseca
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilson Tu
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - William Fan
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Murtha
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Edmond M Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Department of Medicine, School of Clinical Sciences; Monash University, Melbourne, VIC, Australia
| | - Karan Parekh
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elena Schönlau
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cecily Q Bernales
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Gráinne Donnellan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sarah W S Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Takayuki Sumiyoshi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Joanna Vergidis
- Department of Medical Oncology, BC Cancer, Victoria, BC, Canada
| | - Krista Noonan
- Department of Medical Oncology, BC Cancer, Surrey, BC, Canada
| | - Daygen L Finch
- Department of Medical Oncology, BC Cancer, Kelowna, BC, Canada
| | | | - Stacy Miller
- Department of Radiation Oncology, BC Cancer, Prince George, BC, Canada
| | - Sunil Parimi
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Edward Hardy
- Tom McMurtry & Peter Baerg Cancer Centre, Vernon Jubilee Hospital, Vernon, BC, Canada
| | - Maryam Soleimani
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Lucia Nappi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Bernhard J Eigl
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Sinja Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Sofie H Tolmeijer
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Emmy Boerrigter
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Nielka P van Erp
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Bram De Laere
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Daniel J Khalaf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Matti Annala
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland.
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada.
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Huang H, Li N, Liang Y, Li R, Tong X, Xiao J, Tang H, Jiang D, Xie K, Fang C, Chen S, Li G, Wang B, Wang J, Luo H, Guo L, Ma H, Jiang W, Feng Y. Multi-omics analyses reveal spatial heterogeneity in primary and metastatic oesophageal squamous cell carcinoma. Clin Transl Med 2023; 13:e1493. [PMID: 38009315 PMCID: PMC10679972 DOI: 10.1002/ctm2.1493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Biopsies obtained from primary oesophageal squamous cell carcinoma (ESCC) guide diagnosis and treatment. However, spatial intra-tumoral heterogeneity (ITH) influences biopsy-derived information and patient responsiveness to therapy. Here, we aimed to elucidate the spatial ITH of ESCC and matched lymph node metastasis (LNmet ). METHODS Primary tumour superficial (PTsup ), deep (PTdeep ) and LNmet subregions of patients with locally advanced resectable ESCC were evaluated using whole-exome sequencing (WES), whole-transcriptome sequencing and spatially resolved digital spatial profiling (DSP). To validate the findings, immunohistochemistry was conducted and a single-cell transcriptomic dataset was analysed. RESULTS WES revealed 15.72%, 5.02% and 32.00% unique mutations in PTsup , PTdeep and LNmet , respectively. Copy number alterations and phylogenetic trees showed spatial ITH among subregions both within and among patients. Driver mutations had a mixed intra-tumoral clonal status among subregions. Transcriptome data showed distinct differentially expressed genes among subregions. LNmet exhibited elevated expression of immunomodulatory genes and enriched immune cells, particularly when compared with PTsup (all P < .05). DSP revealed orthogonal support of bulk transcriptome results, with differences in protein and immune cell abundance between subregions in a spatial context. The integrative analysis of multi-omics data revealed complex heterogeneity in mRNA/protein levels and immune cell abundance within each subregion. CONCLUSIONS This study comprehensively characterised spatial ITH in ESCC, and the findings highlight the clinical significance of unbiased molecular classification based on multi-omics data and their potential to improve the understanding and management of ESCC. The current practices for tissue sampling are insufficient for guiding precision medicine for ESCC, and routine profiling of PTdeep and/or LNmet should be systematically performed to obtain a more comprehensive understanding of ESCC and better inform treatment decisions.
Collapse
Affiliation(s)
- Haitao Huang
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Na Li
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Yingkuan Liang
- Department of Thoracic SurgeryNanjing Medical University Affiliated Cancer HospitalNanjingChina
| | - Rutao Li
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Xing Tong
- Department of Pathologythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jinyuan Xiao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Hongzhen Tang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Dong Jiang
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Kai Xie
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chen Fang
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shaomu Chen
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Guangbin Li
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Bin Wang
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Jiaqian Wang
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Haitao Luo
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and TherapyYuceBio Technology Co., LtdShenzhenChina
| | - Lingchuan Guo
- Department of Pathologythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haitao Ma
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Wei Jiang
- Department of Thoracic SurgeryDushu Lake Hospital Affiliated to Soochow UniversitySuzhouChina
| | - Yu Feng
- Department of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Institute of Thoracic Surgerythe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
3
|
Briest F, Noerenberg D, Hennch C, Yoshida K, Hablesreiter R, Nimo J, Sasca D, Kirchner M, Mansouri L, Inoue Y, Wiegand L, Staiger AM, Casadei B, Korkolopoulou P, Weiner J, Lopez-Guillermo A, Warth A, Schneider T, Nagy Á, Klapper W, Hummel M, Kanellis G, Anagnostopoulos I, Mertins P, Bullinger L, Rosenquist R, Vassilakopoulos TP, Ott G, Ogawa S, Damm F. Frequent ZNF217 mutations lead to transcriptional deregulation of interferon signal transduction via altered chromatin accessibility in B cell lymphoma. Leukemia 2023; 37:2237-2249. [PMID: 37648814 PMCID: PMC10624633 DOI: 10.1038/s41375-023-02013-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Recent exome-wide studies discovered frequent somatic mutations in the epigenetic modifier ZNF217 in primary mediastinal B cell lymphoma (PMBCL) and related disorders. As functional consequences of ZNF217 alterations remain unknown, we comprehensively evaluated their impact in PMBCL. Targeted sequencing identified genetic lesions affecting ZNF217 in 33% of 157 PMBCL patients. Subsequent gene expression profiling (n = 120) revealed changes in cytokine and interferon signal transduction in ZNF217-aberrant PMBCL cases. In vitro, knockout of ZNF217 led to changes in chromatin accessibility interfering with binding motifs for crucial lymphoma-associated transcription factors. This led to disturbed expression of interferon-responsive and inflammation-associated genes, altered cell behavior, and aberrant differentiation. Mass spectrometry demonstrates that ZNF217 acts within a histone modifier complex containing LSD1, CoREST and HDAC and interferes with H3K4 methylation and H3K27 acetylation. Concluding, our data suggest non-catalytic activity of ZNF217, which directs histone modifier complex function and controls B cell differentiation-associated patterns of chromatin structure.
Collapse
Affiliation(s)
- Franziska Briest
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Noerenberg
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelius Hennch
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Cancer Genome Project Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Raphael Hablesreiter
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jose Nimo
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel Sasca
- Department of Hematology, Oncology, and Pulmonary Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Yoshikage Inoue
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Laura Wiegand
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology Stuttgart, and University of Tuebingen, Stuttgart, Germany
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | - Penelope Korkolopoulou
- First Department of Pathology, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - January Weiner
- Core Unit Bioinformatics Berlin, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Arne Warth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Ákos Nagy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Michael Hummel
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - George Kanellis
- Department of Hematopathology, Evangelismos General Hospital, Athens, Greece
| | - Ioannis Anagnostopoulos
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros P Vassilakopoulos
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Frederik Damm
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Ishikawa T, Ogawa T, Shiihara M, Usubuchi H, Omori Y, Hirose K, Itoh T, Yoshida T, Nakanome A, Okoshi A, Higashi K, Ishii R, Rokugo M, Wakamori S, Okamura Y, Kinoshita K, Katori Y, Furukawa T. Salivary gland cancer organoids are valid for preclinical genotype-oriented medical precision trials. iScience 2023; 26:106695. [PMID: 37207275 PMCID: PMC10189274 DOI: 10.1016/j.isci.2023.106695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/02/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Salivary gland cancers (SGCs) are heterogeneous tumors, and precision oncology represents a promising therapeutic approach; however, its impact on SGCs remains obscure. This study aimed to establish a translational model for testing molecular-targeted therapies by combining patient-derived organoids and genomic analyses of SGCs. We enrolled 29 patients, including 24 with SGCs and 5 with benign tumors. Resected tumors were subjected to organoid and monolayer cultures, as well as whole-exome sequencing. Organoid and monolayer cultures of SGCs were successfully established in 70.8% and 62.5% of cases, respectively. Organoids retained most histopathological and genetic profiles of their original tumors. In contrast, 40% of the monolayer-cultured cells did not harbor somatic mutations of their original tumors. The efficacy of molecular-targeted drugs tested on organoids depended on their oncogenic features. Organoids recapitulated the primary tumors and were useful for testing genotype-oriented molecular targeted therapy, which is valuable for precision medicine in patients with SGCs.
Collapse
Affiliation(s)
- Tomohiko Ishikawa
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takenori Ogawa
- Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Masahiro Shiihara
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hajime Usubuchi
- Department of Pathology, Sendai Kousei Hospital, Sendai 980-0873, Japan
| | - Yuko Omori
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Katsuya Hirose
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Taito Itoh
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takuya Yoshida
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ayako Nakanome
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Akira Okoshi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kenjiro Higashi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Ryo Ishii
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Masahiro Rokugo
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Shun Wakamori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yasunobu Okamura
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai 980-8573, Japan
- Tohoku University Tohoku Medical Megabank Organization, Sendai 980-8573, Japan
| | - Kengo Kinoshita
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine, Sendai 980-8573, Japan
- Tohoku University Tohoku Medical Megabank Organization, Sendai 980-8573, Japan
- Tohoku University Graduate School of Information Sciences, Sendai 980-8579, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Corresponding author
| |
Collapse
|
5
|
Li S, Yu W, Xie F, Luo H, Liu Z, Lv W, Shi D, Yu D, Gao P, Chen C, Wei M, Zhou W, Wang J, Zhao Z, Dai X, Xu Q, Zhang X, Huang M, Huang K, Wang J, Li J, Sheng L, Liu L. Neoadjuvant therapy with immune checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric cancer. Nat Commun 2023; 14:8. [PMID: 36596787 PMCID: PMC9810618 DOI: 10.1038/s41467-022-35431-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/02/2022] [Indexed: 01/04/2023] Open
Abstract
Despite neoadjuvant/conversion chemotherapy, the prognosis of cT4a/bN+ gastric cancer is poor. Immune checkpoint inhibitors (ICIs) and antiangiogenic agents have shown activity in late-stage gastric cancer, but their efficacy in the neoadjuvant/conversion setting is unclear. In this single-armed, phase II, exploratory trial (NCT03878472), we evaluate the efficacy of a combination of ICI (camrelizumab), antiangiogenesis (apatinib), and chemotherapy (S-1 ± oxaliplatin) for neoadjuvant/conversion treatment of cT4a/bN+ gastric cancer. The primary endpoints are pathological responses and their potential biomarkers. Secondary endpoints include safety, objective response, progression-free survival, and overall survival. Complete and major pathological response rates are 15.8% and 26.3%. Pathological responses correlate significantly with microsatellite instability status, PD-L1 expression, and tumor mutational burden. In addition, multi-omics examination reveals several putative biomarkers for pathological responses, including RREB1 and SSPO mutation, immune-related signatures, and a peripheral T cell expansion score. Multi-omics also demonstrates dynamic changes in dominant tumor subclones, immune microenvironments, and T cell receptor repertoires during neoadjuvant immunotherapy. The toxicity and post-surgery complications are limited. These data support further validation of ICI- and antiangiogenesis-based neoadjuvant/conversion therapy in large randomized trials and provide candidate biomarkers.
Collapse
Affiliation(s)
- Song Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Wenbin Yu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fei Xie
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Haitao Luo
- Shenzhen Yucebio Technology Co., Ltd., Shenzhen, 518000, Guangdong, China
| | - Zhimin Liu
- Department of General Surgery, Zibo Municipal Central Hospital, Binzhou Medical College, Zibo, 255036, Shandong, China
| | - Weiwei Lv
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Duanbo Shi
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Peng Gao
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Cheng Chen
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Wenhao Zhou
- Shenzhen Yucebio Technology Co., Ltd., Shenzhen, 518000, Guangdong, China
| | - Jiaqian Wang
- Shenzhen Yucebio Technology Co., Ltd., Shenzhen, 518000, Guangdong, China
| | - Zhikun Zhao
- Shenzhen Yucebio Technology Co., Ltd., Shenzhen, 518000, Guangdong, China
| | - Xin Dai
- Department of Medical Oncology, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, 250012, China
| | - Qian Xu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xue Zhang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Miao Huang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Kai Huang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jian Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Lei Sheng
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Lian Liu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
6
|
Kwan EM, Wyatt AW, Chi KN. Towards clinical implementation of circulating tumor DNA in metastatic prostate cancer: Opportunities for integration and pitfalls to interpretation. Front Oncol 2022; 12:1054497. [PMID: 36439451 PMCID: PMC9685669 DOI: 10.3389/fonc.2022.1054497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/25/2022] [Indexed: 08/13/2023] Open
Abstract
Plasma circulating tumor DNA (ctDNA) represents short fragments of tumor-derived DNA released into the bloodstream primarily from cancer cells undergoing apoptosis. In metastatic castration-resistant prostate cancer (mCRPC), characterizing genomic alterations in ctDNA identifies mutations, copy number alterations, and structural rearrangements with predictive and prognostic biomarker utility. These associations with clinical outcomes have resulted in ctDNA increasingly incorporated into routine clinical care. In this review, we summarize current and emerging applications for ctDNA analysis in metastatic prostate cancer, including outcome prediction, treatment selection, and characterization of treatment resistance. We also discuss potential pitfalls with interpreting ctDNA findings, namely false negatives arising from low tumor content and optimal assay design, including correction for clonal hematopoiesis of indeterminate potential and germline variants. Understanding the influence of these limitations on interpretation of ctDNA results is necessary to overcome barriers to clinical implementation. Nevertheless, as assay availability and technology continue to improve, recognizing both opportunities and shortcomings of ctDNA analysis will retain relevance with informing the implementation of precision-oncology initiatives for metastatic prostate cancer.
Collapse
Affiliation(s)
- Edmond M. Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
- BC Cancer, Vancouver Centre, Vancouver, BC, Canada
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Kim N. Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
- BC Cancer, Vancouver Centre, Vancouver, BC, Canada
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Ménard T. Inferences of Mutational Status for Variants Detected From Tumor-Only Sequencing-A Quality Assurance Strategy. JCO Precis Oncol 2022; 6:e2200125. [PMID: 35709403 DOI: 10.1200/po.22.00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Timothé Ménard
- Timothé Ménard, F. Hoffmann-La Roche, Basel, Switzerland
| |
Collapse
|
8
|
Choo JRE, Jan YH, Ow SGW, Wong A, Lee MX, Ngoi N, Yadav K, Lim JSJ, Lim SE, Chan CW, Hartman M, Tang SW, Goh BC, Tan HL, Chong WQ, Yvonne ALE, Chan GHJ, Chen SJ, Tan KT, Lee SC. Serial Tumor Molecular Profiling of Newly Diagnosed HER2-Negative Breast Cancers During Chemotherapy in Combination with Angiogenesis Inhibitors. Target Oncol 2022; 17:355-368. [PMID: 35699834 PMCID: PMC9217774 DOI: 10.1007/s11523-022-00886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Background Breast cancers are heterogeneous with variable clinical courses and treatment responses. Objective We sought to evaluate dynamic changes in the molecular landscape of HER2-negative tumors treated with chemotherapy and anti-angiogenic agents. Patients and Methods Newly diagnosed HER2-negative breast cancer patients received low-dose sunitinib or bevacizumab prior to four 2-weekly cycles of dose-dense doxorubicin and cyclophosphamide. Tumor biopsies were obtained at baseline, after 2 weeks and after 8 weeks of chemotherapy. Next-generation sequencing was performed to assess for single nucleotide variants (SNVs) and copy number alterations (CNAs) of 440 cancer-related genes (ACTOnco®). Observed genomic changes were correlated with the Miller-Payne histological response to treatment. Results Thirty-four patients received sunitinib and 18 received bevacizumab. In total, 77% were hormone receptor positive (HER2−/HR+) and 23% were triple negative breast cancers (TNBC). New therapy-induced mutations were infrequent, occurring only in 13%, and appeared early after a single cycle of treatment. Seventy-two percent developed changes in the variant allele frequency (VAF) of pathogenic SNVs; the majority (51%) of these changes occurred early at 2 weeks and were sustained for 8 weeks. Changes in VAF of SNVs were most commonly seen in the PI3K/mTOR/AKT pathway; 13% developed changes in pathogenic mutations, which potentially confer sensitivity to PIK3CA inhibitors. Tumors with poor Miller-Payne response to treatment were less likely to experience changes in VAF of SNVs compared with those with good response (50% [7/14] vs 15% [4/24] had no changes observed at any timepoint, p = 0.029). Conclusions Serial molecular profiling identifies early therapy-induced genomic alterations, which may guide future selection of targeted therapies in breast cancer patients who progress after standard chemotherapy. Clinical trial registration ClinicalTrials.gov: NCT02790580 (first posted June 6, 2016). Supplementary Information The online version contains supplementary material available at 10.1007/s11523-022-00886-x.
Collapse
Affiliation(s)
- Joan R E Choo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | | | - Samuel G W Ow
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Andrea Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Matilda Xinwei Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Natalie Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Kritika Yadav
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Joline S J Lim
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Siew Eng Lim
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Ching Wan Chan
- Department of Surgery, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Mikael Hartman
- Department of Surgery, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Siau Wei Tang
- Department of Surgery, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Hon Lyn Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Wan Qin Chong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Ang Li En Yvonne
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | - Gloria H J Chan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore
| | | | | | - Soo Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS) National University Health System, 1E Lower Kent Ridge Road, Singapore, 119228, Singapore. .,Cancer Science Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Hatakeyama K, Muramatsu K, Nagashima T, Kawanishi Y, Fukumura R, Ohshima K, Shimoda Y, Kenmotsu H, Mochizuki T, Urakami K, Akiyama Y, Sugino T, Yamaguchi K. Tumor cell enrichment by tissue suspension enables detection of mutations with low variant allele frequency and estimation of germline mutations. Sci Rep 2022; 12:2953. [PMID: 35194076 PMCID: PMC8863826 DOI: 10.1038/s41598-022-06885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/07/2022] [Indexed: 12/05/2022] Open
Abstract
Targeted sequencing offers an opportunity to select specific drugs for cancer patients based on alterations in their genome. However, accurate sequencing cannot be performed in cancers harboring diffuse tumor cells because of low tumor content. We performed tumor cell enrichment using tissue suspension of formalin-fixed, paraffin-embedded (FFPE) tissue sections with low tumor cell content. The enriched fractions were used to efficiently identify mutations by sequencing a target panel of cancer-related genes. Tumor-enriched and residual fractions were isolated from FFPE tissue sections of intestinal and diffuse gastric cancers harboring diffuse tumor cells and DNA of suitable quality was isolated for next-generation sequencing. Sequencing of a target panel of cancer-related genes using the tumor-enriched fraction increased the number of detectable mutations and variant allele frequency. Furthermore, mutation analysis of DNA isolated from tumor-enriched and residual fractions allowed us to estimate germline mutations without a blood reference. This approach of tumor cell enrichment will not only enhance the success rate of target panel sequencing, but can also improve the accuracy of detection of somatic mutations in archived specimens.
Collapse
Affiliation(s)
- Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Koji Muramatsu
- Division of Pathology, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
- SRL Inc, Shinjuku-ku, Tokyo, 163-0409, Japan
| | - Yuichi Kawanishi
- SRL & Shizuoka Cancer Center Collaborative Laboratories Inc, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ryutaro Fukumura
- SRL & Shizuoka Cancer Center Collaborative Laboratories Inc, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
- SRL Inc, Shinjuku-ku, Tokyo, 163-0409, Japan
| | - Hirotsugu Kenmotsu
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Tohru Mochizuki
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yasuto Akiyama
- Immunotheraphy Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, Sunto-gun, Shizuoka, 411-8777, Japan
| |
Collapse
|
10
|
Jalloul N, Gomy I, Stokes S, Gusev A, Johnson BE, Lindeman NI, Macconaill L, Ganesan S, Garber JE, Khiabanian H. Germline Testing Data Validate Inferences of Mutational Status for Variants Detected From Tumor-Only Sequencing. JCO Precis Oncol 2021; 5:PO.21.00279. [PMID: 34820595 PMCID: PMC8608266 DOI: 10.1200/po.21.00279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/20/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023] Open
Abstract
Pathogenic germline variants (PGVs) in cancer susceptibility genes are usually identified through germline testing of DNA from blood or saliva: their detection can affect treatment options and potential risk-reduction strategies for patient relatives. PGV can also be identified in tumor sequencing assays, which, when performed without patient-matched normal specimens, render determination of variants' germline or somatic origin critical. METHODS Tumor-only sequencing data from 1,608 patients were retrospectively analyzed to infer germline versus somatic status of variants using an information-theoretic, gene-independent approach. Loss of heterozygosity was also determined. Predicted mutational models were compared with clinical germline testing results. Statistical measures were computed to evaluate performance. RESULTS Tumor-only sequencing detected 3,988 variants across 70 cancer susceptibility genes for which germline testing data were available. We imputed germline versus somatic status for > 75% of all detected variants, with a sensitivity of 65%, specificity of 88%, and overall accuracy of 86% for pathogenic variants. False omission rate was 3%, signifying minimal error in misclassifying true PGV. A higher portion of PGV in known hereditary tumor suppressors were found to be retained with loss of heterozygosity in the tumor specimens (72%) compared with variants of uncertain significance (58%). CONCLUSION Analyzing tumor-only data in the context of specimens' tumor cell content allows precise, systematic exclusion of somatic variants and suggests a balance between type 1 and 2 errors for identification of patients with candidate PGV for standard germline testing. Although technical or systematic errors in measuring variant allele frequency could result in incorrect inference, misestimation of specimen purity could result in inferring somatic variants as germline in somatically mutated tumor suppressor genes. A user-friendly bioinformatics application facilitates objective analysis of tumor-only data in clinical settings.
Collapse
Affiliation(s)
- Nahed Jalloul
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Israel Gomy
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA
| | - Samantha Stokes
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Bruce E. Johnson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA
| | - Neal I. Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Laura Macconaill
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| | - Judy E. Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| |
Collapse
|
11
|
Technical and biological constraints on ctDNA-based genotyping. Trends Cancer 2021; 7:995-1009. [PMID: 34219051 DOI: 10.1016/j.trecan.2021.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
Circulating tumor DNA (ctDNA) enables real-time genomic profiling of cancer without the need for tissue biopsy. ctDNA-based technology is seeing rapid uptake in clinical practice due to the potential to inform patient management from diagnosis to advanced disease. In metastatic disease, ctDNA can identify somatic mutations, copy-number variants (CNVs), and structural rearrangements that are predictive of therapy response. However, the ctDNA fraction (ctDNA%) is unpredictable and confounds variant detection strategies, undermining confidence in liquid biopsy results. Assay design also influences which types of genomic alterations are identifiable. Here, we describe the relationships between ctDNA%, methodology, and sensitivity-specificity for major classes of genomic alterations in prostate cancer. We provide recommendations to navigate the technical complexities that constrain the detection of clinically relevant genomic alterations in ctDNA.
Collapse
|
12
|
Coope RJ, Schlosser C, Corbett RD, Pleasance S, Tessier-Cloutier B, Pandoh P, Kirk H, Haile S, Zhao Y, Mungall AJ, Marra MA. Whole-slide laser microdissection for tumour enrichment. J Pathol 2020; 253:225-233. [PMID: 33135777 DOI: 10.1002/path.5575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022]
Abstract
The practical application of genome-scale technologies to precision oncology research requires flexible tissue processing strategies that can be used to differentially select both tumour and normal cell populations from formalin-fixed, paraffin-embedded tissues. As tumour sequencing scales towards clinical implementation, practical difficulties in scheduling and obtaining fresh tissue biopsies at scale, including blood samples as surrogates for matched 'normal' DNA, have focused attention on the use of formalin-preserved clinical samples collected routinely for diagnostic purposes. In practice, such samples often contain both tumour and normal cells which, if correctly partitioned, could be used to profile both tumour and normal genomes, thus identifying somatic alterations. Here we report a semi-automated method for laser microdissecting entire slide-mounted tissue sections to enrich for cells of interest with sufficient yield for whole genome and transcriptome sequencing. Using this method, we demonstrated enrichment of tumour material from mixed tumour-normal samples by up to 67%. Leveraging new methods that allow for the extraction of high-quality nucleic acids from small amounts of formalin-fixed tissues, we further showed that the method was successful in yielding sequence data of sufficient quality for use in BC Cancer's Personalized OncoGenomics (POG) program. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Robin Jn Coope
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Colin Schlosser
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Richard D Corbett
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Stephen Pleasance
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Basile Tessier-Cloutier
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pawan Pandoh
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Heather Kirk
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Simon Haile
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Yongjun Zhao
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|