1
|
Achinger L, Kluczynski DF, Gladwell A, Heck H, Zhang F, Good E, Waggoner A, Reinhart M, Good M, Moore D, Filatoff D, Dhar S, Nigro E, Flanagan L, Yadav S, Williams T, Ray A, Shah TA, Liberatore MW, Avidor-Reiss T. The Known and Unknown About Female Reproductive Tract Mucus Rheological Properties. Bioessays 2025:e70002. [PMID: 40119784 DOI: 10.1002/bies.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/24/2025]
Abstract
Spermatozoa reach the fallopian tube during ovulation by traveling through the female reproductive tract mucus. This non-Newtonian viscoelastic medium facilitates spermatozoon movement to accomplish fertilization or, in some cases, blocks spermatozoon movement, leading to infertility. While rheological properties are known to affect spermatozoon motility with in vitro models using synthetic polymers, their precise effects in vivo are understudied. This paper reviews the rheological measurements of reproductive tract mucus during ovulation in humans and model animals, focusing on viscosity and its potential effect on spermatozoa. Mucus viscosity in the female reproductive tract's different compartments is poorly understood. While information on this subject is incomplete, most mammals appear to have a viscosity decrease along their female reproductive tracts. Based on this sparse information, we hypothesize that viscosity changes in female reproductive tracts may guide spermatozoa to eggs, a novel concept that could improve our understanding of reproductive biology.
Collapse
Affiliation(s)
- Luke Achinger
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Derek F Kluczynski
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Abigail Gladwell
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Holly Heck
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Faith Zhang
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Ethan Good
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Alexis Waggoner
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Mykala Reinhart
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Megan Good
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Dawson Moore
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Dennis Filatoff
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Supriya Dhar
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Elisa Nigro
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Lucas Flanagan
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Sunny Yadav
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Trinity Williams
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Aniruddha Ray
- Department of Physics and Astronomy, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
| | - Tariq A Shah
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Matthew W Liberatore
- Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, Ohio, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, Ohio, USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
2
|
Ribeiro DG, Carvalho JDO, Sartori R, Monteiro PLJ, Fontes W, Castro MDS, de Sousa MV, Dode MAN, Mehta A. The presence of sexed sperm in bovine oviduct epithelial cells alters the protein profile related to stress and immune response. Res Vet Sci 2025; 184:105522. [PMID: 39740501 DOI: 10.1016/j.rvsc.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Although sperm sexing technology has progressed considerably in the last decade, there are still challenges to fully understand the reason for the low fertility of sexed sperm. Thus, we aimed to evaluate the effect of sexed and non-sexed sperm on the proteome of bovine oviduct epithelial cells (BOECs). Semen from six Nellore bulls was used and one ejaculate from each bull was collected and separated into three fractions: non-sexed, sexed for X-sperm and sexed for Y-sperm. Previously synchronized females were artificially inseminated with either a pool of non-sexed sperm from 6 sires (NS), or a pool of sexed X and Y sperm from 6 sires (XY) or saline solution (Control). After insemination, animals were slaughtered and oviducts were collected to obtain BOECs samples, which were used for proteomic analysis. The results revealed that the oviductal response on isthmus region to the presence of sperm is different when sexed and non-sexed sperm are used. Sexed sperm seemed to induced a more intense and imbalanced response to several processes, such as oxidative and heat stress, immune response and movement of the oviduct muscle.
Collapse
Affiliation(s)
- Daiane Gonzaga Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia, DF, Brazil; Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - José de Oliveira Carvalho
- Postgraduate Program in Veterinary Sciences, Federal University of Espirito Santo, Alegre, ES, Brazil
| | - Roberto Sartori
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil
| | - Pedro Leopoldo Jerônimo Monteiro
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil; Department of Large Animal Clinical Sciences, University of Florida, Gainesville, USA
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia, DF, Brazil
| | - Mariana de Souza Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia, DF, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasília, Brasilia, DF, Brazil
| | - Margot Alves Nunes Dode
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia, DF, Brazil; Programa de Pós-Graduação em Biologia Animal, Universidade de Brasília- UnB, Brazil.
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasilia, DF, Brazil.
| |
Collapse
|
3
|
Dehghanbanadaki H, Jimbo M, Fendereski K, Kunisaki J, Horns JJ, Ramsay JM, Gross KX, Pastuszak AW, Hotaling JM. Transgenerational effects of paternal exposures: the role of germline de novo mutations. Andrology 2025; 13:101-118. [PMID: 38396220 DOI: 10.1111/andr.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/02/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Germline de novo mutations (DNMs) refer to spontaneous mutations arising during gametogenesis, resulting in genetic changes within germ cells that are subsequently transmitted to the next generation. While the impact of maternal exposures on germline DNMs has been extensively studied, more recent studies have begun to highlight the increasing importance of the effects of paternal factors. In this review, we have summarized the existing literature on how various exposures experienced by fathers affect the germline DNM burden in their spermatozoa, as well as their consequences for semen analysis parameters, pregnancy outcomes, and offspring health. A growing body of literature supports the conclusion that advanced paternal age (APA) correlates with a higher germline DNM rate in offspring. Furthermore, lifestyle choices, environmental toxins, assisted reproductive techniques (ART), and chemotherapy are associated with the accumulation of paternal DNMs in spermatozoa, with deleterious consequences for pregnancy outcomes and offspring health. Ultimately, our review highlights the clear importance of the germline DNM mode of inheritance, and the current understanding of how this is affected by various paternal factors. In addition, we explore conflicting reports or gaps of knowledge that should be addressed in future research.
Collapse
Affiliation(s)
- Hojat Dehghanbanadaki
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Masaya Jimbo
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Kiarad Fendereski
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Jason Kunisaki
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Joshua J Horns
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Joemy M Ramsay
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Kelli X Gross
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Alexander W Pastuszak
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Adnane M, Ahmed M, Chapwanya A. Advances in Molecular Biology and Immunology of Spermatozoa and Fertilization in Domestic Animals: Implications for Infertility and Assisted Reproduction. Curr Mol Med 2025; 25:167-186. [PMID: 39572916 DOI: 10.2174/0115665240306965240802075331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 04/11/2025]
Abstract
Unlocking the secrets of reproductive success in domestic animals requires a deep understanding of the molecular biology and immunology of spermatozoa, capacitation, fertilization, and conception. This review highlights the complex processes involved in spermatogenesis and sperm capacitation, including changes in membrane properties, signaling pathways, and the crucial acrosome reaction. The interaction with the zona pellucida in species-specific gamete recognition and binding is emphasized. The implications of fertilization defects for infertility and assisted reproduction are discussed, underscoring the challenges faced in breeding programs. The future directions for research in this field involve advancements in molecular techniques, understanding the immune regulation of spermatozoa, investigating environmental factors' impact, and integrating multi-omics approaches to enhance assisted reproduction techniques in domestic animals. This review contributes to our understanding of the intricate mechanisms underlying successful reproduction and provides insights into potential strategies for improving fertility outcomes in domestic animals.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University Ibn Khaldoun of Tiaret, Tiaret 14000, Algeria
| | - Moussa Ahmed
- Department of Animal Health, Institute of Veterinary Sciences, University Ibn Khaldoun of Tiaret, Tiaret, 14000, Algeria
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, 00265, Saint Kitts and Nevis
| |
Collapse
|
5
|
Mahé C, Laffont L, Pranomphon T, Schmaltz L, Reynaud K, Mermillod P, Saint-Dizier M. Assessment of Sperm Binding Capacity in the Reservoir Using an In Vitro Model of Oviduct Epithelial Spheroids in Cattle. Methods Mol Biol 2025; 2897:687-698. [PMID: 40202670 DOI: 10.1007/978-1-0716-4406-5_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The sperm reservoir in the isthmus, the distal part of the oviduct, plays important roles in sperm survival and acquisition of sperm fertilization competence. Here, we describe an in vitro model of bovine oviduct spheroids, easy to culture and normalize, and allowing robust quantification by confocal microscopy of sperm binding capacity to isthmic epithelial cells. This assay may be used to compare sperm binding capacity between males and ejaculates, evaluate sperm membrane integrity and correlation with male fertility, and conduct studies on sperm-oviduct interactions. The method may be implemented in other species.
Collapse
Affiliation(s)
- Coline Mahé
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Li R, Qu J, Yan K, Chen Y, Zhao X, Liu Z, Xie M, Zhang Q, He Y, Niu J, Qi J. Deciphering dynamic interactions between spermatozoa and the ovarian microenvironment through integrated multi-omics approaches in viviparous Sebastes schlegelii. Development 2024; 151:dev202224. [PMID: 38572957 DOI: 10.1242/dev.202224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
The ovarian microenvironment plays a crucial role in ensuring the reproductive success of viviparous teleosts. However, the molecular mechanism underlying the interaction between spermatozoa and the ovarian microenvironment has remained elusive. This study aimed to contribute to a better understanding of this process in black rockfish (Sebastes schlegelii) using integrated multi-omics approaches. The results demonstrated significant upregulation of ovarian complement-related proteins and pattern recognition receptors, along with remodeling of glycans on the surface of spermatozoa at the early spermatozoa-storage stage (1 month after mating). As spermatozoa were stored over time, ovarian complement proteins were progressively repressed by tryptophan and hippurate, indicating a remarkable adaptation of spermatozoa to the ovarian microenvironment. Before fertilization, a notable upregulation of cellular junction proteins was observed. The study revealed that spermatozoa bind to ZPB2a protein through GSTM3 and that ZPB2a promotes spermatozoa survival and movement in a GSTM3-dependent manner. These findings shed light on a key mechanism that influences the dynamics of spermatozoa in the female reproductive tract, providing valuable insights into the molecular networks regulating spermatozoa adaptation and survival in species with internal fertilization.
Collapse
Affiliation(s)
- Rui Li
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiangbo Qu
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kai Yan
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ying Chen
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xi Zhao
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhiying Liu
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Mengxi Xie
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jingjing Niu
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
7
|
Bhat GR, Lone FA, Dalal J. Microfluidics-A novel technique for high-quality sperm selection for greater ART outcomes. FASEB Bioadv 2024; 6:406-423. [PMID: 39372125 PMCID: PMC11452445 DOI: 10.1096/fba.2024-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 10/08/2024] Open
Abstract
Microfluidics represent a quality sperm selection technique. Human couples fail to conceive and this is so in a significant population of animals worldwide. Defects in male counterpart lead to failure of conception so are outcomes of assisted reproduction affected by quality of sperm. Microfluidics, deals with minute volumes (μL) of liquids run in small-scale microchannel networks in the form of laminar flow streamlines. Microfluidic sperm selection designs have been developed in chip formats, mimicking in vivo situations. Here sperms are selected and analyzed based on motility and sperm behavioral properties. Compared to conventional sperm selection methods, this selection method enables to produce high-quality motile sperm cells possessing non-damaged or least damaged DNA, achieve greater success of insemination in bovines, and achieve enhanced pregnancy rates and live births in assisted reproduction-in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). Besides, the concentration of sperm available to oocyte can be controlled by regulating the flow rate in microfluidic chips. The challenges in this technology are commercialization of chips, development of fully functional species-specific microfluidic tools, limited number of studies available in literature, and need of thorough understanding in reproductive physiology of domestic animals. In conclusion, incorporation of microfluidic system in assisted reproduction for sperm selection may promise a great success in IVF and ICSI outcomes. Future prospectives are to make this technology more superior and need to modify chip designs which is cost effective and species specific and ready for commercialization. Comprehensive studies in animal species are needed to be carried out for wider application of microfluidic sperm selection in in vitro procedures.
Collapse
Affiliation(s)
- Ghulam Rasool Bhat
- Division of Animal Reproduction, Gynaecology and ObstetricsSher‐e‐Kashmir Institute of Agricultural Sciences and Technology of KashmirSrinagarIndia
| | - Farooz Ahmad Lone
- Division of Animal Reproduction, Gynaecology and ObstetricsSher‐e‐Kashmir Institute of Agricultural Sciences and Technology of KashmirSrinagarIndia
| | - Jasmer Dalal
- Division of Veterinary Gynaecology and ObstetricsLala Lajpat Rai Veterinary and Animal Sciences UniversityHisarIndia
| |
Collapse
|
8
|
Martín-Maestro A, Abril-Parreño L, Soler AJ, Fair S. Media viscosity affects post-thaw ram sperm rheotactic behaviour. Reprod Domest Anim 2024; 59 Suppl 3:e14644. [PMID: 39396852 DOI: 10.1111/rda.14644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 10/15/2024]
Abstract
The aim of this experiment was to assess the effect of media viscosity on ram sperm motility, kinematics and rheotaxis in vitro by using methylcellulose as a media thickener. Frozen-thawed semen of three rams was thawed and diluted in Tyrode's albumin lactate pyruvate (TALP) media supplemented with 0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6% and 0.7% w/v of methylcellulose. Sperm motility and kinematic characteristics were analysed using computer-assisted sperm analysis (CASA). The rheotactic behaviour was assessed in a microfluidic channel, and the number of spermatozoa that passed the 10 mm point of a microfluidic channel over a 2min period against a flow rate of 30 μm/sec was assessed. The use of media with higher viscosity (higher levels of methylcellulose) resulted in significantly lower (p < .05) sperm motility and kinematic parameters. Moreover, higher levels of methylcellulose reduced (p < .05) the number of spermatozoa that exhibited positive rheotaxis. In conclusion, viscosity affected the kinematic properties and rheotactic behaviour of ram sperm.
Collapse
Affiliation(s)
| | - L Abril-Parreño
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia, IMIB-Pascual Parrilla, Murcia, Spain
| | - A J Soler
- SaBio IREC (UCLM-CSIC-JCCM), ETSIAMB, Albacete, Spain
| | - S Fair
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| |
Collapse
|
9
|
Belda-Perez R, Cimini C, Valbonetti L, Orsini T, D'Elia A, Massari R, Di Carlo C, Paradiso A, Maqsood S, Scavizzi F, Raspa M, Bernabò N, Barboni B. Exploring swine oviduct anatomy through micro-computed tomography: a 3D modeling perspective. Front Vet Sci 2024; 11:1456524. [PMID: 39290503 PMCID: PMC11405376 DOI: 10.3389/fvets.2024.1456524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
The oviduct plays a crucial role in the reproductive process, serving as the stage for fertilization and the early stages of embryonic development. When the environment of this organ has been mimicked, it has been shown to enhance in vitro embryo epigenetic reprogramming and to improve the yield of the system. This study explores the anatomical intricacies of two oviduct regions, the uterotubal junction (UTJ) and the ampullary-isthmic junction (AIJ) by using micro-computed tomography (MicroCT). In this study, we have characterized and 3D-reconstructed the oviduct structure, by measuring height and width of the oviduct's folds, along with the assessments of fractal dimension, lacunarity and shape factor. Results indicate distinct structural features in UTJ and AIJ, with UTJ displaying small, uniformly distributed folds and high lacunarity, while AIJ shows larger folds with lower lacunarity. Fractal dimension analysis reveals values for UTJ within 1.189-1.1779, while AIJ values range from 1.559-1.770, indicating differences in structural complexity between these regions. Additionally, blind sacs or crypts are observed, akin to those found in various species, suggesting potential roles in sperm sequestration or reservoir formation. These morphological differences align with functional variations and are essential for developing an accurate 3D model. In conclusion, this research provides information about the oviduct anatomy, leveraging MicroCT technology for detailed 3D reconstructions, which can significantly contribute to the understanding of geometric-morphological characteristics influencing functional traits, providing a foundation for a biomimetic oviduct-on-a-chip.
Collapse
Affiliation(s)
- Ramses Belda-Perez
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, Murcia, Spain
| | - Costanza Cimini
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Luca Valbonetti
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Annunziata D'Elia
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Roberto Massari
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Carlo Di Carlo
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Paradiso
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Seerat Maqsood
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Rome, Italy
| | - Nicola Bernabò
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Barbara Barboni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
10
|
Hansen PJ. Pressing needs and recent advances to enhance production of embryos in vitro in cattle. Anim Reprod 2024; 21:e20240036. [PMID: 39286365 PMCID: PMC11404885 DOI: 10.1590/1984-3143-ar2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/07/2024] [Indexed: 09/19/2024] Open
Abstract
Embryo transfer in cattle is an increasingly important technique for cattle production. Full attainment of the benefits of the technology will depend on overcoming hurdles to optimal performance using embryos produced in vitro. Given its importance, embryo technology research should become a global research priority for animal reproduction science. Among the goals of that research should be developing methods to increase the proportion of oocytes becoming embryos through optimization of in vitro oocyte maturation and in vitro fertilization, producing an embryo competent to establish and maintain pregnancy after transfer, and increasing recipient fertility through selection, management and pharmacological manipulation. The embryo produced in vitro is susceptible to epigenetic reprogramming and methods should be found to minimize deleterious epigenetic change while altering the developmental program of the resultant calf to increase its health and productivity. There are widening opportunities to rethink the technological basis for much of the current practices for production and transfer of embryos because of explosive advances in fields of bioengineering such as microfluidics, three-dimensional printing of cell culture materials, organoid culture, live-cell imaging, and cryopreservation.
Collapse
Affiliation(s)
- Peter James Hansen
- D.H. Barron Reproductive and Perinatal Biology Research Program, Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Balestrini PA, Sulzyk V, Jabloñski M, Schiavi-Ehrenhaus LJ, González SN, Ferreira JJ, Gómez-Elías MD, Pomata P, Luque GM, Krapf D, Cuasnicu PS, Santi CM, Buffone MG. Membrane potential hyperpolarization: a critical factor in acrosomal exocytosis and fertilization in sperm within the female reproductive tract. Front Cell Dev Biol 2024; 12:1386980. [PMID: 38803392 PMCID: PMC11128623 DOI: 10.3389/fcell.2024.1386980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Hyperpolarization of the membrane potential (Em), a phenomenon regulated by SLO3 channels, stands as a central feature in sperm capacitation-a crucial process conferring upon sperm the ability to fertilize the oocyte. In vitro studies demonstrated that Em hyperpolarization plays a pivotal role in facilitating the mechanisms necessary for the development of hyperactivated motility (HA) and acrosomal exocytosis (AE) occurrence. Nevertheless, the physiological significance of sperm Em within the female reproductive tract remains unexplored. As an approach to this question, we studied sperm migration and AE incidence within the oviduct in the absence of Em hyperpolarization using a novel mouse model established by crossbreeding of SLO3 knock-out (KO) mice with EGFP/DsRed2 mice. Sperm from this model displays impaired HA and AE in vitro. Interestingly, examination of the female reproductive tract shows that SLO3 KO sperm can reach the ampulla, mirroring the quantity of sperm observed in wild-type (WT) counterparts, supporting that the HA needed to reach the fertilization site is not affected. However, a noteworthy distinction emerges-unlike WT sperm, the majority of SLO3 KO sperm arrive at the ampulla with their acrosomes still intact. Of the few SLO3 KO sperm that do manage to reach the oocytes within this location, fertilization does not occur, as indicated by the absence of sperm pronuclei in the MII-oocytes recovered post-mating. In vitro, SLO3 KO sperm fail to penetrate the ZP and fuse with the oocytes. Collectively, these results underscore the vital role of Em hyperpolarization in AE and fertilization within their physiological context, while also revealing that Em is not a prerequisite for the development of the HA motility, essential for sperm migration through the female tract to the ampulla.
Collapse
Affiliation(s)
- Paula A. Balestrini
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Valeria Sulzyk
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Liza J. Schiavi-Ehrenhaus
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Soledad N. González
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Juan J. Ferreira
- Department of OB/GYN, Washington University School of Medicine, Saint Louis, MO, United States
| | - Matías D. Gómez-Elías
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Pablo Pomata
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Guillermina M. Luque
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Patricia S. Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Celia M. Santi
- Department of OB/GYN, Washington University School of Medicine, Saint Louis, MO, United States
| | - Mariano G. Buffone
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| |
Collapse
|
12
|
Wu H, Che J, Zheng W, Cheng D, Gong F, Lu G, Lin G, Dai C. Novel biallelic ASTL variants are associated with polyspermy and female infertility: A successful live birth following ICSI treatment. Gene 2023; 887:147745. [PMID: 37640117 DOI: 10.1016/j.gene.2023.147745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/06/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Fertilization of the egg by the sperm is the first vital stage of embryogenesis. In mammals, only one sperm is incorporated into the oocyte. Polyspermy is a key anomaly of fertilization that is generally lethal to the embryo. To date, only a few causative genes for polyspermy have been reported. In a recent study, a homozygous variant in astacin-like metalloendopeptidase (ASTL), which encodes the ovastacin enzyme that cleaves ZP2 to prevent polyspermy, was found to be associated with female infertility characterized by polyspermy in vitro. Herein, we identified two ASTL variants in a Chinese woman likely responsible for her primary infertility and polyspermy in in vitro fertilization. Both variants were located within the key catalytic domain and predicted to alter hydrogen bonds, potentially impairing protein stability. Moreover, expression and immunoblot analyses in CHO-K1 cells indicated abnormal ovastacin zymogen activation or decreased enzyme stability. Intracytoplasmic sperm injection treatment successfully bypassed the defect in polyspermy blocking and resulted in a live birth. Our study associates ASTL variants with human infertility and further supports the contribution of this gene to blocking polyspermy in humans. Our findings expand the spectrum of ASTL mutations and should facilitate the diagnosis of oocyte-borne polyspermy.
Collapse
Affiliation(s)
- Huixia Wu
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Jianfang Che
- School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Wei Zheng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Dehua Cheng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Fei Gong
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China
| | - Guangxiu Lu
- School of Medicine, Hunan Normal University, Changsha 410013, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China; National Engineering and Research Center of Human Stem Cell, Changsha 410205, China
| | - Ge Lin
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha 410078, China; National Engineering and Research Center of Human Stem Cell, Changsha 410205, China.
| | - Can Dai
- School of Medicine, Hunan Normal University, Changsha 410013, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China.
| |
Collapse
|
13
|
Sanchez-Rodriguez A, Idrovo IID, Rielo JA, Roldan ERS. Sperm Capacitation and Kinematics in Phodopus Hamsters. Int J Mol Sci 2023; 24:16093. [PMID: 38003282 PMCID: PMC10671044 DOI: 10.3390/ijms242216093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
This study was designed to analyze changes in the spermatozoa of three species of Phodopus hamsters incubated under different conditions. Cauda epididymal sperm were incubated for 4 h in modified Tyrode's medium containing albumin, lactate, pyruvate, and Hepes (mTALP-H), in the same medium with the addition of bicarbonate (mTALP-BH), or with bicarbonate and 20 ng/mL of progesterone (mTALP-BH+P4). Media with bicarbonate are believed to promote capacitation in rodent species. Sperm motility, viability, capacitation patterns, and kinematics were assessed at different times. Capacitation in live cells was quantified after staining with Hoechst 33258 and chlortetracycline. Patterns believed to correspond to non-capacitated cells (F pattern), capacitated, acrosome-intact cells (B pattern), and acrosome-reacted cells (AR pattern) were recognized. Kinematics were examined via computer-assisted sperm analysis (CASA). The results showed a decrease in total motility in all three species in different media, with a sharp decrease in progressive motility in bicarbonate-containing media (without or with progesterone), suggesting hyperactivated motion. However, none of the other signs of hyperactivation described in rodents (i.e., decrease in STR or LIN, together with an increase in ALH) were observed. F pattern cells diminished with time in all media and were generally lower in P. roborovskii and higher in P. campbelli. B pattern cells increased in mTALP-BH media in all species. Progesterone did not enhance the percentage of B pattern cells. Finally, AR pattern cells increased in all species incubated in different media, showing the highest percentage in P. roborovskii and the lowest in P. campbelli. Comparisons between media revealed that there were higher percentages of F pattern cells and lower percentages of B pattern cells over time in medium without bicarbonate (mTALP-H) in comparison to media containing bicarbonate (mTALP-BH; mTALP-BH+P4). Overall, changes consistent with the acquisition of capacitation and development of hyperactivated motility were found; however, further studies are required to better characterize media necessary to support the pathways involved in these processes in Phodopus species.
Collapse
Affiliation(s)
| | | | | | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Calle Jose Gutierrez Abascal 2, 28006 Madrid, Spain; (A.S.-R.)
| |
Collapse
|
14
|
Agudo-Rios C, Sanchez-Rodriguez A, Idrovo IID, Laborda-Gomariz JÁ, Soler AJ, Teves ME, Roldan ERS. Sperm Chromatin Status and DNA Fragmentation in Mouse Species with Divergent Mating Systems. Int J Mol Sci 2023; 24:15954. [PMID: 37958937 PMCID: PMC10648696 DOI: 10.3390/ijms242115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Sperm DNA integrity and chromatin status serve as pivotal indicators of sperm quality, given their intricate link to sperm function, embryo development, and overall fertility. Defects in chromatin compaction, which are often associated with compromised protamine content, can lead to damaged DNA strands. In this study, the chromatin status and possible correlation with DNA damage was assessed in males of three mouse species: Mus musculus, M. spretus, and M. spicilegus. We employed various staining methods, including aniline blue, methylene blue (Diff-Quik), toluidine blue, and chromomycin A3, to assess chromatin compaction in cauda epididymal sperm. Samples were also analyzed by the sperm chromatin structure assay (SCSA) to estimate DNA fragmentation (%tDFI, %HDS). Analyses were carried out on freshly collected sperm and cells incubated for 3 h in a HEPES-buffered modified Tyrode's medium simulating conditions of the female reproductive tract. Notably, the analysis of chromatin status yielded minimal abnormal values across all three species employing diverse methodologies. SCSA analyses revealed distinct variations in %tDFI between species. Following sperm incubation, the percentages of sperm stained with methylene blue exhibited differences among the species and were significantly correlated to the DNA fragmentation index. HDS demonstrated correlations with the percentages of sperm stained by aniline blue, methylene blue, and chromomycin A3. Overall, chromatin compaction was high across all species, with limited differences among them. The relationship between chromatin status and DNA integrity appeared to be related to levels of sperm competition among species.
Collapse
Affiliation(s)
- Clara Agudo-Rios
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Ingrid I. D. Idrovo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | | | - Ana J. Soler
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario, 02071 Albacete, Spain
| | - Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| |
Collapse
|
15
|
Lin HLH, Mermillod P, Grasseau I, Brillard JP, Gérard N, Reynaud K, Chen LR, Blesbois E, Carvalho AV. Is glycerol a good cryoprotectant for sperm cells? New exploration of its toxicity using avian model. Anim Reprod Sci 2023; 258:107330. [PMID: 37734123 DOI: 10.1016/j.anireprosci.2023.107330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Glycerol is a cryoprotectant used widely for the cryopreservation of animal sperm, but it is linked to a decrease in fertility. The mechanism underlying the negative effects of glycerol remains unclear. Therefore, in this study, we aimed to gain a better understanding by using the chicken model. First, we investigated the impact of increasing the concentration of glycerol during insemination on hen fertility. Our findings revealed that 2% glycerol resulted in partial infertility, while 6% glycerol led to complete infertility. Subsequently, we examined the ability of sperm to colonize sperm storage tubules (SST) during in vivo insemination and in vitro incubation. The sperm used in the experiment were stained with Hoechst and contained 0, 2, or 6% glycerol. Furthermore, we conducted perivitelline membrane lysis tests and investigated sperm motility, mitochondrial function, ATP concentration, membrane integrity, and apoptosis after 60 min of incubation with different glycerol concentrations (0%, 1%, 2%, 6%, and 11%) at two temperatures to simulate pre-freezing (4 °C) and post-insemination (41 °C) conditions. Whereas 2% glycerol significantly reduced 50% of sperm containing SST, 6% glycerol completely inhibited SST colonization in vivo. On the other hand, in vitro incubation of sperm with SST revealed no effect of 2% glycerol, and 6% glycerol showed only a 17% reduction in sperm-filled SST. Moreover, glycerol reduced sperm-egg penetration rates and also affected sperm motility, bioenergetic metabolism, and cell death at 4 °C. These effects were observed when the concentration of glycerol exceeded 6%. Furthermore, at 41 °C, glycerol caused even greater damage, particularly in terms of reducing sperm motility. These data altogether reveal important effects of glycerol on sperm biology, sperm migration, SST colonization, and oocyte penetration. This suggests that glycerol plays a role in reducing fertility and presents opportunities for improving sperm cryopreservation.
Collapse
Affiliation(s)
- Hsiu-Lien Herbie Lin
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380 Nouzilly, France; Division of Physiology, LRI, COA, 71246 Tainan, Taiwan
| | - Pascal Mermillod
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380 Nouzilly, France
| | | | | | - Nadine Gérard
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Karine Reynaud
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Lih-Ren Chen
- Division of Physiology, LRI, COA, 71246 Tainan, Taiwan
| | | | | |
Collapse
|
16
|
Douet C, Grasseau I, Vitorino Carvalho A. Avian sperm-borne RNAs: optimisation of a new isolation protocol. Br Poult Sci 2023; 64:641-649. [PMID: 37266980 DOI: 10.1080/00071668.2023.2220128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
1. Sperm-borne RNAs are involved in sperm and embryonic protein translation, the regulation of early development and the epigenetic inheritance of the paternal phenotype. Sperm-borne RNA purification protocols generally include a cell purification stage to discard contamination by somatic cells. In avian species, no protocol is currently available to isolate all the populations composing sperm-borne RNAs.2. This study evaluated the presence of somatic cells in semen samples of chickens and quails using visual examination after fluorescent nuclei staining. The efficiency of somatic cell lysis buffer (SCLB) on chicken liver cells and its impacts on chicken sperm cell integrity was explored. Three different approaches were tested to isolate RNA: two developed for mammalian sperm cells and a commercial kit for somatic cells. The efficiency and reliability of each approach was determined based on RNA quality and purity. Eventually, the presence of miRNA and mRNA in purified avian sperm-borne RNAs was investigated by RT-(q)PCR.3. No somatic cells were found in chicken and quail semen. The SCLB totally lysed chicken liver cells but also induced sperm cell necrosis. Consequently, this treatment wasn't performed on samples prior to RNA isolation. Among the tested RNA purification protocols, the commercial one was the least variable and isolated RNA with the highest purity levels. No DNA contamination was observed. Furthermore, the samples contained miRNA and mRNA already known as present in mammalian sperm cells (gga-miR-100-5p, gga-miR-191-5p, GAPDH and PLCZ1), but mRNAs associated with leucocytes (CD4) and Sertoli cells (SOX4, CLDN11) were not detected. This protocol was successfully applied to quail sperm cells.4. Altogether, the study reveals that it is unnecessary to pre-treat samples to remove somatic cell contamination before RNA purification and successfully describes an isolation protocol for sperm-borne RNAs, including small non-coding and long coding RNAs, in two distinct avian species highly valuable as biological models.
Collapse
Affiliation(s)
- C Douet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - I Grasseau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | |
Collapse
|
17
|
Traini G, Tamburrino L, Ragosta ME, Guarnieri G, Morelli A, Vignozzi L, Baldi E, Marchiani S. Effects of Benzo[a]pyrene on Human Sperm Functions: An In Vitro Study. Int J Mol Sci 2023; 24:14411. [PMID: 37833859 PMCID: PMC10572991 DOI: 10.3390/ijms241914411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Benzo(a)pyrene (BaP) is considered one of the most dangerous air pollutants for adverse health effects, including reproductive toxicity. It is found both in male and female reproductive fluids likely affecting spermatozoa after the selection process through cervical mucus, a process mimicked in vitro with the swim-up procedure. In vitro effects of BaP (1, 5, 10 µM) were evaluated both in unselected and swim-up selected spermatozoa after 3 and 24 h of incubation. BaP reduced total, progressive and hyperactivated motility and migration in a viscous medium both in swim-up selected and unselected spermatozoa. Viability was not significantly affected in swim-up selected but was reduced in unselected spermatozoa. In swim-up selected spermatozoa, increases in the percentage of spontaneous acrosome reaction and DNA fragmentation were observed after 24 h of incubation, whereas no differences between the control and BaP-treated samples were observed in caspase-3 and -7 activity, indicating no effects on apoptotic pathways. ROS species, evaluated by staining with CellROX® Orange and Dihydroethidium, did not differ in viable spermatozoa after BaP treatment. Conversely, the percentage of unviable ROS-positive spermatozoa increased. Our study suggests that BaP present in male and female genital fluids may heavily affect reproductive functions of human spermatozoa.
Collapse
Affiliation(s)
- Giulia Traini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.T.); (L.V.)
| | - Lara Tamburrino
- Andrology, Women’s Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy;
| | - Maria Emanuela Ragosta
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (M.E.R.); (G.G.); (A.M.)
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (M.E.R.); (G.G.); (A.M.)
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (M.E.R.); (G.G.); (A.M.)
| | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.T.); (L.V.)
- Andrology, Women’s Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy;
| | - Elisabetta Baldi
- Andrology, Women’s Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (M.E.R.); (G.G.); (A.M.)
| | - Sara Marchiani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.T.); (L.V.)
- Andrology, Women’s Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi University Hospital, 50134 Florence, Italy;
| |
Collapse
|
18
|
Cavarocchi E, Sayou C, Lorès P, Cazin C, Stouvenel L, El Khouri E, Coutton C, Kherraf ZE, Patrat C, Govin J, Thierry-Mieg N, Whitfield M, Ray PF, Dulioust E, Touré A. Identification of IQCH as a calmodulin-associated protein required for sperm motility in humans. iScience 2023; 26:107354. [PMID: 37520705 PMCID: PMC10382937 DOI: 10.1016/j.isci.2023.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Sperm fertilization ability mainly relies on proper sperm progression through the female genital tract and capacitation, which involves phosphorylation signaling pathways triggered by calcium and bicarbonate. We performed exome sequencing of an infertile asthenozoospermic patient and identified truncating variants in MAP7D3, encoding a microtubule-associated protein, and IQCH, encoding a protein of unknown function with enzymatic and signaling features. We demonstrate the deleterious impact of both variants on sperm transcripts and proteins from the patient. We show that, in vitro, patient spermatozoa could not induce the phosphorylation cascades associated with capacitation. We also provide evidence for IQCH association with calmodulin, a well-established calcium-binding protein that regulates the calmodulin kinase. Notably, we describe IQCH spatial distribution around the sperm axoneme, supporting its function within flagella. Overall, our work highlights the cumulative pathological impact of gene mutations and identifies IQCH as a key protein required for sperm motility and capacitation.
Collapse
Affiliation(s)
- Emma Cavarocchi
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Camille Sayou
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Patrick Lorès
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
| | - Caroline Cazin
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- CHU de Grenoble Alpes, UM GI-DPI, 38000 Grenoble, France
| | - Laurence Stouvenel
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
| | - Elma El Khouri
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
| | - Charles Coutton
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | | | - Catherine Patrat
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
- Laboratoire d’Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Jérôme Govin
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | | | - Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Pierre F. Ray
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- CHU de Grenoble Alpes, UM GI-DPI, 38000 Grenoble, France
| | - Emmanuel Dulioust
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, 75014 Paris, France
- Laboratoire d’Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
| | - Aminata Touré
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
19
|
Massa E, Gola A, Moriconi M, Lo Celso A, Madariaga MJ, Pelusa F, Ghersevich S. Lactoferrin affects in vitro and in vivo fertilization and implantation in rats. Biometals 2023; 36:575-585. [PMID: 36326924 DOI: 10.1007/s10534-022-00460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Lactoferrin (LF) is present in the oviduct, reduces in vitro gamete interaction, and affects sperm capacitation parameters in humans. Our aim was to investigate LF actions on further stages of the reproductive process in the Wistar rat model. Motile sperm were obtained from cauda epididymis to assess LF binding by direct immunofluorescence and LF effect on acrosome reaction (AR) using a Coomassie blue staining. After ovarian hyperstimulation of female rats, oocytes were surgically recovered and coincubated with motile sperm and different doses of LF to estimate the in vitro fertilization (IVF) rate. To evaluate the LF effect on pregnancy and embryo implantation, female rats (80 days old) were placed with males and received daily intraperitoneal injections of LF during one complete estrous cycle (pregnancy experiments) or during the first 8 gestational days (implantation experiments). The number of pregnant females and live born pups was recorded after labor. Moreover, the number of implantation sites was registered during the implantation period. LF was able to bind to the sperm head, midpiece, and tail. 10 and 100 μg/ml LF stimulated the AR but reduced the IVF rate. The administration of 100 and 200 mg/kg LF significantly decreased the number of implantation sites and the litter size, whereas 100 mg/kg LF declined the pregnancy rate. The results suggest that LF might interfere with the reproductive process, possibly interfering with gamete interaction or inducing a premature AR; nevertheless, the mechanisms involved are yet to be elucidated.
Collapse
Affiliation(s)
- Estefanía Massa
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Aldana Gola
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Marianela Moriconi
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Agustina Lo Celso
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - María José Madariaga
- Area of Morphology, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Fabián Pelusa
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina
| | - Sergio Ghersevich
- Area of Clinical Biochemistry, Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Santa Fe, Argentina.
| |
Collapse
|
20
|
Speckhart SL, Oliver MA, Ealy AD. Developmental Hurdles That Can Compromise Pregnancy during the First Month of Gestation in Cattle. Animals (Basel) 2023; 13:1760. [PMID: 37889637 PMCID: PMC10251927 DOI: 10.3390/ani13111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 10/29/2023] Open
Abstract
Several key developmental events are associated with early embryonic pregnancy losses in beef and dairy cows. These developmental problems are observed at a greater frequency in pregnancies generated from in-vitro-produced bovine embryos. This review describes critical problems that arise during oocyte maturation, fertilization, early embryonic development, compaction and blastulation, embryonic cell lineage specification, elongation, gastrulation, and placentation. Additionally, discussed are potential remediation strategies, but unfortunately, corrective actions are not available for several of the problems being discussed. Further research is needed to produce bovine embryos that have a greater likelihood of surviving to term.
Collapse
Affiliation(s)
| | | | - Alan D. Ealy
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.S.); (M.A.O.)
| |
Collapse
|
21
|
Soto-Heras S, Sakkas D, Miller DJ. Sperm selection by the oviduct: perspectives for male fertility and assisted reproductive technologies†. Biol Reprod 2023; 108:538-552. [PMID: 36625382 PMCID: PMC10106845 DOI: 10.1093/biolre/ioac224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
The contribution of sperm to embryogenesis is gaining attention with up to 50% of infertility cases being attributed to a paternal factor. The traditional methods used in assisted reproductive technologies for selecting and assessing sperm quality are mainly based on motility and viability parameters. However, other sperm characteristics, including deoxyribonucleic acid integrity, have major consequences for successful live birth. In natural reproduction, sperm navigate the male and female reproductive tract to reach and fertilize the egg. During transport, sperm encounter many obstacles that dramatically reduce the number arriving at the fertilization site. In humans, the number of sperm is reduced from tens of millions in the ejaculate to hundreds in the Fallopian tube (oviduct). Whether this sperm population has higher fertilization potential is not fully understood, but several studies in animals indicate that many defective sperm do not advance to the site of fertilization. Moreover, the oviduct plays a key role in fertility by modulating sperm transport, viability, and maturation, providing sperm that are ready to fertilize at the appropriate time. Here we present evidence of sperm selection by the oviduct with emphasis on the mechanisms of selection and the sperm characteristics selected. Considering the sperm parameters that are essential for healthy embryonic development, we discuss the use of novel in vitro sperm selection methods that mimic physiological conditions. We propose that insight gained from understanding how the oviduct selects sperm can be translated to assisted reproductive technologies to yield high fertilization, embryonic development, and pregnancy rates.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - David J Miller
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
22
|
Liu W, Gong T, Xu Y. The co-expression of steroidogenic enzymes with T1R3 during testicular development in the Congjiang Xiang pig. Anim Reprod Sci 2023; 251:107216. [PMID: 37011421 DOI: 10.1016/j.anireprosci.2023.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 12/07/2022] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Testosterone is a key crucial hormone synthesized by steroidogenic enzymes that initiate and maintain spermatogenesis and secondary sexual characteristics in adult males. The taste receptor family 1 subunit 3 (T1R3) is reported to be associated with male reproduction. T1R3 can regulate the expressions of steroidogenic enzymes and affect testosterone synthesis. In this study, we addressed the question of whether the expression of steroid synthase was associated with T1R3 and its downstream-tasting molecules during testicular development. The results showed an overall upward trend in testosterone and morphological development in testes from Congjiang Xiang pigs from pre-puberty to sexual maturity. Gene expression levels of testicular steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), cytochrome P450c17 (CYP17A1) and 17β-hydroxysteroid dehydrogenase (17β-HSD) were increased from pre-puberty to sexual maturity. Protein expression changes of CYP17A1 and 3β-HSD were consistent with mRNA. The relative abundance of tasting molecules (TAS1R3, phospholipase Cβ2, PLCβ2) was increased from pre-puberty to puberty (P < 0.05), with no further significant changes in expression from puberty to sexual maturity. Steroidogenic enzymes (3β-HSD and CYP17A1) were strongly detected in Leydig cells from pre-puberty to sexual maturity, while tasting molecules were localized in Leydig cells and spermatogenic cells. Correlation analysis showed that the genes mentioned above (except for PLCβ2) were positively correlated with testosterone levels and morphological characteristics of the testes at different developmental stages of Congjiang Xiang pigs. These results suggest that steroidogenic enzymes regulate testosterone synthesis and testicular development, and that taste receptor T1R3, but not PLCβ2, may associate with this process.
Collapse
Affiliation(s)
- Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China.
| | - Yongjian Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| |
Collapse
|
23
|
Weber WD, Fisher HS. Sexual selection drives the coevolution of male and female reproductive traits in Peromyscus mice. J Evol Biol 2023; 36:67-81. [PMID: 36480400 PMCID: PMC10107626 DOI: 10.1111/jeb.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 12/13/2022]
Abstract
When females mate with multiple partners within a single reproductive cycle, sperm from rival males may compete for fertilization of a limited number of ova, and females may bias the fertilization of their ova by particular sperm. Over evolutionary timescales, these two forms of selection shape both male and female reproductive physiology when females mate multiply, yet in monogamous systems, post-copulatory sexual selection is weak or absent. Here, we examine how divergent mating strategies within a genus of closely related mice, Peromyscus, have shaped the evolution of reproductive traits. We show that in promiscuous species, males exhibit traits associated with increased sperm production and sperm swimming performance, and females exhibit traits that are predicted to limit sperm access to their ova including increased oviduct length and a larger cumulus cell mass surrounding the ova, compared to monogamous species. Importantly, we found that across species, oviduct length and cumulus cell density are significantly correlated with sperm velocity, but not sperm count or relative testes size, suggesting that these female traits may have coevolved with increased sperm quality rather than quantity. Taken together, our results highlight how male and female traits evolve in concert and respond to changes in the level of post-copulatory sexual selection.
Collapse
Affiliation(s)
| | - Heidi S Fisher
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
24
|
Ritagliati C, Ayoub S, Balbach M, Buck J, Levin LR. In vivo characterization of sAC null sperm. Front Cell Dev Biol 2023; 11:1134051. [PMID: 37152282 PMCID: PMC10160483 DOI: 10.3389/fcell.2023.1134051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Targeted disruption of the soluble adenylyl cyclase (ADCY10; sAC) gene results in male-specific sterility without affecting spermatogenesis, mating behavior, or spermatozoa morphology and count; however, it dramatically impairs sperm motility and prevents capacitation. These phenotypes were identified in sperm from sAC null mice surgically extracted from the epididymis and studied in vitro. Epididymal sperm are dormant, and never exposed to physiological activators in semen or the female reproductive tract. To study sAC null sperm under conditions which more closely resemble natural fertilization, we explored phenotypes of ejaculated sAC null sperm in vivo post-coitally as well as ex vivo, collected from the female reproductive tract. Ex vivo ejaculated sAC null sperm behaved similarly to epididymal sAC null sperm, except with respect to the physiologically induced acrosome reaction. These studies suggest there is a sAC-independent regulation of acrosome responsiveness induced upon ejaculation or exposure to factors in the female reproductive tract. We also studied the behavior of sAC null sperm in vivo post-coitally by taking advantage of transgenes with fluorescently labelled sperm. Transgenes expressing GFP in the acrosome and DsRed2 in the mitochondria located in the midpiece of sperm (DsRed2/Acr3-EGFP) allow visualization of sperm migration through the female reproductive tract after copulation. As previously reported, sperm from wild type (WT) double transgenic mice migrated from the uterus through the uterotubular junction (UTJ) into the oviduct within an hour post-copulation. In contrast, sperm from sAC null double transgenic mice were only found in the uterus. There were no sAC null sperm in the oviduct, even 8 h after copulation. These results demonstrate that sAC KO males are infertile because their sperm do not migrate to the fertilization site.
Collapse
|
25
|
Umezu K, Larina IV. Optical coherence tomography for dynamic investigation of mammalian reproductive processes. Mol Reprod Dev 2023; 90:3-13. [PMID: 36574640 PMCID: PMC9877170 DOI: 10.1002/mrd.23665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022]
Abstract
The biological events associated with mammalian reproductive processes are highly dynamic and tightly regulated by molecular, genetic, and biomechanical factors. Implementation of live imaging in reproductive research is vital for the advancement of our understanding of normal reproductive physiology and for improving the management of reproductive disorders. Optical coherence tomography (OCT) is emerging as a promising tool for dynamic volumetric imaging of various reproductive processes in mice and other animal models. In this review, we summarize recent studies employing OCT-based approaches toward the investigation of reproductive processes in both, males and females. We describe how OCT can be applied to study structural features of the male reproductive system and sperm transport through the male reproductive tract. We review OCT applications for in vitro and dynamic in vivo imaging of the female reproductive system, staging and tracking of oocytes and embryos, and investigations of the oocyte/embryo transport through the oviduct. We describe how the functional OCT approach can be applied to the analysis of cilia dynamics within the male and female reproductive systems. We also discuss the areas of research, where OCT could find potential applications to progress our understanding of normal reproductive physiology and reproductive disorders.
Collapse
Affiliation(s)
- Kohei Umezu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Irina V Larina
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
26
|
Losano JDDA, Daigneault BW. Pharmacological perturbation of peroxisome-proliferator-activated receptor gamma alters motility and mitochondrial function of bovine sperm. Andrology 2023; 11:155-166. [PMID: 36198578 DOI: 10.1111/andr.13308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Sperm transit through the female reproductive relies upon maintenance of sperm motility. Peroxisome-proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear transcription factor with roles in glucose metabolism and reproductive processes including placental function. PPARγ roles in the mammalian postejaculatory sperm function are incompletely defined. OBJECTIVES Determine expression, localization, and functions of PPARγ in postejaculatory bovine sperm. MATERIALS AND METHODS Frozen-thawed bovine sperm from three to four different bulls were pooled and subjected to immunofluorescence and western blot for detection and localization of PPARγ. Functions in sperm energetics were explored through the addition of pharmacological inhibition (GW; GW9662) and activation (Ros; Rosiglitazone) in the culture medium at 0 and 24 h under non-capacitating conditions. Samples were analyzed for sperm kinematics (CASA) and mitochondrial membrane potential (MMP; JC-1 fluorophore). RESULTS PPARγ was detected in bovine sperm and co-localized to the acrosome with re-localization to the equatorial region in acrosome-compromised sperm. The addition of Ros 50 µM for 24 h maintained superior total and progressive motility of sperm compared to vehicle control (VC-DMSO 0.01%). The PPARγ antagonist GW 1 µM was detrimental to both total and progressive motility. A challenge experiment (Ros + GW) partially rescued total and progressive motility phenotypes observed with GW incubation. GW-treated samples had a lower number of sperm with high MMP at 24 h compared to Ros or VC. The negative GW MMP phenotype was reversed with the addition of Ros + GW. Likewise, GW-treated samples had more sperm with low MMP compared to VC and Ros, and this phenotype was partially restored with Ros + GW. CONCLUSION PPARγ is expressed in post-ejaculatory bovine sperm with regulatory roles in sperm motility and MMP. These findings implicate PPARγ as a novel regulator of postejaculatory mammalian sperm energetics through non-canonical signaling mechanisms.
Collapse
|
27
|
Mellado M, Treviño LM, Chavez MI, Véliz FG, Macías-Cruz U, Avendaño-Reyes L, García JE. Fertility of Holstein cows and heifers submitted to timed artificial insemination and receiving one or two doses (12 h apart) of semen. Reprod Domest Anim 2023; 58:39-47. [PMID: 36073154 DOI: 10.1111/rda.14250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/03/2022] [Indexed: 01/07/2023]
Abstract
The objective of this retrospective study was to assess the effect of receiving a single (n = 50,285) or double (n = 4392) artificial insemination (AI), 12 h apart, within a timed artificial insemination protocol on pregnancy per AI (P/AI) in nulliparous heifers (inseminated with either sex-sorted or conventional semen) and pluriparous Holstein cows in a commercial dairy herd. Also, this study aimed to investigate the relationship between temperature-humidity index (THI) and time of the first AI and fertility. Fertility of cows receiving two AI with normothermia (THI <68) was higher (p < .05) than cows receiving a single AI (42.9% vs. 36.4%). P/AI of cows receiving two AI with severe heat stress (THI >85) was higher (p < .05) than cows receiving a single AI (21.0% vs. 12.6%). Regardless of heat stress conditions, applying the first AI in the morning increased (p < .05) P/AI in cows with double AI than in cows whose first AI occurred in the afternoon (38.4 vs. 33.3%). With moderate heat stress, and sexed-sorted semen, P/AI to timed AI was higher (65.0 vs. 51.9%; p < .05) in heifers receiving double AI than those serviced once. It was concluded that double AI, 12 h apart, enhanced fertility at timed AI than herd mates with a single AI, particularly with heat stress at breeding.
Collapse
Affiliation(s)
- Miguel Mellado
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, Saltillo, Mexico
| | - Lucía M Treviño
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, Saltillo, Mexico
| | - María I Chavez
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico
| | - Francisco G Véliz
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, Torreon, Mexico
| | - Ulises Macías-Cruz
- Institute of Agriculture Science, Autonomous University of Baja California, Mexicali, Mexico
| | - Leonel Avendaño-Reyes
- Institute of Agriculture Science, Autonomous University of Baja California, Mexicali, Mexico
| | - José E García
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, Saltillo, Mexico
| |
Collapse
|
28
|
Wang Z, Wei H, Wu Z, Zhang X, Sun Y, Gao L, Zhang W, Su YQ, Zhang M. The oocyte cumulus complex regulates mouse sperm migration in the oviduct. Commun Biol 2022; 5:1327. [PMID: 36463362 PMCID: PMC9719508 DOI: 10.1038/s42003-022-04287-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
As the time of ovulation draws near, mouse spermatozoa move out of the isthmic reservoir, which is a prerequisite for fertilization. However, the molecular mechanism remains unclear. The present study revealed that mouse cumulus cells of oocytes-cumulus complexes (OCCs) expressed transforming growth factor-β ligand 1 (TGFB1), whereas ampullary epithelial cells expressed the TGF-β receptors, TGFBR1 and TGFBR2, and all were upregulated by luteinizing hormone (LH)/human chorionic gonadotropin (hCG). OCCs and TGFB1 increased natriuretic peptide type C (NPPC) expression in cultured ampullae via TGF-β signaling, and NPPC treatment promoted spermatozoa moving out of the isthmic reservoir of the preovulatory oviducts. Deletion of Tgfb1 in cumulus cells and Tgfbr2 in ampullary epithelial cells blocked OCC-induced NPPC expression and spermatozoa moving out of the isthmic reservoir, resulting in compromised fertilization and fertility. Oocyte-derived paracrine factors were required for promoting cumulus cell expression of TGFB1. Therefore, oocyte-dependent and cumulus cell-derived TGFB1 promotes the expression of NPPC in oviductal ampulla, which is critical for sperm migration in the oviduct and subsequent fertilization.
Collapse
Affiliation(s)
- Zhijuan Wang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Hongwei Wei
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Zhanying Wu
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Xiaodan Zhang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Yanli Sun
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Longwei Gao
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Wenqing Zhang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - You-Qiang Su
- grid.27255.370000 0004 1761 1174Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237 P. R. China
| | - Meijia Zhang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| |
Collapse
|
29
|
Integrative Proteomics and Transcriptomics Profiles of the Oviduct Reveal the Prolificacy-Related Candidate Biomarkers of Goats ( Capra hircus) in Estrous Periods. Int J Mol Sci 2022; 23:ijms232314888. [PMID: 36499219 PMCID: PMC9737051 DOI: 10.3390/ijms232314888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The oviduct is a dynamic reproductive organ for mammalian reproduction and is required for gamete storage, maturation, fertilization, and early embryonic development, and it directly affects fecundity. However, the molecular regulation of prolificacy occurring in estrous periods remain poorly understood. This study aims to gain a better understanding of the genes involved in regulating goat fecundity in the proteome and transcriptome levels of the oviducts. Twenty female Yunshang black goats (between 2 and 3 years old, weight 52.22 ± 0.43 kg) were divided into high- and low-fecundity groups in the follicular (FH and FL, five individuals per group) and luteal (LH and LL, five individuals per group) phases, respectively. The DIA-based high-resolution mass spectrometry (MS) method was used to quantify proteins in twenty oviducts. A total of 5409 proteins were quantified, and Weighted gene co-expression network analysis (WGCNA) determined that the tan module was highly associated with the high-fecundity trait in the luteal phase, and identified NUP107, ANXA11, COX2, AKP13, and ITF140 as hub proteins. Subsequently, 98 and 167 differentially abundant proteins (DAPs) were identified in the FH vs. FL and LH vs. LL comparison groups, respectively. Parallel reaction monitoring (PRM) was used to validate the results of the proteomics data, and the hub proteins were analyzed with Western blot (WB). In addition, biological adhesion and transporter activity processes were associated with oviductal function, and several proteins that play roles in oviductal communication with gametes or embryos were identified, including CAMSAP3, ITGAM, SYVN1, EMG1, ND5, RING1, CBS, PES1, ELP3, SEC24C, SPP1, and HSPA8. Correlation analysis of proteomics and transcriptomic revealed that the DAPs and differentially expressed genes (DEGs) are commonly involved in the metabolic processes at the follicular phase; they may prepare the oviductal microenvironment for gamete reception; and the MAP kinase activity, estrogen receptor binding, and angiotensin receptor binding terms were enriched in the luteal phase, which may be actively involved in reproductive processes. By generating the proteome data of the oviduct at two critical phases and integrating transcriptome analysis, we uncovered novel aspects of oviductal gene regulation of fecundity and provided a reference for other mammals.
Collapse
|
30
|
Cordero-Martínez J, Jimenez-Gutierrez GE, Aguirre-Alvarado C, Alacántara-Farfán V, Chamorro-Cevallos G, Roa-Espitia AL, Hernández-González EO, Rodríguez-Páez L. Participation of signaling proteins in sperm hyperactivation. Syst Biol Reprod Med 2022; 68:315-330. [DOI: 10.1080/19396368.2022.2122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - Charmina Aguirre-Alvarado
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Unidad de Investigación Médica en Inmunología e Infectología Centro Médico Nacional La Raza, IMSS, Ciudad de México, Mexico
| | - Verónica Alacántara-Farfán
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica Departamento de Farmacia Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ana L. Roa-Espitia
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Enrique O. Hernández-González
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Lorena Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
31
|
Liu W, Gong T, Shi F, Xu H, Chen X. Taste receptors affect male reproduction by influencing steroid synthesis. Front Cell Dev Biol 2022; 10:956981. [PMID: 36035992 PMCID: PMC9407969 DOI: 10.3389/fcell.2022.956981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
For the male genetic materials to reach and fertilize the egg, spermatozoa must contend with numerous environmental changes in a complex and highly sophisticated process from generation in the testis, and maturation in the epididymis to capacitation and fertilization. Taste is an ancient chemical sense that has an essential role in the animal's response to carbohydrates in the external environment and is involved in the body's energy perception. In recent years, numerous studies have confirmed that taste signaling factors (taste receptor families 1, 2 and their downstream molecules, Gα and PLCβ2) are distributed in testes and epididymis tissues outside the oral cavity. Their functions are directly linked to spermatogenesis, maturation, and fertilization, which are potential targets for regulating male reproduction. However, the specific signaling mechanisms of the taste receptors during these processes remain unknown. Herein, we review published literature and experimental results from our group to establish the underlying signaling mechanism in which the taste receptor factors influence testosterone synthesis in the male reproduction.
Collapse
Affiliation(s)
- Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China,College of Animal Science, Guizhou University, Guiyang, China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China,College of Animal Science, Guizhou University, Guiyang, China,*Correspondence: Ting Gong,
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China,College of Animal Science, Guizhou University, Guiyang, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China,College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
32
|
Vernaz ZJ, Lottero-Leconte RM, Alonso CAI, Rio S, Morales MF, Arroyo-Salvo C, Valiente CC, Lovaglio Diez M, Bogetti ME, Arenas G, Rey-Valzacchi G, Perez-Martinez S. Evaluation of sperm integrin α5β1 as a potential marker of fertility in humans. PLoS One 2022; 17:e0271729. [PMID: 35917320 PMCID: PMC9345343 DOI: 10.1371/journal.pone.0271729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Sperm selection for assisted reproduction techniques is generally based on basic parameters, while key aspects of sperm competence and its journey from the deposition site to the fertilization site are overlooked. Consequently, identifying molecular markers in spermatozoa that can efficiently predict the fertility of a semen sample could be of great interest, particularly in cases of idiopathic male infertility. When spermatozoa reach the female reproductive tract, it provides to them the cellular and molecular microenvironment needed to acquire fertilizing ability. In this sense, considering the role that integrin α5β1 of spermatozoa plays in reproduction-related events, we investigated the correlation between the subcellular localization of sperm integrin α5β1 and early embryo development outcome after in vitro fertilization (IVF) procedures in human. Twenty-four semen samples from normozoospermic men and metaphase II (MII) oocytes from healthy women aged under 38 years, from couples who underwent IVF cycles, were used in this work. Sperm α5β1 localization was evaluated by immunofluorescence assay using an antibody against integrin α5 subunit. Integrin α5β1 was mainly localized in the sperm acrosomal region (45.33±7.89%) or the equatorial segment (30.12±7.43%). The early embryo development rate (data obtained from the Fertility Center) correlated positively with the localization of α5β1 in the acrosomal region (number of usable embryos / inseminated oocytes: ρ = 0.75; p<0.01 and number of usable embryos/total number of two pronuclear zygotes: ρ = 0.80; p<0.01). However, this correlation was not significant when the equatorial segment mark was evaluated. In addition, human sperm released from co-culture with bovine oviductal epithelial cells (BOEC) showed a significant enrichment in the acrosomal localization pattern of α5β1 compared to those sperm that were not co-cultured with BOEC (85.20±5.35% vs 35.00±17.09%, respectively, p<0.05). In conclusion, the evaluation of sperm integrin α5β1 immunolocalization could be a useful tool to select sperm with fertilizing ability from human semen samples before IVF procedures.
Collapse
Affiliation(s)
- Zoilo José Vernaz
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Raquel María Lottero-Leconte
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Carlos Agustín Isidro Alonso
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Sofía Rio
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | | | - Camila Arroyo-Salvo
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Carla C. Valiente
- PROCREARTE- Red de Medicina Reproductiva y Molecular, Buenos Aires, Argentina
| | - María Lovaglio Diez
- PROCREARTE- Red de Medicina Reproductiva y Molecular, Buenos Aires, Argentina
| | - María Eugenia Bogetti
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Gabriela Arenas
- PROCREARTE- Red de Medicina Reproductiva y Molecular, Buenos Aires, Argentina
| | | | - Silvina Perez-Martinez
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Universidad de Buenos Aires/CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
33
|
Wang N, Yang M, He D, Li X, Zhang X, Han B, Liu C, Hai C, Li G, Zhao Y. TMT-based quantitative N-glycoproteomic analysis reveals glycoprotein protection can improve the quality of frozen bovine sperm. Int J Biol Macromol 2022; 218:168-180. [PMID: 35870621 DOI: 10.1016/j.ijbiomac.2022.07.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
Abstract
Cryopreservation of bovine semen plays a vital role in accelerating genetic improvement and elite breeding, but it has a detrimental effect on sperm quality, resulting in the decline of the reproductive efficiency. The glycosylation modification of protein has irreplaceable roles in spermatozoa. Herein, the effect of cryopreservation on glycoproteins of bovine spermatozoa has been studied for the first time using a tandem mass tag (TMT)-labeled quantitative glycoproteome. A total of 2598 proteins and 492 glycoproteins were identified, including 83 different expression proteins (DEPs) and 44 different expression glycosylated proteins (DEGPs) between fresh and frozen spermatozoa. Thirty-three DEPs are glycoproteins, which demonstrates that glycoproteins of bovine sperm were seriously affected by cryopreservation. Moreover, the effects include glycoprotein expression, glycosylation modification, and substructure localization for proteins such as glycoproteins TEX101, ACRBP, and IZOMU4. The biologic functions of the 115 changed proteins are mainly involved in sperm capacitation, migration in female genitalia, and sperm-egg interaction. Mostly key regulators were identified to be glycoproteins, which confirms that glycosylated proteins played important roles in bovine sperm. This comprehensive study of sperm glycoproteins helps to unravel the cryoinjury mechanisms, thus implying that glycoprotein protection should be an effective way to improve the quality of frozen sperm.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Ming Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Dingbo He
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Xin Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Xueli Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Biying Han
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Chunli Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China.
| |
Collapse
|
34
|
Mirihagalle S, Hughes JR, Miller DJ. Progesterone-Induced Sperm Release from the Oviduct Sperm Reservoir. Cells 2022; 11:1622. [PMID: 35626659 PMCID: PMC9139440 DOI: 10.3390/cells11101622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
In mammalian females, after sperm are deposited in the reproductive tract, a fraction of sperm migrates to the lower oviduct (isthmus) and forms a sperm storage site known as the functional sperm reservoir. The interactions between sperm membrane proteins and oviduct epithelial cells facilitate sperm binding to the oviductal epithelium and retention in the reservoir. Sperm are bound by glycans that contain specific motifs present on isthmic epithelial cells. Capacitated sperm are released from the reservoir and travel further in the oviduct to the ampulla where fertilization occurs. For decades, researchers have been studying the molecules and mechanisms of sperm release from the oviductal sperm reservoir. However, it is still not clear if the release of sperm is triggered by changes in sperm, oviduct cells, oviduct fluid, or a combination of these. While there is a possibility that more than one of these events are involved in the release of sperm from the reservoir, one activator of sperm release has the largest accumulation of supporting evidence. This mechanism involves the steroid hormone, progesterone, as a signal that induces the release of sperm from the reservoir. This review gathers and synthesizes evidence for the role of progesterone in inducing sperm release from the oviduct functional sperm reservoir.
Collapse
Affiliation(s)
| | | | - David Joel Miller
- Department of Animal Sciences, Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA; (S.M.); (J.R.H.)
| |
Collapse
|
35
|
Cimini C, Moussa F, Taraschi A, Ramal-Sanchez M, Colosimo A, Capacchietti G, Mokh S, Valbonetti L, Tagaram I, Bernabò N, Barboni B. Pre-Treatment of Swine Oviductal Epithelial Cells with Progesterone Increases the Sperm Fertilizing Ability in an IVF Model. Animals (Basel) 2022; 12:ani12091191. [PMID: 35565617 PMCID: PMC9103098 DOI: 10.3390/ani12091191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/21/2022] Open
Abstract
Mammalian spermatozoa are infertile immediately after ejaculation and need to undergo a functional modification, called capacitation, in order to acquire their fertilizing ability. Since oviductal epithelial cells (SOECs) and progesterone (P4) are two major modulators of capacitation, here we investigated their impact on sperm functionality by using an IVF swine model. To that, we treated SOECs with P4 at 10, 100, and 1000 ng/mL before the coincubation with spermatozoa, thus finding that P4 at 100 ng/mL does not interfere with the cytoskeleton dynamics nor the cells’ doubling time, but it promotes the sperm capacitation by increasing the number of spermatozoa per polyspermic oocyte (p < 0.05). Moreover, we found that SOECs pre-treatment with P4 100 ng/mL is able to promote an increase in the sperm fertilizing ability, without needing the hormone addition at the time of fertilization. Our results are probably due to the downregulation in the expression of OVGP1, SPP1 and DMBT1 genes, confirming an increase in the dynamism of our system compared to the classic IVF protocols. The results obtained are intended to contribute to the development of more physiological and efficient IVF systems.
Collapse
Affiliation(s)
- Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Fadl Moussa
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Doctoral School of Science, Technology Lebanese University, Beirut 1107, Lebanon
| | - Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Istituto Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Alessia Colosimo
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Giulia Capacchietti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Samia Mokh
- National Council for Scientific Research (CNRS), Lebanese Atomic Energy Commission (LAEC), Laboratory for Analysis of Organic Compound (LACO), Beirut 8281, Lebanon;
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
| | - Israiel Tagaram
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
- Correspondence:
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| |
Collapse
|
36
|
Spatiotemporal profiling of the bovine oviduct fluid proteome around the time of ovulation. Sci Rep 2022; 12:4135. [PMID: 35264682 PMCID: PMC8907256 DOI: 10.1038/s41598-022-07929-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding the composition of the oviduct fluid (OF) is crucial to better comprehend the microenvironment in which sperm capacitation, fertilization and early embryo development take place. Therefore, our aim was to determine the spatiotemporal changes in the OF proteome according to the anatomical region of the oviduct (ampulla vs. isthmus), the proximity of the ovulating ovary (ipsilateral vs. contralateral side) and the peri-ovulatory stage (pre-ovulatory or Pre-ov vs. post-ovulatory or Post-ov). Oviducts from adult cyclic cows were collected at a local slaughterhouse and pools of OF were analyzed by nanoLC-MS/MS and label-free protein quantification (n = 32 OF pools for all region × stage × side conditions). A total of 3760 proteins were identified in the OF, of which 65% were predicted to be potentially secreted. The oviduct region was the major source of variation in protein abundance, followed by the proximity of the ovulating ovary and finally the peri-ovulatory stage. Differentially abundant proteins between regions, stages and sides were involved in a broad variety of biological functions, including protein binding, response to stress, cell-to-cell adhesion, calcium homeostasis and the immune system. This work highlights the dynamic regulation of oviduct secretions and provides new protein candidates for interactions between the maternal environment, the gametes and the early embryo.
Collapse
|
37
|
Donnellan E, Lonergan P, Meade K, Fair S. An ex-vivo assessment of differential sperm transport in the female reproductive tract between high and low fertility bulls. Theriogenology 2022; 181:42-49. [DOI: 10.1016/j.theriogenology.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 02/09/2023]
|
38
|
Abstract
Sperm selection in the female reproductive tract (FRT) is sophisticated. Only about 1,000 sperm out of millions in an ejaculate reach the fallopian tube and thus have a chance of fertilizing an oocyte. In assisted reproduction techniques, sperm are usually selected using their density or motility, characteristics that do not reflect their fertilization competence and, therefore, might result in failure to fertilize the oocyte. Although sperm processing in in vitro fertilization (IVF) and intrauterine insemination (IUI) bypasses many of the selection processes in the FRT, selection by the cumulus mass and the zona pellucida remain intact. By contrast, the direct injection of a sperm into an oocyte in intracytoplasmic sperm injection (ICSI) bypasses all natural selection barriers and, therefore, increases the risk of transferring paternal defects such as fragmented DNA and genomic abnormalities in sperm to the resulting child. Research into surrogate markers of fertilization potential and into simulating the natural sperm selection processes has progressed. However, methods of sperm isolation - such as hyaluronic acid-based selection and microfluidic isolation based on sperm tactic responses - use only one or two parameters and are not comparable with the multistep sperm selection processes naturally occurring within the FRT. Fertilization-competent sperm require a panel of molecules, including zona pellucida-binding proteins and ion channel proteins, that enable them to progress through the FRT to achieve fertilization. The optimal artificial sperm selection method will, therefore, probably need to use a multiparameter tool that incorporates the molecular signature of sperm with high fertilization potential, and their responses to external cues, within a microfluidic system that can replicate the physiological processes of the FRT in vitro.
Collapse
|