1
|
Park HR, Hogan KA, Harris SM, Chames MC, Loch-Caruso R. Group B streptococcus induces cellular senescence in human amnion epithelial cells through a partial interleukin-1-mediated mechanism. Biol Reprod 2024; 110:329-338. [PMID: 37903065 PMCID: PMC10873272 DOI: 10.1093/biolre/ioad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/25/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
Group B streptococcus (GBS) infection is a significant public health concern associated with adverse pregnancy complications and increased neonatal mortality and morbidity. However, the mechanisms underlying the impact of GBS on the fetal membrane, the first line of defense against pathogens, are not fully understood. Here, we propose that GBS induces senescence and inflammatory factors (IL-6 and IL-8) in the fetal membrane through interleukin-1 (IL-1). Utilizing the existing transcriptomic data on GBS-exposed human fetal membrane, we showed that GBS affects senescence-related pathways and genes. Next, we treated primary amnion epithelial cells with conditioned medium from the choriodecidual layer of human fetal membrane exposed to GBS (GBS collected choriodecidual [CD] conditioned medium) in the absence or presence of an IL-1 receptor antagonist (IL-1Ra). GBS CD conditioned medium significantly increased β-galactosidase activity, IL-6 and IL-8 release from the amnion epithelial cells. Cotreatment with IL1Ra reduced GBS-induced β-galactosidase activity and IL-6 and IL-8 secretion. Direct treatment with IL-1α or IL-1β confirmed the role of IL-1 signaling in the regulation of senescence in the fetal membrane. We further showed that GBS CD conditioned medium and IL-1 decreased cell proliferation in amnion epithelial cells. In summary, for the first time, we demonstrate GBS-induced senescence in the fetal membrane and present evidence of IL-1 pathway signaling between the choriodecidua and amnion layer of fetal membrane in a paracrine manner. Further studies will be warranted to understand the pathogenesis of adverse pregnancy outcomes associated with GBS infection and develop therapeutic interventions to mitigate these complications.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Kelly A Hogan
- Department of Biochemistry & Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Sean M Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mark C Chames
- Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Park HR, Harris SM, Boldenow E, Aronoff DM, Rea M, Xi C, Loch-Caruso R. The antioxidant N-acetyl cysteine inhibits cytokine and prostaglandin release in human fetal membranes stimulated ex vivo with lipoteichoic acid or live group B streptococcus. Am J Reprod Immunol 2024; 91:e13807. [PMID: 38282602 PMCID: PMC10832889 DOI: 10.1111/aji.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUNDS Infection during pregnancy is a significant public health concern due to the increased risk of adverse birth outcomes. Group B Streptococcus or Streptococcus agalactiae (GBS) stands out as a major bacterial cause of neonatal morbidity and mortality. We aimed to explore the involvement of reactive oxygen species (ROS) and oxidative stress pathways in pro-inflammatory responses within human fetal membrane tissue, the target tissue of acute bacterial chorioamnionitis. METHODS We reanalyzed transcriptomic data from fetal membrane explants inoculated with GBS to assess the impact of GBS on oxidative stress and ROS genes/pathways. We conducted pathway enrichment analysis of transcriptomic data using the Database for Annotation, Visualization and Integrated Discovery (DAVID), a web-based functional annotation/pathway enrichment tool. Subsequently, we conducted ex vivo experiments to test the hypothesis that antioxidant treatment could inhibit pathogen-stimulated inflammatory responses in fetal membranes. RESULTS Using DAVID analysis, we found significant enrichment of pathways related to oxidative stress or ROS in GBS-inoculated human fetal membranes, for example, "Response to Oxidative Stress" (FDR = 0.02) and "Positive Regulation of Reactive Oxygen Species Metabolic Process" (FDR = 2.6*10-4 ). There were 31 significantly changed genes associated with these pathways, most of which were upregulated after GBS inoculation. In ex vivo experiments with choriodecidual membrane explants, our study showed that co-treatment with N-acetylcysteine (NAC) effectively suppressed the release of pro-inflammatory cytokines (IL-6, IL-8, TNF-α) and prostaglandin PGE2, compared to GBS-treated explants (p < .05 compared to GBS-treated samples without NAC co-treatment). Furthermore, NAC treatment inhibited the release of cytokines and PGE2 stimulated by lipoteichoic acid (LTA) and lipopolysaccharide (LPS) in whole membrane explants (p < .05 compared to LTA or LPS-treated samples without NAC co-treatment). CONCLUSIONS Our study sheds light on the potential roles of ROS in governing the innate immune response to GBS infection, offering insights for developing strategies to mitigate GBS-related adverse outcomes.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642 USA
| | - Sean M. Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029 USA
| | - Erica Boldenow
- Department of Biology, Calvin University, Grand Rapids, MI 49546-4402 USA
| | - David M. Aronoff
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202-3082
| | - Meaghan Rea
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029 USA
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029 USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029 USA
| |
Collapse
|
3
|
Huang G, Yao D, Yan X, Zheng M, Yan P, Chen X, Wang D. Emerging role of toll-like receptors signaling and its regulators in preterm birth: a narrative review. Arch Gynecol Obstet 2023; 308:319-339. [PMID: 35916961 DOI: 10.1007/s00404-022-06701-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Despite intensive research, preterm birth (PTB) rates have not decreased significantly in recent years due to a lack of understanding of the underlying causes and insufficient treatment options for PTB. We are committed to finding promising biomarkers for the treatment of PTB. METHODS An extensive search of the literature was conducted with MEDLINE/PubMed, and in total, 151 studies were included and summarized in the present review. RESULTS Substantial evidence supports that the infection and/or inflammatory cascade associated with infection is an early event in PTB. Toll-like receptor (TLR) is a prominent pattern recognition receptor (PRR) found on both immune and non-immune cells, including fetal membrane cells. The activation of TLR downstream molecules, followed by TLR binding to its ligand, is critical for infection and inflammation, leading to the involvement of the TLR signaling pathway in PTB. TLR ligands are derived from microbial components and molecules released by damaged and dead cells. Particularly, TLR4 is an essential TLR because of its ability to recognize lipopolysaccharide (LPS). In this comprehensive overview, we discuss the role of TLR signaling in PTB, focus on numerous host-derived genetic and epigenetic regulators of the TLR signaling pathway, and cover ongoing research and prospective therapeutic options for treating PTB by inhibiting TLR signaling. CONCLUSION This is a critical topic because TLR-related molecules and mechanisms may enable obstetricians to better understand the physiological changes in PTB and develop new treatment and prevention strategies.
Collapse
Affiliation(s)
- Ge Huang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Yao
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoli Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingyu Zheng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Yan
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoxia Chen
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dan Wang
- Department of Gynecology and Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
4
|
Singh A, Raka MS, Rukhiyana RH, Thadiboina O. Sepsis in a Seropositive Pregnant Woman With Early Preterm Labor Pains: A Case Study of a Near Miss. Cureus 2022; 14:e29815. [PMID: 36337783 PMCID: PMC9622034 DOI: 10.7759/cureus.29815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022] Open
Abstract
HIV is linked to a higher risk of preterm delivery in pregnant women. A systemic response to HIV virus can lead to foetus death along with patient death. Mortality is reduced in pregnant females and neonates by some interventions done carefully like antiretroviral therapy and prophylaxis, careful delivery methods, and monitoring of safe breastfeeding. Precautions are also used to decrease the mother-to-child transmission of HIV. An HIV-positive pregnant woman with sepsis is presented here to highlight the management of sepsis and labour. An HIV-positive primigravida on regular tenofovir, lamivudine, and efavirenz (TLE) regimen presented at 29 weeks and five days of her pregnancy to our outpatient department (OPD) with complaints of thick pus-like discharge and fever from seven to eight days. To manage it, labour was augmented by oxytocin in drip. Under all aseptic precautions, a breech 1.1kg male baby was delivered three hours later. Post-delivery status of the patient was uneventful except for two episodes of fever for two days serially on day five and day six. Both mother and the baby were discharged after 43 days of in-ward stay, both symptomatically alright. The mother was advised to continue antiretroviral therapy and get six monthly CD-4 (cluster of differentiation 4) counts for review and the baby was to be kept on top feeds till six months of age at the request of the patient. Keeping the following guidelines in mind, a multidisciplinary approach works best for such cases of HIV-infected mothers. However, it is necessary to individualise each patient.
Collapse
|
5
|
Anderson RC, O'Keeffe GW, McDermott KW. Characterisation of the consequences of maternal immune activation on distinct cell populations in the developing rat spinal cord. J Anat 2022; 241:938-950. [PMID: 35808977 PMCID: PMC9482694 DOI: 10.1111/joa.13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Maternal immune activation (MIA) during gestation has been implicated in the development of neurological disorders such as schizophrenia and autism. Epidemiological studies have suggested that the effect of MIA may depend on the gestational timing of the immune challenge and the region of the central nervous system (CNS) in question. This study investigated the effects of MIA with 100 μg/kg lipopolysaccharide at either Embryonic days (E)12 or E16 on the oligodendrocytes, microglia and astrocytes of the offspring spinal cord. At E16, MIA decreased the number of olig2+ and Iba‐1+ cells in multiple grey and white matter regions of the developing spinal cord 5 h after injection. These decreases were not observed at postnatal day 14. In contrast, MIA at E12 did not alter Olig2+ or Iba‐1+ cell number in the developing spinal cord 5 h after injection, however, Olig2+ cell number was decreased in the ventral grey matter of the P14 spinal cord. No changes were observed in glial fibrillary acidic protein (GFAP) expression at P14 following MIA at either E12 or E16. These data suggest that E16 may be a window of immediate vulnerability to MIA during spinal cord development, however, the findings also suggest that the developmental process may be capable of compensation over time. Potential changes in P14 animals following the challenge at E12 are indicative of the complexity of the effects of MIA during the developmental process.
Collapse
Affiliation(s)
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | |
Collapse
|
6
|
Kim S, Richardson L, Radnaa E, Chen Z, Rusyn I, Menon R, Han A. Molecular mechanisms of environmental toxin cadmium at the feto-maternal interface investigated using an organ-on-chip (FMi-OOC) model. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126759. [PMID: 34391970 PMCID: PMC8595660 DOI: 10.1016/j.jhazmat.2021.126759] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 05/17/2023]
Abstract
Human labor is associated with feto-maternal-derived signals that coordinate to initiate delivery. Exposure to environmental chemicals can prematurely trigger labor-initiating signals at the feto-maternal interface (FMi: decidua, amniochorion), leading to spontaneous preterm birth (PTB). Testing the association between environmental chemical exposure and PTB is difficult due to many limitations in vivo or in vitro. Physiological organ-on-chips (OOCs) are potential alternatives for studying mechanisms leading to PTB. The presented study tested the effect of maternal exposure to cadmium (Cd), an environmental toxin, using the FMi-OOC that incorporates maternal decidua cells and three different fetal cells (chorion, amnion mesenchymal, and amnion epithelial cells). Cd transport through the FMi and its impact on cell cycle, cell death, and inflammation were analyzed. Cd treatment resulted in significant cell death and a pro-inflammatory environment in the maternal decidua, but had minimal effect on the fetal chorion cells, and no effect in the fetal amnion cells compared to controls. The maternal response, but lack of fetal response, indicates that Cd-mediated adverse effects originate from maternal pathophysiology rather than fetal-derived triggers of preterm labor. This study demonstrates that the FMi-OOC can indeed predict the response of FMi upon exposure to chemicals, opening the possibility for using OOC models for environmental toxin screens.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Lauren Richardson
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA; Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA
| | - Enkhtuya Radnaa
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
7
|
Yuan XY, Liu HZ, Liu JF, Sun Y, Song Y. Pathogenic mechanism, detection methods and clinical significance of group B Streptococcus. Future Microbiol 2021; 16:671-685. [PMID: 34098731 DOI: 10.2217/fmb-2020-0189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Group B Streptococcus (GBS) is the main pathogen of perinatal infection. It can lead to adverse pregnancy, maternal infection, premature delivery, abortion, stillbirth and a series of adverse maternal and infant outcomes such as neonatal sepsis, meningitis or pneumonia during delivery. In order to reduce the infection of perinatal pregnant and the adverse pregnancy outcome, more attention should be paid in the clinical practice, screening efforts, universal detection of GBS infection for pregnant women and preventive treatment for the possible mother infant infection. In this study, the biological characteristics, immunophenotype, major pathogenic mechanism, laboratory test methods and clinical significance of GBS are summarized.
Collapse
Affiliation(s)
- Xiao-Yan Yuan
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Hai-Zhu Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Jia-Fei Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China.,Department of Medical Laboratory Sciences, Weifang Medical University, Weifang, Shandong, 261000, PR China
| | - Yong Sun
- Department of Clinical Lab, Yantai Laiyang Central Hospital, Yantai, Shandong, 264200, PR China
| | - Yu Song
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
8
|
Abstract
When caring for women experiencing preterm labor and birth, nurses play a significant role as bedside experts, advocates, patient educators, and key members of the maternity care team. Enhanced expertise on clinical and professional knowledge of preterm labor and birth is crucial in prevention and treatment. As preterm birth rates continue to rise, perinatal nurses as well-informed clinical experts have the opportunity to offer innovative education, holistic assessments, and communication through shared decision-making models. Educating pregnant women about early recognition of preterm labor warning signs and symptoms allows for timely diagnosis, interventions, and treatment. Informed and collaborative nursing practice improves quality of clinical care based on individualized interactions. A clinical review of preterm labor and preterm birth is presented for perinatal nurses.
Collapse
|
9
|
Weckel A, Guilbert T, Lambert C, Plainvert C, Goffinet F, Poyart C, Méhats C, Fouet A. Streptococcus pyogenes infects human endometrium by limiting the innate immune response. J Clin Invest 2021; 131:130746. [PMID: 33320843 DOI: 10.1172/jci130746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
Group A Streptococcus (GAS), a Gram-positive human-specific pathogen, yields 517,000 deaths annually worldwide, including 163,000 due to invasive infections and among them puerperal fever. Before efficient prophylactic measures were introduced, the mortality rate for mothers during childbirth was approximately 10%; puerperal fever still accounts for over 75,000 maternal deaths annually. Yet, little is known regarding the factors and mechanisms of GAS invasion and establishment in postpartum infection. We characterized the early steps of infection in an ex vivo infection model of the human decidua, the puerperal fever portal of entry. Coordinate analysis of GAS behavior and the immune response led us to demonstrate that (a) GAS growth was stimulated by tissue products; (b) GAS invaded tissue and killed approximately 50% of host cells within 2 hours, and these processes required SpeB protease and streptolysin O (SLO) activities, respectively; and (c) GAS impaired the tissue immune response. Immune impairment occurred both at the RNA level, with only partial induction of the innate immune response, and protein level, in an SLO- and SpeB-dependent manner. Our study indicates that efficient GAS invasion of the decidua and the restricted host immune response favored its propensity to develop rapid invasive infections in a gynecological-obstetrical context.
Collapse
Affiliation(s)
- Antonin Weckel
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Thomas Guilbert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Clara Lambert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Céline Plainvert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris
| | - François Goffinet
- Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Faculté de Médecine, Université Paris Descartes, and.,Service de Gynécologie Obstétrique I, Maternité Port Royal, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire Poyart
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris
| | - Céline Méhats
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Agnès Fouet
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques
| |
Collapse
|
10
|
Harris SM, Boldenow E, Domino SE, Loch-Caruso R. Toxicant Disruption of Immune Defenses: Potential Implications for Fetal Membranes and Pregnancy. Front Physiol 2020; 11:565. [PMID: 32547423 PMCID: PMC7272693 DOI: 10.3389/fphys.2020.00565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022] Open
Abstract
In addition to providing a physical compartment for gestation, the fetal membranes (FM) are an active immunological barrier that provides defense against pathogenic microorganisms that ascend the gravid reproductive tract. Pathogenic infection of the gestational tissues (FM and placenta) is a leading known cause of preterm birth (PTB). Some environmental toxicants decrease the capacity for organisms to mount an immune defense against pathogens. For example, the immunosuppressive effects of the widespread environmental contaminant trichloroethylene (TCE) are documented for lung infection with Streptococcus zooepidemicus. Group B Streptococcus (GBS; Streptococcus agalactiae) is a bacterial pathogen that is frequently found in the female reproductive tract and can colonize the FM in pregnant women. Work in our laboratory has demonstrated that a bioactive TCE metabolite, S-(1, 2-dichlorovinyl)-L-cysteine (DCVC), potently inhibits innate immune responses to GBS in human FM in culture. Despite these provocative findings, little is known about how DCVC and other toxicants modify the risk for pathogenic infection of FM. Infection of the gestational tissues (FM and placenta) is a leading known cause of PTB, therefore toxicant compromise of FM ability to fight off infectious microorganisms could significantly contribute to PTB risk. This Perspective provides the current status of understanding of toxicant-pathogen interactions in FM, highlighting knowledge gaps, challenges, and opportunities for research that can advance protections for maternal and fetal health.
Collapse
Affiliation(s)
- Sean M. Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Erica Boldenow
- Department of Biology, Calvin College, Grand Rapids, MI, United States
| | - Steven E. Domino
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Modulation of Death and Inflammatory Signaling in Decidual Stromal Cells following Exposure to Group B Streptococcus. Infect Immun 2019; 87:IAI.00729-19. [PMID: 31548323 DOI: 10.1128/iai.00729-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Group B Streptococcus (GBS) is an opportunistic bacterial pathogen that contributes to miscarriage, preterm birth, and serious neonatal infections. Studies have indicated that some multilocus sequence types (STs) of GBS are more likely to cause severe disease than others. We hypothesized that the ability of GBS to elicit varying host responses in maternal decidual tissue during pregnancy is an important factor regulating infection and disease severity. To address this hypothesis, we utilized an antibody microarray to compare changes in production and activation of host signaling proteins in decidualized telomerase-immortalized human endometrial stromal cells (dT-HESCs) following infection with GBS strains from septic neonates or colonized mothers. GBS infection increased levels of total and phosphorylated mitogen-activated protein kinase (MAPK) family members such as p38 and JNK and induced nuclear factor kappa B (NF-κB) pathway activation. Infection also altered the regulation of additional proteins that mediate cell death and inflammation in a strain-specific manner, which could be due to the observed variation in attachment to and invasion of the decidual stromal cells and ability to lyse red blood cells. Further analyses confirmed array results and revealed that p38 promotes programmed necrosis in dT-HESCs. Together, the observed signaling changes may contribute to deregulation of critical developmental signaling cascades and inflammatory responses following infection, both of which could trigger GBS-associated pregnancy complications.
Collapse
|
12
|
Wu XM, Cao L, Hu YW, Chang MX. Transcriptomic characterization of adult zebrafish infected with Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2019; 94:355-372. [PMID: 31533079 DOI: 10.1016/j.fsi.2019.09.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Streptococcus agalactiae is a major aquaculture pathogen infecting various saltwater and freshwater fish. To better understand the mechanism of the immune responses to S. agalactiae in wildtype zebrafish, the transcriptomic profiles of two organs containing mucosal-associated lymphoid tissues from S. agalactiae-infected and non-infected groups were obtained using RNA-seq techniques. In the intestines, 6735 and 12908 differently expressed genes (DEGs) were identified at 24 hpi and 48 hpi, respectively. Among 66 and 116 significantly enriched pathways, 15 and 21 pathways were involved in immune system or signal transduction at 24 hpi and 48 hpi, respectively. A number of genes involved in Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, T cell receptor signaling pathway, B cell receptor signaling pathway, Antigen processing and presentation, NF-kappa B signaling pathway and PI3K-Akt signaling pathway were significantly downregulated. In the skins, 3113 and 4467 DEGs were identified at 24 hpi and 48 hpi, respectively. Among 24 and 56 significantly enriched pathways, 4 and 13 pathways were involved in immune system or signal transduction at 24 hpi and 48 hpi, respectively. More immune-related signaling pathways including Leukocyte transendothelial migration, Cytokine-cytokine receptor interaction, PI3K-Akt signaling pathway, IL-17 signaling pathway, MAPK signaling pathway, TNF signaling pathway, Complement and coagulation cascades, Hematopoietic cell lineage and Jak-STAT signaling pathway were differently enriched for upregulated DEGs at 48 hpi, which were completely different from that in the intestines. Furthmore, comparative transcriptome analysis revealed that the downregulated 1618 genes and upregulated 1622 genes existed both at 24 hpi and 48 hpi for the intestine samples. In the skins, the downregulated 672 genes and upregulated 428 genes existed both at 24 hpi and 48 hpi. Three pathways related to immune processes were significantly enriched for downregulated DEGs both in the intestines and skins collected at 24 hpi and 48 hpi, which included Antigen processing and presentation, Intestinal immune network for IgA production and Hematopoietic cell lineage. Interaction network analysis of DEGs identified the main DEGs in the sub-network of complement and coagulation cascades both in the intestines and skins. Twenty of DEGs involved in complement and coagulation cascades were further validated by Real-time quantitative PCR. Altogether, the results obtained in this study will provide insight into the immune response of zebrafish against S. agalactiae XQ-1 infection in fatal conditions, and reveal the discrepant expression pattern of complement and coagulation cascades in the intestines and skins.
Collapse
Affiliation(s)
- Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|