1
|
Touloupakis E, Calegari Moia I, Zampieri RM, Cocozza C, Frassinelli N, Marchi E, Foderi C, Di Lorenzo T, Rezaie N, Muzzini VG, Traversi ML, Giovannelli A. Fire up Biosensor Technology to Assess the Vitality of Trees after Wildfires. BIOSENSORS 2024; 14:373. [PMID: 39194602 DOI: 10.3390/bios14080373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
The development of tools to quickly identify the fate of damaged trees after a stress event such as a wildfire is of great importance. In this context, an innovative approach to assess irreversible physiological damage in trees could help to support the planning of management decisions for disturbed sites to restore biodiversity, protect the environment and understand the adaptations of ecosystem functionality. The vitality of trees can be estimated by several physiological indicators, such as cambium activity and the amount of starch and soluble sugars, while the accumulation of ethanol in the cambial cells and phloem is considered an alarm sign of cell death. However, their determination requires time-consuming laboratory protocols, making the approach impractical in the field. Biosensors hold considerable promise for substantially advancing this field. The general objective of this review is to define a system for quantifying the plant vitality in forest areas exposed to fire. This review describes recent electrochemical biosensors that can detect plant molecules, focusing on biosensors for glucose, fructose, and ethanol as indicators of tree vitality.
Collapse
Affiliation(s)
- Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Isabela Calegari Moia
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Raffaella Margherita Zampieri
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Claudia Cocozza
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Niccolò Frassinelli
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Enrico Marchi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Cristiano Foderi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali-DAGRI, Università degli Studi di Firenze, Via San Bonaventura 13, 50145 Firenze, Italy
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Negar Rezaie
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Valerio Giorgio Muzzini
- Research Institute on Terrestrial Ecosystems, National Research Council, Research Area of Rome 1, Strada Provinciale 35d n. 9, Montelibretti, 00010 Rome, Italy
| | - Maria Laura Traversi
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Alessio Giovannelli
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Bianchi A, Pettinelli S, Santini G, Taglieri I, Zinnai A, Petriccione M, Magri A, Modesti M, Cerreta R, Bellincontro A. Postharvest wine grape dehydration: ethanol dissipation from grape and biochemical changes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1591-1598. [PMID: 37819862 DOI: 10.1002/jsfa.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND During postharvest dehydration, grapes are subject to metabolic changes including ethanol anabolism and catabolism. These changes affect the quality of the final product and ethanol production is a key step. Ethanol dissipation has never been measured during postharvest wine grape dehydration. Thus, the present study aimed to: (i) monitor ethanol dissipation and (ii) investigate chemical-biochemical changes in berries during dehydration. RESULTS Ethanol dissipation from Raboso grapes, under controlled postharvest dehydration, was found to comprise up to 36% of weight loss (w.l.). Moreover, the activity of enzymes involved in the anaerobic metabolism of grapes was investigated. Ethanol dissipation was highly correlated with grape weight loss (r2 = 0.989). Alcohol dehydrogenase activity, responsible for the reduction of ethanol to acetaldehyde, declined significantly with w.l. Similarly, pyruvate decarboxylase and lactate dehydrogenase reduced their activity. High lipoxygenase activity was measured at 27% w.l., whereas polyphenol oxidation was constant and declined in the last sampling. CONCLUSION Ethanol dissipation during postharvest dehydration allows for reducing anaerobic metabolism and promotes oxidative metabolism. The sensor used can be a useful commercial tool for monitoring berry metabolism. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alessandro Bianchi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Pisa, Italy
| | - Stefano Pettinelli
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Pisa, Italy
| | - Gregorio Santini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Pisa, Italy
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Pisa, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Pisa, Italy
| | - Milena Petriccione
- Council for Agricultural Research and Economics (CREA) - Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| | - Anna Magri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Margherita Modesti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Raffaele Cerreta
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - Andrea Bellincontro
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
3
|
Osorio Zambrano MA, Castillo DA, Rodríguez Pérez L, Terán W. Cacao ( Theobroma cacao L.) Response to Water Stress: Physiological Characterization and Antioxidant Gene Expression Profiling in Commercial Clones. FRONTIERS IN PLANT SCIENCE 2021; 12:700855. [PMID: 34552605 PMCID: PMC8450537 DOI: 10.3389/fpls.2021.700855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The increase in events associated with drought constraints plant growth and crop performance. Cacao (Theobroma cacao L.) is sensitive to water deficit stress (DS), which limits productivity. The aim of this research was to characterise the response of seven (CCN51, FEAR5, ICS1, ICS60, ICS95, EET8, and TSH565) commercially important cacao clones to severe and temporal water deficit stress. Ten-month-old cacao trees were submitted to two treatments: well-watered and water-stressed until the leaf water potential (Ψ leaf) reached values between -3.0 and -3.5 MPa. The effects of hydric stress on water relations, gas exchange, photochemical activity, membrane integrity and oxidative stress-related gene expression were evaluated. All clones showed decreases in Ψ leaf, but TSH565 had a higher capacity to maintain water homeostasis in leaves. An initial response phase consisted of stomatal closure, a general mechanism to limit water loss: as a consequence, the photosynthetic rate dropped by approximately 98% on average. In some clones, the photosynthetic rate reached negative values at the maximum stress level, evidencing photorespiration and was confirmed by increased intracellular CO2. A second and photosynthetically limited phase was characterized by a drop in PSII quantum efficiency, which affected all clones. On average, all clones were able to recover after 4 days of rewatering. Water deficit triggered oxidative stress at the early phase, as evidenced by the upregulation of oxidative stress markers and genes encoding ROS scavenging enzymes. The effects of water deficit stress on energy metabolism were deduced given the upregulation of fermentative enzyme-coding genes. Altogether, our results suggest that the EET8 clone was the highest performing under water deficit while the ICS-60 clone was more susceptible to water stress. Importantly, the activation of the antioxidant system and PSII repair mechanism seem to play key roles in the observed differences in tolerance to water deficit stress among clones.
Collapse
Affiliation(s)
| | | | | | - Wilson Terán
- Plant and Crop Biology, Department of Biology, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
4
|
Khanum Z, Tiznado-Hernández ME, Ali A, Musharraf SG, Shakeel M, Khan IA. Adaptation mechanism of mango fruit ( Mangifera indica L. cv. Chaunsa White) to heat suggest modulation in several metabolic pathways. RSC Adv 2020; 10:35531-35544. [PMID: 35515688 PMCID: PMC9056917 DOI: 10.1039/d0ra01223h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
Climate change is becoming a global problem because of its harmful effects on crop productivity. In this regard, it is crucial to carry out studies to determine crops' response to heatwave stress. Response molecular mechanisms during the development and ripening of mango fruit (Mangifera indica L. cv. Chaunsa White) under extreme heatwaves were studied. Mango flowers were tagged and fruits 18, 34, 62, 79, 92 days after flowering (DAF) as well as fruits on 10 and 15 days of postharvest shelf life were studied through RNA-Seq and metabolome of the fruit mesocarp. The environmental temperature was recorded during the experiment. Roughly, 2 000 000 clean reads were generated and assembled into 12 876 redundant transcripts and 2674 non-redundant transcripts. The expression of genes playing a role in oxidative stress, circadian rhythm, senescence, glycolysis, secondary metabolite biosynthesis, flavonoid biosynthesis and monoterpenoid biosynthesis was quantified as well as reactive oxygen species. Higher expressions of six abiotic stress genes and a senescent associated gene was found at 79 DAF (recorded temperature 44 °C). Higher expressions of nucleoredoxin and glutathione S-transferase 1 family protein were also recorded. Activation of the GABA-shunt pathway was detected by the glutamate decarboxylase transcript expression at 79 DAF. Larger energy demands at the beginning of fruit ripening were indicated by an increase in fructose-bisphosphate aldolase gene expression. Finally, the radical-scavenging effect of mango fruit inflorescence and fruit pulp extracts showed decline upon heatwave exposure. We recorded a broad genetic response of mango fruit suggesting the activation of several metabolic pathways which indicated the occurrence of genetic and metabolic crosstalks in response to intense heatwaves. Collectively, this study presents experimental evidence to help in the elucidation of the molecular mechanism of crops response to heat stress which in turn will help in the designing of protocols to increase crop productivity in the face of climate change.
Collapse
Affiliation(s)
- Zainab Khanum
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Martín E Tiznado-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C. Hermosillo Sonora Mexico
| | - Arslan Ali
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Syed Ghulam Musharraf
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Muhammad Shakeel
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| |
Collapse
|
5
|
Su L, Xie J, Wen W, Li J, Zhou P, An Y. Interaction of zinc and IAA alleviate aluminum-induced damage on photosystems via promoting proton motive force and reducing proton gradient in alfalfa. BMC PLANT BIOLOGY 2020; 20:433. [PMID: 32948141 PMCID: PMC7501636 DOI: 10.1186/s12870-020-02643-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In acidic soils, aluminum (Al) competing with Zn results in Zn deficiency in plants. Zn is essential for auxin biosynthesis. Zn-mediated alleviation of Al toxicity has been rarely studied, the mechanism of Zn alleviation on Al-induced photoinhibition in photosystems remains unclear. The objective of this study was to investigate the effects of Zn and IAA on photosystems of Al-stressed alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or100 μM AlCl3 combined with 0 or 50 μM ZnCl2, and then foliar spray with water or 6 mg L- 1 IAA. RESULTS Our results showed that Al stress significantly decreased plant growth rate, net photosynthetic rate (Pn), quantum yields and electron transfer rates of PSI and PSII. Exogenous application of Zn and IAA significantly alleviated the Al-induced negative effects on photosynthetic machinery, and an interaction of Zn and IAA played an important role in the alleviative effects. After removing apical buds of Al-stressed alfalfa seedlings, the values of pmf, gH+ and Y(II) under exogenous spraying IAA were significantly higher, and ΔpHpmf was significantly lower in Zn addition than Al treatment alone, but the changes did not occur under none spraying IAA. The interaction of Zn and IAA directly increased Y(I), Y(II), ETRI and ETRII, and decreased O2- content of Al-stressed seedlings. In addition, the transcriptome analysis showed that fourteen functionally noted genes classified into functional category of energy production and conversion were differentially expressed in leaves of alfalfa seedlings with and without apical buds. CONCLUSION Our results suggest that the interaction of zinc and IAA alleviate aluminum-induced damage on photosystems via increasing pmf and decreasing ΔpHpmf between lumen and stroma.
Collapse
Affiliation(s)
- Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jianping Xie
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiaojiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China.
| |
Collapse
|
6
|
Red turpentine beetle primary attraction to (-)-β-pinene+ethanol in US Pacific Northwest ponderosa pine forests. PLoS One 2020; 15:e0236276. [PMID: 32730348 PMCID: PMC7392304 DOI: 10.1371/journal.pone.0236276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/01/2020] [Indexed: 11/20/2022] Open
Abstract
Red turpentine beetle, Dendroctonus valens (Coleoptera: Curculionidae: Scolytinae) is a non-aggressive pine bark beetle native to North America, and more aggressive invader in China. Dispersing pioneer beetles are attracted to potential host trees by oleoresin monoterpene kairomones, but respond more strongly to those combined with ethanol, a mixture often released from stressed, dying, or recently dead trees. (+)-3-Carene, usually the dominant or co-dominant monoterpene in ponderosa pine, Pinus ponderosa, is a stronger attractant than α-pinene or β-pinene where tested over a large portion of the D. valens range, while (+)-3-carene+ethanol was shown previously to attract twice the beetles of (+)-3-carene. A field test comparing D. valens attraction among the three monoterpenes when all are released with ethanol has never been reported, and was our objective. In three US Pacific Northwestern pine forests, (–)-β-pinene+ethanol lures attracted 1.4 to 1.9 times more beetles than (+)-3-carene+ethanol. (+)- or (±)-α-pinene+ethanol lures were least attractive. A 1:1:1 monoterpene mixture+ethanol lure attracted more beetles than the 1:1:1 lure, but it was not statistically higher. Monoterpenes were dispensed from low density polyethylene bottles and their release rates monitored in laboratory and field tests. Under laboratory conditions (+)-3-carene was released much more rapidly than (+)-α-pinene or (–)-β-pinene when dispensed separately, or in a 1:1:1 mixture. (+)-3-Carene in the 1:1:1 mixture increased the release of both pinenes over their rates when dispensed separately. (–)-β-Pinene+ethanol is currently the strongest kairomone lure for D. valens attraction in US northwest pine forests, and has value for beetle detection, monitoring, research, and management.
Collapse
|
7
|
Becerra-Martínez E, Pacheco-Hernández Y, Lozoya-Gloria E, Betancourt-Jiménez MG, Hidalgo-Martínez D, Zepeda-Vallejo LG, Villa-Ruano N. 1 H-NMR metabolomics profiling of recombinant tobacco plants holding a promoter of a sesquiterpene cyclase. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:480-487. [PMID: 31908083 DOI: 10.1002/pca.2911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/22/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Nicotiana tabacum is a plant model intensively used in the bio-engineering pharmaceutical industry as a platform to produce drugs and therapeutic agents. Currently, no information regarding the non-targeted metabolome of transgenic tobacco containing recombinant regulatory sequences is available. OBJECTIVE To compare the proton nuclear magnetic resonance (1 H-NMR) metabolomics profiling of a recombinant Nicotiana tabacum strain containing a promoter of a sesquiterpene cyclase from Capsicum annuum driving GUS expression, versus wild-type samples. Methodology The non-targeted 1 H-NMR metabolome was obtained and processed by principal component analysis (PCA) and orthogonal projection to latent structures discriminant analysis (OPLS-DA). The differential metabolites were quantified by quantitative NMR. RESULTS PCA and OPLS-DA revealed 37 metabolites including 16 discriminant compounds for transgenic samples. Ethanol (0.4 mg g-1 ), the main differential compound, was exclusively detected in transgenic tobacco; however, high levels of formate (0.28 mg g-1 ) and acetate (0.3 mg g-1 ) were simultaneously observed in the same group of samples. Cembratriene-4,6-diol, an antitumour and neuroprotective compound, and capsidiol, a known phytoalexin, increased by about 30% in transgenic samples. In addition, the endogenous levels of the antioxidant caffeoylquinic acid isomers increased by 50% in comparison to those of wild-type tobaccos. CONCLUSION Our results support the occurrence of metabolic differences between wild type and transgenic tobacco containing a promoter of a Capsicum sesquiterpene cyclase gene. Interestingly, the recombinant transgenic strain studied accumulated high amounts of added value compounds with biological activity.
Collapse
Affiliation(s)
- Elvia Becerra-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Edmundo Lozoya-Gloria
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, México
| | | | | | - Luis G Zepeda-Vallejo
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Nemesio Villa-Ruano
- CONACyT - Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
8
|
Bär A, Michaletz ST, Mayr S. Fire effects on tree physiology. THE NEW PHYTOLOGIST 2019; 223:1728-1741. [PMID: 31032970 DOI: 10.1111/nph.15871] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/07/2019] [Indexed: 05/02/2023]
Abstract
Heat injuries sustained in a fire can initiate a cascade of complex mechanisms that affect the physiology of trees after fires. Uncovering the exact physiological mechanisms and relating specific injuries to whole-plant and ecosystem functioning is the focus of intense current research. Recent studies have made critical steps forward in our understanding of tree physiological processes after fires, and have suggested mechanisms by which fire injuries may interact with disturbances such as drought, insects and pathogens. We outline a conceptual framework that unifies the involved processes, their interconnections, and possible feedbacks, and contextualizes these responses with existing hypotheses for disturbance effects on plants and ecosystems. By focusing on carbon and water as currencies of plant functioning, we demonstrate fire-induced cambium/phloem necrosis and xylem damage to be main disturbance effects. The resulting carbon starvation and hydraulic dysfunction are linked with drought and insect impacts. Evaluating the precise process relationships will be crucial for fully understanding how fires can affect tree functionality, and will help improve fire risk assessment and mortality model predictions. Especially considering future climate-driven increases in fire frequency and intensity, knowledge of the physiological tree responses is important to better estimate postfire ecosystem dynamics and interactions with climate disturbances.
Collapse
Affiliation(s)
- Andreas Bär
- Department of Botany, University of Innsbruck, Sternwartestraße 15, Innsbruck, 6020, Austria
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, Innsbruck, 6020, Austria
| |
Collapse
|