1
|
Pattamadilok C, Wang S, Bolger D, Dubarry AS. Learning to read transforms phonological into phonographic representations. Sci Rep 2025; 15:5398. [PMID: 39948416 PMCID: PMC11825875 DOI: 10.1038/s41598-025-88650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Learning to read changes the nature of speech representations. One possible change consists in transforming phonological representations into phonographic ones. However, evidence for such transformation remains surprisingly scarce. Here, we used a novel word learning paradigm to address this issue. During the learning phase, participants learned unknown words in both spoken and written forms. Following this phase, the impact of spelling knowledge on the auditory perception of the novel words was assessed at two time points through an unattended oddball paradigm, while the Mismatch Negativity component was measured by high density EEG. Immediately after the learning phase, no influence of spelling knowledge on the perception of the spoken input was found. Interestingly, one week later, this influence emerged, making similar sounding words with different spellings more distinct than similar sounding words that also shared the same spelling. Our finding provides novel neurophysiological evidence of an integration of phonological and orthographic representations that occurs once newly acquired knowledge has been consolidated. The resulting 'phonographic' representations may characterize how known words are stored in literates' mental lexicon.
Collapse
Affiliation(s)
| | - Shuai Wang
- Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France
| | - Deirdre Bolger
- Aix Marseille Univ, CNRS, LPL, Aix-en-Provence, France
- Institute of Language, Communication and the Brain (ILCB), Aix-en-Provence, France
| | | |
Collapse
|
2
|
Bonandrini R, Gornetti E, Paulesu E. A meta-analytical account of the functional lateralization of the reading network. Cortex 2024; 177:363-384. [PMID: 38936265 DOI: 10.1016/j.cortex.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
The observation that the neural correlates of reading are left-lateralized is ubiquitous in the cognitive neuroscience and neuropsychological literature. Still, reading is served by a constellation of neural units, and the extent to which these units are consistently left-lateralized is unclear. In this regard, the functional lateralization of the fusiform gyrus is of particular interest, by virtue of its hypothesized role as a "visual word form area". A quantitative Activation Likelihood Estimation meta-analysis was conducted on activation foci from 35 experiments investigating silent reading, and both a whole-brain and a bayesian ROI-based approach were used to assess the lateralization of the data submitted to meta-analysis. Perirolandic areas showed the highest level of left-lateralization, the fusiform cortex and the parietal cortex exhibited only a moderate pattern of left-lateralization, while in the occipital, insular cortices and in the cerebellum the lateralization turned out to be the lowest observed. The relatively limited functional lateralization of the fusiform gyrus was further explored in a regression analysis on the lateralization profile of each study. The functional lateralization of the fusiform gyrus during reading was positively associated with the lateralization of the precentral and inferior occipital gyri and negatively associated with the lateralization of the triangular portion of the inferior frontal gyrus and of the temporal pole. Overall, the present data highlight how lateralization patterns differ within the reading network. Furthermore, the present data highlight how the functional lateralization of the fusiform gyrus during reading is related to the degree of functional lateralization of other language brain areas.
Collapse
Affiliation(s)
| | - Edoardo Gornetti
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; The International Max Planck Research School for Language Sciences, Nijmegen, the Netherlands
| | - Eraldo Paulesu
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; fMRI Unit, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| |
Collapse
|
3
|
Papanicolaou AC. Non-Invasive Mapping of the Neuronal Networks of Language. Brain Sci 2023; 13:1457. [PMID: 37891824 PMCID: PMC10605023 DOI: 10.3390/brainsci13101457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
This review consists of three main sections. In the first, the Introduction, the main theories of the neuronal mediation of linguistic operations, derived mostly from studies of the effects of focal lesions on linguistic performance, are summarized. These models furnish the conceptual framework on which the design of subsequent functional neuroimaging investigations is based. In the second section, the methods of functional neuroimaging, especially those of functional Magnetic Resonance Imaging (fMRI) and of Magnetoencephalography (MEG), are detailed along with the specific activation tasks employed in presurgical functional mapping. The reliability of these non-invasive methods and their validity, judged against the results of the invasive methods, namely, the "Wada" procedure and Cortical Stimulation Mapping (CSM), is assessed and their use in presurgical mapping is justified. In the third and final section, the applications of fMRI and MEG in basic research are surveyed in the following six sub-sections, each dealing with the assessment of the neuronal networks for (1) the acoustic and phonological, (2) for semantic, (3) for syntactic, (4) for prosodic operations, (5) for sign language and (6) for the operations of reading and the mechanisms of dyslexia.
Collapse
Affiliation(s)
- Andrew C Papanicolaou
- Department of Pediatrics, Division of Pediatric Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38013, USA
| |
Collapse
|
4
|
Wang J, Wang X, Zou J, Duan J, Shen Z, Xu N, Chen Y, Zhang J, He H, Bi Y, Ding N. Neural substrate underlying the learning of a passage with unfamiliar vocabulary and syntax. Cereb Cortex 2023; 33:10036-10046. [PMID: 37491998 DOI: 10.1093/cercor/bhad263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Speech comprehension is a complex process involving multiple stages, such as decoding of phonetic units, recognizing words, and understanding sentences and passages. In this study, we identify cortical networks beyond basic phonetic processing using a novel passage learning paradigm. Participants learn to comprehend a story composed of syllables of their native language, but containing unfamiliar vocabulary and syntax. Three learning methods are employed, each resulting in some degree of learning within a 12-min learning session. Functional magnetic resonance imaging results reveal that, when listening to the same story, the classic temporal-frontal language network is significantly enhanced by learning. Critically, activation of the left anterior and posterior temporal lobe correlates with the learning outcome that is assessed behaviorally through, e.g. word recognition and passage comprehension tests. This study demonstrates that a brief learning session is sufficient to induce neural plasticity in the left temporal lobe, which underlies the transformation from phonetic units to the units of meaning, such as words and sentences.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Xiaosha Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Jiajie Zou
- Key Laboratory for Biomedical Engineering of Ministry of Education, Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jipeng Duan
- Key Laboratory for Biomedical Engineering of Ministry of Education, Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Zhuowen Shen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Nannan Xu
- School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221009, China
| | - Yan Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jianfeng Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Hongjian He
- Key Laboratory for Biomedical Engineering of Ministry of Education, Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Nai Ding
- Key Laboratory for Biomedical Engineering of Ministry of Education, Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-machine Integration, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Schroeder ML, Sherafati A, Ulbrich RL, Wheelock MD, Svoboda AM, Klein ED, George TG, Tripathy K, Culver JP, Eggebrecht AT. Mapping cortical activations underlying covert and overt language production using high-density diffuse optical tomography. Neuroimage 2023; 276:120190. [PMID: 37245559 PMCID: PMC10760405 DOI: 10.1016/j.neuroimage.2023.120190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023] Open
Abstract
Gold standard neuroimaging modalities such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and more recently electrocorticography (ECoG) have provided profound insights regarding the neural mechanisms underlying the processing of language, but they are limited in applications involving naturalistic language production especially in developing brains, during face-to-face dialogues, or as a brain-computer interface. High-density diffuse optical tomography (HD-DOT) provides high-fidelity mapping of human brain function with comparable spatial resolution to that of fMRI but in a silent and open scanning environment similar to real-life social scenarios. Therefore, HD-DOT has potential to be used in naturalistic settings where other neuroimaging modalities are limited. While HD-DOT has been previously validated against fMRI for mapping the neural correlates underlying language comprehension and covert (i.e., "silent") language production, HD-DOT has not yet been established for mapping the cortical responses to overt (i.e., "out loud") language production. In this study, we assessed the brain regions supporting a simple hierarchy of language tasks: silent reading of single words, covert production of verbs, and overt production of verbs in normal hearing right-handed native English speakers (n = 33). First, we found that HD-DOT brain mapping is resilient to movement associated with overt speaking. Second, we observed that HD-DOT is sensitive to key activations and deactivations in brain function underlying the perception and naturalistic production of language. Specifically, statistically significant results were observed that show recruitment of regions in occipital, temporal, motor, and prefrontal cortices across all three tasks after performing stringent cluster-extent based thresholding. Our findings lay the foundation for future HD-DOT studies of imaging naturalistic language comprehension and production during real-life social interactions and for broader applications such as presurgical language assessment and brain-machine interfaces.
Collapse
Affiliation(s)
- Mariel L Schroeder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Arefeh Sherafati
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel L Ulbrich
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; University of Missouri School of Medicine, Columbia, MO, USA
| | - Muriah D Wheelock
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Alexandra M Svoboda
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; University of Cincinnati Medical Center, Cincinnati, Oh, USA
| | - Emma D Klein
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tessa G George
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Kalyan Tripathy
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; Washington University School of Medicine, St Louis, MO, USA
| | - Joseph P Culver
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; Division of Biology & Biomedical Sciences, Washington University School of Medicine, St Louis, MO, USA; Department of Physics, Washington University in St. Louis, St Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
| | - Adam T Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA; Division of Biology & Biomedical Sciences, Washington University School of Medicine, St Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA.
| |
Collapse
|
6
|
You Y, Correas A, Jao Keehn RJ, Wagner LC, Rosen BQ, Beaton LE, Gao Y, Brocklehurst WT, Fishman I, Müller RA, Marinkovic K. MEG Theta during Lexico-Semantic and Executive Processing Is Altered in High-Functioning Adolescents with Autism. Cereb Cortex 2021; 31:1116-1130. [PMID: 33073290 DOI: 10.1093/cercor/bhaa279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroimaging studies have revealed atypical activation during language and executive tasks in individuals with autism spectrum disorders (ASD). However, the spatiotemporal stages of processing associated with these dysfunctions remain poorly understood. Using an anatomically constrained magnetoencephalography approach, we examined event-related theta oscillations during a double-duty lexical decision task that combined demands on lexico-semantic processing and executive functions. Relative to typically developing peers, high-functioning adolescents with ASD had lower performance accuracy on trials engaging selective semantic retrieval and cognitive control. They showed an early overall theta increase in the left fusiform cortex followed by greater activity in the left-lateralized temporal (starting at ~250 ms) and frontal cortical areas (after ~450 ms) known to contribute to language processing. During response preparation and execution, the ASD group exhibited elevated theta in the anterior cingulate cortex, indicative of greater engagement of cognitive control. Simultaneously increased activity in the ipsilateral motor cortex may reflect a less lateralized and suboptimally organized motor circuitry. Spanning early sensory-specific and late response selection stages, the higher event-related theta responsivity in ASD may indicate compensatory recruitment to offset inefficient lexico-semantic retrieval under cognitively demanding conditions. Together, these findings provide further support for atypical language and executive functions in high-functioning ASD.
Collapse
Affiliation(s)
- Yuqi You
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Angeles Correas
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
| | - R Joanne Jao Keehn
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Laura C Wagner
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Burke Q Rosen
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA
| | - Lauren E Beaton
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Yangfeifei Gao
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California San Diego, San Diego, CA 92120, USA
| | | | - Inna Fishman
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California San Diego, San Diego, CA 92120, USA
| | - Ralph-Axel Müller
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California San Diego, San Diego, CA 92120, USA
| | - Ksenija Marinkovic
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA.,Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California San Diego, San Diego, CA 92120, USA.,Department of Radiology, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
7
|
The Neurobiology of Semantic Processing in Autism Spectrum Disorder: An Activation Likelihood Estimation Analysis. J Autism Dev Disord 2020; 51:3266-3279. [PMID: 33222060 DOI: 10.1007/s10803-020-04794-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
Semantic processing impairments are present in a proportion of individuals with autism spectrum disorder (ASD). Despite the numerous imaging studies investigating this language domain in ASD, there is a lack of consensus regarding the brain structures showing abnormal pattern of activity. This meta-analysis aimed to identify neural activation patterns present during semantic processing in ASD. Findings reveal activation of areas associated with semantic processing and executive functions in ASD. However, the activation was less concise in comparison to controls and there was less activation in the right hemisphere and in areas associated with executive functions. This provides strong support for impaired semantic processing in ASD that is consistently associated with abnormal patterns of neural activity in the semantic network.
Collapse
|
8
|
Dong J, Li A, Chen C, Qu J, Jiang N, Sun Y, Hu L, Mei L. Language distance in orthographic transparency affects cross-language pattern similarity between native and non-native languages. Hum Brain Mapp 2020; 42:893-907. [PMID: 33112483 PMCID: PMC7856648 DOI: 10.1002/hbm.25266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/11/2022] Open
Abstract
How native and non-native languages are represented in the brain is one of the most important questions in neurolinguistics. Much research has found that the similarity in neural activity of native and non-native languages are influenced by factors such as age of acquisition, language proficiency, and language exposure in the non-native language. Nevertheless, it is still unclear how the similarity between native and non-native languages in orthographic transparency, a key factor that affects the cognitive and neural mechanisms of phonological access, modulates the cross-language similarity in neural activation and which brain regions show the modulatory effects of language distance in orthographic transparency. To address these questions, the present study used representational similarity analysis (RSA) to precisely estimate the neural pattern similarity between native language and two non-native languages in Uyghur-Chinese-English trilinguals, whose third language (i.e., English) was more similar to the native language (i.e., Uyghur) in orthography than to their second language (i.e., Chinese). Behavioral results revealed that subjects responded faster to words in the non-native language with more similar orthography to their native language in the word naming task. More importantly, RSA revealed greater neural pattern similarity between Uyghur and English than between Uyghur and Chinese in select brain areas for phonological processing, especially in the left hemisphere. Further analysis confirmed that those brain regions represented phonological information. These results provide direct neuroimaging evidence for the modulatory effect of language distance in orthographic transparency on cross-language pattern similarity between native and non-native languages during word reading.
Collapse
Affiliation(s)
- Jie Dong
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Aqian Li
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, California, USA
| | - Jing Qu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Nan Jiang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yue Sun
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Liyuan Hu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Leilei Mei
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
9
|
Kuiper JJ, Lin YH, Young IM, Bai MY, Briggs RG, Tanglay O, Fonseka RD, Hormovas J, Dhanaraj V, Conner AK, O'Neal CM, Sughrue ME. A parcellation-based model of the auditory network. Hear Res 2020; 396:108078. [PMID: 32961519 DOI: 10.1016/j.heares.2020.108078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The auditory network plays an important role in interaction with the environment. Multiple cortical areas, such as the inferior frontal gyrus, superior temporal gyrus and adjacent insula have been implicated in this processing. However, understanding of this network's connectivity has been devoid of tractography specificity. METHODS Using attention task-based functional magnetic resonance imaging (MRI) studies, an activation likelihood estimation (ALE) of the auditory network was generated. Regions of interest corresponding to the cortical parcellation scheme previously published under the Human Connectome Project were co-registered onto the ALE in the Montreal Neurological Institute coordinate space, and visually assessed for inclusion in the network. Diffusion spectrum MRI-based fiber tractography was performed to determine the structural connections between cortical parcellations comprising the network. RESULTS Fifteen cortical regions were found to be part of the auditory network: areas 44 and 8C, auditory area 1, 4, and 5, frontal operculum area 4, the lateral belt, medial belt and parabelt, parietal area F centromedian, perisylvian language area, retroinsular cortex, supplementary and cingulate eye field and the temporoparietal junction area 1. These regions showed consistent interconnections between adjacent parcellations. The frontal aslant tract was found to connect areas within the frontal lobe, while the arcuate fasciculus was found to connect the frontal and temporal lobe, and subcortical U-fibers were found to connect parcellations within the temporal area. Further studies may refine this model with the ultimate goal of clinical application.
Collapse
Affiliation(s)
- Joseph J Kuiper
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | | | - Michael Y Bai
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - R Dineth Fonseka
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Suite 19, Level 7 Prince of Wales Private Hospital, Randwick, Sydney, NSW 2031, Australia.
| |
Collapse
|
10
|
Al-Fahad R, Yeasin M, Bidelman GM. Decoding of single-trial EEG reveals unique states of functional brain connectivity that drive rapid speech categorization decisions. J Neural Eng 2020; 17:016045. [PMID: 31822643 PMCID: PMC7004853 DOI: 10.1088/1741-2552/ab6040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Categorical perception (CP) is an inherent property of speech perception. The response time (RT) of listeners' perceptual speech identification is highly sensitive to individual differences. While the neural correlates of CP have been well studied in terms of the regional contributions of the brain to behavior, functional connectivity patterns that signify individual differences in listeners' speed (RT) for speech categorization is less clear. In this study, we introduce a novel approach to address these questions. APPROACH We applied several computational approaches to the EEG, including graph mining, machine learning (i.e., support vector machine), and stability selection to investigate the unique brain states (functional neural connectivity) that predict the speed of listeners' behavioral decisions. MAIN RESULTS We infer that (i) the listeners' perceptual speed is directly related to dynamic variations in their brain connectomics, (ii) global network assortativity and efficiency distinguished fast, medium, and slow RTs, (iii) the functional network underlying speeded decisions increases in negative assortativity (i.e., became disassortative) for slower RTs, (iv) slower categorical speech decisions cause excessive use of neural resources and more aberrant information flow within the CP circuitry, (v) slower responders tended to utilize functional brain networks excessively (or inappropriately) whereas fast responders (with lower global efficiency) utilized the same neural pathways but with more restricted organization. SIGNIFICANCE Findings show that neural classifiers (SVM) coupled with stability selection correctly classify behavioral RTs from functional connectivity alone with over 92% accuracy (AUC = 0.9). Our results corroborate previous studies by supporting the engagement of similar temporal (STG), parietal, motor, and prefrontal regions in CP using an entirely data-driven approach.
Collapse
Affiliation(s)
- Rakib Al-Fahad
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, 38152 TN, USA
| | - Mohammed Yeasin
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, 38152 TN, USA
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Gavin M. Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA
| |
Collapse
|
11
|
Roine T, Roine U, Tokola A, Balk MH, Mannerkoski M, Åberg L, Lönnqvist T, Autti T. Topological Alterations of the Structural Brain Connectivity Network in Children with Juvenile Neuronal Ceroid Lipofuscinosis. AJNR Am J Neuroradiol 2019; 40:2146-2153. [PMID: 31727742 DOI: 10.3174/ajnr.a6306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE We used diffusion MR imaging to investigate the structural brain connectivity networks in juvenile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disease of childhood. Although changes in conventional MR imaging are typically not visually apparent in children aged <10 years, we previously found significant microstructural abnormalities by using diffusion MR imaging. Therefore, we hypothesized that the structural connectivity networks would also be affected in the disease. MATERIALS AND METHODS We acquired diffusion MR imaging data from 14 children with juvenile neuronal ceroid lipofuscinosis (mean ± SD age, 9.6 ± 3.4 years; 10 boys) and 14 control subjects (mean ± SD age, 11.2 ± 2.3 years; 7 boys). A follow-up MR imaging was performed for 12 of the patients (mean ± SD age, 11.4 ± 3.2 years; 8 boys). We used graph theoretical analysis to investigate the global and local properties of the structural brain connectivity networks reconstructed with constrained spherical deconvolution-based whole-brain probabilistic tractography. RESULTS We found significantly increased characteristic path length (P = .003) and decreased degree (P = .003), which indicated decreased network integration and centrality in children with juvenile neuronal ceroid lipofuscinosis. The findings were similar for the follow-up MR imaging, and there were no significant differences between the two acquisitions of the patients. In addition, we found that the disease severity correlated negatively (P < .007) with integration, segregation, centrality, and small-worldness of the networks. Moreover, we found significantly (P < .0003) decreased local efficiency in the left supramarginal gyrus and temporal plane, and decreased strength in the right lingual gyrus. CONCLUSIONS We found significant global and local network alterations in juvenile neuronal ceroid lipofuscinosis that correlated with the disease severity and in areas related to the symptomatology.
Collapse
Affiliation(s)
- T Roine
- Radiology, Child Psychiatry (M.M.)
- Turku Brain and Mind Center (T.R.), University of Turku, Turku, Finland
- Department of Neuroscience and Biomedical Engineering (T.R.), Aalto University School of Science, Espoo, Finland
| | - U Roine
- Radiology, Child Psychiatry (M.M.)
| | - A Tokola
- Radiology, Child Psychiatry (M.M.)
| | - M H Balk
- Radiology, Child Psychiatry (M.M.)
| | | | - L Åberg
- Department of Psychiatry (L.Å.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - T Lönnqvist
- Department of Child Neurology (T.L.), Children's Hospital, University of Helsinki and Helsinki University, Helsinki, Finland
| | - T Autti
- Radiology, Child Psychiatry (M.M.)
| |
Collapse
|
12
|
Cui Z, Su M, Li L, Shu H, Gong G. Individualized Prediction of Reading Comprehension Ability Using Gray Matter Volume. Cereb Cortex 2018; 28:1656-1672. [PMID: 28334252 PMCID: PMC6669415 DOI: 10.1093/cercor/bhx061] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/19/2017] [Accepted: 02/23/2017] [Indexed: 12/23/2022] Open
Abstract
Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension components is lacking, and whether and how neuroanatomical features can be used to predict these 2 skills remain largely unexplored. In the present study, we analyzed a large sample from the Human Connectome Project (HCP) dataset and successfully built multivariate predictive models for these 2 skills using whole-brain gray matter volume features. The results showed that these models effectively captured individual differences in these 2 skills and were able to significantly predict these components of reading comprehension for unseen individuals. The strict cross-validation using the HCP cohort and another independent cohort of children demonstrated the model generalizability. The identified gray matter regions contributing to the skill prediction consisted of a wide range of regions covering the putative reading, cerebellum, and subcortical systems. Interestingly, there were gender differences in the predictive models, with the female-specific model overestimating the males' abilities. Moreover, the identified contributing gray matter regions for the female-specific and male-specific models exhibited considerable differences, supporting a gender-dependent neuroanatomical substrate for reading comprehension.
Collapse
Affiliation(s)
- Zaixu Cui
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Mengmeng Su
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Liangjie Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Wilson SM, Bautista A, McCarron A. Convergence of spoken and written language processing in the superior temporal sulcus. Neuroimage 2018; 171:62-74. [PMID: 29277646 PMCID: PMC5857434 DOI: 10.1016/j.neuroimage.2017.12.068] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022] Open
Abstract
Spoken and written language processing streams converge in the superior temporal sulcus (STS), but the functional and anatomical nature of this convergence is not clear. We used functional MRI to quantify neural responses to spoken and written language, along with unintelligible stimuli in each modality, and employed several strategies to segregate activations on the dorsal and ventral banks of the STS. We found that intelligible and unintelligible inputs in both modalities activated the dorsal bank of the STS. The posterior dorsal bank was able to discriminate between modalities based on distributed patterns of activity, pointing to a role in encoding of phonological and orthographic word forms. The anterior dorsal bank was agnostic to input modality, suggesting that this region represents abstract lexical nodes. In the ventral bank of the STS, responses to unintelligible inputs in both modalities were attenuated, while intelligible inputs continued to drive activation, indicative of higher level semantic and syntactic processing. Our results suggest that the processing of spoken and written language converges on the posterior dorsal bank of the STS, which is the first of a heterogeneous set of language regions within the STS, with distinct functions spanning a broad range of linguistic processes.
Collapse
Affiliation(s)
- Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alexa Bautista
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, AZ, USA
| | - Angelica McCarron
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
14
|
Abstract
Computational theories of brain function have become very influential in neuroscience. They have facilitated the growth of formal approaches to disease, particularly in psychiatric research. In this paper, we provide a narrative review of the body of computational research addressing neuropsychological syndromes, and focus on those that employ Bayesian frameworks. Bayesian approaches to understanding brain function formulate perception and action as inferential processes. These inferences combine ‘prior’ beliefs with a generative (predictive) model to explain the causes of sensations. Under this view, neuropsychological deficits can be thought of as false inferences that arise due to aberrant prior beliefs (that are poor fits to the real world). This draws upon the notion of a Bayes optimal pathology – optimal inference with suboptimal priors – and provides a means for computational phenotyping. In principle, any given neuropsychological disorder could be characterized by the set of prior beliefs that would make a patient’s behavior appear Bayes optimal. We start with an overview of some key theoretical constructs and use these to motivate a form of computational neuropsychology that relates anatomical structures in the brain to the computations they perform. Throughout, we draw upon computational accounts of neuropsychological syndromes. These are selected to emphasize the key features of a Bayesian approach, and the possible types of pathological prior that may be present. They range from visual neglect through hallucinations to autism. Through these illustrative examples, we review the use of Bayesian approaches to understand the link between biology and computation that is at the heart of neuropsychology.
Collapse
Affiliation(s)
- Thomas Parr
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Geraint Rees
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
15
|
Toppi J, Astolfi L, Risetti M, Anzolin A, Kober SE, Wood G, Mattia D. Different Topological Properties of EEG-Derived Networks Describe Working Memory Phases as Revealed by Graph Theoretical Analysis. Front Hum Neurosci 2018; 11:637. [PMID: 29379425 PMCID: PMC5770976 DOI: 10.3389/fnhum.2017.00637] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022] Open
Abstract
Several non-invasive imaging methods have contributed to shed light on the brain mechanisms underlying working memory (WM). The aim of the present study was to depict the topology of the relevant EEG-derived brain networks associated to distinct operations of WM function elicited by the Sternberg Item Recognition Task (SIRT) such as encoding, storage, and retrieval in healthy, middle age (46 ± 5 years) adults. High density EEG recordings were performed in 17 participants whilst attending a visual SIRT. Neural correlates of WM were assessed by means of a combination of EEG signal processing methods (i.e., time-varying connectivity estimation and graph theory), in order to extract synthetic descriptors of the complex networks underlying the encoding, storage, and retrieval phases of WM construct. The group analysis revealed that the encoding phase exhibited a significantly higher small-world topology of EEG networks with respect to storage and retrieval in all EEG frequency oscillations, thus indicating that during the encoding of items the global network organization could “optimally” promote the information flow between WM sub-networks. We also found that the magnitude of such configuration could predict subject behavioral performance when memory load increases as indicated by the negative correlation between Reaction Time and the local efficiency values estimated during the encoding in the alpha band in both 4 and 6 digits conditions. At the local scale, the values of the degree index which measures the degree of in- and out- information flow between scalp areas were found to specifically distinguish the hubs within the relevant sub-networks associated to each of the three different WM phases, according to the different role of the sub-network of regions in the different WM phases. Our findings indicate that the use of EEG-derived connectivity measures and their related topological indices might offer a reliable and yet affordable approach to monitor WM components and thus theoretically support the clinical assessment of cognitive functions in presence of WM decline/impairment, as it occurs after stroke.
Collapse
Affiliation(s)
- Jlenia Toppi
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy.,Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Laura Astolfi
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy.,Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Monica Risetti
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Alessandra Anzolin
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy.,Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Silvia E Kober
- Department of Psychology, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Guilherme Wood
- Department of Psychology, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Donatella Mattia
- Neuroelectrical Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
16
|
Bednarz HM, Maximo JO, Murdaugh DL, O'Kelley S, Kana RK. "Decoding versus comprehension": Brain responses underlying reading comprehension in children with autism. BRAIN AND LANGUAGE 2017; 169:39-47. [PMID: 28242518 DOI: 10.1016/j.bandl.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Despite intact decoding ability, deficits in reading comprehension are relatively common in children with autism spectrum disorders (ASD). However, few neuroimaging studies have tested the neural bases of this specific profile of reading deficit in ASD. This fMRI study examined activation and synchronization of the brain's reading network in children with ASD with specific reading comprehension deficits during a word similarities task. Thirteen typically developing children and 18 children with ASD performed the task in the MRI scanner. No statistically significant group differences in functional activation were observed; however, children with ASD showed decreased functional connectivity between the left inferior frontal gyrus (LIFG) and the left inferior occipital gyrus (LIOG). In addition, reading comprehension ability significantly positively predicted functional connectivity between the LIFG and left thalamus (LTHAL) among all subjects. The results of this study provide evidence for altered recruitment of reading-related neural resources in ASD children and suggest specific weaknesses in top-down modulation of semantic processing.
Collapse
Affiliation(s)
- Haley M Bednarz
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jose O Maximo
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donna L Murdaugh
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah O'Kelley
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh K Kana
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
17
|
Paulesu E, Shallice T, Danelli L, Sberna M, Frackowiak RSJ, Frith CD. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits. Front Hum Neurosci 2017; 11:231. [PMID: 28567009 PMCID: PMC5434108 DOI: 10.3389/fnhum.2017.00231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/21/2017] [Indexed: 11/16/2022] Open
Abstract
Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H215O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of functional independence or modularity exists in this distributed anatomical-cognitive system.
Collapse
Affiliation(s)
- Eraldo Paulesu
- Psychology Department and Milan Centre for Neuroscience, University of Milano-BicoccaMilan, Italy.,fMRI Unit, IRCCS Istituto Ortopedico GaleazziMilan, Italy
| | - Tim Shallice
- Institute of Cognitive Neuroscience, University College LondonLondon, United Kingdom.,Cognitive Neuroscience Sector, SISSA, International School for Advanced StudiesTrieste, Italy
| | - Laura Danelli
- Psychology Department and Milan Centre for Neuroscience, University of Milano-BicoccaMilan, Italy
| | - Maurizio Sberna
- Department of Diagnostic Neuroradiology, Niguarda Ca' Granda HospitalMilan, Italy
| | - Richard S J Frackowiak
- Department of Clinical Neurosciences, University Hospital of LausanneLausanne, Switzerland.,Ecole Polytechnique Fédérale de Lausanne, BioTech CampusGeneva, Switzerland
| | - Chris D Frith
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College LondonLondon, United Kingdom.,Institute of Philosophy, School of Advanced Studies, University of LondonLondon, United Kingdom
| |
Collapse
|
18
|
García AM, Bocanegra Y, Herrera E, Pino M, Muñoz E, Sedeño L, Ibáñez A. Action-semantic and syntactic deficits in subjects at risk for Huntington's disease. J Neuropsychol 2017; 12:389-408. [PMID: 28296213 DOI: 10.1111/jnp.12120] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Indexed: 12/21/2022]
Abstract
Frontostriatal networks play critical roles in grounding action semantics and syntactic skills. Indeed, their atrophy distinctively disrupts both domains, as observed in patients with Huntington's disease (HD) and Parkinson's disease, even during early disease stages. However, frontostriatal degeneration in these conditions may begin up to 15 years before the onset of clinical symptoms, opening avenues for pre-clinical detection via sensitive tasks. Such a mission is particularly critical in HD, given that patients' children have 50% chances of inheriting the disease. Against this background, we assessed whether deficits in the above-mentioned domains emerge in subjects at risk to develop HD. We administered tasks tapping action semantics, object semantics, and two forms of syntactic processing to 18 patients with HD, 19 asymptomatic first-degree relatives, and sociodemographically matched controls for each group. The patients evinced significant deficits in all tasks, but only those in the two target domains were independent of overall cognitive state. More crucially, relative to controls, the asymptomatic relatives were selectively impaired in action semantics and in the more complex syntactic task, with both patterns emerging irrespective of the subjects' overall cognitive state. Our findings highlight the relevance of these dysfunctions as potential prodromal biomarkers of HD. Moreover, they offer theoretical insights into the differential contributions of frontostriatal hubs to both domains while paving the way for innovations in diagnostic procedures.
Collapse
Affiliation(s)
- Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Yamile Bocanegra
- Neuroscience Group, Faculty of Medicine, University of Antioquia (UDEA), Medellín, Colombia.,Group of Neuropsychology and Conduct (GRUNECO), Faculty of Medicine, University of Antioquia (UDEA), Medellín, Colombia
| | - Eduar Herrera
- Psychological Studies Department, Icesi University, Cali, Colombia
| | - Mariana Pino
- Autonomous University of the Caribbean, Barranquilla, Colombia
| | - Edinson Muñoz
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Chile
| | - Lucas Sedeño
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Autonomous University of the Caribbean, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.,Centre of Excellence in Cognition and its Disorders, Australian Research Council (ACR), Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Owen T, Adegboye D, Gimeno H, Selway R, Lin JP. Stable cognitive functioning with improved perceptual reasoning in children with dyskinetic cerebral palsy and other secondary dystonias after deep brain stimulation. Eur J Paediatr Neurol 2017; 21:193-201. [PMID: 27836441 DOI: 10.1016/j.ejpn.2016.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/28/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Dystonia is characterised by involuntary movements (twisting, writhing and jerking) and postures. Secondary dystonias are described as a heterogeneous group of disorders with both exogenous and endogenous causes. There is a growing body of literature on the effects of deep brain stimulation (DBS) surgery on the motor function in childhood secondary dystonias, however research on cognitive function after DBS is scarce. METHODS Cognitive function was measured in a cohort of 40 children with secondary dystonia following DBS surgery using a retrospective repeated measures design. Baseline pre-DBS neuropsychological measures were compared to scores obtained at least one year following DBS. Cognitive function was assessed using standardised measures of intellectual ability and memory. RESULTS There was no significant change in the assessed domains of cognitive function following DBS surgery. A significant improvement across the group was found on the Picture Completion subtest, measuring perceptual reasoning ability, following DBS. CONCLUSION Cognition remained stable in children with secondary dystonia following DBS surgery, with some improvements noted in a domain of perceptual reasoning. Further research with a larger sample is necessary to further explore this, in particular to further subdivide this group to account for its heterogeneity. This preliminary data has potentially positive implications for the impact of DBS on cognitive functioning within the childhood secondary dystonia population.
Collapse
Affiliation(s)
- Tamsin Owen
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Department of Clinical Psychology, Royal Holloway, University of London, UK.
| | - Dolapo Adegboye
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Hortensia Gimeno
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Department of Psychology, Institute of Psychiatry, King's College London, UK
| | - Richard Selway
- Functional Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Jean-Pierre Lin
- Complex Motor Disorders Service, Paediatric Neurosciences, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
20
|
Iijima M, Nishitani N. Cortical dynamics during simple calculation processes: A magnetoencephalography study. Clin Neurophysiol Pract 2016; 2:54-61. [PMID: 30214971 PMCID: PMC6123856 DOI: 10.1016/j.cnp.2016.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/10/2016] [Accepted: 10/05/2016] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE We elucidated active cortical areas and their time courses during simple calculation by using whole-scalp magnetoencephalography. METHODS Twelve healthy volunteers were asked to view meaningless figures (figure viewing) or digits (digit viewing) and add single digits (calculation). The magnetic signals of the brain were measured using a helmet-shaped 122-channel neuromagnetometer during the three tasks. RESULTS The occipital, inferior posterior temporal, and middle temporal areas of each hemisphere and the left superior temporal area (STA) were activated during all tasks (approximately 250 ms after the stimulus onset). The calculation-related sources were located in the left inferior parietal area (IPA) in 8 subjects, right IPA in 5, left STA in 3, right STA in 5, right inferior frontal area in 2, and left inferior frontal area in 1. The IPA and STA of the left hemisphere were activated more strongly and significantly earlier than those of the right hemisphere: the left IPA was activated first (mean activation timing: 301 ms), followed by activations of the left STA (369 ms), right IPA (419 ms), and right STA (483 ms). CONCLUSIONS Simple digit addition is executed mainly in the left IPA and left STA, followed by the recognition processes of results in the right IPA and right STA. SIGNIFICANCE This study clarified the cortical process during simple calculation, with excellent temporal and spatial resolution; the IPA and STA of the left hemisphere were activated more strongly and earlier than the corresponding areas of the right hemisphere.
Collapse
Affiliation(s)
- Mutsumi Iijima
- Department of Sensory & Communicative Disorders, Research Institute, National Rehabilitation Center for the Disabled, Tokorozawa, Japan
- Department of Neurology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Nobuyuki Nishitani
- Department of Sensory & Communicative Disorders, Research Institute, National Rehabilitation Center for the Disabled, Tokorozawa, Japan
- Department of Neurology, Bell Land General Hospital, Osaka, Japan
| |
Collapse
|
21
|
Hofstetter S, Friedmann N, Assaf Y. Rapid language-related plasticity: microstructural changes in the cortex after a short session of new word learning. Brain Struct Funct 2016; 222:1231-1241. [DOI: 10.1007/s00429-016-1273-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 07/13/2016] [Indexed: 11/29/2022]
|
22
|
Hippolyte L, Maillard AM, Rodriguez-Herreros B, Pain A, Martin-Brevet S, Ferrari C, Conus P, Macé A, Hadjikhani N, Metspalu A, Reigo A, Kolk A, Männik K, Barker M, Isidor B, Le Caignec C, Mignot C, Schneider L, Mottron L, Keren B, David A, Doco-Fenzy M, Gérard M, Bernier R, Goin-Kochel RP, Hanson E, Green Snyder L, Ramus F, Beckmann JS, Draganski B, Reymond A, Jacquemont S. The Number of Genomic Copies at the 16p11.2 Locus Modulates Language, Verbal Memory, and Inhibition. Biol Psychiatry 2016; 80:129-139. [PMID: 26742926 DOI: 10.1016/j.biopsych.2015.10.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Deletions and duplications of the 16p11.2 BP4-BP5 locus are prevalent copy number variations (CNVs), highly associated with autism spectrum disorder and schizophrenia. Beyond language and global cognition, neuropsychological assessments of these two CNVs have not yet been reported. METHODS This study investigates the relationship between the number of genomic copies at the 16p11.2 locus and cognitive domains assessed in 62 deletion carriers, 44 duplication carriers, and 71 intrafamilial control subjects. RESULTS IQ is decreased in deletion and duplication carriers, but we demonstrate contrasting cognitive profiles in these reciprocal CNVs. Deletion carriers present with severe impairments of phonology and of inhibition skills beyond what is expected for their IQ level. In contrast, for verbal memory and phonology, the data may suggest that duplication carriers outperform intrafamilial control subjects with the same IQ level. This finding is reminiscent of special isolated skills as well as contrasting language performance observed in autism spectrum disorder. Some domains, such as visuospatial and working memory, are unaffected by the 16p11.2 locus beyond the effect of decreased IQ. Neuroimaging analyses reveal that measures of inhibition covary with neuroanatomic structures previously identified as sensitive to 16p11.2 CNVs. CONCLUSIONS The simultaneous study of reciprocal CNVs suggests that the 16p11.2 genomic locus modulates specific cognitive skills according to the number of genomic copies. Further research is warranted to replicate these findings and elucidate the molecular mechanisms modulating these cognitive performances.
Collapse
Affiliation(s)
- Loyse Hippolyte
- Service de Génétique Médicale, University of Lausanne, Lausanne, Switzerland
| | - Anne M Maillard
- Service de Génétique Médicale, University of Lausanne, Lausanne, Switzerland
| | - Borja Rodriguez-Herreros
- Service de Génétique Médicale, University of Lausanne, Lausanne, Switzerland; LREN-Département des Neurosciences Cliniques, University of Lausanne, Lausanne, Switzerland
| | - Aurélie Pain
- Service de Génétique Médicale, University of Lausanne, Lausanne, Switzerland
| | - Sandra Martin-Brevet
- Service de Génétique Médicale, University of Lausanne, Lausanne, Switzerland; LREN-Département des Neurosciences Cliniques, University of Lausanne, Lausanne, Switzerland
| | - Carina Ferrari
- Department of Psychiatry, University of Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Department of Psychiatry, University of Lausanne, Lausanne, Switzerland
| | - Aurélien Macé
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland; SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Nouchine Hadjikhani
- Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andres Metspalu
- Department of Genetics, Tartu University Hospital, Tartu, Estonia
| | - Anu Reigo
- Department of Genetics, Tartu University Hospital, Tartu, Estonia
| | - Anneli Kolk
- United Laboratories, and Children's Clinic, Department of Neurology and Neurorehabilitation, Tartu University Hospital, Tartu, Estonia
| | - Katrin Männik
- Center for Integrative Genomics, University of Lausanne;Lausanne, Switzerland; Department of Genetics, Tartu University Hospital, Tartu, Estonia
| | - Mandy Barker
- CERY Hospital, Department of Child Psychiatry, University of Lausanne, Lausanne, Switzerland
| | | | - Cédric Le Caignec
- Service de Génétique Médicale, CHU-Nantes, Nantes; Inserm UMR957, Faculté de Médecine, Nantes
| | - Cyril Mignot
- Department of Genetics and Cytogenetics, Unité fonctionnelle de génétique clinique, Groupe Hospitalier Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Référence "Déficiences intellectuelles de causes rares" and Groupe de Recherche Clinique "Déficience intellectuelle et autisme", UPMC, Paris, France
| | - Laurence Schneider
- SUPEA, and Service of Neuropsychology and Neurorehabilitation, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Laurent Mottron
- Département de Psychiatrie, Université de Montréal and Hôpital Rivière des Prairies, Montreal, Quebec, Canada
| | - Boris Keren
- Department of Genetics and Cytogenetics, Unité fonctionnelle de génétique clinique, Groupe Hospitalier Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Albert David
- Service de Génétique Médicale, CHU-Nantes, Nantes
| | | | - Marion Gérard
- Department of Genetics and Cytogenetics, Unité fonctionnelle de génétique clinique, Groupe Hospitalier Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; Département de Génétique, Hôpital Robert Debré, Université Paris VII-Paris Diderot, Paris, France
| | - Raphael Bernier
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle, Washington
| | - Robin P Goin-Kochel
- Department of Pediatrics, Psychology Section, Baylor College of Medicine, Houston, Texas
| | - Ellen Hanson
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, Ecole Normale Supérieure, EHESS, CNRS, PSL Research University, Paris, France
| | - Jacques S Beckmann
- Service de Génétique Médicale, University of Lausanne, Lausanne, Switzerland; SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Bogdan Draganski
- LREN-Département des Neurosciences Cliniques, University of Lausanne, Lausanne, Switzerland; Department of Neurology (BD), Max-Planck Institute for Human Cognitive and Brain Science, Leipzig, Germany
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne;Lausanne, Switzerland
| | | |
Collapse
|
23
|
Abstract
Surgery is an important therapeutic alternative for patients with uncontrolled epilepsy. Preoperative identification of brain regions important for language is important to reduce the risk of functional impairment after surgery. The Wada test suffers from several technical and clinical disadvantages and provides hemispheric data at best. More invasive methods such as intraoperative or chronic subdural cortical mapping have more limited application. New approaches using neuroimaging methods offer the opportunity to localize, as well as lateralize, language. In addition, normal volunteers can be studied with the same techniques, providing comparative and control data. Although most normal studies have been reported as group data, it is important for individual scans to be available for comparison with patient studies to understand the normal range of interindividual variability. Two techniques, PET with 15O-water-PET and fMRI, have been used. Both detect signal changes associated with increased regional blood flow during neuronal activity. Usually, scans performed during a language task are compared with those obtained during control conditions. It is important to choose activation tasks carefully, to make sure one is imaging activation associated with the particular process of interest. PET has advantages, including a fully diffusible tracer, standardized analytic methods, a more comfortable environment, and less sensitivity to movement artifact. On the other hand, it involves a cyclotron-produced tracer, radiation exposure, and is more difficult to repeat. FMRI over represents the effects of large vascular structures and is very sensitive to movement but uses widely available equipment and has no limitation on the number of studies. For both studies, it is important to understand the potential effects of such factors as attention, fatigue, and familiarity with the material. Several studies comparing 15O-water-PET and fMRI to the Wada test found that the former are at least as accurate for language lateralization. In addition, we compared 15O-water-PET to direct subdural electrode cortical stimulation and found that regions showing increased cerebral blood flow during naming tasks co-registered with subdural electrodes that disrupted language during electrical stimulation. In this and other studies, PET detected more regions than electrical stimulation techniques. The whole brain cannot be covered with electrodes, but some areas participating in a task may not be crucial for it. FMRI is particularly useful for children. We compared cortical activation patterns in normal children, adolescents, and adults. The activation patterns, and laterality of language dominance, in children 8 years and above, were similar to adults, although some differences could reflect maturation and evolving focality of cognitive processes. In children with epilepsy, fMRI successfully identified language laterality and provided data on intrahemispheric localization. Studies also showed the effects of the epileptic focus on normal activation patterns for several tasks. Neuroimaging functional mapping is an important tool, still in the process of development and evolution. Although potentially of great clinical and scientific value, it should be used and interpreted cautiously.
Collapse
Affiliation(s)
- William D. Gaillard
- Clinical Epilepsy Section, National Institutes of Health, Bethesda Maryland, Children’s National Medical Center, Washington, D.C
| | - William H. Theodore
- Clinical Epilepsy Section, National Institutes of Health, Bethesda Maryland,
| |
Collapse
|
24
|
Jung RE, Flores RA, Hunter D. A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates. Front Psychol 2016; 7:496. [PMID: 27148109 PMCID: PMC4834344 DOI: 10.3389/fpsyg.2016.00496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/22/2016] [Indexed: 12/19/2022] Open
Abstract
Imagination involves episodic memory retrieval, visualization, mental simulation, spatial navigation, and future thinking, making it a complex cognitive construct. Prior studies of imagination have attempted to study various elements of imagination (e.g., visualization), but none have attempted to capture the entirety of imagination ability in a single instrument. Here we describe the Hunter Imagination Questionnaire (HIQ), an instrument designed to assess imagination over an extended period of time, in a naturalistic manner. We hypothesized that the HIQ would be related to measures of creative achievement and to a network of brain regions previously identified to be important to imagination/creative abilities. Eighty subjects were administered the HIQ in an online format; all subjects were administered a broad battery of tests including measures of intelligence, personality, and aptitude, as well as structural Magnetic Resonance Imaging (sMRI). Responses of the HIQ were found to be normally distributed, and exploratory factor analysis yielded four factors. Internal consistency of the HIQ ranged from 0.76 to 0.79, and two factors (“Implementation” and “Learning”) were significantly related to measures of Creative Achievement (Scientific—r = 0.26 and Writing—r = 0.31, respectively), suggesting concurrent validity. We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe). The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus). We also identified compelling evidence suggesting imagination ability linked to decreased volumes involving the nucleus accumbens and regions within the default mode network. Future research will be important to assess the stability of this instrument in different populations, as well as the complex interaction between imagination and creativity in the human brain.
Collapse
Affiliation(s)
- Rex E Jung
- Department of Psychology, University of New MexicoAlbuquerque, NM, USA; Department of Neurosurgery, University of New MexicoAlbuquerque, NM, USA
| | - Ranee A Flores
- Department of Neurosurgery, University of New Mexico Albuquerque, NM, USA
| | | |
Collapse
|
25
|
Syntax, action verbs, action semantics, and object semantics in Parkinson's disease: Dissociability, progression, and executive influences. Cortex 2015; 69:237-54. [DOI: 10.1016/j.cortex.2015.05.022] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 03/25/2015] [Accepted: 05/18/2015] [Indexed: 12/14/2022]
|
26
|
Braun M, Jacobs AM, Richlan F, Hawelka S, Hutzler F, Kronbichler M. Many neighbors are not silent. fMRI evidence for global lexical activity in visual word recognition. Front Hum Neurosci 2015; 9:423. [PMID: 26257634 PMCID: PMC4510423 DOI: 10.3389/fnhum.2015.00423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/10/2015] [Indexed: 12/03/2022] Open
Abstract
Many neurocognitive studies investigated the neural correlates of visual word recognition, some of which manipulated the orthographic neighborhood density of words and nonwords believed to influence the activation of orthographically similar representations in a hypothetical mental lexicon. Previous neuroimaging research failed to find evidence for such global lexical activity associated with neighborhood density. Rather, effects were interpreted to reflect semantic or domain general processing. The present fMRI study revealed effects of lexicality, orthographic neighborhood density and a lexicality by orthographic neighborhood density interaction in a silent reading task. For the first time we found greater activity for words and nonwords with a high number of neighbors. We propose that this activity in the dorsomedial prefrontal cortex reflects activation of orthographically similar codes in verbal working memory thus providing evidence for global lexical activity as the basis of the neighborhood density effect. The interaction of lexicality by neighborhood density in the ventromedial prefrontal cortex showed lower activity in response to words with a high number compared to nonwords with a high number of neighbors. In the light of these results the facilitatory effect for words and inhibitory effect for nonwords with many neighbors observed in previous studies can be understood as being due to the operation of a fast-guess mechanism for words and a temporal deadline mechanism for nonwords as predicted by models of visual word recognition. Furthermore, we propose that the lexicality effect with higher activity for words compared to nonwords in inferior parietal and middle temporal cortex reflects the operation of an identification mechanism based on local lexico-semantic activity.
Collapse
Affiliation(s)
- Mario Braun
- Neurocognition Lab, Centre for Cognitive Neuroscience, Universität SalzburgSalzburg, Austria
- Department of Experimental and Neurocognitive Psychology, Freie Universität BerlinBerlin, Germany
| | - Arthur M. Jacobs
- Department of Experimental and Neurocognitive Psychology, Freie Universität BerlinBerlin, Germany
- Center for Cognitive Neuroscience BerlinBerlin, Germany
- Dahlem Institute for Neuroimaging of Emotion, BerlinGermany
| | - Fabio Richlan
- Neurocognition Lab, Centre for Cognitive Neuroscience, Universität SalzburgSalzburg, Austria
| | - Stefan Hawelka
- Neurocognition Lab, Centre for Cognitive Neuroscience, Universität SalzburgSalzburg, Austria
| | - Florian Hutzler
- Neurocognition Lab, Centre for Cognitive Neuroscience, Universität SalzburgSalzburg, Austria
| | - Martin Kronbichler
- Neurocognition Lab, Centre for Cognitive Neuroscience, Universität SalzburgSalzburg, Austria
- Christian-Doppler-Klinik, Paracelsus Medical University, SalzburgAustria
| |
Collapse
|
27
|
The impact of parent-child interaction on brain structures: cross-sectional and longitudinal analyses. J Neurosci 2015; 35:2233-45. [PMID: 25653378 DOI: 10.1523/jneurosci.0598-14.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
There is a vast amount of evidence from psychological studies that the amount of parent-child interaction affects the development of children's verbal skills and knowledge. However, despite the vast amount of literature, brain structural development associated with the amount of parent-child interaction has never been investigated. In the present human study, we used voxel-based morphometry to measure regional gray matter density (rGMD) and examined cross-sectional correlations between the amount of time spent with parents and rGMD among 127 boys and 135 girls. We also assessed correlations between the amount of time spent with parents and longitudinal changes that occurred a few years later among 106 boys and 102 girls. After correcting for confounding factors, we found negative effects of spending time with parents on rGMD in areas in the bilateral superior temporal gyrus (STG) via cross-sectional analyses as well as in the contingent areas of the right STG. We also confirmed positive effects of spending time with parents on the Verbal Comprehension score in cross-sectional and longitudinal analyses. rGMD in partly overlapping or contingent areas of the right STG was negatively correlated with age and the Verbal Comprehension score in cross-sectional analyses. Subsequent analyses revealed verbal parent-child interactions have similar effects on Verbal Comprehension scores and rGMD in the right STG in both cross-sectional and longitudinal analyses. These findings indicate that parent-child interactions affect the right STG, which may be associated with verbal skills.
Collapse
|
28
|
Rofes A, de Aguiar V, Miceli G. A minimal standardization setting for language mapping tests: an Italian example. Neurol Sci 2015; 36:1113-9. [PMID: 25851729 DOI: 10.1007/s10072-015-2192-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/23/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Adrià Rofes
- Center for Neurocognitive Rehabilitation (CeRiN) and Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | | | | |
Collapse
|
29
|
Misch MR, Mitchell S, Francis PL, Sherborn K, Meradje K, McNeely AA, Honjo K, Zhao J, Scott CJ, Caldwell CB, Ehrlich L, Shammi P, MacIntosh BJ, Bilbao JM, Lang AE, Black SE, Masellis M. Differentiating between visual hallucination-free dementia with Lewy bodies and corticobasal syndrome on the basis of neuropsychology and perfusion single-photon emission computed tomography. ALZHEIMERS RESEARCH & THERAPY 2014; 6:71. [PMID: 25484929 PMCID: PMC4256921 DOI: 10.1186/s13195-014-0071-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/08/2014] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Dementia with Lewy bodies (DLB) and Corticobasal Syndrome (CBS) are atypical parkinsonian disorders with fronto-subcortical and posterior cognitive dysfunction as common features. While visual hallucinations are a good predictor of Lewy body pathology and are rare in CBS, they are not exhibited in all cases of DLB. Given the clinical overlap between these disorders, neuropsychological and imaging markers may aid in distinguishing these entities. METHODS Prospectively recruited case-control cohorts of CBS (n =31) and visual hallucination-free DLB (n =30), completed neuropsychological and neuropsychiatric measures as well as brain perfusion single-photon emission computed tomography and structural magnetic resonance imaging (MRI). Perfusion data were available for forty-two controls. Behavioural, perfusion, and cortical volume and thickness measures were compared between the groups to identify features that serve to differentiate them. RESULTS The Lewy body with no hallucinations group performed more poorly on measures of episodic memory compared to the corticobasal group, including the delayed and cued recall portions of the California Verbal Learning Test (F (1, 42) =23.1, P <0.001 and F (1, 42) =14.0, P =0.001 respectively) and the delayed visual reproduction of the Wechsler Memory Scale-Revised (F (1, 36) =9.7, P =0.004). The Lewy body group also demonstrated reduced perfusion in the left occipital pole compared to the corticobasal group (F (1,57) =7.4, P =0.009). At autopsy, the Lewy body cases all demonstrated mixed dementia with Lewy bodies, Alzheimer's disease and small vessel arteriosclerosis, while the corticobasal cases demonstrated classical corticobasal degeneration in five, dementia with agyrophilic grains + corticobasal degeneration + cerebral amyloid angiopathy in one, Progressive Supranuclear Palsy in two, and Frontotemporal Lobar Degeneration-Ubiquitin/TAR DNA-binding protein 43 proteinopathy in one. MRI measures were not significantly different between the patient groups. CONCLUSIONS Reduced perfusion in the left occipital region and worse episodic memory performance may help to distinguish between DLB cases who have never manifested with visual hallucinations and CBS at earlier stages of the disease. Development of reliable neuropsychological and imaging markers that improve diagnostic accuracy will become increasingly important as disease modifying therapies become available.
Collapse
Affiliation(s)
- Michael R Misch
- L.C. Campbell Cognitive Neurology Clinic, Sunnybrook Health Sciences Centre, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Sara Mitchell
- L.C. Campbell Cognitive Neurology Clinic, Sunnybrook Health Sciences Centre, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Philip L Francis
- L.C. Campbell Cognitive Neurology Clinic, Sunnybrook Health Sciences Centre, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Kayla Sherborn
- L.C. Campbell Cognitive Neurology Clinic, Sunnybrook Health Sciences Centre, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Katayoun Meradje
- L.C. Campbell Cognitive Neurology Clinic, Sunnybrook Health Sciences Centre, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Alicia A McNeely
- L.C. Campbell Cognitive Neurology Clinic, Sunnybrook Health Sciences Centre, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Kie Honjo
- L.C. Campbell Cognitive Neurology Clinic, Sunnybrook Health Sciences Centre, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Jiali Zhao
- L.C. Campbell Cognitive Neurology Clinic, Sunnybrook Health Sciences Centre, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Christopher Jm Scott
- L.C. Campbell Cognitive Neurology Clinic, Sunnybrook Health Sciences Centre, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Curtis B Caldwell
- Department of Medical Biophysics, Sunnybrook Health Sciences Centre, University of Toronto, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Lisa Ehrlich
- Department of Nuclear Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Prathiba Shammi
- Neuropsychology Clinic, Sunnybrook Health Sciences Centre, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, Sunnybrook Health Sciences Centre, University of Toronto, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Juan M Bilbao
- Department of Pathology, Sunnybrook Health Sciences Centre, University of Toronto, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Anthony E Lang
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Sandra E Black
- L.C. Campbell Cognitive Neurology Clinic, Sunnybrook Health Sciences Centre, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada ; Department of Medicine (Neurology), Brain Sciences Research Program, Sunnybrook Health Sciences, Centre University of Toronto, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| | - Mario Masellis
- L.C. Campbell Cognitive Neurology Clinic, Sunnybrook Health Sciences Centre, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada ; Department of Medicine (Neurology), Brain Sciences Research Program, Sunnybrook Health Sciences, Centre University of Toronto, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada ; Cognition & Movement Disorders Clinic, Sunnybrook Health Sciences Centre, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada ; Neurogenetics Section, Centre for Addiction and Mental Health, University of Toronto, Room A4 42, 2075 Bayview Avenue, Toronto, ON M4N 3M5 Canada
| |
Collapse
|
30
|
Sliwinska MW, James A, Devlin JT. Inferior parietal lobule contributions to visual word recognition. J Cogn Neurosci 2014; 27:593-604. [PMID: 25244114 DOI: 10.1162/jocn_a_00721] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This study investigated how the left inferior parietal lobule (IPL) contributes to visual word recognition. We used repetitive TMS to temporarily disrupt neural information processing in two anatomical fields of the IPL, namely, the angular (ANG) and supramarginal (SMG) gyri, and observed the effects on reading tasks that focused attention on either the meaning or sounds of written words. Relative to no TMS, stimulation of the left ANG selectively slowed responses in the meaning, but not sound, task, whereas stimulation of the left SMG affected responses in the sound, but not meaning, task. These results demonstrate that ANG and SMG doubly dissociate in their contributions to visual word recognition. We suggest that this functional division of labor may be understood in terms of the distinct patterns of cortico-cortical connectivity resulting in separable functional circuits.
Collapse
|
31
|
Kargieman L, Herrera E, Baez S, García AM, Dottori M, Gelormini C, Manes F, Gershanik O, Ibáñez A. Motor-Language Coupling in Huntington's Disease Families. Front Aging Neurosci 2014; 6:122. [PMID: 24971062 PMCID: PMC4054328 DOI: 10.3389/fnagi.2014.00122] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/27/2014] [Indexed: 11/24/2022] Open
Abstract
Traditionally, Huntington’s disease (HD) has been known as a movement disorder, characterized by motor, psychiatric, and cognitive impairments. Recent studies have shown that motor and action–language processes are neurally associated. The cognitive mechanisms underlying this interaction have been investigated through the action compatibility effect (ACE) paradigm, which induces a contextual coupling of ongoing motor actions and verbal processing. The present study is the first to use the ACE paradigm to evaluate action–word processing in HD patients (HDP) and their families. Specifically, we tested three groups: HDP, healthy first-degree relatives (HDR), and non-relative healthy controls. The results showed that ACE was abolished in HDP as well as HDR, but not in controls. Furthermore, we found that the processing deficits were primarily linguistic, given that they did not correlate executive function measurements. Our overall results underscore the role of cortico-basal ganglia circuits in action–word processing and indicate that the ACE task is a sensitive and robust early biomarker of HD and familial vulnerability.
Collapse
Affiliation(s)
- Lucila Kargieman
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive Neurology (INECO), Favaloro University , Buenos Aires , Argentina ; National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina ; UDP-INECO Foundation Core on Neuroscience (UIFCoN), Diego Portales University , Santiago , Chile
| | - Eduar Herrera
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive Neurology (INECO), Favaloro University , Buenos Aires , Argentina ; National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina ; Universidad Autónoma del Caribe , Barranquilla , Colombia
| | - Sandra Baez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive Neurology (INECO), Favaloro University , Buenos Aires , Argentina ; National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina ; UDP-INECO Foundation Core on Neuroscience (UIFCoN), Diego Portales University , Santiago , Chile
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive Neurology (INECO), Favaloro University , Buenos Aires , Argentina ; National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina ; UDP-INECO Foundation Core on Neuroscience (UIFCoN), Diego Portales University , Santiago , Chile ; School of Languages, National University of Córdoba (UNC) , Córdoba , Argentina
| | - Martin Dottori
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive Neurology (INECO), Favaloro University , Buenos Aires , Argentina
| | - Carlos Gelormini
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive Neurology (INECO), Favaloro University , Buenos Aires , Argentina
| | - Facundo Manes
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive Neurology (INECO), Favaloro University , Buenos Aires , Argentina ; National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina ; Australian Research Council (ARC) Centre of Excellence in Cognition and its Disorders , Sydney, NSW , Australia
| | - Oscar Gershanik
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive Neurology (INECO), Favaloro University , Buenos Aires , Argentina ; National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
| | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive Neurology (INECO), Favaloro University , Buenos Aires , Argentina ; National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina ; UDP-INECO Foundation Core on Neuroscience (UIFCoN), Diego Portales University , Santiago , Chile ; Universidad Autónoma del Caribe , Barranquilla , Colombia
| |
Collapse
|
32
|
Sadigh-Eteghad S, Majdi A, Farhoudi M, Talebi M, Mahmoudi J. Different patterns of brain activation in normal aging and Alzheimer's disease from cognitional sight: meta analysis using activation likelihood estimation. J Neurol Sci 2014; 343:159-66. [PMID: 24950901 DOI: 10.1016/j.jns.2014.05.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/26/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
Alzheimer disease (AD) is a chronic neurological disease, frequently affecting cognitional functions. Recently, a large body of neuro-imaging studies have aimed at finding reliable biomarkers of AD for early diagnosis of disease in contrast with healthy elderlies. We intended to have a meta-analytical study on recent functional neuroimaging studies to find the relationship between cognition in AD patients and normal elderlies. A systematic search was conducted to collect functional neuroimaging studies such as positron emission therapy (PET) and functional magnetic resonance imaging (fMRI) in AD patients and healthy elderlies. The coordinates of regions related to cognition were meta-analyzed using the activation likelihood estimation (ALE) method and Sleuth software. P-value map at the false discovery rate (FDR) of P<0.05 thresholds and the clusters with a minimum size of 200 mm(3) were considered. Data were visualized with MANGO software. Forty-one articles that explored the areas activated during cognition in normal elderly subjects and AD patients were found. According to the findings, left middle frontal gyrus and left precuneus are the most activated areas in cognitional tasks in healthy elderlies and AD patients respectively. In normal elderly subjects and AD patients, comparison of ALE maps and reverse contrast showed that insula and left precuneus were the most activated areas in cognitional aspects respectively. With respect to unification of left precuneus activation in cognitional tasks, it seems that this point can be a hallmark in primary differentiation of AD and healthy individuals.
Collapse
Affiliation(s)
- Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Deschamps I, Baum SR, Gracco VL. On the role of the supramarginal gyrus in phonological processing and verbal working memory: Evidence from rTMS studies. Neuropsychologia 2014; 53:39-46. [DOI: 10.1016/j.neuropsychologia.2013.10.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 10/14/2013] [Accepted: 10/24/2013] [Indexed: 11/28/2022]
|
34
|
Cortical plasticity after cochlear implantation. Neural Plast 2013; 2013:318521. [PMID: 24377050 PMCID: PMC3860139 DOI: 10.1155/2013/318521] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/04/2013] [Indexed: 11/17/2022] Open
Abstract
The most dramatic progress in the restoration of hearing takes place in the first months after cochlear implantation. To map the brain activity underlying this process, we used positron emission tomography at three time points: within 14 days, three months, and six months after switch-on. Fifteen recently implanted adult implant recipients listened to running speech or speech-like noise in four sequential PET sessions at each milestone. CI listeners with postlingual hearing loss showed differential activation of left superior temporal gyrus during speech and speech-like stimuli, unlike CI listeners with prelingual hearing loss. Furthermore, Broca's area was activated as an effect of time, but only in CI listeners with postlingual hearing loss. The study demonstrates that adaptation to the cochlear implant is highly related to the history of hearing loss. Speech processing in patients whose hearing loss occurred after the acquisition of language involves brain areas associated with speech comprehension, which is not the case for patients whose hearing loss occurred before the acquisition of language. Finally, the findings confirm the key role of Broca's area in restoration of speech perception, but only in individuals in whom Broca's area has been active prior to the loss of hearing.
Collapse
|
35
|
Fridriksson J, Guo D, Fillmore P, Holland A, Rorden C. Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia. ACTA ACUST UNITED AC 2013; 136:3451-60. [PMID: 24131592 DOI: 10.1093/brain/awt267] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-fluent aphasia implies a relatively straightforward neurological condition characterized by limited speech output. However, it is an umbrella term for different underlying impairments affecting speech production. Several studies have sought the critical lesion location that gives rise to non-fluent aphasia. The results have been mixed but typically implicate anterior cortical regions such as Broca's area, the left anterior insula, and deep white matter regions. To provide a clearer picture of cortical damage in non-fluent aphasia, the current study examined brain damage that negatively influences speech fluency in patients with aphasia. It controlled for some basic speech and language comprehension factors in order to better isolate the contribution of different mechanisms to fluency, or its lack. Cortical damage was related to overall speech fluency, as estimated by clinical judgements using the Western Aphasia Battery speech fluency scale, diadochokinetic rate, rudimentary auditory language comprehension, and executive functioning (scores on a matrix reasoning test) in 64 patients with chronic left hemisphere stroke. A region of interest analysis that included brain regions typically implicated in speech and language processing revealed that non-fluency in aphasia is primarily predicted by damage to the anterior segment of the left arcuate fasciculus. An improved prediction model also included the left uncinate fasciculus, a white matter tract connecting the middle and anterior temporal lobe with frontal lobe regions, including the pars triangularis. Models that controlled for diadochokinetic rate, picture-word recognition, or executive functioning also revealed a strong relationship between anterior segment involvement and speech fluency. Whole brain analyses corroborated the findings from the region of interest analyses. An additional exploratory analysis revealed that involvement of the uncinate fasciculus adjudicated between Broca's and global aphasia, the two most common kinds of non-fluent aphasia. In summary, the current results suggest that the anterior segment of the left arcuate fasciculus, a white matter tract that lies deep to posterior portions of Broca's area and the sensory-motor cortex, is a robust predictor of impaired speech fluency in aphasic patients, even when motor speech, lexical processing, and executive functioning are included as co-factors. Simply put, damage to those regions results in non-fluent aphasic speech; when they are undamaged, fluent aphasias result.
Collapse
Affiliation(s)
- Julius Fridriksson
- 1 The Aphasia Lab, Department of Communication Sciences and Disorders, University of South Carolina, 915 Greene St., Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
36
|
Gan G, Büchel C, Isel F. Effect of language task demands on the neural response during lexical access: a functional magnetic resonance imaging study. Brain Behav 2013; 3:402-16. [PMID: 24381811 PMCID: PMC3869681 DOI: 10.1002/brb3.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/24/2013] [Accepted: 02/15/2013] [Indexed: 11/11/2022] Open
Abstract
This study examined the effects of linguistic task demands on the neuroanatomical localization of the neural response related to automatic semantic processing of concrete German nouns combining the associative priming paradigm with functional magnetic resonance imaging (fMRI). To clarify the functional role of the inferior frontal gyrus (IFG) for semantic processing with respect to semantic decision making compared to semantic processing per se, we used a linguistic task that involved either a binary decision process (i.e., semantic categorization; Experiment 1) or not (i.e., silently thinking about a word's meaning; Experiment 2). We observed associative priming effects indicated as neural suppression in bilateral superior temporal gyri (STG), anterior cingulate cortex (ACC), occipito-temporal brain areas, and in medial frontal brain areas independently of the linguistic task. Inferior parietal brain areas were more active for silently thinking about a word's meaning compared to semantic categorization. A conjunction analysis of linguistic task revealed that both tasks activated the same left-lateralized occipito-temporo-frontal network including the IFG. Contrasting neural associative priming effects across linguistic task demands, we found a significant interaction in the right IFG. The present fMRI data give rise to the assumption that activation of the left inferior frontal gyrus (LIFG) in the semantic domain might be important for semantic processing in general and not only for semantic decision making. These findings contrast with a recent study regarding the role of the LIFG for binary decision making in the lexical domain (Wright et al. 2011).
Collapse
Affiliation(s)
- Gabriela Gan
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Psychiatry and Psychotherapy, Technische Universität Dresden Dresden, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Frédéric Isel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Institute of Psychology, Paris Descartes University Paris, France ; Laboratoire d'Excellence 'Empirical Foundations of Linguistics' Sorbonne Paris Cité, France
| |
Collapse
|
37
|
Cao F, Vu M, Lung Chan DH, Lawrence JM, Harris LN, Guan Q, Xu Y, Perfetti CA. Writing affects the brain network of reading in Chinese: a functional magnetic resonance imaging study. Hum Brain Mapp 2013; 34:1670-84. [PMID: 22378588 PMCID: PMC6870511 DOI: 10.1002/hbm.22017] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 11/08/2022] Open
Abstract
We examined the hypothesis that learning to write Chinese characters influences the brain's reading network for characters. Students from a college Chinese class learned 30 characters in a character-writing condition and 30 characters in a pinyin-writing condition. After learning, functional magnetic resonance imaging collected during passive viewing showed different networks for reading Chinese characters and English words, suggesting accommodation to the demands of the new writing system through short-term learning. Beyond these expected differences, we found specific effects of character writing in greater activation (relative to pinyin writing) in bilateral superior parietal lobules and bilateral lingual gyri in both a lexical decision and an implicit writing task. These findings suggest that character writing establishes a higher quality representation of the visual-spatial structure of the character and its orthography. We found a greater involvement of bilateral sensori-motor cortex (SMC) for character-writing trained characters than pinyin-writing trained characters in the lexical decision task, suggesting that learning by doing invokes greater interaction with sensori-motor information during character recognition. Furthermore, we found a correlation of recognition accuracy with activation in right superior parietal lobule, right lingual gyrus, and left SMC, suggesting that these areas support the facilitative effect character writing has on reading. Finally, consistent with previous behavioral studies, we found character-writing training facilitates connections with semantics by producing greater activation in bilateral middle temporal gyri, whereas pinyin-writing training facilitates connections with phonology by producing greater activation in right inferior frontal gyrus.
Collapse
Affiliation(s)
- Fan Cao
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- The Division of Linguistics and Multilingual Studies, School of Humanities and Social Sciences, Nanyang Technological University, Singapore
| | - Marianne Vu
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Derek Ho Lung Chan
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jason M. Lawrence
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lindsay N. Harris
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qun Guan
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yi Xu
- Eastern Language Department, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Charles A. Perfetti
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Metternich B, Wagner K, Schulze-Bonhage A, Buschmann F, McCarthy RA. Flashbulb memories in patients with temporal lobe epilepsy. Epilepsy Behav 2013; 28:71-7. [PMID: 23665641 DOI: 10.1016/j.yebeh.2013.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/29/2013] [Accepted: 04/03/2013] [Indexed: 11/30/2022]
Abstract
PURPOSE Flashbulb memories (FMs) are vivid and stable autobiographical memories associated with learning surprising news of high emotional impact. Patients with temporal lobe epilepsy (TLE) can have autobiographical memory deficits. This is the first investigation of FMs in TLE applying a consistency measure of FM quality controlling for confabulation. METHOD A sample of 12 patients with TLE and a matched group of 15 healthy controls (HCs) were tested on an FM test including a retest procedure. Scores of FM consistency were obtained by comparing answers across both testing occasions. RESULTS In patients with TLE, FM consistency scores were significantly lower than in HCs. Exploratory subgroup analyses revealed FM deficits in both patients with left TLE and patients with right TLE compared with HCs. CONCLUSION The present study indicates that the FMs of patients with TLE are less consistent than those of healthy control subjects. Future investigations with larger samples are desirable, especially regarding separate analyses of patients with left TLE and patients with right TLE.
Collapse
Affiliation(s)
- B Metternich
- University Hospital Freiburg i. Br., Epilepsy Center, Germany.
| | | | | | | | | |
Collapse
|
39
|
Chouiter L, Dieguez S, Annoni JM, Spierer L. High and Low Stimulus-Driven Conflict Engage Segregated Brain Networks, Not Quantitatively Different Resources. Brain Topogr 2013; 27:279-92. [DOI: 10.1007/s10548-013-0303-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/12/2013] [Indexed: 11/30/2022]
|
40
|
Simard F, Monetta L, Nagano-Saito A, Monchi O. A new lexical card-sorting task for studying fronto-striatal contribution to processing language rules. BRAIN AND LANGUAGE 2013; 125:295-306. [PMID: 21925720 DOI: 10.1016/j.bandl.2011.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 06/03/2011] [Accepted: 08/01/2011] [Indexed: 05/31/2023]
Abstract
The role of fronto-striatal regions in processing different language rules such as semantic and (grapho) phonological ones is still under debate. We have recently developed a lexical analog of the Wisconsin card sorting task which measures set-shifting abilities where the visual rules color, number, shape were replaced by three language ones: semantic, rhyme and syllable onset (attack). In the present study we aimed to compare fronto-striatal activations between the different lexical rules that are required for matching the test words to the response ones. Using functional magnetic resonance imaging (fMRI), fourteen healthy, native French-speaking participants were scanned. The results showed that some regions within the brain language network are differentially involved in semantic and phonological processes. Semantic decisions activated significantly the ventrolateral prefrontal cortex, the dorsolateral prefrontal cortex, the fusiform gyrus, the ventral temporal lobe and the caudate nucleus, while phonological decisions produced significant activation in posterior Broca's area (area 44), the temporoparietal junction and motor cortical regions. These findings provide critical support for the existence of a ventral subcortical semantic pathway and a more dorsal phonological stream as proposed by Duffau, Leroy, and Gatignol (2008). Furthermore, we propose that the strong involvement of area 47/12 of the ventrolateral prefrontal cortex and caudate nucleus observed in semantic processing, is not specific to language, but to the fact that a category or a rule has to be retrieved amongst competing ones in memory, similarly to what is observed when planning a set-shift in the original (non-lexical) version of the Wisconsin card sorting task.
Collapse
Affiliation(s)
- F Simard
- Functional Neuroimaging Unit, Institut Universitaire de Gériatrie de Montréal, Canada
| | | | | | | |
Collapse
|
41
|
Chan AM, Dykstra AR, Jayaram V, Leonard MK, Travis KE, Gygi B, Baker JM, Eskandar E, Hochberg LR, Halgren E, Cash SS. Speech-specific tuning of neurons in human superior temporal gyrus. ACTA ACUST UNITED AC 2013; 24:2679-93. [PMID: 23680841 DOI: 10.1093/cercor/bht127] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
How the brain extracts words from auditory signals is an unanswered question. We recorded approximately 150 single and multi-units from the left anterior superior temporal gyrus of a patient during multiple auditory experiments. Against low background activity, 45% of units robustly fired to particular spoken words with little or no response to pure tones, noise-vocoded speech, or environmental sounds. Many units were tuned to complex but specific sets of phonemes, which were influenced by local context but invariant to speaker, and suppressed during self-produced speech. The firing of several units to specific visual letters was correlated with their response to the corresponding auditory phonemes, providing the first direct neural evidence for phonological recoding during reading. Maximal decoding of individual phonemes and words identities was attained using firing rates from approximately 5 neurons within 200 ms after word onset. Thus, neurons in human superior temporal gyrus use sparse spatially organized population encoding of complex acoustic-phonetic features to help recognize auditory and visual words.
Collapse
Affiliation(s)
- Alexander M Chan
- Medical Engineering and Medical Physics, Department of Neurology
| | - Andrew R Dykstra
- Program in Speech and Hearing Bioscience and Technology, Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA, Department of Neurology
| | - Vinay Jayaram
- Department of Neuroscience, Harvard University, Cambridge, MA, USA
| | | | | | - Brian Gygi
- National Institute for Health Research, Nottingham Hearing Biomedical Research Unit, Nottingham, UK and
| | - Janet M Baker
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Emad Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Eric Halgren
- Multimodal Imaging Laboratory, Department of Radiology and Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
42
|
Martínez A, Revheim N, Butler PD, Guilfoyle DN, Dias EC, Javitt DC. Impaired magnocellular/dorsal stream activation predicts impaired reading ability in schizophrenia. Neuroimage Clin 2012; 2:8-16. [PMID: 24179753 PMCID: PMC3777659 DOI: 10.1016/j.nicl.2012.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/01/2012] [Accepted: 09/05/2012] [Indexed: 11/21/2022]
Abstract
In healthy humans, passage reading depends upon a critical organizing role played by the magnocellular/dorsal visual pathway. In a recent study, we found a significant correlation between orthographic reading deficits in schizophrenia and deficits in contrast sensitivity to low spatial frequency stimuli, suggesting an underlying magnocellular processing abnormality. The interrelationship between magnocellular dysfunction and passage reading impairments in schizophrenia was investigated in 21 patients with schizophrenia and 17 healthy control volunteers using behavioral and functional MRI (fMRI) based measures. fMRI activation patterns during passage- and single-word reading were evaluated in relation to cortical areas with differential sensitivity to low versus high spatial frequency cortical regions indentified using a phase-encoded fMRI paradigm. On average, patients with schizophrenia read at the 6th grade level, despite completion of more than 12 years of education and estimated normal pre-morbid IQ. Schizophrenia patients also showed significantly impaired contrast sensitivity to low spatial frequencies and abnormal neural activity in response to stimulation with low spatial frequencies, consistent with dysfunction of magnocellular processing. Further, these magnocellular deficits were predictive of poor performance on a standardized psychoeducational test of passage reading. These findings suggest that reading is an important index of cognitive dysfunction in schizophrenia and highlight the contribution of magnocellular dysfunction to overall cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Antígona Martínez
- Nathan Kline Institute for Psychiatric Research, USA
- University of California, San Diego, USA
| | | | - Pamela D. Butler
- Nathan Kline Institute for Psychiatric Research, USA
- New York University Langone School of Medicine, USA
| | | | - Elisa C. Dias
- Nathan Kline Institute for Psychiatric Research, USA
| | - Daniel C. Javitt
- Nathan Kline Institute for Psychiatric Research, USA
- New York University Langone School of Medicine, USA
| |
Collapse
|
43
|
Bemis DK, Pylkkanen L. Basic Linguistic Composition Recruits the Left Anterior Temporal Lobe and Left Angular Gyrus During Both Listening and Reading. Cereb Cortex 2012; 23:1859-73. [DOI: 10.1093/cercor/bhs170] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Price CJ. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 2012; 62:816-47. [PMID: 22584224 PMCID: PMC3398395 DOI: 10.1016/j.neuroimage.2012.04.062] [Citation(s) in RCA: 1340] [Impact Index Per Article: 103.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/25/2012] [Accepted: 04/30/2012] [Indexed: 01/17/2023] Open
Abstract
The anatomy of language has been investigated with PET or fMRI for more than 20 years. Here I attempt to provide an overview of the brain areas associated with heard speech, speech production and reading. The conclusions of many hundreds of studies were considered, grouped according to the type of processing, and reported in the order that they were published. Many findings have been replicated time and time again leading to some consistent and undisputable conclusions. These are summarised in an anatomical model that indicates the location of the language areas and the most consistent functions that have been assigned to them. The implications for cognitive models of language processing are also considered. In particular, a distinction can be made between processes that are localized to specific structures (e.g. sensory and motor processing) and processes where specialisation arises in the distributed pattern of activation over many different areas that each participate in multiple functions. For example, phonological processing of heard speech is supported by the functional integration of auditory processing and articulation; and orthographic processing is supported by the functional integration of visual processing, articulation and semantics. Future studies will undoubtedly be able to improve the spatial precision with which functional regions can be dissociated but the greatest challenge will be to understand how different brain regions interact with one another in their attempts to comprehend and produce language.
Collapse
Affiliation(s)
- Cathy J Price
- Wellcome Trust Centre for Neuroimaging, UCL, London WC1N 3BG, UK.
| |
Collapse
|
45
|
McMillan CT, Clark R, Gunawardena D, Ryant N, Grossman M. fMRI evidence for strategic decision-making during resolution of pronoun reference. Neuropsychologia 2012; 50:674-87. [PMID: 22245014 PMCID: PMC3309154 DOI: 10.1016/j.neuropsychologia.2012.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/16/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
Abstract
Pronouns are extraordinarily common in daily language yet little is known about the neural mechanisms that support decisions about pronoun reference. We propose a large-scale neural network for resolving pronoun reference that consists of two components. First, a core language network in peri-Sylvian cortex supports syntactic and semantic resources for interpreting pronoun meaning in sentences. Second, a frontal-parietal network that supports strategic decision-making is recruited to support probabilistic and risk-related components of resolving a pronoun's referent. In an fMRI study of healthy young adults, we observed activation of left inferior frontal and superior temporal cortex, consistent with a language network. We also observed activation of brain regions not associated with traditional language areas. By manipulating the context of the pronoun, we were able to demonstrate recruitment of dorsolateral prefrontal cortex during probabilistic evaluation of a pronoun's reference, and orbital frontal activation when a pronoun must adopt a risky referent. Together, these findings are consistent with a two-component model for resolving a pronoun's reference that includes neuroanatomic regions supporting core linguistic and decision-making mechanisms.
Collapse
Affiliation(s)
- Corey T. McMillan
- University of Pennsylvania School of Medicine, Department of Neurology
| | - Robin Clark
- University of Pennsylvania, Department of Linguistics
| | | | - Neville Ryant
- University of Pennsylvania, Department of Linguistics
| | - Murray Grossman
- University of Pennsylvania School of Medicine, Department of Neurology
| |
Collapse
|
46
|
Abstract
Skilled reading requires recognizing written words rapidly; functional neuroimaging research has clarified how the written word initiates a series of responses in visual cortex. These responses are communicated to circuits in ventral occipitotemporal (VOT) cortex that learn to identify words rapidly. Structural neuroimaging has further clarified aspects of the white matter pathways that communicate reading signals between VOT and language systems. We review this circuitry, its development, and its deficiencies in poor readers. This review emphasizes data that measure the cortical responses and white matter pathways in individual subjects rather than group differences. Such methods have the potential to clarify why a child has difficulty learning to read and to offer guidance about the interventions that may be useful for that child.
Collapse
Affiliation(s)
- Brian A Wandell
- Psychology Department, Stanford University, California 94305, USA.
| | | | | |
Collapse
|
47
|
Abstract
This review summarizes recent ideas about the cortical circuits for seeing words, an important part of the brain system for reading. Historically, the link between the visual cortex and reading has been contentious. One influential position is that the visual cortex plays a minimal role, limited to identifying contours, and that information about these contours is delivered to cortical regions specialized for reading and language. An alternative position is that specializations for seeing words develop within the visual cortex itself. Modern neuroimaging measurements-including both functional magnetic resonance imaging (fMRI) and diffusion weighted imaging with tractography (DTI) data-support the position that circuitry for seeing the statistical regularities of word forms develops within the ventral occipitotemporal cortex, which also contains important circuitry for seeing faces, colors, and forms. This review explains new findings about the visual pathways, including visual field maps, as well as new findings about how we see words. The measurements from the two fields are in close cortical proximity, and there are good opportunities for coordinating theoretical ideas about function in the ventral occipitotemporal cortex.
Collapse
Affiliation(s)
- Brian A Wandell
- Psychology Department, Stanford University, Stanford, California
| |
Collapse
|
48
|
Samson F, Mottron L, Soulières I, Zeffiro TA. Enhanced visual functioning in autism: an ALE meta-analysis. Hum Brain Mapp 2011; 33:1553-81. [PMID: 21465627 DOI: 10.1002/hbm.21307] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 01/12/2011] [Accepted: 02/18/2011] [Indexed: 11/11/2022] Open
Abstract
Autistics often exhibit enhanced perceptual abilities when engaged in visual search, visual discrimination, and embedded figure detection. In similar fashion, while performing a range of perceptual or cognitive tasks, autistics display stronger physiological engagement of the visual system than do non-autistics. To account for these findings, the Enhanced Perceptual Functioning Model proposes that enhanced autistic performance in basic perceptual tasks results from stronger engagement of sensory processing mechanisms, a situation that may facilitate an atypically prominent role for perceptual mechanisms in supporting cognition. Using quantitative meta-analysis of published functional imaging studies from which Activation Likelihood Estimation maps were computed, we asked whether autism is associated with enhanced task-related activity for a broad range of visual tasks. To determine whether atypical engagement of visual processing is a general or domain-specific phenomenon, we examined three different visual processing domains: faces, objects, and words. Overall, we observed more activity in autistics compared to non-autistics in temporal, occipital, and parietal regions. In contrast, autistics exhibited less activity in frontal cortex. The spatial distribution of the observed differential between-group patterns varied across processing domains. Autism may be characterized by enhanced functional resource allocation in regions associated with visual processing and expertise. Atypical adult organizational patterns may reflect underlying differences in developmental neural plasticity that can result in aspects of the autistic phenotype, including enhanced visual skills, atypical face processing, and hyperlexia.
Collapse
Affiliation(s)
- Fabienne Samson
- Centre d'Excellence en Troubles Envahissants du Développement de l'Université de Montréal (CETEDUM), Montréal, QC, Canada
| | | | | | | |
Collapse
|
49
|
Goycoolea M, Mena I, Neubauer S. Functional studies (NeuroSPECT) of the human auditory pathway after stimulating binaurally with pure tones. Acta Otolaryngol 2011; 131:371-6. [PMID: 21314243 DOI: 10.3109/00016489.2010.545076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSIONS Our observations support the concept of bilateral cortical activation with monaural and binaural auditory stimulation. The observation that most of the significantly activated areas were the same with monaural or binaural stimulation suggests that the differences in auditory perception with binaural stimulation are not due to the involvement of significantly different processing centers but, more likely, to the type of information that reaches these centers for processing. The observation that the degree of stimulation was less intense in binaural than in monaural stimulation supports the concept that a richer binaural auditory stimulation compared with monaural stimulation does not mean summation of stimuli but integration and better processing of the information. For normal bilateral hearing subjects, a monaural stimulus is an uncommon event and may thus explain the more intense response. The repeatability of the results for monaural and binaural stimulation with pure tones in the same subjects confirms the consistency of the testing method. OBJECTIVES (1) To determine which areas of the cerebral cortex and basal ganglia are activated by binaural stimulation with pure tones (left and right ear simultaneously) and what type of response occurs (e.g. excitatory or inhibitory) in these different areas. (2) To determine the degree of ipsilateral and/or contralateral cortical activation and/or inhibition. (3) To compare the data with our previous reports of monaural stimulation using the same technique and the same subjects. (4) To evaluate the consistency of our testing method. METHODS Brain perfusion single photon emission computed tomography (SPECT) evaluation was conducted using auditory binaural stimulation with pure tones in six normal volunteers. Both ears were stimulated simultaneously. Tc99m HMPAO was injected while pure tones were delivered and the SPECT imaging was done 1 h later. RESULTS After delivering pure tones there was bilateral activation in Brodmann areas 7 (somatosensory association cortex), 9 and 10 (executive frontal areas), 17, 18, and 19 (associative visual cortex). There was also activation in temporal areas 21, 22 (auditory association areas), and parietal areas 39 and 40 (Wernicke). There was also marked activation in both thalami. These activated areas were the same as those in our previous reports with monaural stimulation in the same subjects. However, except for areas 17, 18, 23, 31, and 32 (which remained over 4 SD above the normal maximum), the degree of activation was less intense in binaural compared with monaural stimulation. Inhibition was also less intense in binaural stimulation.
Collapse
Affiliation(s)
- Marcos Goycoolea
- Department of Otorhinolaryngology, Clínica Las Condes, Santiago, Chile.
| | | | | |
Collapse
|
50
|
Sugiura L, Ojima S, Matsuba-Kurita H, Dan I, Tsuzuki D, Katura T, Hagiwara H. Sound to language: different cortical processing for first and second languages in elementary school children as revealed by a large-scale study using fNIRS. ACTA ACUST UNITED AC 2011; 21:2374-93. [PMID: 21350046 PMCID: PMC3169662 DOI: 10.1093/cercor/bhr023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A large-scale study of 484 elementary school children (6-10 years) performing word repetition tasks in their native language (L1-Japanese) and a second language (L2-English) was conducted using functional near-infrared spectroscopy. Three factors presumably associated with cortical activation, language (L1/L2), word frequency (high/low), and hemisphere (left/right), were investigated. L1 words elicited significantly greater brain activation than L2 words, regardless of semantic knowledge, particularly in the superior/middle temporal and inferior parietal regions (angular/supramarginal gyri). The greater L1-elicited activation in these regions suggests that they are phonological loci, reflecting processes tuned to the phonology of the native language, while phonologically unfamiliar L2 words were processed like nonword auditory stimuli. The activation was bilateral in the auditory and superior/middle temporal regions. Hemispheric asymmetry was observed in the inferior frontal region (right dominant), and in the inferior parietal region with interactions: low-frequency words elicited more right-hemispheric activation (particularly in the supramarginal gyrus), while high-frequency words elicited more left-hemispheric activation (particularly in the angular gyrus). The present results reveal the strong involvement of a bilateral language network in children's brains depending more on right-hemispheric processing while acquiring unfamiliar/low-frequency words. A right-to-left shift in laterality should occur in the inferior parietal region, as lexical knowledge increases irrespective of language.
Collapse
Affiliation(s)
- Lisa Sugiura
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | | | | | | | | | | | | |
Collapse
|