1
|
Therkildsen ER, Lorentzen J, Perez MA, Nielsen JB. Evaluation of spasticity: IFCN Handbook Chapter. Clin Neurophysiol 2025; 173:1-23. [PMID: 40068367 DOI: 10.1016/j.clinph.2025.02.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 05/09/2025]
Abstract
There is no generally accepted definition of spasticity, but hyperexcitable stretch reflexes, exaggerated tendon jerks, clonus, spasms, cramps, increased resistance to passive joint movement, sustained involuntary muscle activity and aberrant muscle activation, including co-contraction of antagonist muscles are all signs and symptoms which are usually associated clinically to the term spasticity. This review describes how biomechanical and electrophysiological techniques may be used to provide quantitative and objective measures of each of these signs and symptoms. The review further describes how neurophysiological techniques may be used to evaluate pathophysiological changes in spinal motor control mechanisms. It is emphasized that understanding the pathophysiology and distinguishing the specific signs and symptoms associated with spasticity, using objective, valid, and reproducible measurements, is essential for providing optimal therapy.
Collapse
Affiliation(s)
- Eva Rudjord Therkildsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark; Department of Pediatrics, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 10, Dk-2100 Copenhagen Ø, Denmark
| | - Monica A Perez
- Shirley Ryan Ability Lab, Chicago, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA; Edward Jr. Hines VA Hospital, Chicago, USA
| | - Jens Bo Nielsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark; The Elsass Foundation, Holmegårdsvej 28, Charlottenlund, 2920, Denmark.
| |
Collapse
|
2
|
Goltash S, Khodr R, Bui TV, Laliberte AM. An optogenetic mouse model of hindlimb spasticity after spinal cord injury. Exp Neurol 2025; 386:115157. [PMID: 39863244 DOI: 10.1016/j.expneurol.2025.115157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Spasticity is a common comorbidity of spinal cord injury (SCI), disrupting motor function and resulting in significant discomfort. While elements of post-SCI spasticity can be assessed using pre-clinical SCI models, the robust measurement of spasticity severity can be difficult due to its periodic and spontaneous appearance. Electrical stimulation of sensory afferents can elicit spasticity-associated motor responses, such as spasms; however, placing surface electrodes on the hindlimbs of awake animals can induce stress or encumbrance that could influence the expression of behaviour. Therefore, we have generated a mouse model of SCI-related spasticity that utilizes optogenetics to activate a subset of cutaneous VGLUT2+ sensory afferents to produce reliable incidences of spasticity-associated responses in the hindlimb. To examine the efficacy of this optogenetic SCI spasticity model, a T9-T10 complete transection injury was performed in Islet1-Cre+/-;VGLUT2-Flp+/-;CreON-FlpON-CatCh+/- mice, followed by the implantation of EMG electrodes into the left and right gastrocnemius and tibialis anterior muscles. EMG recordings were performed during episodic optogenetic stimulation (1-2 sessions per week until 5 weeks post-injury (wpi); n = 10 females, 5 males). A subset of these mice (n = 3 females, 2 males) was also tested at 10 wpi. During each recording session, an optic fiber coupled to a 470 nm wavelength LED was used to deliver 9 × 100 ms light pulses to the palmar surface of each hind paw. The results of these recordings demonstrated significant increases in the amplitude of EMG responses to the light stimulus from 2 wpi to 10 wpi, suggesting increased excitability of cutaneous sensorimotor pathways. Interestingly, this effect was significantly greater in the female cohort than in the males. Incidences of prolonged involuntary muscle contraction in response to the stimulus (fictive spasms) were also detected through EMG and visual observation during the testing period, supporting the presence of spasticity. As such, the optogenetic mouse model developed for this study appears to elicit spasticity-associated behaviours in SCI mice reliably and may be valuable for studying SCI-related limb spasticity mechanisms and therapeutic.
Collapse
Affiliation(s)
- Sara Goltash
- Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Riham Khodr
- Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Tuan V Bui
- Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Alex M Laliberte
- Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
Seif G, Phipps AM, Donnelly JM, Dellenbach BHS, Thompson AK. Neurophysiological effects of latent trigger point dry needling on spinal reflexes. J Neurophysiol 2025; 133:288-298. [PMID: 39704676 PMCID: PMC11918306 DOI: 10.1152/jn.00366.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Deep dry needling (DDN) is a method to treat muscle trigger points (TrPs) often found in persons with neuromuscular pain and spasticity. Currently, its neurophysiological actions are not well established. Thus, to understand how DDN affects spinal cord physiology, we investigated the effects of TrP DDN on spinal reflexes. In 17 adults with latent TrPs in the medial gastrocnemius (MG) without known neurological or orthopedic injuries, the H reflex, M wave, and reciprocal inhibition in the soleus, MG, and lateral gastrocnemius (LG) and passive ankle range of motion (ROM) were measured before and immediately, 90 min, and 72 h after a single bout of DDN at the MG TrPs. The MG maximum M wave (Mmax) amplitude was decreased immediately and 90 min post DDN (by -14% and -18%) and returned to pre-DDN level at 72 h post. LG and soleus Mmax did not change. The maximum H reflex (Hmax) amplitude did not change in any of the triceps surae. Soleus inhibition was increased significantly immediately (+30%) and 72 h (+36%) post DDN. ROM was increased by ≈4° immediately and ≈3° at 72 h post DDN. Temporary reduction of MG (but not soleus or LG) Mmax amplitude after DDN and its recovery at 72 h post indicate temporary and specific effects of DDN in the treated muscle. The immediate and 72 h post increases in the ROM and soleus inhibition with no changes in Hmax suggest complex effects of DDN at the spinal level.NEW & NOTEWORTHY In this study, we examined the effects of deep dry needling (DDN) on spinal reflexes in the triceps surae. We found that the H reflex (an excitatory reflex) did not change after DDN but soleus inhibition was increased immediately and 72 h after DDN, corresponding to increases in ankle range of motion. Differential effects of DDN on excitatory and inhibitory reflexes over the first 72 h may reflect its complex neurophysiological effects at the spinal level.
Collapse
Affiliation(s)
- Gretchen Seif
- Department of Health Professions, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Alan M Phipps
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Joseph M Donnelly
- Department of Physical Therapy, University of St. Augustine for Health Sciences, Miami, Florida, United States
| | - Blair H S Dellenbach
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
4
|
Minassian K, Freundl B, Lackner P, Hofstoetter US. Transcutaneous spinal cord stimulation neuromodulates pre- and postsynaptic inhibition in the control of spinal spasticity. Cell Rep Med 2024; 5:101805. [PMID: 39532101 PMCID: PMC11604492 DOI: 10.1016/j.xcrm.2024.101805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Aside from enabling voluntary control over paralyzed muscles, a key effect of spinal cord stimulation is the alleviation of spasticity. Dysfunction of spinal inhibitory circuits is considered a major cause of spasticity. These circuits are contacted by Ia muscle spindle afferents, which are also the primary targets of transcutaneous lumbar spinal cord stimulation (TSCS). We hypothesize that TSCS controls spasticity by transiently strengthening spinal inhibitory circuit function through their Ia-mediated activation. We show that 30 min of antispasticity TSCS improves activity in post- and presynaptic inhibitory circuits beyond the intervention in ten individuals with traumatic spinal cord injury to normative levels established in 20 neurologically intact individuals. These changes in circuit function correlate with improvements in muscle hypertonia, spasms, and clonus. Our study opens the black box of the carryover effects of antispasticity TSCS and underpins a causal role of deficient post- and presynaptic inhibitory circuits in spinal spasticity.
Collapse
Affiliation(s)
- Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Brigitta Freundl
- Neurological Center, Clinic Penzing, Vienna Health Association, 1140 Vienna, Austria
| | - Peter Lackner
- Neurological Center, Clinic Penzing, Vienna Health Association, 1140 Vienna, Austria; Department of Neurology, Clinic Floridsdorf, Vienna Health Association, 1210 Vienna, Austria
| | - Ursula S Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
5
|
Takano K, Yamaguchi T, Kikuma K, Okuyama K, Katagiri N, Sato T, Tanabe S, Kondo K, Fujiwara T. Transcutaneous spinal cord stimulation phase-dependently modulates spinal reciprocal inhibition induced by pedaling in healthy individuals. Exp Brain Res 2024; 242:2645-2652. [PMID: 39331051 DOI: 10.1007/s00221-024-06926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Reciprocal inhibition (RI) between leg muscles is crucial for smooth movement. Pedaling is a rhythmic movement that can increase RI in healthy individuals. Transcutaneous spinal cord stimulation (tSCS) stimulates spinal neural circuits by targeting the afferent fibers. Pedaling with simultaneous tSCS may modulate the plasticity of the spinal neural circuit and alter neural activity based on movement and muscle engagement. This study investigated the RI changes after pedaling and tSCS and determined the phase of pedaling in which tSCS should be applied for optimal RI modulation in healthy individuals. Eleven subjects underwent three interventions: pedaling combined with tSCS during the early phase of lower extension (phase 1), pedaling combined with tSCS during the late phase of lower flexion (phase 4) of the pedaling cycle, and pedaling combined with sham tSCS. The RI from the tibialis anterior to the soleus muscle was assessed before, immediately after, 15 min, and 30 min after the intervention. RI increased immediately after phase 4 and pedaling combined with sham tSCS, whereas no changes were observed after phase 1. These results demonstrate that tSCS modulates RI changes induced by pedaling in a stimulus phase-dependent manner in healthy individuals. However, the mechanism involved in this intervention needs to be explored to achieve higher efficacy.
Collapse
Affiliation(s)
- Keita Takano
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Juntendo University, Faculty of Health Science, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Kano Kikuma
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Kohei Okuyama
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Natsuki Katagiri
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Takatsugu Sato
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Kunitsugu Kondo
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Toshiyuki Fujiwara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Juntendo University, Faculty of Health Science, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
6
|
Malloy DC, Côté MP. Multi-session transcutaneous spinal cord stimulation prevents chloride homeostasis imbalance and the development of hyperreflexia after spinal cord injury in rat. Exp Neurol 2024; 376:114754. [PMID: 38493983 PMCID: PMC11519955 DOI: 10.1016/j.expneurol.2024.114754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Spasticity is a complex and multidimensional disorder that impacts nearly 75% of individuals with spinal cord injury (SCI) and currently lacks adequate treatment options. This sensorimotor condition is burdensome as hyperexcitability of reflex pathways result in exacerbated reflex responses, co-contractions of antagonistic muscles, and involuntary movements. Transcutaneous spinal cord stimulation (tSCS) has become a popular tool in the human SCI research field. The likeliness for this intervention to be successful as a noninvasive anti-spastic therapy after SCI is suggested by a mild and transitory improvement in spastic symptoms following a single stimulation session, but it remains to be determined if repeated tSCS over the course of weeks can produce more profound effects. Despite its popularity, the neuroplasticity induced by tSCS also remains widely unexplored, particularly due to the lack of suitable animal models to investigate this intervention. Thus, the basis of this work was to use tSCS over multiple sessions (multi-session tSCS) in a rat model to target spasticity after SCI and identify the long-term physiological improvements and anatomical neuroplasticity occurring in the spinal cord. Here, we show that multi-session tSCS in rats with an incomplete (severe T9 contusion) SCI (1) decreases hyperreflexia, (2) increases the low frequency-dependent modulation of the H-reflex, (3) prevents potassium-chloride cotransporter isoform 2 (KCC2) membrane downregulation in lumbar motoneurons, and (4) generally augments motor output, i.e., EMG amplitude in response to single pulses of tSCS, particularly in extensor muscles. Together, this work displays that multi-session tSCS can target and diminish spasticity after SCI as an alternative to pharmacological interventions and begins to highlight the underlying neuroplasticity contributing to its success in improving functional recovery.
Collapse
Affiliation(s)
- Dillon C Malloy
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America.
| | - Marie-Pascale Côté
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States of America.
| |
Collapse
|
7
|
Jung KS, Jung JH, Cho HY, In TS. Effects of Transcutaneous Electrical Nerve Stimulation with Taping on Wrist Spasticity, Strength, and Upper Extremity Function in Patients with Stroke: A Randomized Control Trial. J Clin Med 2024; 13:2229. [PMID: 38673502 PMCID: PMC11051346 DOI: 10.3390/jcm13082229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Objective: Six months after the onset of stroke, over 60% of patients experience upper limb dysfunction, with spasticity being a major contributor alongside muscle weakness. This study investigated the effect of transcutaneous electrical nerve stimulation (TENS) with taping on wrist spasticity, strength, and upper extremity function in patients with stroke. Methods: In total, 40 patients with stroke were included and randomly divided into two groups: the TENS + taping (n = 20, age 52.4 ± 9.3 (range: 39 to 70)) and TENS (n = 20, age 53.5 ± 10.8 (range: 39 to 74)) groups. All subjects performed 30 sessions of task-related training, which included 10 min of postural control training and 20 min of task performance. Additionally, all subjects received TENS on the spastic muscle belly for 30 min before task-related training. In the TENS + taping group, taping was additionally applied to the forearm and wrist but not in the TENS group. The Modified Ashworth Scale was used to measure spasticity, and a handheld dynamometer was used to measure muscle strength. The Fugl-Meyer Assessment of Upper Extremity was used to evaluate the functional ability of the upper extremity. Results: In the TENS + taping group, spasticity and upper extremity function were significantly improved as compared to those in the TENS group (p < 0.05). However, no significant difference in muscle strength was observed between the two groups (p > 0.05). Conclusions: This study demonstrated that the combination of TENS and taping for spasticity and function of the upper extremity was more effective in relieving the spasticity than TENS alone. Therefore, we suggest this combination as an additional treatment for spasticity and function of the upper extremity.
Collapse
Affiliation(s)
- Kyoung-sim Jung
- Department of Physical Therapy, Gimcheon University, Gimcheon 39528, Republic of Korea;
| | - Jin-hwa Jung
- Department of Occupational Therapy, Semyung University, Jecheon 27136, Republic of Korea;
| | - Hwi-young Cho
- Department of Physical Therapy, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| | - Tae-sung In
- Department of Physical Therapy, Gimcheon University, Gimcheon 39528, Republic of Korea;
| |
Collapse
|
8
|
Maccora S, Torrente A, Di Stefano V, Lupica A, Iacono S, Pilati L, Pignolo A, Brighina F. Non-pharmacological treatment of hereditary spastic paraplegia: a systematic review. Neurol Sci 2024; 45:963-976. [PMID: 37968432 PMCID: PMC10858081 DOI: 10.1007/s10072-023-07200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Affiliation(s)
- Simona Maccora
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy.
- Neurology Unit, ARNAS Civico di Cristina and Benfratelli Hospitals, 90127, Palermo, Italy.
| | - Angelo Torrente
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy
| | - Vincenzo Di Stefano
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy
| | - Antonino Lupica
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy
| | - Salvatore Iacono
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy
| | - Laura Pilati
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy
| | - Antonia Pignolo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy
- Department of Neuroscience, "S. Giovanni di Dio" Hospital, 88900, Crotone, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via del Vespro 143, 90127, Palermo, Italy
| |
Collapse
|
9
|
Malloy DC, Côté MP. Multi-session transcutaneous spinal cord stimulation prevents chloridehomeostasis imbalance and the development of spasticity after spinal cordinjury in rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563419. [PMID: 37961233 PMCID: PMC10634766 DOI: 10.1101/2023.10.24.563419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Spasticity is a complex and multidimensional disorder that impacts nearly 75% of individuals with spinal cord injury (SCI) and currently lacks adequate treatment options. This sensorimotor condition is burdensome as hyperexcitability of reflex pathways result in exacerbated reflex responses, co-contractions of antagonistic muscles, and involuntary movements. Transcutaneous spinal cord stimulation (tSCS) has become a popular tool in the human SCI research field. The likeliness for this intervention to be successful as a noninvasive anti-spastic therapy after SCI is suggested by a mild and transitory improvement in spastic symptoms following a single stimulation session, but it remains to be determined if repeated tSCS over the course of weeks can produce more profound effects. Despite its popularity, the neuroplasticity induced by tSCS also remains widely unexplored, particularly due to the lack of suitable animal models to investigate this intervention. Thus, the basis of this work was to use tSCS over multiple sessions (multi-session tSCS) in a rat model to target spasticity after SCI and identify the long-term physiological improvements and anatomical neuroplasticity occurring in the spinal cord. Here, we show that multi-session tSCS in rats with an incomplete (severe T9 contusion) SCI (1) decreases hyperreflexia, (2) increases the low frequency-dependent modulation of the H-reflex, (3) prevents potassium-chloride cotransporter isoform 2 (KCC2) membrane downregulation in lumbar motoneurons, and (4) generally augments motor output, i.e., EMG amplitude in response to single pulses of tSCS, particularly in extensor muscles. Together, this work displays that multi-session tSCS can target and diminish spasticity after SCI as an alternative to pharmacological interventions and begins to highlight the underlying neuroplasticity contributing to its success in improving functional recovery.
Collapse
Affiliation(s)
- Dillon C. Malloy
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Marie-Pascale Côté
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
10
|
Chen S, Zhou Z, Ren M, Chen X, Shi X, Zhang S, Xu S, Zhang X, Zhang X, Lin W, Shan C. Case report: High-frequency repetitive transcranial magnetic stimulation for treatment of hereditary spastic paraplegia type 11. Front Neurol 2023; 14:1162149. [PMID: 37273711 PMCID: PMC10232891 DOI: 10.3389/fneur.2023.1162149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of inherited neurodegenerative disorders that currently have no cure. HSP type 11 (SPG11-HSP) is a complex form carrying mutations in the SPG11 gene. Neuropathological studies demonstrate that motor deficits in these patients are mainly attributed to axonal degeneration of the corticospinal tract (CST). Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique that can induce central nervous system plasticity and promote neurological recovery by modulating the excitability of cortical neuronal cells. Although rTMS is expected to be a therapeutic tool for neurodegenerative diseases, no previous studies have applied rTMS to treat motor symptoms in SPG11-HSP. Here, we report a case of SPG11-HSP with lower extremity spasticity and gait instability, which were improved by applying high-frequency rTMS (HF-rTMS) at the primary motor cortex (M1). Clinical and physiological features were measured throughout the treatment, including the Modified Ashworth Scale (MAS), Berg Balance Scale (BBS), the timed up and go (TUG) test and the 10-meter walk test time (10 MWT). The structure and excitability of the CST were assessed by diffusion tensor imaging (DTI) and transcranial magnetic stimulation (TMS), respectively. After treatment, the patient gained 17 points of BBS, along with a gradual decrease in MAS scores of the bilateral lower extremity. In addition, the TUG test and 10 MWT improved to varying degrees. TMS assessment showed increased motor evoked potential (MEP) amplitude, decreased resting motor threshold (RMT), decreased central motor conduction time (CMCT), and decreased difference in the cortical silent period (CSP) between bilateral hemispheres. Using the DTI technique, we observed increased fractional anisotropy (FA) values and decreased mean diffusivity (MD) and radial diffusivity (RD) values in the CST. It suggests that applying HF-rTMS over the bilateral leg area of M1 (M1-LEG) is beneficial for SPG11-HSP. In this study, we demonstrate the potential of rTMS to promote neurological recovery from both functional and structural perspectives. It may provide a clinical rationale for using rTMS in the rehabilitation of HSP patients.
Collapse
Affiliation(s)
- Songmei Chen
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqing Zhou
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Ren
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xixi Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Shi
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sicong Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shutian Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Xiaolin Zhang
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
| | - Xingyuan Zhang
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
| | - Wanlong Lin
- Department of Rehabilitation Medicine, Shanghai No. 3 Rehabilitation Hospital, Shanghai, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
11
|
Fok KL, Kaneko N, Tajali S, Masani K. Paired associative stimulation on the soleus H-Reflex using motor point and peripheral nerve stimulation. Neurosci Lett 2023; 797:137070. [PMID: 36641045 DOI: 10.1016/j.neulet.2023.137070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Paired associative stimulation (PAS) has been shown to modulate the corticospinal excitability via spike timing dependent plasticity (STDP). In this study, we aimed to suppress the spinal H-Reflex using PAS. We paired two stimulation modalities, i.e., peripheral nerve stimulation (PNS) and motor point stimulation (MPS). We used PNS to dominantly activate the Ia sensory axon, and we used MPS to dominantly activate the α-motoneuron cell body antidromically. Thus, we applied both PNS and MPS such that the α-motoneuron cell body was activated 5 ms before the activation of the Ia sensory axon ending at the Ia-α motoneuron synapse. If the spinal reflexes can be modulated by STDP, and a combination of MPS and PNS is timed appropriately, then the H-Reflex amplitude will decrease while no change in H-Reflex amplitude is expected for MPS or PNS only. To test this hypothesis, six young healthy participants (5M/1F: 26.8 ± 4.1 yrs) received one of the three following conditions on days separated by at least 24 hr: 1) PAS, 2) MPS only or 3) PNS only. The H-Reflex and M-wave recruitment curves of the soleus were measured immediately prior to, immediately after, 30 min and 60 min after the intervention. The normalized H-Reflex amplitudes were then compared across conditions and times using a two-way ANOVA (3 conditions × 4 times). No main effects of condition or time, or interaction effect were found. These results suggest that relying solely on STDP may be insufficient to inhibit the soleus H-Reflex.
Collapse
Affiliation(s)
- Kai Lon Fok
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; KITE, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada
| | - Naotsugu Kaneko
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; KITE, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Shirin Tajali
- KITE, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; KITE, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON M4G 3V9, Canada.
| |
Collapse
|
12
|
Abstract
Spasticity is characterized by an enhanced size and reduced threshold for activation of stretch reflexes and is associated with "positive signs" such as clonus and spasms, as well as "negative features" such as paresis and a loss of automatic postural responses. Spasticity develops over time after a lesion and can be associated with reduced speed of movement, cocontraction, abnormal synergies, and pain. Spasticity is caused by a combination of damage to descending tracts, reductions in inhibitory activity within spinal cord circuits, and adaptive changes within motoneurons. Increased tone, hypertonia, can also be caused by changes in passive stiffness due to, for example, increase in connective tissue and reduction in muscle fascicle length. Understanding the cause of hypertonia is important for determining the management strategy as nonneural, passive causes of stiffness will be more amenable to physical rather than pharmacological interventions. The management of spasticity is determined by the views and goals of the patient, family, and carers, which should be integral to the multidisciplinary assessment. An assessment, and treatment, of trigger factors such as infection and skin breakdown should be made especially in people with a recent change in tone. The choice of management strategies for an individual will vary depending on the severity of spasticity, the distribution of spasticity (i.e., whether it affects multiple muscle groups or is more prominent in one or two groups), the type of lesion, and the potential for recovery. Management options include physical therapy, oral agents; focal therapies such as botulinum injections; and peripheral nerve blocks. Intrathecal baclofen can lead to a reduction in required oral antispasticity medications. When spasticity is severe intrathecal phenol may be an option. Surgical interventions, largely used in the pediatric population, include muscle transfers and lengthening and selective dorsal root rhizotomy.
Collapse
Affiliation(s)
- Jonathan Marsden
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, United Kingdom.
| | - Valerie Stevenson
- Department of Therapies and Rehabilitation, National Hospital for Neurology and Neurosurgery UCLH, London, United Kingdom
| | - Louise Jarrett
- Department of Neurology, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| |
Collapse
|
13
|
Dietz N, Wagers S, Harkema SJ, D'Amico JM. Intrathecal and Oral Baclofen Use in Adults With Spinal Cord Injury: A Systematic Review of Efficacy in Spasticity Reduction, Functional Changes, Dosing, and Adverse Events. Arch Phys Med Rehabil 2023; 104:119-131. [PMID: 35750207 DOI: 10.1016/j.apmr.2022.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To examine the efficacy, dosing, and safety profiles of intrathecal and oral baclofen in treating spasticity after spinal cord injury (SCI). DATA SOURCES PubMed and Cochrane Databases were searched from 1970-2018 with keywords baclofen, spinal cord injury, and efficacy. STUDY SELECTION The database search yielded 588 sources and 10 additional relevant publications. After removal of duplicates, 398 publications were screened. DATA EXTRACTION Data were extracted using the following population, intervention, comparator, outcomes, and study designs criteria: studies including adult patients with SCI with spasticity; the intervention could be oral or intrathecal administration of baclofen; selection was inclusive for control groups, surgical management, rehabilitation, and alternative pharmaceutical agents; outcomes were efficacy, dosing, and adverse events. Randomized controlled trials, observational studies, and case reports were included. Meta-analyses and systematic reviews were excluded. DATA SYNTHESIS A total of 98 studies were included with 1943 patients. Only 4 randomized, double-blinded, and placebo-controlled trials were reported. Thirty-nine studies examined changes in the Modified Ashworth Scale (MAS; 34 studies) and Penn Spasm scores (Penn Spasm Frequency; 19 studies), with average reductions of 1.7±1.3 and 1.6±1.4 in individuals with SCI, respectively. Of these data, a total of 6 of the 34 studies (MAS) and 2 of the 19 studies (Penn Spasm Frequency) analyzed oral baclofen. Forty-three studies addressed adverse events with muscle weakness and fatigue frequently reported. CONCLUSIONS Baclofen is the most commonly-prescribed antispasmodic after SCI. Surprisingly, there remains a significant lack of large, placebo-controlled, double-blinded clinical trials, with most efficacy data arising from small studies examining treatment across different etiologies. In the studies reviewed, baclofen effectively improved spasticity outcome measures, with increased efficacy through intrathecal administration. Few studies assessed how reduced neural excitability affected residual motor function and activities of daily living. A host of adverse events were reported that may negatively affect quality of life. Comparative randomized controlled trials of baclofen and alternative treatments are warranted because these have demonstrated promise in relieving spasticity with reduced adverse events and without negatively affecting residual motor function.
Collapse
Affiliation(s)
- Nicholas Dietz
- Department of Neurological Surgery, University of Louisville, Louisville, KY; Kentucky Spinal Cord Injury Research Center, Louisville, KY
| | - Sarah Wagers
- Department of Neurological Surgery, University of Louisville, Louisville, KY; Kentucky Spinal Cord Injury Research Center, Louisville, KY
| | - Susan J Harkema
- Department of Neurological Surgery, University of Louisville, Louisville, KY; Kentucky Spinal Cord Injury Research Center, Louisville, KY
| | - Jessica M D'Amico
- Department of Neurological Surgery, University of Louisville, Louisville, KY; Kentucky Spinal Cord Injury Research Center, Louisville, KY.
| |
Collapse
|
14
|
Chen YL, Jiang LJ, Cheng YY, Chen C, Hu J, Zhang AJ, Hua Y, Bai YL. Focal vibration of the plantarflexor and dorsiflexor muscles improves poststroke spasticity: a randomized single-blind controlled trial. Ann Phys Rehabil Med 2022; 66:101670. [PMID: 35940478 DOI: 10.1016/j.rehab.2022.101670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/23/2022] [Accepted: 02/15/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Post-stroke spasticity is a cause of gait dysfunction and disability. Focal vibration (FV) of agonist-antagonist upper limb muscle pairs reduces flexor spasticity; however, its effects on ankle plantarflexor spasticity are uncertain. OBJECTIVE To assess the effects of focal vibration administered by a trained operator to the ankle plantarflexor and dorsiflexor muscles on post-stroke lower limb spasticity. METHODS A randomized, single-blind controlled trial of 64 participants with stroke and plantarflexor spasticity assigned to 3 groups by centralized, computer-generated randomization (1:1:1): 1) physiotherapy alone (CON), 2) physiotherapy+gastrocnemius vibration (FV_GM) and 3) physiotherapy+tibialis anterior vibration (FV_TA). Physiotherapists and assessors were blinded to group assignment. The experimental groups underwent 15, 20-min vibration sessions at 40 Hz. We performed evaluations at baseline and after the final treatment: Modified Ashworth Scale (MAS), Clonus scale, Functional Ambulation Categories (FAC), Fugl-Meyer Assessment - Lower Extremity (FMA_LE), Modified Barthel Index (MBI), and electromyography and ultrasound elastography. Primary outcome was remission rate (number and proportion of participants) of the MAS. RESULTS MAS remission rate was higher in FV_GM and FV_TA than CON groups (CON vs. FV_GM: p=0.009, odds ratio 0.15 [95% confidence interval 0.03-0.67]; CON vs. FV_TA: p=0.002, 0.12 [0.03-0.51]). Remission rate was higher in the experimental than CON groups for the Clonus scale (CON vs. FV_GM: p<0.001, OR 0.07 [95% CI 0.01-0.31]; CON vs. FV_TA: p=0.006, 0.14 [95% CI 0.03-0.61]). FAC remission rate was higher in the FV_TA than the CON (p=0.009, 0.18 [0.05-0.68]) and FV_GM (p=0.014, 0.27 [0.07-0.99]) groups. Ultrasound variables of the paretic medial gastrocnemius decreased more in FV_GM than CON and FV_TA groups (shear modulus: p=0.006; shear wave velocity: p=0.008). CONCLUSIONS Focal vibration reduced post-stroke spasticity of the plantarflexor muscles. Vibration of the tibialis anterior improved ambulation more than vibration of the gastrocnemius or physiotherapy alone. Gastrocnemius vibration may reduce spasticity by changing muscle stiffness.
Collapse
Affiliation(s)
- Ying-Lun Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China; Department of Rehabilitation Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Liu-Jun Jiang
- Department of Rehabilitation Medicine, Huashan North Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yang-Yang Cheng
- Department of Rehabilitation Medicine, Huashan North Hospital, Fudan University, Shanghai, People's Republic of China
| | - Chan Chen
- Department of Rehabilitation Medicine, Huashan North Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan North Hospital, Fudan University, Shanghai, People's Republic of China
| | - An-Jing Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan North Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Yu-Long Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Benavides J, Castro OE. Validation of a semiological maneuver for the evaluation of spastic dynamic clubfoot: an approach based on the judgment of experts in physical medicine and rehabilitation. Eur J Phys Rehabil Med 2022; 58:575-583. [PMID: 35191656 PMCID: PMC9980492 DOI: 10.23736/s1973-9087.22.07355-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The evaluation of spasticity of the plantar flexors in dynamic clubfoot is difficult due to the almost invariable concomitance of Achilles clonus, which is a semiological artifact. No description was found in the literature of a technique for inhibiting or reducing the discharge generated by Achilles clonus to allow a correct assessment of spasticity in this segment. AIM Validation of a semiological maneuver that reduces or eliminates Achilles clonus for the adequate evaluation of spastic dynamic clubfoot. DESIGN Multicenter cross-sectional study. SETTING The study was conducted by 12 experts in physical medicine and rehabilitation from various clinics and hospitals in Colombia. POPULATION Thirty-five adults with dynamic spastic clubfoot and Achilles clonus secondary to upper motor neuron syndrome who attended outpatient consultation at physical medicine and rehabilitation services in eight cities Colombia from August 2020 to February 2021. METHODS The usual method for examining spastic plantar flexors was compared to the proposed semiological maneuver to evaluate the proposed maneuver contributed to the reduction or elimination of Achilles clonus to allow a more accurate measure of spasticity in this segment. Four dimensions were evaluated by the experts: time required for application, simplicity, effectiveness and clinical utility. A cutoff point was established to identify whether the maneuver was unacceptable, acceptable or excellent. RESULTS The application of the maneuver was able to reduce or eliminate Achilles clonus as a masking sign of spasticity in the plantar flexors in 100% of the patients and was considered excellent in 77.1% of the cases for the four dimensions evaluated. A decrease in the degree of spasticity of the plantar flexors was observed when the maneuver was applied. CONCLUSIONS The proposed maneuver reduces or eliminates Achilles clonus, which could allow a more precise evaluation of spasticity in this segment. All of the experts recommended including the maneuver in routine examinations of this population. CLINICAL REHABILITATION IMPACT Applying the proposed maneuver could improve the selection of patients with spastic dynamic clubfoot who require specific treatment.
Collapse
Affiliation(s)
- Javier Benavides
- Department of Physical Medicine and Rehabilitation, University of Valle, Cali, Colombia -
| | - Oscar E Castro
- Department of Physical Medicine and Rehabilitation, University of Valle, Cali, Colombia
| |
Collapse
|
16
|
Anodal tDCS of contralesional hemisphere modulates ipsilateral control of spinal motor networks targeting the paretic arm post-stroke. Clin Neurophysiol 2022; 136:1-12. [DOI: 10.1016/j.clinph.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022]
|
17
|
Pennati GV, Bergling H, Carment L, Borg J, Lindberg PG, Palmcrantz S. Effects of 60 Min Electrostimulation With the EXOPULSE Mollii Suit on Objective Signs of Spasticity. Front Neurol 2021; 12:706610. [PMID: 34721255 PMCID: PMC8554021 DOI: 10.3389/fneur.2021.706610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The EXOPULSE Mollii method is an innovative full-body suit approach for non-invasive electrical stimulation, primarily designed to reduce disabling spasticity and improve motor function through the mechanism of reciprocal inhibition. This study aimed to evaluate the effectiveness of one session of stimulation with the EXOPULSE Mollii suit at different stimulation frequencies on objective signs of spasticity and clinical measures, and the subjective perceptions of the intervention. Methods: Twenty patients in the chronic phase after stroke were enrolled in a cross-over, double-blind controlled study. Electrical stimulation delivered through EXOPULSE Mollii was applied for 60 min at two active frequencies (20 and 30 Hz) and in OFF-settings (placebo) in a randomized order, every second day. Spasticity was assessed with controlled-velocity passive muscle stretches using the NeuroFlexor hand and foot modules. Surface electromyography (EMG) for characterizing flexor carpi radialis, medial gastrocnemius, and soleus muscles activation, Modified Ashworth Scale and range of motion were used as complementary tests. Finally, a questionnaire was used to assess the participants' perceptions of using the EXOPULSE Mollii suit. Results: At group level, analyses showed no significant effect of stimulation at any frequency on NeuroFlexor neural component (NC) and EMG amplitude in the upper or lower extremities (p > 0.35). Nevertheless, the effect was highly variable at the individual level, with eight patients exhibiting reduced NC (>1 N) in the upper extremity after stimulation at 30 Hz, 5 at 20 Hz and 3 in OFF settings. All these patients presented severe spasticity at baseline, i.e., NC > 8 N. Modified Ashworth ratings of spasticity and range of motion did not change significantly after stimulation at any frequency. Finally, 75% of participants reported an overall feeling of well-being during stimulation, with 25% patients describing a muscle-relaxing effect on the affected hand and/or foot at both 20 and 30 Hz. Conclusions: The 60 min of electrical stimulation with EXOPULSE Mollii suit did not reduce spasticity consistently in the upper and lower extremities in the chronic phase after stroke. Findings suggest a need for further studies in patients with severe spasticity after stroke including repeated stimulation sessions. Clinical Trial Registration:https://clinicaltrials.gov/ct2/show/NCT04076878, identifier: NCT04076878.
Collapse
Affiliation(s)
- Gaia Valentina Pennati
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden
| | - Hanna Bergling
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden
| | - Loïc Carment
- Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, Université de Paris, Paris, France
| | - Jörgen Borg
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden
| | - Påvel G Lindberg
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden.,Institut de Psychiatrie et Neurosciences de Paris, Inserm U1266, Université de Paris, Paris, France
| | - Susanne Palmcrantz
- Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Rehabilitation Medicine, Stockholm, Sweden
| |
Collapse
|
18
|
Thompson AK, Sinkjær T. Can Operant Conditioning of EMG-Evoked Responses Help to Target Corticospinal Plasticity for Improving Motor Function in People With Multiple Sclerosis? Front Neurol 2020; 11:552. [PMID: 32765389 PMCID: PMC7381136 DOI: 10.3389/fneur.2020.00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022] Open
Abstract
Corticospinal pathway and its function are essential in motor control and motor rehabilitation. Multiple sclerosis (MS) causes damage to the brain and descending connections, and often diminishes corticospinal function. In people with MS, neural plasticity is available, although it does not necessarily remain stable over the course of disease progress. Thus, inducing plasticity to the corticospinal pathway so as to improve its function may lead to motor control improvements, which impact one's mobility, health, and wellness. In order to harness plasticity in people with MS, over the past two decades, non-invasive brain stimulation techniques have been examined for addressing common symptoms, such as cognitive deficits, fatigue, and spasticity. While these methods appear promising, when it comes to motor rehabilitation, just inducing plasticity or having a capacity for it does not guarantee generation of better motor functions. Targeting plasticity to a key pathway, such as the corticospinal pathway, could change what limits one's motor control and improve function. One of such neural training methods is operant conditioning of the motor-evoked potential that aims to train the behavior of the corticospinal-motoneuron pathway. Through up-conditioning training, the person learns to produce the rewarded neuronal behavior/state of increased corticospinal excitability, and through iterative training, the rewarded behavior/state becomes one's habitual, daily motor behavior. This minireview introduces operant conditioning approach for people with MS. Guiding beneficial CNS plasticity on top of continuous disease progress may help to prolong the duration of maintained motor function and quality of life in people living with MS.
Collapse
Affiliation(s)
- Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Thomas Sinkjær
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Lundbeck Foundation, Copenhagen, Denmark
| |
Collapse
|
19
|
Atkinson DA, Sayenko DG, D'Amico JM, Mink A, Lorenz DJ, Gerasimenko YP, Harkema S. Interlimb conditioning of lumbosacral spinally evoked motor responses after spinal cord injury. Clin Neurophysiol 2020; 131:1519-1532. [PMID: 32403065 DOI: 10.1016/j.clinph.2020.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/11/2020] [Accepted: 03/06/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The importance of subcortical pathways to functional motor recovery after spinal cord injury (SCI) has been demonstrated in multiple animal models. The current study evaluated descending interlimb influence on lumbosacral motor excitability after chronic SCI in humans. METHODS Ulnar nerve stimulation and transcutaneous electrical spinal stimulation were used in a condition-test paradigm to evaluate the presence of interlimb connections linking the cervical and lumbosacral spinal segments in non-injured (n=15) and spinal cord injured (SCI) (n=18) participants. RESULTS Potentiation of spinally evoked motor responses (sEMRs) by ulnar nerve conditioning was observed in 7/7 SCI participants with volitional leg muscle activation, and in 6/11 SCI participants with no volitional activation. Of these six, conditioning of sEMRs was present only when the neurological level of injury was rostral to the ulnar innervation entry zones. CONCLUSIONS Descending modulation of lumbosacral motor pools via interlimb projections may exist in SCI participants despite the absence of volitional leg muscle activation. SIGNIFICANCE Evaluation of sub-clinical, spared pathways within the spinal cord after SCI may provide an improved understanding of both the contributions of different pathways to residual function, and the mechanisms of plasticity and functional motor recovery following rehabilitation..
Collapse
Affiliation(s)
- D A Atkinson
- University of St. Augustine for Health Sciences, Austin, TX, USA
| | - D G Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Hospital, Houston, TX, USA
| | - J M D'Amico
- Neuroscience Collaborative Center, Frazier Rehab Institute, Louisville, KY, USA; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - A Mink
- Neuroscience Collaborative Center, Frazier Rehab Institute, Louisville, KY, USA; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Physiology and Biophysics, University of Louisville, Louisville, KY, USA
| | - D J Lorenz
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Y P Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Physiology and Biophysics, University of Louisville, Louisville, KY, USA; Pavlov Institute of Physiology, St. Petersburg, Russia
| | - S Harkema
- Neuroscience Collaborative Center, Frazier Rehab Institute, Louisville, KY, USA; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA; Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
20
|
Spastic movement disorder: should we forget hyperexcitable stretch reflexes and start talking about inappropriate prediction of sensory consequences of movement? Exp Brain Res 2020; 238:1627-1636. [DOI: 10.1007/s00221-020-05792-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/29/2022]
|
21
|
Niewiadomski C, Bianco RJ, Arnoux PJ, Evin M. Isometric osteopathic manipulation influences on cervical ranges of motion and correlation with osteopathic palpatory diagnosis: A randomized trial. Complement Ther Med 2020; 48:102278. [DOI: 10.1016/j.ctim.2019.102278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 11/17/2022] Open
|
22
|
Recruitment gain of spinal motor neuron pools in cat and human. Exp Brain Res 2019; 237:2897-2909. [PMID: 31492990 DOI: 10.1007/s00221-019-05628-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
The output from a motor nucleus is determined by the synaptic input to the motor neurons and their intrinsic properties. Here, we explore whether the source of synaptic inputs to the motor neurons (cats) and the age or post-stroke conditions (humans) may change the recruitment gain of the motor neuron pool. In cats, the size of Ia EPSPs in triceps surae motor neurons (input) and monosynaptic reflexes (MSRs; output) was recorded in the soleus and medial gastrocnemius motor nerves following graded stimulation of dorsal roots. The MSR was plotted against the EPSP thereby obtaining a measure of the recruitment gain. Conditioning stimulation of sural and peroneal cutaneous afferents caused significant increase in the recruitment gain of the medial gastrocnemius, but not the soleus motor neuron pool. In humans, the discharge probability of individual soleus motor units (input) and soleus H-reflexes (output) was performed. With graded stimulation of the tibial nerve, the gain of the motor neuron pool was assessed as the slope of the relation between probability of firing and the reflex size. The gain in young subjects was higher than in elderly subjects. The gain in post-stroke survivors was higher than in age-matched neurologically intact subjects. These findings provide experimental evidence that recruitment gain of a motor neuron pool contributes to the regulation of movement at the final output stage from the spinal cord and should be considered when interpreting changes in reflex excitability in relation to movement or injuries of the nervous system.
Collapse
|
23
|
Zelenin PV, Lyalka VF, Orlovsky GN, Deliagina TG. Changes in Activity of Spinal Postural Networks at Different Time Points After Spinalization. Front Cell Neurosci 2019; 13:387. [PMID: 31496938 PMCID: PMC6712497 DOI: 10.3389/fncel.2019.00387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022] Open
Abstract
Postural limb reflexes (PLRs) are an essential component of postural corrections. Spinalization leads to disappearance of postural functions (including PLRs). After spinalization, spastic, incorrectly phased motor responses to postural perturbations containing oscillatory EMG bursting gradually develop, suggesting plastic changes in the spinal postural networks. Here, to reveal these plastic changes, rabbits at 3, 7, and 30 days after spinalization at T12 were decerebrated, and responses of spinal interneurons from L5 along with hindlimb muscles EMG responses to postural sensory stimuli, causing PLRs in subjects with intact spinal cord (control), were characterized. Like in control and after acute spinalization, at each of three studied time points after spinalization, neurons responding to postural sensory stimuli were found. Proportion of such neurons during 1st month after spinalization did not reach the control level, and was similar to that observed after acute spinalization. In contrast, their activity (which was significantly decreased after acute spinalization) reached the control value at 3 days after spinalization and remained close to this level during the following month. However, the processing of postural sensory signals, which was severely distorted after acute spinalization, did not recover by 30 days after injury. In addition, we found a significant enhancement of the oscillatory activity in a proportion of the examined neurons, which could contribute to generation of oscillatory EMG bursting. Motor responses to postural stimuli (which were almost absent after acute spinalization) re-appeared at 3 days after spinalization, although they were very weak, irregular, and a half of them was incorrectly phased in relation to postural stimuli. Proportion of correct and incorrect motor responses remained almost the same during the following month, but their amplitude gradually increased. Thus, spinalization triggers two processes of plastic changes in the spinal postural networks: rapid (taking days) restoration of normal activity level in spinal interneurons, and slow (taking months) recovery of motoneuronal excitability. Most likely, recovery of interneuronal activity underlies re-appearance of motor responses to postural stimuli. However, absence of recovery of normal processing of postural sensory signals and enhancement of oscillatory activity of neurons result in abnormal PLRs and loss of postural functions.
Collapse
|
24
|
Hofstoetter US, Freundl B, Danner SM, Krenn MJ, Mayr W, Binder H, Minassian K. Transcutaneous Spinal Cord Stimulation Induces Temporary Attenuation of Spasticity in Individuals with Spinal Cord Injury. J Neurotrauma 2019; 37:481-493. [PMID: 31333064 DOI: 10.1089/neu.2019.6588] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidural spinal cord stimulation (SCS) is currently regarded as a breakthrough procedure for enabling movement after spinal cord injury (SCI), yet one of its original applications was for spinal spasticity. An emergent method that activates similar target neural structures non-invasively is transcutaneous SCS. Its clinical value for spasticity control would depend on inducing carry-over effects, because the surface-electrode-based approach cannot be applied chronically. We evaluated single-session effects of transcutaneous lumbar SCS in 12 individuals with SCI by a test-battery approach, before, immediately after and 2 h after intervention. Stimulation was applied for 30 min at 50 Hz with an intensity sub-threshold for eliciting reflexes in lower extremity muscles. The tests included evaluations of stretch-induced spasticity (Modified Ashworth Scale [MAS] sum score, pendulum test, electromyography-based evaluation of tonic stretch reflexes), clonus, cutaneous-input-evoked spasms, and the timed 10 m walk test. Across participants, the MAS sum score, clonus, and spasms were significantly reduced immediately after SCS, and all spasticity measures were improved 2 h post-intervention, with large effect sizes and including clinically meaningful improvements. The effect on walking speed varied across individuals. We further conducted a single-case multi-session study over 6 weeks to explore the applicability of transcutaneous SCS as a home-based therapy. Self-application of the intervention was successful; weekly evaluations suggested progressively improving therapeutic effects during the active period and carry-over effects for 7 days. Our results suggest that transcutaneous SCS can be a viable non-pharmacological option for managing spasticity, likely working through enhancing pre- and post-synaptic spinal inhibitory mechanisms, and may additionally serve to identify responders to treatments with epidural SCS.
Collapse
Affiliation(s)
- Ursula S Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Brigitta Freundl
- Neurological Center, SMZ Baumgartner Hoehe, Otto-Wagner-Hospital, Vienna, Austria
| | - Simon M Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Matthias J Krenn
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi.,Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, Mississippi
| | - Winfried Mayr
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Heinrich Binder
- Neurological Center, SMZ Baumgartner Hoehe, Otto-Wagner-Hospital, Vienna, Austria
| | - Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Krause A, Lee K, Freyler K, Bührer T, Gollhofer A, Ritzmann R. Whole-body vibration impedes the deterioration of postural control in patients with multiple sclerosis. Mult Scler Relat Disord 2019; 31:134-140. [PMID: 30991299 DOI: 10.1016/j.msard.2019.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The current study aimed to investigate if whole-body vibration (WBV) might attenuate the processing functional and neuromuscular degeneration of postural control in patients with MS. DESIGN Performance in postural control was assessed before and after 6 weeks of a control (CON) and a WBV intervention period. SETTING Laboratory at the University of Freiburg & home-based training PARTICIPANTS: Out of 29 interested participants, 15 subjects with severe MS fit inclusion criteria. MAIN OUTCOME MEASURES Centre of pressure displacement (COP), muscle activity and co-contraction indices of m. soleus (SOL), gastrocnemius medialis (GM), tibialis anterior (TA), biceps (BF) and rectus femoris (RF) as well as SOL H/M-ratios. RESULTS After CON, COP was significantly enhanced with reduced muscle activity in RF and diminished shank muscle co-contraction. After WBV, no changes were observed in COP and neuromuscular control. However, over time, TA activity was reduced, but with no changes in muscle activation of SOL, GM and BF or H/M-ratios. CONCLUSIONS After CON, MS patients experienced substantial deteriorations in postural control which have previously been associated with greater postural instability. No further disease-associated deteriorations were observed following the intervention. Thus, WBV might alleviate neurodegeneration of postural control in people with MS.
Collapse
Affiliation(s)
- Anne Krause
- Department of Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117 Freiburg, Germany; Institute of Training and Computer Science, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
| | - Kyungsoo Lee
- Department of Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117 Freiburg, Germany
| | - Kathrin Freyler
- Department of Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117 Freiburg, Germany
| | - Tilmann Bührer
- Department of Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117 Freiburg, Germany
| | - Albert Gollhofer
- Department of Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117 Freiburg, Germany
| | - Ramona Ritzmann
- Department of Sport Science, University of Freiburg, Schwarzwaldstraße 175, 79117 Freiburg, Germany; Department of Biomechanics, Praxisklinik Rennbahn, Switzerland
| |
Collapse
|
26
|
Spinal reciprocal inhibition in the co-contraction of the lower leg depends on muscle activity ratio. Exp Brain Res 2019; 237:1469-1478. [DOI: 10.1007/s00221-019-05523-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
|
27
|
Effect of electrical stimulation on muscle atrophy and spasticity in patients with spinal cord injury – a systematic review with meta-analysis. Spinal Cord 2019; 57:258-266. [DOI: 10.1038/s41393-019-0250-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 11/09/2022]
|
28
|
Hirabayashi R, Edama M, Kojima S, Nakamura M, Ito W, Nakamura E, Kikumoto T, Onishi H. Effects of Reciprocal Ia Inhibition on Contraction Intensity of Co-contraction. Front Hum Neurosci 2019; 12:527. [PMID: 30687045 PMCID: PMC6336824 DOI: 10.3389/fnhum.2018.00527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/13/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: Excessive co-contraction interferes with smooth joint movement. One mechanism is the failure of reciprocal inhibition against antagonists during joint movement. Reciprocal inhibition has been investigated using joint torque as an index of intensity during co-contraction. However, contraction intensity as an index of co-contraction intensity has not been investigated. In this study, we aimed to evaluate the influence of changes in contraction intensity during co-contraction on reciprocal inhibition. Methods: We established eight stimulus conditions in 20 healthy adult males to investigate the influence of changes in contraction intensity during co-contraction on reciprocal inhibition. These stimulus conditions comprised a conditioning stimulus-test stimulation interval (C–T interval) of -2, 0, 1, 2, 3, 4, or 5 ms plus a test stimulus without a conditioning stimulus (single). Co-contraction of the tibialis anterior and soleus muscles at the same as contraction intensity was examined at rest and at 5, 15, and 30% maximal voluntary contraction (MVC). Results: At 5 and 15% MVC in the co-contraction task, the H-reflex amplitude was significantly decreased compared with single stimulation at a 2-ms C–T interval. At 30% MVC, there was no significant difference compared with single stimulation at a 2-ms C–T interval. At a 5-ms C–T interval, the H-reflex amplitude at 30% MVC was significantly reduced compared with that at rest. Discussion: The findings indicated that during co-contraction, reciprocal Ia inhibition worked at 5 and 15% MVC. Contrary inhibition of reciprocal Ia inhibition did not apparently work at 30% MVC, and presynaptic inhibition (D1 inhibition) might work.
Collapse
Affiliation(s)
- Ryo Hirabayashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Mutsuaki Edama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Wataru Ito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Emi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Takanori Kikumoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
29
|
Iskra DA, Kovalenko AP, Koshkarev MA, Dyskin DE. [Spasticity: from pathophysiology to treatment]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:108-114. [PMID: 30499506 DOI: 10.17116/jnevro2018118101108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The article presents modern views on the pathophysiology of spasticity, which is a frequent disabling consequence to the upper motor neuron (UMN) damage. Morphological and functional system of motion organization and the changes after the UMN damage is considered. The authors analyze existing definitions of spasticity. Stages of spasticity development are described in the context of neuroplasticity as well as in the framework of pathogenesis and sanogenesis. Existing ideas of its pathogenesis are compared with the typical clinical symptoms. The occurring pathological processes in muscles, tendons and joints that can aggravate the development of spasticity and complicate the diagnosis are considered. In addition, the main pathological spasticity patterns are described and the current development of diagnostic techniques is estimated. A review of main methods of spasticity treatment is presented. Special attention is paid to the botulinum neurotoxin type A (BoNT) preparations and central action muscle relaxants. The pathophysiological basement for complex treatment of spasticity as a part of the general rehabilitation process is given, so that the BoNT can be considered as the obligatory element of standard rehabilitation programs.
Collapse
Affiliation(s)
- D A Iskra
- Military Medical Academy n.a. S.M. Kirov, Saint-Petersburg, Russia
| | - A P Kovalenko
- Military Medical Academy n.a. S.M. Kirov, Saint-Petersburg, Russia
| | - M A Koshkarev
- Military Medical Academy n.a. S.M. Kirov, Saint-Petersburg, Russia
| | - D E Dyskin
- Military Medical Academy n.a. S.M. Kirov, Saint-Petersburg, Russia
| |
Collapse
|
30
|
Impaired Ability to Suppress Excitability of Antagonist Motoneurons at Onset of Dorsiflexion in Adults with Cerebral Palsy. Neural Plast 2018; 2018:1265143. [PMID: 30402086 PMCID: PMC6198563 DOI: 10.1155/2018/1265143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 11/17/2022] Open
Abstract
We recently showed that impaired gait function in adults with cerebral palsy (CP) is associated with reduced rate of force development in ankle dorsiflexors. Here, we explore potential mechanisms. We investigated the suppression of antagonist excitability, calculated as the amount of soleus H-reflex depression at the onset of ankle dorsiflexion compared to rest, in 24 adults with CP (34.3 years, range 18–57; GMFCS 1.95, range 1–3) and 15 healthy, age-matched controls. Furthermore, the central common drive to dorsiflexor motoneurons during a static contraction in the two groups was examined by coherence analyses. The H-reflex was significantly reduced by 37% at the onset of dorsiflexion compared to rest in healthy adults (P < 0.001) but unchanged in adults with CP (P = 0.91). Also, the adults with CP had significantly less coherence. These findings suggest that the ability to suppress antagonist motoneuronal excitability at movement onset is impaired and that the central common drive during static contractions is reduced in adults with CP.
Collapse
|
31
|
Takahashi Y, Fujiwara T, Yamaguchi T, Matsunaga H, Kawakami M, Honaga K, Mizuno K, Liu M. Voluntary contraction enhances spinal reciprocal inhibition induced by patterned electrical stimulation in patients with stroke. Restor Neurol Neurosci 2018; 36:99-105. [PMID: 29439361 DOI: 10.3233/rnn-170759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Reciprocal inhibition (RI) may be important for recovering locomotion after stroke. Patterned electrical stimulation (PES) can modulate RI in a manner that could be enhanced by voluntary muscle contraction (VC). OBJECTIVE To investigate whether VC enhances the PES-induced spinal RI in patients with stroke. METHODS Twelve patients with chronic stroke underwent three 20 min tasks, each on different days: (1) PES (10 pulses, 100 Hz every 2 s) applied to the common peroneal nerve; (2) VC consisting of isometric contraction of the affected-side tibialis anterior muscle; (3) PES combined with VC (PES + VC). RI from the tibialis anterior to the soleus muscle was assessed before, immediately after, and 10, 20, and 30 min after the task. RESULTS Compared to the baseline, PES + VC significantly increased the changes in reciprocal inhibition at immediately after and 10 min after the task. PES alone significantly increased this change immediately after the task, while VC alone showed no significant increase. CONCLUSION VC enhanced the PES-induced plastic changes in RI in patients with stroke. This effect can potentially increase the success rate of newer neurorehabilitative approaches in achieving functional recovery after stroke.
Collapse
Affiliation(s)
- Yoko Takahashi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Toshiyuki Fujiwara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomofumi Yamaguchi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan.,JSPS Overseas Research Fellow.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Honaga
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Katsuhiro Mizuno
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Acute whole-body vibration increases reciprocal inhibition. Hum Mov Sci 2018; 60:191-201. [DOI: 10.1016/j.humov.2018.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 11/23/2022]
|
33
|
Sivaramakrishnan A, Solomon JM, Manikandan N. Comparison of transcutaneous electrical nerve stimulation (TENS) and functional electrical stimulation (FES) for spasticity in spinal cord injury - A pilot randomized cross-over trial. J Spinal Cord Med 2018; 41:397-406. [PMID: 29067867 PMCID: PMC6055976 DOI: 10.1080/10790268.2017.1390930] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE Spasticity following spinal cord injury (SCI) can impair function and affect quality of life. This study compared the effects of transcutaneous electrical nerve stimulation (TENS) and functional electrical stimulation (FES) on lower limb spasticity in patients with SCI. DESIGN Double blind randomized crossover design. SETTING Neuro-rehabilitation unit, Manipal University, India. PARTICIPANTS Ten participants (age: 39 ± 13.6 years, C1-T11, 1-26 months post SCI) with lower limb spasticity were enrolled in this study. INTERVENTIONS Participants were administered electrical stimulation with TENS and FES (duration - 30 minutes) in a cross over manner separated by 24 hours. OUTCOME MEASURES Spasticity was measured using modified Ashworth scale (MAS) [for hip abductors, knee extensors and ankle plantar flexors] and spinal cord assessment tool for spastic reflexes (SCATS). Assessments were performed at baseline, immediately, 1 hour, 4 hours, and 24 hours post intervention. RESULTS A between group analysis did not show statistically significant differences between FES and TENS (P > 0.05). In the within group analyses, TENS and FES significantly reduced spasticity up to 4 hours in hip adductors and knee extensors (P < 0.01). SCATS values showed significant reductions at 1 hour (P = 0.01) following TENS and 4 hours following FES (P = 0.01). CONCLUSION A single session of electrical stimulation with FES and TENS appears to have similar anti-spasticity effects that last for 4 hours. The findings of this preliminary study suggest that both TENS and FES have the potential to be used as therapeutic adjuncts to relieve spasticity in the clinic. In addition, FES may have better effects on patients presenting with spastic reflexes.
Collapse
Affiliation(s)
- Anjali Sivaramakrishnan
- Correspondence to: Anjali Sivaramakrishnan, Graduate Program in Rehabilitation Science, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, USA. . Phone: 773-575-1007
| | | | | |
Collapse
|
34
|
Facilitation of antagonist motor output through short-latency sensory pathways during postnatal development in the mouse. Neurosci Lett 2018. [PMID: 29526514 DOI: 10.1016/j.neulet.2018.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reciprocal inhibition of motor neurons via Ia inhibitory interneurons recruited by stimulation of proprioceptive afferents supplying antagonist muscles has been well described. Changes in the efficacy of inhibition, and sometimes even a switch from inhibition to facilitation, have been reported in the literature after disruption of descending pathways. We sought to test whether such facilitation could be expressed in normal animals by evaluating the presence of facilitation in acute preparations from uninjured animals. Using an isolated spinal cord preparation from neonatal mice, changes in the monosynaptic stretch reflex response in knee flexor motor neurons (posterior biceps semitendinosus; PBST) were monitored following conditioning stimulation of proprioceptive sensory afferents in other muscle nerves. As expected for reciprocal inhibition, conditioning by stimulation of quadriceps (knee extensors and PBST antagonists) sensory afferents resulted in inhibition of the stretch reflex response. Facilitation, however, of the stretch reflex response by quadriceps conditioning stimulation was observed when the glycinergic reciprocal inhibitory pathway was blocked by application of strychnine. Facilitation was elicited by low-threshold proprioceptive afferents and occurred at latencies consistent with a disynaptic circuit. The magnitude of facilitation was larger at birth than at one week postnatal. Our results also suggest reciprocal facilitation is restricted to antagonist muscle pairs, as facilitation of PBST responses was not observed when conditioned with the obturator nerve supplying the adductor muscles. Overall, these data suggest the efficacy of facilitation is modulated during the first postnatal week, while the specificity of facilitation is already established by birth.
Collapse
|
35
|
Krause A, Schönau E, Gollhofer A, Duran I, Ferrari-Malik A, Freyler K, Ritzmann R. Alleviation of Motor Impairments in Patients with Cerebral Palsy: Acute Effects of Whole-body Vibration on Stretch Reflex Response, Voluntary Muscle Activation and Mobility. Front Neurol 2017; 8:416. [PMID: 28861038 PMCID: PMC5561012 DOI: 10.3389/fneur.2017.00416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Individuals suffering from cerebral palsy (CP) often have involuntary, reflex-evoked muscle activity resulting in spastic hyperreflexia. Whole-body vibration (WBV) has been demonstrated to reduce reflex activity in healthy subjects, but evidence in CP patients is still limited. Therefore, this study aimed to establish the acute neuromuscular and kinematic effects of WBV in subjects with spastic CP. METHODS 44 children with spastic CP were tested on neuromuscular activation and kinematics before and immediately after a 1-min bout of WBV (16-25 Hz, 1.5-3 mm). Assessment included (1) recordings of stretch reflex (SR) activity of the triceps surae, (2) electromyography (EMG) measurements of maximal voluntary muscle activation of lower limb muscles, and (3) neuromuscular activation during active range of motion (aROM). We recorded EMG of m. soleus (SOL), m. gastrocnemius medialis (GM), m. tibialis anterior, m. vastus medialis, m. rectus femoris, and m. biceps femoris. Angular excursion was recorded by goniometry of the ankle and knee joint. RESULTS After WBV, (1) SOL SRs were decreased (p < 0.01) while (2) maximal voluntary activation (p < 0.05) and (3) angular excursion in the knee joint (p < 0.01) were significantly increased. No changes could be observed for GM SR amplitudes or ankle joint excursion. Neuromuscular coordination expressed by greater agonist-antagonist ratios during aROM was significantly enhanced (p < 0.05). DISCUSSION The findings point toward acute neuromuscular and kinematic effects following one bout of WBV. Protocols demonstrate that pathological reflex responses are reduced (spinal level), while the execution of voluntary movement (supraspinal level) is improved in regards to kinematic and neuromuscular control. This facilitation of muscle and joint control is probably due to a reduction of spasticity-associated spinal excitability in favor of giving access for greater supraspinal input during voluntary motor control.
Collapse
Affiliation(s)
- Anne Krause
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Eckhard Schönau
- Center of Prevention and Rehabilitation, University of Cologne, Cologne, Germany
| | - Albert Gollhofer
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Ibrahim Duran
- Center of Prevention and Rehabilitation, University of Cologne, Cologne, Germany
| | - Anja Ferrari-Malik
- Center of Prevention and Rehabilitation, University of Cologne, Cologne, Germany
| | - Kathrin Freyler
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Ramona Ritzmann
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Plantier V, Brocard F. [Calpain as a new therapeutic target for treating spasticity after a spinal cord injury]. Med Sci (Paris) 2017; 33:629-636. [PMID: 28990565 DOI: 10.1051/medsci/20173306020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
After a spinal cord injury (SCI), patients develop spasticity, a motor disorder characterized by hyperreflexia and stiffness of muscles. Spasticity results from alterations in motoneurons with an upregulation of their persistent sodium current (I NaP), simultaneously with a disinhibition caused by a reduction of expression of chloride (Cl-) co-transporters KCC2. Until recently the origin of alterations was unknown. After reviewing pathophysiology of spasticity, the manuscript relates our recent work showing a tight relationship between the calpain-dependent proteolysis of voltage-gated sodium channels, the upregulation of I NaP and spasticity following SCI. We also discuss KCC2 as a substrate of calpains which may contribute to the disinhibition of motoneurons below the lesion. This led us to consider the proteolytic cleavage of both sodium channels and KCC2 as the upstream mechanism contributing to the development of spasticity after SCI.
Collapse
Affiliation(s)
- Vanessa Plantier
- Équipe P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université et Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Frédéric Brocard
- Équipe P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université et Centre National de la Recherche Scientifique (CNRS), Marseille, France
| |
Collapse
|
37
|
Takeda K, Tanabe S, Koyama S, Ushiroyama K, Naoi Y, Motoya I, Sakurai H, Kanada Y. Influence of transcutaneous electrical nerve stimulation conditions on disynaptic reciprocal Ia inhibition and presynaptic inhibition in healthy adults. Somatosens Mot Res 2017; 34:52-57. [DOI: 10.1080/08990220.2017.1286311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kazuya Takeda
- Department of Rehabilitation, Kawamura Hospital, Gifu, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Soichiro Koyama
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | | | - Yuki Naoi
- Department of Rehabilitation, Kawamura Hospital, Gifu, Japan
| | - Ikuo Motoya
- Department of Rehabilitation, Kawamura Hospital, Gifu, Japan
| | - Hiroaki Sakurai
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Yoshikiyo Kanada
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| |
Collapse
|
38
|
Bellardita C, Caggiano V, Leiras R, Caldeira V, Fuchs A, Bouvier J, Löw P, Kiehn O. Spatiotemporal correlation of spinal network dynamics underlying spasms in chronic spinalized mice. eLife 2017; 6:23011. [PMID: 28191872 PMCID: PMC5332159 DOI: 10.7554/elife.23011] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/27/2017] [Indexed: 12/28/2022] Open
Abstract
Spasms after spinal cord injury (SCI) are debilitating involuntary muscle contractions that have been associated with increased motor neuron excitability and decreased inhibition. However, whether spasms involve activation of premotor spinal excitatory neuronal circuits is unknown. Here we use mouse genetics, electrophysiology, imaging and optogenetics to directly target major classes of spinal interneurons as well as motor neurons during spasms in a mouse model of chronic SCI. We find that assemblies of excitatory spinal interneurons are recruited by sensory input into functional circuits to generate persistent neural activity, which interacts with both the graded expression of plateau potentials in motor neurons to generate spasms, and inhibitory interneurons to curtail them. Our study reveals hitherto unrecognized neuronal mechanisms for the generation of persistent neural activity under pathophysiological conditions, opening up new targets for treatment of muscle spasms after SCI. DOI:http://dx.doi.org/10.7554/eLife.23011.001
Collapse
Affiliation(s)
- Carmelo Bellardita
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vittorio Caggiano
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Leiras
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vanessa Caldeira
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Fuchs
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Julien Bouvier
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Löw
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ole Kiehn
- Mammalian locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Mayo M, DeForest BA, Castellanos M, Thomas CK. Characterization of Involuntary Contractions after Spinal Cord Injury Reveals Associations between Physiological and Self-Reported Measures of Spasticity. Front Integr Neurosci 2017; 11:2. [PMID: 28232792 PMCID: PMC5299008 DOI: 10.3389/fnint.2017.00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/16/2017] [Indexed: 12/02/2022] Open
Abstract
Correlations between physiological, clinical and self-reported assessments of spasticity are often weak. Our aims were to quantify functional, self-reported and physiological indices of spasticity in individuals with thoracic spinal cord injury (SCI; 3 women, 9 men; 19–52 years), and to compare the strength and direction of associations between these measures. The functional measure we introduced involved recording involuntary electromyographic activity during a transfer from wheelchair to bed which is a daily task necessary for function. High soleus (SL) and tibialis anterior (TA) F-wave/M-wave area ratios were the only physiological measures that distinguished injured participants from the uninjured (6 women, 13 men, 19–67 years). Hyporeflexia (decreased SL H/M ratio) was unexpectedly present in older participants after injury. During transfers, the duration and intensity of involuntary electromyographic activity varied across muscles and participants, but coactivity was common. Wide inter-participant variability was seen for self-reported spasm frequency, severity, pain and interference with function, as well as tone (resistance to imposed joint movement). Our recordings of involuntary electromyographic activity during transfers provided evidence of significant associations between physiological and self-reported measures of spasticity. Reduced low frequency H-reflex depression in SL and high F-wave/M-wave area ratios in TA, physiological indicators of reduced inhibition and greater motoneuron excitability, respectively, were associated with long duration SL and biceps femoris (BF) electromyographic activity during transfers. In turn, participants reported high spasm frequency when transfers involved short duration TA EMG, decreased co-activation between SL and TA, as well as between rectus femoris (RF) vs. BF. Thus, the duration of muscle activity and/or the time of agonist-antagonist muscle coactivity may be used by injured individuals to count spasms. Intense electromyographic activity and high tone related closely (possibly from joint stabilization), while intense electromyographic activity in one muscle of an agonist-antagonist pair (especially in TA vs. SL, and RF vs. BF) likely induced joint movement and was associated with severe spasms. These data support the idea that individuals with SCI describe their spasticity by both the duration and intensity of involuntary agonist-antagonist muscle coactivity during everyday tasks.
Collapse
Affiliation(s)
- Meagan Mayo
- The Miami Project to Cure Paralysis, University of Miami Miami, FL, USA
| | | | | | - Christine K Thomas
- The Miami Project to Cure Paralysis, University of MiamiMiami, FL, USA; Department of Neurological Surgery, University of MiamiMiami, FL, USA; Department of Physiology and Biophysics, University of MiamiMiami, FL, USA
| |
Collapse
|
40
|
Sousa ASP, Santos R, Silva A. Ankle Intrinsic Stiffness in Subcortical Poststroke Subjects. J Mot Behav 2016; 49:265-272. [PMID: 27588813 DOI: 10.1080/00222895.2016.1191421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The authors' purpose was to evaluate bilateral ankle intrinsic stiffness in subcortical poststroke subjects. Ten subcortical poststroke subjects and 10 healthy controls participated in this study. The ankle passive stiffness at 3 different speeds and the electromyographic activity of the soleus, the gastrocnemius, and the tibialis anterior muscles of poststroke contralesional (CONTRA) and ipsilesional (IPSI) limbs and of one limb of healthy subjects were assessed. Ankle electromyographic activity was collected to ensure that reflexive or voluntary muscle activity was not being elicited during the passive movements. A significant interaction was observed between the effects of the limb (IPSI vs. CONTRA vs. control) and ankle position, F(4, 28) = 3.285, p = .025, and between the effects of the limb and the velocity of stretch, F(2, 14) = 4.209, p = .037. While increased intrinsic stiffness was observed in the CONTRA limb of poststroke subjects at ankle neutral position when the passive stretch was applied with a velocity of 1°/s (p = .021), the IPSI limb of poststroke subjects presented increased stiffness at 20º of plantar flexion when the stretch was applied with a velocity of 5°/s (p = .009) when compared to healthy group. Subcortical poststroke subjects present increased intrinsic stiffness in both the CONTRA and IPSI limbs in specific ankle amplitudes.
Collapse
Affiliation(s)
- Andreia S P Sousa
- a Centro de Estudos de Movimento e Atividade Humana , Área Científica de Fisioterapia, Instituto Politécnico do Porto, Escola Superior de Saúde do Porto , Vila Nova de Gaia , Portugal
| | - Rubim Santos
- b Centro de Estudos de Movimento e Atividade Humana , Área Científica de Física, Escola Superior de Saúde do Porto , Vila Nova de Gaia , Portugal
| | - Augusta Silva
- a Centro de Estudos de Movimento e Atividade Humana , Área Científica de Fisioterapia, Instituto Politécnico do Porto, Escola Superior de Saúde do Porto , Vila Nova de Gaia , Portugal
| |
Collapse
|
41
|
Barbeau H, Pépin A, Norman KE, Ladouceur M, Leroux A. Review : Walking After Spinal Cord Injury: Control and Recovery. Neuroscientist 2016. [DOI: 10.1177/107385849800400109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Spinal cord injury is associated with multiple motor problems leading to alterations of walking behavior reflected by a reduced walking speed and changes in the kinematic and electromyographic patterns. This review presents recent developments and concepts emerging from animal and human studies aimed at enhancing recovery of walking following spinal cord injury. Locomotor training, pharmacological interven tions, and their combination have been identified as important approaches in modifying the recovery process following spinal cord injury in both animals and humans. The nervous system still presents great plasticity even several years after spinal cord injury. NEUROSCIENTIST 4:14-24, 1998
Collapse
Affiliation(s)
- Hugues Barbeau
- School of Physical and Occupational Therapy Faculty
of Medicine McGill University Montréal, Québec
| | - André Pépin
- School of Physical and Occupational Therapy Faculty
of Medicine McGill University Montréal, Québec
| | - Kathleen E. Norman
- School of Physical and Occupational Therapy Faculty
of Medicine McGill University Montréal, Québec
| | - Michel Ladouceur
- School of Physical and Occupational Therapy Faculty
of Medicine McGill University Montréal, Québec
| | - Alain Leroux
- School of Physical and Occupational Therapy Faculty
of Medicine McGill University Montréal, Québec
| |
Collapse
|
42
|
Smith AC, Knikou M. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function. Neural Plast 2016; 2016:1216258. [PMID: 27293901 PMCID: PMC4879237 DOI: 10.1155/2016/1216258] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/20/2016] [Indexed: 01/01/2023] Open
Abstract
Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks at multisegmental levels at rest and during assisted stepping. This neuronal reorganization coincides with improvements in motor function and decreased muscle cocontractions. In this review, we will discuss the manner in which spinal neuronal circuits are impaired and the evidence surrounding plasticity of neuronal activity after locomotor training in people with SCI. We conclude that we need to better understand the physiological changes underlying locomotor training, use physiological signals to probe recovery over the course of training, and utilize established and contemporary interventions simultaneously in larger scale research studies. Furthermore, the focus of our research questions needs to change from feasibility and efficacy to the following: what are the physiological mechanisms that make it work and for whom? The aforementioned will enable the scientific and clinical community to develop more effective rehabilitation protocols maximizing sensorimotor function recovery in people with SCI.
Collapse
Affiliation(s)
- Andrew C. Smith
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| | - Maria Knikou
- The Graduate Center, City University of New York, New York, NY 10016, USA
- Department of Physical Therapy, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| |
Collapse
|
43
|
Transcutaneous Electrical Nerve Stimulation for Management of Limb Spasticity. Am J Phys Med Rehabil 2016; 95:309-18. [DOI: 10.1097/phm.0000000000000437] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Koyama S, Tanabe S, Takeda K, Sakurai H, Kanada Y. Modulation of spinal inhibitory reflexes depends on the frequency of transcutaneous electrical nerve stimulation in spastic stroke survivors. Somatosens Mot Res 2016; 33:8-15. [PMID: 26949041 DOI: 10.3109/08990220.2016.1142436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neurophysiological studies in healthy subjects suggest that increased spinal inhibitory reflexes from the tibialis anterior (TA) muscle to the soleus (SOL) muscle might contribute to decreased spasticity. While 50 Hz is an effective frequency for transcutaneous electrical nerve stimulation (TENS) in healthy subjects, in stroke survivors, the effects of TENS on spinal reflex circuits and its appropriate frequency are not well known. We examined the effects of different frequencies of TENS on spinal inhibitory reflexes from the TA to SOL muscle in stroke survivors. Twenty chronic stroke survivors with ankle plantar flexor spasticity received 50-, 100-, or 200-Hz TENS over the deep peroneal nerve (DPN) of the affected lower limb for 30 min. Before and immediately after TENS, reciprocal Ia inhibition (RI) and presynaptic inhibition of the SOL alpha motor neuron (D1 inhibition) were assessed by adjusting the unconditioned H-reflex amplitude. Furthermore, during TENS, the time courses of spinal excitability and spinal inhibitory reflexes were assessed via the H-reflex, RI, and D1 inhibition. None of the TENS protocols affected mean RI, whereas D1 inhibition improved significantly following 200-Hz TENS. In a time-series comparison during TENS, repeated stimulation did not produce significant changes in the H-reflex, RI, or D1 inhibition regardless of frequency. These results suggest that the frequency-dependent effect of TENS on spinal reflexes only becomes apparent when RI and D1 inhibition are measured by adjusting the amplitude of the unconditioned H-reflex. However, 200-Hz TENS led to plasticity of synaptic transmission from the antagonist to spastic muscles in stroke survivors.
Collapse
Affiliation(s)
- Soichiro Koyama
- a Department of Rehabilitation , Kawamura Hospital , Gifu , Japan ;,b Faculty of Rehabilitation, School of Health Sciences, Fujita Health University , >Aichi > , Japan
| | - Shigeo Tanabe
- b Faculty of Rehabilitation, School of Health Sciences, Fujita Health University , >Aichi > , Japan
| | - Kazuya Takeda
- a Department of Rehabilitation , Kawamura Hospital , Gifu , Japan
| | - Hiroaki Sakurai
- b Faculty of Rehabilitation, School of Health Sciences, Fujita Health University , >Aichi > , Japan
| | - Yoshikiyo Kanada
- b Faculty of Rehabilitation, School of Health Sciences, Fujita Health University , >Aichi > , Japan
| |
Collapse
|
45
|
Slovak M, Chindo J, Nair KPS, Reeves ML, Heller B, Barker AT. Sensory Barrage Stimulation in the Treatment of Elbow Spasticity: A Crossover Double Blind Randomized Pilot Trial. Neuromodulation 2016; 19:220-6. [DOI: 10.1111/ner.12383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/06/2015] [Accepted: 10/28/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Martin Slovak
- Department of Medical Physics & Clinical Engineering; Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust; Sheffield UK
- The National Institute for Health Research Devices for Dignity Healthcare Technology Cooperative; Royal Hallamshire Hospital; Sheffield UK
| | - Joseph Chindo
- Department of Neuroscience; Royal Hallamshire Hospital Sheffield UK
| | | | - Mark L. Reeves
- Department of Medical Physics & Clinical Engineering; Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust; Sheffield UK
| | - Ben Heller
- Centre for Sports Engineering Research; Sheffield Hallam University; Broomgrove Teaching Block Sheffield UK
| | - Anthony T. Barker
- Department of Medical Physics & Clinical Engineering; Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust; Sheffield UK
| |
Collapse
|
46
|
Popa L, Taylor P. Functional electrical stimulation may reduce bradykinesia in Parkinson's disease: A feasibility study. J Rehabil Assist Technol Eng 2015; 2:2055668315607836. [PMID: 31191918 PMCID: PMC6531801 DOI: 10.1177/2055668315607836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/04/2015] [Indexed: 11/21/2022] Open
Abstract
Objectives This feasibility study investigated the effect of combined upper and lower
limb functional electrical stimulation (FES) to reduce bradykinesia in
Parkinson’s disease (PD). Method Eleven people with PD and Hoehn and Yahr score 2–3 used FES to assist
dorsiflexion and hand opening or fine hand movements for 2 weeks. Outcome
measures were the nine-hole peg test, box and block test, 10 m walking test,
Tinetti balance scale, modified Parkinson’s disease quality of life
questionnaire (PDQL), SPES/SCOPA scale, and compliance. All tests were
carried out without FES. Comparisons were tested using the Student paired
t-test. Results Two participants dropped out due to difficulty in using the equipment. Mean
walking speed increased by 0.29 m s−1
(p = 0.002), step length by 0.09 m
(p = 0.007), and cadence by 19.8 steps min−1
(p = 0.045). Tinetti balance score increased by 2.9
(p = 0.006). There was an increase in the box and block
test of 5.1 (p = 0.025). The PD symptoms score of the PDQL
improved by 4.9 (p = 0.013) and a reduction in SPES/SCOPA
score of 5.7 (p = 0.005) indicated a reduced impact of
PD. Conclusions FES produced clinically meaningful improvements in gait and upper limb
function. Some participants found using both interventions challenging and
we would recommend that their introduction be staggered.
Collapse
Affiliation(s)
- Livia Popa
- The National Clinical FES Centre, Salisbury District Hospital, UK
| | - Paul Taylor
- The National Clinical FES Centre, Salisbury District Hospital, UK
| |
Collapse
|
47
|
Obata H, Ogawa T, Kitamura T, Masugi Y, Takahashi M, Kawashima N, Nakazawa K. Short-term effect of electrical nerve stimulation on spinal reciprocal inhibition during robot-assisted passive stepping in humans. Eur J Neurosci 2015; 42:2283-8. [PMID: 26108136 DOI: 10.1111/ejn.13000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to investigate the effect of electrical stimulation to the common peroneal nerve (CPN) on the spinal reflex and reciprocal inhibition (RI) during robot-assisted passive ground stepping (PGS) in healthy subjects. Five interventions were applied for 30 min in healthy subjects: PGS alone; strong CPN stimulation [50% of the maximal tibialis anterior (TA) M-wave, functional electrical stimulation (FES)] alone; weak CPN stimulation [just above the MT for the TA muscle, therapeutic electrical stimulation (TES)] alone; PGS with FES; and PGS with TES. FES and TES were applied intermittently to the CPN at 25 Hz. The soleus (Sol) H-reflex and RI, which was assessed by conditioning the Sol H-reflex with CPN stimulation, were investigated before (baseline), and 5, 15 and 30 min after each intervention. The amplitudes of the Sol H-reflex were not significantly different after each intervention as compared with the baseline values. The amounts of RI were significantly decreased 5 min after PGS with FES as compared with the baseline values, whereas they were significantly increased 5 and 15 min after PGS with TES. The other interventions did not affect the amount of RI. These results suggest that interventions that combined PGS with CPN stimulation changed the spinal RI in an intensity-dependent manner.
Collapse
Affiliation(s)
- Hiroki Obata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Tetsuya Ogawa
- Faculty of Sport Sciences, Waseda University, Waseda, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Taku Kitamura
- Department of Motor Dysfunction, Research Institute of the National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Miho Takahashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Noritaka Kawashima
- Department of Motor Dysfunction, Research Institute of the National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
48
|
Chang YJ, Chou CC, Huang WT, Lu CS, Wong AM, Hsu MJ. Cycling Regimen Induces Spinal Circuitry Plasticity and Improves Leg Muscle Coordination in Individuals With Spinocerebellar Ataxia. Arch Phys Med Rehabil 2015; 96:1006-13. [DOI: 10.1016/j.apmr.2015.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 01/12/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
|
49
|
Kim HE, Corcos DM, Hornby TG. Increased spinal reflex excitability is associated with enhanced central activation during voluntary lengthening contractions in human spinal cord injury. J Neurophysiol 2015; 114:427-39. [PMID: 25972590 DOI: 10.1152/jn.01074.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/10/2015] [Indexed: 11/22/2022] Open
Abstract
This study of chronic incomplete spinal cord injury (SCI) subjects investigated patterns of central motor drive (i.e., central activation) of the plantar flexors using interpolated twitches, and modulation of soleus H-reflexes during lengthening, isometric, and shortening muscle actions. In a recent study of the knee extensors, SCI subjects demonstrated greater central activation ratio (CAR) values during lengthening (i.e., eccentric) maximal voluntary contractions (MVCs), compared with during isometric or shortening (i.e., concentric) MVCs. In contrast, healthy controls demonstrated lower lengthening CAR values compared with their isometric and shortening CARs. For the present investigation, we hypothesized SCI subjects would again produce their highest CAR values during lengthening MVCs, and that these increases in central activation were partially attributable to greater efficacy of Ia-α motoneuron transmission during muscle lengthening following SCI. Results show SCI subjects produced higher CAR values during lengthening vs. isometric or shortening MVCs (all P < 0.001). H-reflex testing revealed normalized H-reflexes (maximal SOL H-reflex-to-maximal M-wave ratios) were greater for SCI than controls during passive (P = 0.023) and active (i.e., 75% MVC; P = 0.017) lengthening, suggesting facilitation of Ia transmission post-SCI. Additionally, measures of spinal reflex excitability (passive lengthening maximal SOL H-reflex-to-maximal M-wave ratio) in SCI were positively correlated with soleus electromyographic activity and CAR values during lengthening MVCs (both P < 0.05). The present study presents evidence that patterns of dynamic muscle activation are altered following SCI, and that greater central activation during lengthening contractions is partly due to enhanced efficacy of Ia-α motoneuron transmission.
Collapse
Affiliation(s)
- Hyosub E Kim
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois
| | - Daniel M Corcos
- Department of Physical Therapy & Human Movement Sciences, Northwestern University, Chicago, Illinois; and
| | - T George Hornby
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
50
|
Knikou M, Smith AC, Mummidisetty CK. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. J Neurophysiol 2015; 113:2447-60. [PMID: 25609110 DOI: 10.1152/jn.00872.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
Pathologic reorganization of spinal networks and activity-dependent plasticity are common neuronal adaptations after spinal cord injury (SCI) in humans. In this work, we examined changes of reciprocal Ia and nonreciprocal Ib inhibition after locomotor training in 16 people with chronic SCI. The soleus H-reflex depression following common peroneal nerve (CPN) and medial gastrocnemius (MG) nerve stimulation at short conditioning-test (C-T) intervals was assessed before and after training in the seated position and during stepping. The conditioned H reflexes were normalized to the unconditioned H reflex recorded during seated. During stepping, both H reflexes were normalized to the maximal M wave evoked at each bin of the step cycle. In the seated position, locomotor training replaced reciprocal facilitation with reciprocal inhibition in all subjects, and Ib facilitation was replaced by Ib inhibition in 13 out of 14 subjects. During stepping, reciprocal inhibition was decreased at early stance and increased at midswing in American Spinal Injury Association Impairment Scale C (AIS C) and was decreased at midstance and midswing phases in AIS D after training. Ib inhibition was decreased at early swing and increased at late swing in AIS C and was decreased at early stance phase in AIS D after training. The results of this study support that locomotor training alters postsynaptic actions of Ia and Ib inhibitory interneurons on soleus motoneurons at rest and during stepping and that such changes occur in cases with limited or absent supraspinal inputs.
Collapse
Affiliation(s)
- Maria Knikou
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg Medical School, Chicago, Illinois; Graduate Center/The City University of New York, New York, New York; and Department of Physical Therapy, College of Staten Island, Staten Island, New York
| | - Andrew C Smith
- Northwestern University Interdepartmental Neuroscience Program, Chicago, Illinois
| | | |
Collapse
|