1
|
Pavan T, Alemán-Gómez Y, Jenni R, Steullet P, Schilliger Z, Dwir D, Cleusix M, Alameda L, Do KQ, Conus P, Hagmann P, Klauser P, Jelescu I. White matter microstructure alterations in early psychosis and schizophrenia. Transl Psychiatry 2025; 15:179. [PMID: 40410167 PMCID: PMC12102172 DOI: 10.1038/s41398-025-03397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 04/29/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025] Open
Abstract
Studies on schizophrenia feature diffusion magnetic resonance imaging (dMRI) to investigate white matter (WM) anomalies. The heterogeneity in the possible interpretations of typical Diffusion Tensor Imaging (DTI) metrics highlights the importance of increasing their specificity. Here, we characterize WM pathology in early psychosis (EP) and schizophrenia (SZ) with increased specificity using advanced dMRI: Diffusion Kurtosis Imaging and the biophysical model White Matter Tract Integrity - Watson (WMTI-W). This enables us to better characterize WM abnormalities, while preserving good sensitivity to group differences, and relate them to the current literature (ENIGMA-schizophrenia), patient's clinical characteristics and symptomatology. dMRI-derived microstructure features were extracted from all of WM and from individual regions of interest in 275 individuals. 93 subjects diagnosed with EP and 47 with SZ were compared respectively to 135 age-range matched healthy controls (HC). WM DTI diffusivities were higher, while kurtosis was lower in EP vs HC and in SZ vs HC. Differences were more widespread in EP than SZ. The regional alterations found in our cohort matched the DTI patterns found in ENIGMA-schizophrenia. WMTI-W model parameters indicate that the WM alterations in patients come primarily from the extra-axonal compartment, consistent with abnormal myelin integrity in the disease pathology. The direct link between WM alterations and symptomatology is, however, limited.
Collapse
Affiliation(s)
- Tommaso Pavan
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Yasser Alemán-Gómez
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Zoé Schilliger
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Luis Alameda
- Service of General Psychiatry, Treatment and Early Intervention in Psychosis Program, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience. King's College of London, London, UK
- Centro Investigacion Biomedica en Red de Salud Mental (CIBERSAM); Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Departamento de Psiquiatria, Universidad de Sevilla, Sevilla, Spain
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Treatment and Early Intervention in Psychosis Program, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ileana Jelescu
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
2
|
Martini F, Spangaro M, Sapienza J, Cavallaro R. Cerebral asymmetries in schizophrenia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:89-99. [PMID: 40074419 DOI: 10.1016/b978-0-443-15646-5.00018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Historically, the first observations of a lower prevalence of right-handed patients among subjects with schizophrenia led to the hypothesis that brain asymmetry could play a significant role in the etiopathogenesis of the disease. Over the last decades, a growing number of findings obtained through many different techniques such as EEG, MEG, MRI, and fMRI, consistently reported reduction/loss of brain asymmetries as a core feature of schizophrenia, further suggesting such alterations to play a cardinal role in the pathogenesis of the disease. Moreover, several cognitive and psychopathologic dimensions have shown significant correlations with the reduced degree of asymmetry. In particular, the absence or even reversal of structural asymmetries has been documented in language-related brain such as the Sylvian fissure and planum temporale. These findings have been reprocessed within an evolutionary and psychopathologic framework pointing at the loss of asymmetry and the consequent language impairment as primum moves in the pathogenesis of schizophrenia. Overall, despite growing evidence demonstrating a heterogeneous and multifaced etiopathogenesis in schizophrenia, the "old concept" of brain asymmetry still offers intriguing hints and thought-provoking elements for clinicians and researchers who deal with schizophrenia.
Collapse
Affiliation(s)
- Francesca Martini
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Spangaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jacopo Sapienza
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy.
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Patel HJ, Stollberg LS, Choi CH, Nitsche MA, Shah NJ, Binkofski F. A study of long-term GABA and high-energy phosphate alterations in the primary motor cortex using anodal tDCS and 1H/ 31P MR spectroscopy. Front Hum Neurosci 2024; 18:1461417. [PMID: 39734666 PMCID: PMC11672121 DOI: 10.3389/fnhum.2024.1461417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Anodal transcranial direct current stimulation (tDCS) has been reported to modulate gamma-aminobutyric acid levels and cerebral energy consumption in the brain. This study aims to investigate long-term GABA and cerebral energy modulation following anodal tDCS over the primary motor cortex. Method To assess GABA and energy level changes, proton and phosphorus magnetic resonance spectroscopy data were acquired before and after anodal or sham tDCS. In anodal stimulation, a 1 mA current was applied for 20 min, and the duration of ramping the current up/down at the start and end of the intervention was 10 s. In the sham-stimulation condition, the current was first ramped up over a period of 10 s, then immediately ramped down, and the condition was maintained for the next 20 min. Results The GABA concentration increased significantly following anodal stimulation in the first and second post-stimulation measurements. Likewise, both ATP/Pi and PCr/Pi ratios increased after anodal stimulation in the first and second post-stimulation measurements. Conclusion The approach employed in this study shows the feasibility of measuring long-term modulation of GABA and high-energy phosphates following anodal tDCS targeting the left M1, offering valuable insights into the mechanisms of neuroplasticity and energy metabolism, which may have implications for applications of this intervention in clinical populations.
Collapse
Affiliation(s)
- Harshal Jayeshkumar Patel
- Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Lea-Sophie Stollberg
- Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Chang-Hoon Choi
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich GmbH, Jülich, Germany
- JARA-BRAIN-Translational Medicine, Jülich-Aachen-Research-Alliance (JARA), Aachen, Germany
- Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
- Institute of Neuroscience and Medicine-11, Forschungszentrum Juelich, Jülich, Germany
| | - Ferdinand Binkofski
- Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
- Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich GmbH, Jülich, Germany
- JARA-BRAIN-Translational Medicine, Jülich-Aachen-Research-Alliance (JARA), Aachen, Germany
| |
Collapse
|
4
|
Mukherjee K, Guest PC, Schiltz K, Meyer-Lotz G, Dobrowolny H, Borucki K, Bernstein HG, Nickl-Jockschat T, Relja B, Steiner J. Longitudinal analysis of astrocyte-derived protein levels in the blood of drug-naive and relapsed patients with schizophrenia. J Psychiatr Res 2024; 180:301-306. [PMID: 39486269 DOI: 10.1016/j.jpsychires.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
The potential influence of astrocytes on neuronal circuitry and psychotic symptoms in schizophrenia have recently been highlighted. Human postmortem studies have observed reduced astrocyte numbers in schizophrenia, but whether this pathology is present at disease onset or accumulates progressively with further psychotic episodes remains unclear. Therefore, we analysed serum levels of the astrocyte-derived proteins glial fibrillary acidic protein (GFAP) and fatty acid-binding protein 7 (FABP7) in acutely ill first-episode (n = 60) and relapsed (n = 34) schizophrenia patients compared to 94 matched controls. Measurements were taken before and 6 weeks after antipsychotic treatment. We found significantly lower levels of GFAP (p < 0.001) and FABP7 (p < 0.001) in patients compared to controls, with no significant differences between first-episode and relapsed patients or changes after treatment. FABP7 negatively correlated with age in controls (r = -0.319, p = 0.002), but not in patients (r = -0.251, p = 0.015). In contrast, GFAP showed no correlation with age. Our findings suggest that lowered GFAP and FABP7 may serve as trait markers of astrocyte pathology in schizophrenia, even prior to antipsychotic treatment. The absent correlation between FABP7 and age in schizophrenia patients, in contrast to controls, may be related to premature brain aging in schizophrenia. Long-term studies are needed to explore the relationship between chronic disease and astrocyte pathology in schizophrenia.
Collapse
Affiliation(s)
- Kaushiki Mukherjee
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Kolja Schiltz
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Gabriela Meyer-Lotz
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany; Department of Psychiatry & Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, IA, USA; Iowa Neuroscience Institute, University of Iowa, IA, USA
| | - Borna Relja
- Translational and Experimental Trauma Research, Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Ulm, Ulm, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany.
| |
Collapse
|
5
|
Cho KIK, Zhang F, Penzel N, Seitz-Holland J, Tang Y, Zhang T, Xu L, Li H, Keshavan M, Whitfield-Gabrieli S, Niznikiewicz M, Stone WS, Wang J, Shenton ME, Pasternak O. Excessive interstitial free-water in cortical gray matter preceding accelerated volume changes in individuals at clinical high risk for psychosis. Mol Psychiatry 2024; 29:3623-3634. [PMID: 38830974 DOI: 10.1038/s41380-024-02597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Recent studies show that accelerated cortical gray matter (GM) volume reduction seen in anatomical MRI can help distinguish between individuals at clinical high risk (CHR) for psychosis who will develop psychosis and those who will not. This reduction is suggested to represent atypical developmental or degenerative changes accompanying an accumulation of microstructural changes, such as decreased spine density and dendritic arborization. Detecting the microstructural sources of these changes before they accumulate into volume loss is crucial. Our study aimed to detect these microstructural GM alterations using diffusion MRI (dMRI). We tested for baseline and longitudinal group differences in anatomical and dMRI data from 160 individuals at CHR and 96 healthy controls (HC) acquired in a single imaging site. Of the CHR individuals, 33 developed psychosis (CHR-P), while 127 did not (CHR-NP). Among all participants, longitudinal data was available for 45 HCs, 17 CHR-P, and 66 CHR-NP. Eight cortical lobes were examined for GM volume and GM microstructure. A novel dMRI measure, interstitial free water (iFW), was used to quantify GM microstructure by eliminating cerebrospinal fluid contribution. Additionally, we assessed whether these measures differentiated the CHR-P from the CHR-NP. In addition, for completeness, we also investigated changes in cortical thickness and in white matter (WM) microstructure. At baseline the CHR group had significantly higher iFW than HC in the prefrontal, temporal, parietal, and occipital lobes, while volume was reduced only in the temporal lobe. Neither iFW nor volume differentiated between the CHR-P and CHR-NP groups at baseline. However, in many brain areas, the CHR-P group demonstrated significantly accelerated changes (iFW increase and volume reduction) with time than the CHR-NP group. Cortical thickness provided similar results as volume, and there were no significant changes in WM microstructure. Our results demonstrate that microstructural GM changes in individuals at CHR have a wider extent than volumetric changes or microstructural WM changes, and they predate the acceleration of brain changes that occur around psychosis onset. Microstructural GM changes, as reflected by the increased iFW, are thus an early pathology at the prodromal stage of psychosis that may be useful for a better mechanistic understanding of psychosis development.
Collapse
Affiliation(s)
- Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nora Penzel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Huijun Li
- Department of Psychology, Florida A&M University, Tallahassee, FL, USA
| | - Matcheri Keshavan
- The Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, MA, USA
- The McGovern Institute for Brain Research and the Poitras Center for Affective Disorders Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret Niznikiewicz
- The Department of Psychiatry, Veterans Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - William S Stone
- The Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Jahn K, Blumer N, Wieltsch C, Duzzi L, Fuchs H, Meister R, Groh A, Schulze Westhoff M, Krüger THC, Bleich S, Khan AQ, Frieling H. Impact of cannabinoids on synapse markers in an SH-SY5Y cell culture model. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:96. [PMID: 39448630 PMCID: PMC11502758 DOI: 10.1038/s41537-024-00498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/18/2024] [Indexed: 10/26/2024]
Abstract
Patients suffering from schizophrenic psychosis show reduced synaptic connectivity compared to healthy individuals, and often, the use of cannabis precedes the onset of schizophrenic psychosis. Therefore, we investigated if different types of cannabinoids impact methylation patterns and expression of schizophrenia candidate genes concerned with the development and preservation of synapses and synaptic function in a SH-SY5Y cell culture model. For this purpose, SH-SY5Y cells were differentiated into a neuron-like cell type as previously described. Effects of the cannabinoids delta-9-THC, HU-210, and Anandamide were investigated by analysis of cell morphology and measurement of neurite/dendrite lengths as well as determination of methylation pattern, expression (real time-qPCR, western blot) and localization (immunocytochemistry) of different target molecules concerned with the formation of synapses. Regarding the global impression of morphology, cells, and neurites appeared to be a bit more blunted/roundish and to have more structures that could be described a bit boldly as resembling transport vesicles under the application of the three cannabinoids in comparison to a sole application of retinoic acid (RA). However, there were no obvious differences between the three cannabinoids. Concerning dendrites or branch lengths, there was a significant difference with longer dendrites and branches in RA-treated cells than in undifferentiated control cells (as shown previously), but there were no differences between cannabinoid treatment and exclusive RA application. Methylation rates in the promoter regions of synapse candidate genes in cannabinoid-treated cells were in between those of differentiated cells and untreated controls, even though findings were significant only in some of the investigated genes. In other targets, the methylation rates of cannabinoid-treated cells did not only approach those of undifferentiated cells but were also valued even beyond. mRNA levels also showed the same tendency of values approaching those of undifferentiated controls under the application of the three cannabinoids for most investigated targets except for the structural molecules (NEFH, MAPT). Likewise, the quantification of expression via western blot analysis revealed a higher expression of targets in RA-treated cells compared to undifferentiated controls and, again, lower expression under the additional application of THC in trend. In line with our earlier findings, the application of RA led to higher fluorescence intensity and/or a differential signal distribution in the cell in most of the investigated targets in ICC. Under treatment with THC, fluorescence intensity decreased, or the signal distribution became similar to the dispersion in the undifferentiated control condition. Our findings point to a decline of neuronal differentiation markers in our in vitro cell-culture system under the application of cannabinoids.
Collapse
Affiliation(s)
- Kirsten Jahn
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany.
| | - Nina Blumer
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Caroline Wieltsch
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Laura Duzzi
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Heiko Fuchs
- Laboratory for Experimental Eye Research, Department of Ophthalmology, Medical School Hannover, Hanover, Germany
| | - Roland Meister
- Laboratory for Experimental Eye Research, Department of Ophthalmology, Medical School Hannover, Hanover, Germany
| | - Adrian Groh
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Martin Schulze Westhoff
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Tillmann Horst Christoph Krüger
- Department of Clinical Psychiatry, Division of clinical psychology and sexual medicine, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| | - Stefan Bleich
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| | - Abdul Qayyum Khan
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
| | - Helge Frieling
- Laboratory of Molecular Neurosciences, Department of Clinical Psychiatry, Medical School Hannover, Hanover, Germany
- Center for Systems Neurosciences Hannover, Hanover, Germany
| |
Collapse
|
7
|
Coyle JT. Passing the torch: The ascendance of the glutamatergic synapse in the pathophysiology of schizophrenia. Biochem Pharmacol 2024; 228:116376. [PMID: 38906225 DOI: 10.1016/j.bcp.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
For nearly fifty years, the dopamine hypothesis has dominated our understanding of the pathophysiology of schizophrenia and provided the lone target for drug development. However, with the exception of clozapine, the dopamine D2 receptor antagonizing anti-psychotic drugs have little impact on the negative symptoms and cognitive deficits, aspects of the disorder that robustly predict outcome. Pathologic studies reveal cortical atrophy and wide-spread loss of glutamatergic synaptic spines, unexplained by dopaminergic malfunction. Recent genome-wide association studies indicate that at least thirty risk genes for schizophrenia encode proteins localized to the glutamatergic synapse and inhibit glutamate neurotransmission, especially at the NMDA receptor. To function, the NMDA receptor requires the binding of glycine (primarily in the cerebellum and brainstem) or D-serine (in forebrain) to the NR1 channel subunit of the NMDA receptor. Genetically silencing the gene (srr) encoding serine racemase, the biosynthetic enzyme for D-serine, results in forebrain NMDA receptor hypofunction. The srr-/- mice have 90 % loss of endogenous D-serine and approximately 70 % decrease in NMDA receptor function. Several animal models of schizophrenia are based on behavioral and pharmacologic strategies, which have negligible validity with regard to the fundamental etiology of schizophrenia. We summarize here the results of a mouse model, in which srr, one of the two dozen or more risk gene for schizophrenia that affect NMDA receptor function, has been inactivated. The srr-/- mice exhibit striking similarities to schizophrenia including cortical atrophy, loss of cortico-limbic glutamatergic synapses, increased sub-cortical dopamine release, EEG abnormalities, and cognitive impairments. The limited efficacy of drugs targeting the glutamatergic synapse on DSM-5 diagnosed criteria for schizophrenia used in clinical trials may reflect the fact that only 30 % of the patients have impaired glutamatergic neurotransmission, resulting from the genetic heterogeneity of the disorder.
Collapse
Affiliation(s)
- Joseph T Coyle
- Eben S Draper Professor of Psychiatry and Neuroscience Harvard Medical School (Emeritus), McLean Hospital, 115 Mill St, Belmont, MA 02478, United States.
| |
Collapse
|
8
|
Asad Z, Fakheir Y, Abukhaled Y, Khalil R. Implications of altered pyramidal cell morphology on clinical symptoms of neurodevelopmental disorders. Eur J Neurosci 2024; 60:4877-4892. [PMID: 39054743 DOI: 10.1111/ejn.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/26/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
The prevalence of pyramidal cells (PCs) in the mammalian cerebral cortex underscore their value as they play a crucial role in various brain functions, ranging from cognition, sensory processing, to motor output. PC morphology significantly influences brain connectivity and plays a critical role in maintaining normal brain function. Pathological alterations to PC morphology are thought to contribute to the aetiology of neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia. This review explores the relationship between abnormalities in PC morphology in key cortical areas and the clinical manifestations in schizophrenia and ASD. We focus largely on human postmortem studies and provide evidence that dendritic segment length, complexity and spine density are differentially affected in these disorders. These morphological alterations can lead to disruptions in cortical connectivity, potentially contributing to the cognitive and behavioural deficits observed in these disorders. Furthermore, we highlight the importance of investigating the functional and structural characteristics of PCs in these disorders to illuminate the underlying pathogenesis and stimulate further research in this area.
Collapse
Affiliation(s)
- Zummar Asad
- School of Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Yara Fakheir
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Yara Abukhaled
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Reem Khalil
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Sahay S, Hamoud AR, Osman M, Pulvender P, McCullumsmith RE. Expression of WNT Signaling Genes in the Dorsolateral Prefrontal Cortex in Schizophrenia. Brain Sci 2024; 14:649. [PMID: 39061390 PMCID: PMC11274838 DOI: 10.3390/brainsci14070649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Gene expression alterations in postmortem schizophrenia tissue are well-documented and are influenced by genetic, medication, and epigenetic factors. The Wingless/Integrated (WNT) signaling pathway, critical for cell growth and development, is involved in various cellular processes including neurodevelopment and synaptic plasticity. Despite its importance, WNT signaling remains understudied in schizophrenia, a disorder characterized by metabolic and bioenergetic defects in cortical regions. In this study, we examined the gene expression of 10 key WNT signaling pathway transcripts: IQGAP1, CTNNβ1, GSK3β, FOXO1, LRP6, MGEA5, TCF4, βTRC, PPP1Cβ, and DVL2 in the dorsolateral prefrontal cortex (DLPFC) using postmortem tissue from schizophrenia subjects (n = 20, 10 males, 10 females) compared to age, pH, and postmortem interval (PMI)-matched controls (n = 20, 10 males, 10 females). Employing the R-shiny application Kaleidoscope, we conducted in silico "lookup" studies from published transcriptomic datasets to examine cell- and region-level expression of these WNT genes. In addition, we investigated the impact of antipsychotics on the mRNA expression of the WNT genes of interest in rodent brain transcriptomic datasets. Our findings revealed no significant changes in region-level WNT transcript expression; however, analyses of previously published cell-level datasets indicated alterations in WNT transcript expression and antipsychotic-specific modulation of certain genes. These results suggest that WNT signaling transcripts may be variably expressed at the cellular level and influenced by antipsychotic treatment, providing novel insights into the role of WNT signaling in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Smita Sahay
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (A.-r.H.); (P.P.)
| | - Abdul-rizaq Hamoud
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (A.-r.H.); (P.P.)
| | - Mahasin Osman
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA;
| | - Priyanka Pulvender
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (A.-r.H.); (P.P.)
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (S.S.); (A.-r.H.); (P.P.)
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Neurosciences Institute, Promedica, Toledo, OH 43606, USA
| |
Collapse
|
10
|
Sawada T, Barbosa AR, Araujo B, McCord AE, D’Ignazio L, Benjamin KJM, Sheehan B, Zabolocki M, Feltrin A, Arora R, Brandtjen AC, Kleinman JE, Hyde TM, Bardy C, Weinberger DR, Paquola ACM, Erwin JA. Recapitulation of Perturbed Striatal Gene Expression Dynamics of Donors' Brains With Ventral Forebrain Organoids Derived From the Same Individuals With Schizophrenia. Am J Psychiatry 2024; 181:493-511. [PMID: 37915216 PMCID: PMC11209846 DOI: 10.1176/appi.ajp.20220723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Schizophrenia is a brain disorder that originates during neurodevelopment and has complex genetic and environmental etiologies. Despite decades of clinical evidence of altered striatal function in affected patients, studies examining its cellular and molecular mechanisms in humans are limited. To explore neurodevelopmental alterations in the striatum associated with schizophrenia, the authors established a method for the differentiation of induced pluripotent stem cells (iPSCs) into ventral forebrain organoids (VFOs). METHODS VFOs were generated from postmortem dural fibroblast-derived iPSCs of four individuals with schizophrenia and four neurotypical control individuals for whom postmortem caudate genotypes and transcriptomic data were profiled in the BrainSeq neurogenomics consortium. Individuals were selected such that the two groups had nonoverlapping schizophrenia polygenic risk scores (PRSs). RESULTS Single-cell RNA sequencing analyses of VFOs revealed differences in developmental trajectory between schizophrenia and control individuals in which inhibitory neuronal cells from the patients exhibited accelerated maturation. Furthermore, upregulated genes in inhibitory neurons in schizophrenia VFOs showed a significant overlap with upregulated genes in postmortem caudate tissue of individuals with schizophrenia compared with control individuals, including the donors of the iPSC cohort. CONCLUSIONS The findings suggest that striatal neurons derived from high-PRS individuals with schizophrenia carry abnormalities that originated during early brain development and that the VFO model can recapitulate disease-relevant cell type-specific neurodevelopmental phenotypes in a dish.
Collapse
Affiliation(s)
- Tomoyo Sawada
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Bruno Araujo
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Laura D’Ignazio
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kynon J. M. Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bonna Sheehan
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Michael Zabolocki
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders University, Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Adelaide, SA, Australia
| | - Arthur Feltrin
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Ria Arora
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | - Joel E. Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Cedric Bardy
- South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
- Flinders University, Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Adelaide, SA, Australia
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Apuā C. M. Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer A. Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Delavari F, Sandini C, Kojovic N, Saccaro LF, Eliez S, Van De Ville D, Bolton TAW. Thalamic contributions to psychosis susceptibility: Evidence from co-activation patterns accounting for intra-seed spatial variability (μCAPs). Hum Brain Mapp 2024; 45:e26649. [PMID: 38520364 PMCID: PMC10960557 DOI: 10.1002/hbm.26649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/25/2024] Open
Abstract
The temporal variability of the thalamus in functional networks may provide valuable insights into the pathophysiology of schizophrenia. To address the complexity of the role of the thalamic nuclei in psychosis, we introduced micro-co-activation patterns (μCAPs) and employed this method on the human genetic model of schizophrenia 22q11.2 deletion syndrome (22q11.2DS). Participants underwent resting-state functional MRI and a data-driven iterative process resulting in the identification of six whole-brain μCAPs with specific activity patterns within the thalamus. Unlike conventional methods, μCAPs extract dynamic spatial patterns that reveal partially overlapping and non-mutually exclusive functional subparts. Thus, the μCAPs method detects finer foci of activity within the initial seed region, retaining valuable and clinically relevant temporal and spatial information. We found that a μCAP showing co-activation of the mediodorsal thalamus with brain-wide cortical regions was expressed significantly less frequently in patients with 22q11.2DS, and its occurrence negatively correlated with the severity of positive psychotic symptoms. Additionally, activity within the auditory-visual cortex and their respective geniculate nuclei was expressed in two different μCAPs. One of these auditory-visual μCAPs co-activated with salience areas, while the other co-activated with the default mode network (DMN). A significant shift of occurrence from the salience+visuo-auditory-thalamus to the DMN + visuo-auditory-thalamus μCAP was observed in patients with 22q11.2DS. Thus, our findings support existing research on the gatekeeping role of the thalamus for sensory information in the pathophysiology of psychosis and revisit the evidence of geniculate nuclei hyperconnectivity with the audio-visual cortex in 22q11.2DS in the context of dynamic functional connectivity, seen here as the specific hyper-occurrence of these circuits with the task-negative brain networks.
Collapse
Affiliation(s)
- Farnaz Delavari
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Nada Kojovic
- Autism Brain and Behavior Lab, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Luigi F. Saccaro
- Faculty of Medicine, Psychiatry DepartmentUniversity of GenevaGenevaSwitzerland
- Psychiatry DepartmentGeneva University HospitalGenevaSwitzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
- Department of Genetic Medicine and DevelopmentUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Dimitri Van De Ville
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
- Department of Radiology and Medical InformaticsUniversity of Geneva (UNIGE)GenevaSwitzerland
| | - Thomas A. W. Bolton
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
- Connectomics Laboratory, Department of RadiologyCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
| |
Collapse
|
12
|
Abbasi H, Ghavami-Kia S, Davoodian N, Davoodian N. Maternal quercetin supplementation improved lipopolysaccharide-induced cognitive deficits and inflammatory response in a rat model of maternal immune activation. Toxicol Appl Pharmacol 2024; 483:116830. [PMID: 38246289 DOI: 10.1016/j.taap.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND There is strong evidence that prenatal infection during a specific period of brain development increases the risk of neurodevelopmental disorders, partly through immune-inflammatory pathways. This suggests that anti-inflammatory agents could prevent these disorders by targeting the maternal inflammatory response. In the present study, we used a rat model of maternal immune activation (MIA) to examine whether maternal quercetin (QE) supplementation can alleviate behavioral deficits and inflammatory mediators in the prefrontal cortex (PFC) and hippocampus of adult male offspring. METHODS Pregnant rats were supplemented with QE (50 mg/kg) or vehicle throughout pregnancy and injected with either lipopolysaccharide (0.5 mg/kg) or saline on gestational days 15/16. At postnatal day 60, we evaluated the offspring's behavior, hippocampal and prefrontal cortex glial density, pro-inflammatory gene expression, and neuronal survival. RESULTS Our data showed that maternal QE supplementation can prevent working and recognition memory impairments in adult MIA offspring. This behavioral improvement correlates with the decrease in MIA-induced expression of pro-inflammatory genes, microglia, and astrocyte densities, without affecting neuronal survival, in both PFC and CA1 hippocampus areas. CONCLUSION Therefore, our study supports the potential preventive effect of QE on MIA-induced behavioral dysfunctions, at least in part, by suppressing the glial-mediated inflammatory response.
Collapse
Affiliation(s)
- Hossein Abbasi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sina Ghavami-Kia
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Najmeh Davoodian
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
13
|
Filla N, Hou J, Liu T, Budday S, Wang X. Accuracy meets simplicity: A constitutive model for heterogenous brain tissue. J Mech Behav Biomed Mater 2024; 150:106271. [PMID: 38039774 PMCID: PMC11271251 DOI: 10.1016/j.jmbbm.2023.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/03/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
We present a general, hyperelastic, stretch-based potential that shows promise for modeling the mechanics of brain tissue. A specific four-parameter model derived from this general potential outperforms alternative models, such as the modified Ogden model, the Gent model, Demiray model, and machine-learning models, in capturing brain tissue elasticity. Specifically, the stretch-based model achieved R2 values of 0.997, 0.992, and 0.993 (tension, compression, and shear) for the cortex, 0.995, 0.983, and 0.983 for the basal ganglia, 0.994, 0.929, and 0.970 for the corona radiata, and 0.990, 0.896, and 0.969 for the corpus callosum. This work has the potential to advance our understanding of brain tissue mechanics and provides a valuable tool to improve finite element models for the investigation of brain development, injuries, and disease.
Collapse
Affiliation(s)
- Nicholas Filla
- School of ECAM, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Jixin Hou
- School of ECAM, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Tianming Liu
- School of Computing, University of Georgia, Athens, GA, 30602, USA
| | - Silvia Budday
- Institute of Applied Mechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Xianqiao Wang
- School of ECAM, College of Engineering, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
14
|
Ai Y, Li F, Hou Y, Li X, Li W, Qin K, Suo X, Lei D, Shang H, Gong Q. Differential cortical gray matter changes in early- and late-onset patients with amyotrophic lateral sclerosis. Cereb Cortex 2024; 34:bhad426. [PMID: 38061694 DOI: 10.1093/cercor/bhad426] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 01/19/2024] Open
Abstract
Age at onset may be an important feature associated with distinct subtypes of amyotrophic lateral sclerosis (ALS). Little is known about the neuropathological mechanism of early-onset ALS (EO-ALS) and late-onset ALS (LO-ALS). Ninety ALS patients were divided into EO-ALS and LO-ALS group, and 128 healthy controls were matched into young controls(YCs) and old controls (OCs). A voxel-based morphometry approach was employed to investigate differences in gray matter volume (GMV). Significant age at onset-by-diagnosis interactions were found in the left parietal operculum, left precentral gyrus, bilateral postcentral gyrus, right occipital gyrus, and right orbitofrontal cortex. Post hoc analysis revealed a significant decrease in GMV in all affected regions of EO-ALS patients compared with YCs, with increased GMV in 5 of the 6 brain regions, except for the right orbitofrontal cortex, in LO-ALS patients compared with OCs. LO-ALS patients had a significantly increased GMV than EO-ALS patients after removing the aging effect. Correspondingly, GMV of the left postcentral gyrus correlated with disease severity in the 2 ALS groups. Our findings suggested that the pathological mechanisms in ALS patients with different ages at onset might differ. These findings provide unique insight into the clinical and biological heterogeneity of the 2 ALS subtypes.
Collapse
Affiliation(s)
- Yuan Ai
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Fei Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Xiuli Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Wenbin Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Kun Qin
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Xueling Suo
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Du Lei
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, 699 Jinyuan Xi Road, Jimei District, Xiamen, Fujian 361021, China
| |
Collapse
|
15
|
Moon SY, Park H, Lee W, Lee S, Lho SK, Kim M, Kim KW, Kwon JS. Magnetic resonance texture analysis reveals stagewise nonlinear alterations of the frontal gray matter in patients with early psychosis. Mol Psychiatry 2023; 28:5309-5318. [PMID: 37500824 DOI: 10.1038/s41380-023-02163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Although gray matter (GM) abnormalities are present from the early stages of psychosis, subtle/miniscule changes may not be detected by conventional volumetry. Texture analysis (TA), which permits quantification of the complex interrelationship between contrasts at the individual voxel level, may capture subtle GM changes with more sensitivity than does volume or cortical thickness (CTh). We performed three-dimensional TA in nine GM regions of interest (ROIs) using T1 magnetic resonance images from 101 patients with first-episode psychosis (FEP), 85 patients at clinical high risk (CHR) for psychosis, and 147 controls. Via principal component analysis, three features of gray-level cooccurrence matrix - informational measure of correlation 1 (IMC1), autocorrelation (AC), and inverse difference (ID) - were selected to analyze cortical texture in the ROIs that showed a significant change in volume or CTh in the study groups. Significant reductions in GM volume and CTh of various frontotemporal regions were found in the FEP compared with the controls. Increased frontal AC was found in the FEP group compared to the controls after adjusting for volume and CTh changes. While volume and CTh were preserved in the CHR group, a stagewise nonlinear increase in frontal IMC1 was found, which exceeded both the controls and FEP group. Increased frontal IMC1 was also associated with a lesser severity of attenuated positive symptoms in the CHR group, while neither volume nor CTh was. The results of the current study suggest that frontal IMC1 may reflect subtle, dynamic GM changes and the symptomatology of the CHR stage with greater sensitivity, even in the absence of gross GM abnormalities. Some structural mechanisms that may contribute to texture changes (e.g., macrostructural cortical lamina, neuropil/myelination, cortical reorganization) and their possible implications are explored and discussed. Texture may be a useful tool to investigate subtle and dynamic GM abnormalities, especially during the CHR period.
Collapse
Affiliation(s)
- Sun Young Moon
- Department of Public Health Service, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Hyungyou Park
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Won Lee
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Subin Lee
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | | | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Woong Kim
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jun Soo Kwon
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Republic of Korea.
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Hasan SM, Huq MS, Chowdury AZ, Baajour S, Kopchick J, Robison AJ, Thakkar KN, Haddad L, Amirsadri A, Thomas P, Khatib D, Rajan U, Stanley JA, Diwadkar VA. Learning without contingencies: A loss of synergy between memory and reward circuits in schizophrenia. Schizophr Res 2023; 258:21-35. [PMID: 37467677 PMCID: PMC10521382 DOI: 10.1016/j.schres.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/09/2023] [Accepted: 06/11/2023] [Indexed: 07/21/2023]
Abstract
Motivational deficits in schizophrenia may interact with foundational cognitive processes including learning and memory to induce impaired cognitive proficiency. If such a loss of synergy exists, it is likely to be underpinned by a loss of synchrony between the brains learning and reward sub-networks. Moreover, this loss should be observed even during tasks devoid of explicit reward contingencies given that such tasks are better models of real world performance than those with artificial contingencies. Here we applied undirected functional connectivity (uFC) analyses to fMRI data acquired while participants engaged in an associative learning task without contingencies or feedback. uFC was estimated and inter-group differences (between schizophrenia patients and controls, n = 54 total, n = 28 patients) were assessed within and between reward (VTA and NAcc) and learning/memory (Basal Ganglia, DPFC, Hippocampus, Parahippocampus, Occipital Lobe) sub-networks. The task paradigm itself alternated between Encoding, Consolidation, and Retrieval conditions, and uFC differences were quantified for each of the conditions. Significantly reduced uFC dominated the connectivity profiles of patients across all conditions. More pertinent to our motivations, these reductions were observed within and across classes of sub-networks (reward-related and learning/memory related). We suggest that disrupted functional connectivity between reward and learning sub-networks may drive many of the performance deficits that characterize schizophrenia. Thus, cognitive deficits in schizophrenia may in fact be underpinned by a loss of synergy between reward-sensitivity and cognitive processes.
Collapse
Affiliation(s)
- Sazid M Hasan
- Oakland University William Beaumont School of Medicine, USA
| | - Munajj S Huq
- Michigan State University, College of Osteopathic Medicine, USA
| | - Asadur Z Chowdury
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Shahira Baajour
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - John Kopchick
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - A J Robison
- Dept. of Physiology, Michigan State University, USA
| | | | - Luay Haddad
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Alireza Amirsadri
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Patricia Thomas
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Dalal Khatib
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Usha Rajan
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Jeffrey A Stanley
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA
| | - Vaibhav A Diwadkar
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, USA.
| |
Collapse
|
17
|
Mizutani R, Saiga R, Yamamoto Y, Uesugi M, Takeuchi A, Uesugi K, Terada Y, Suzuki Y, De Andrade V, De Carlo F, Takekoshi S, Inomoto C, Nakamura N, Torii Y, Kushima I, Iritani S, Ozaki N, Oshima K, Itokawa M, Arai M. Structural aging of human neurons is opposite of the changes in schizophrenia. PLoS One 2023; 18:e0287646. [PMID: 37352288 PMCID: PMC10289376 DOI: 10.1371/journal.pone.0287646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023] Open
Abstract
Human mentality develops with age and is altered in psychiatric disorders, though their underlying mechanism is unknown. In this study, we analyzed nanometer-scale three-dimensional structures of brain tissues of the anterior cingulate cortex from eight schizophrenia and eight control cases. The distribution profiles of neurite curvature of the control cases showed a trend depending on their age, resulting in an age-correlated decrease in the standard deviation of neurite curvature (Pearson's r = -0.80, p = 0.018). In contrast to the control cases, the schizophrenia cases deviate upward from this correlation, exhibiting a 60% higher neurite curvature compared with the controls (p = 7.8 × 10-4). The neurite curvature also showed a correlation with a hallucination score (Pearson's r = 0.80, p = 1.8 × 10-4), indicating that neurite structure is relevant to brain function. This report is based on our 3D analysis of human brain tissues over a decade and is unprecedented in terms of the number of cases. We suggest that neurite curvature plays a pivotal role in brain aging and can be used as a hallmark to exploit a novel treatment of schizophrenia.
Collapse
Affiliation(s)
- Ryuta Mizutani
- Department of Bioengineering, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Rino Saiga
- Department of Bioengineering, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Yoshiro Yamamoto
- Department of Mathematics, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Masayuki Uesugi
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo, Japan
| | - Akihisa Takeuchi
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo, Japan
| | - Yasuko Terada
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo, Japan
| | - Yoshio Suzuki
- Photon Factory, High Energy Accelerator Research Organization KEK, Tsukuba, Ibaraki, Japan
| | - Vincent De Andrade
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States of America
| | - Francesco De Carlo
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States of America
| | - Susumu Takekoshi
- Department of Cell Biology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Chie Inomoto
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenichi Oshima
- Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Masanari Itokawa
- Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Makoto Arai
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| |
Collapse
|
18
|
Szocsics P, Papp P, Havas L, Lőke J, Maglóczky Z. Interhemispheric differences of pyramidal cells in the primary motor cortices of schizophrenia patients investigated postmortem. Cereb Cortex 2023; 33:8179-8193. [PMID: 36967112 PMCID: PMC10321096 DOI: 10.1093/cercor/bhad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 07/20/2023] Open
Abstract
Motor disturbances are observed in schizophrenia patients, but the neuroanatomical background is unknown. Our aim was to investigate the pyramidal cells of the primary motor cortex (BA 4) in both hemispheres of postmortem control and schizophrenia subjects-8 subjects in each group-with 2.5-5.5 h postmortem interval. The density and size of the Sternberger monoclonal incorporated antibody 32 (SMI32)-immunostained pyramidal cells in layer 3 and 5 showed no change; however, the proportion of larger pyramidal cells is decreased in layer 5. Giant pyramidal neurons (Betz cells) were investigated distinctively with SMI32- and parvalbumin (PV) immunostainings. In the right hemisphere of schizophrenia subjects, the density of Betz cells was decreased and their PV-immunopositive perisomatic input showed impairment. Part of the Betz cells contained PV in both groups, but the proportion of PV-positive cells has declined with age. The rat model of antipsychotic treatment with haloperidol and olanzapine showed no differences in size and density of SMI32-immunopositive pyramidal cells. Our results suggest that motor impairment of schizophrenia patients may have a morphological basis involving the Betz cells in the right hemisphere. These alterations can have neurodevelopmental and neurodegenerative explanations, but antipsychotic treatment does not explain them.
Collapse
Affiliation(s)
- Péter Szocsics
- Human Brain Research Laboratory, Institute of Experimental Medicine, ELKH, Budapest 1083, Hungary
- János Szentágothai Doctoral School of Neuroscience, Semmelweis University, Budapest 1085, Hungary
| | - Péter Papp
- Cerebral Cortex Research Group, Institute of Experimental Medicine, ELKH, Budapest 1083, Hungary
| | - László Havas
- Department of Pathology, Szt. Borbála Hospital, Tatabánya 2800, Hungary
- Department of Psychiatry, Szt. Borbála Hospital, Tatabánya 2800, Hungary
| | - János Lőke
- Department of Psychiatry, Szt. Borbála Hospital, Tatabánya 2800, Hungary
| | - Zsófia Maglóczky
- Human Brain Research Laboratory, Institute of Experimental Medicine, ELKH, Budapest 1083, Hungary
| |
Collapse
|
19
|
Obi-Nagata K, Suzuki N, Miyake R, MacDonald ML, Fish KN, Ozawa K, Nagahama K, Okimura T, Tanaka S, Kano M, Fukazawa Y, Sweet RA, Hayashi-Takagi A. Distorted neurocomputation by a small number of extra-large spines in psychiatric disorders. SCIENCE ADVANCES 2023; 9:eade5973. [PMID: 37294752 PMCID: PMC10256173 DOI: 10.1126/sciadv.ade5973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/05/2023] [Indexed: 06/11/2023]
Abstract
Human genetics strongly support the involvement of synaptopathy in psychiatric disorders. However, trans-scale causality linking synapse pathology to behavioral changes is lacking. To address this question, we examined the effects of synaptic inputs on dendrites, cells, and behaviors of mice with knockdown of SETD1A and DISC1, which are validated animal models of schizophrenia. Both models exhibited an overrepresentation of extra-large (XL) synapses, which evoked supralinear dendritic and somatic integration, resulting in increased neuronal firing. The probability of XL spines correlated negatively with working memory, and the optical prevention of XL spine generation restored working memory impairment. Furthermore, XL synapses were more abundant in the postmortem brains of patients with schizophrenia than in those of matched controls. Our findings suggest that working memory performance, a pivotal aspect of psychiatric symptoms, is shaped by distorted dendritic and somatic integration via XL spines.
Collapse
Affiliation(s)
- Kisho Obi-Nagata
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
- Gunma University Graduate School of Medicine, Maebashi City, Gunma 371-8512, Japan
| | - Norimitsu Suzuki
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
| | - Ryuhei Miyake
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
| | - Matthew L. MacDonald
- Departments of Psychiatry, Neurology, Statistics, and Neurobiology, Translational Neuroscience Program, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Kenneth N. Fish
- Departments of Psychiatry, Neurology, Statistics, and Neurobiology, Translational Neuroscience Program, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Katsuya Ozawa
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Tsukasa Okimura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo 157-8577, Japan
| | - Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Yoshida, Fukui, 910-1193, Japan
| | - Robert A. Sweet
- Departments of Psychiatry, Neurology, Statistics, and Neurobiology, Translational Neuroscience Program, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Akiko Hayashi-Takagi
- Laboratory for Multi-scale Biological Psychiatry, Center for Brain Science, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0106, Japan
- Gunma University Graduate School of Medicine, Maebashi City, Gunma 371-8512, Japan
| |
Collapse
|
20
|
Khan A, Zahid S, Hasan B, Asif AR, Ahmed N. Mass Spectrometry based identification of site-specific proteomic alterations and potential pathways underlying the pathophysiology of schizophrenia. Mol Biol Rep 2023; 50:4931-4943. [PMID: 37076706 DOI: 10.1007/s11033-023-08431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Schizophrenia (SZ) is a complex multifactorial disorder that affects 1% of the population worldwide with no available effective treatment. Although proteomic alterations are reported in SZ however proteomic expression aberrations among different brain regions are not fully determined. Therefore, the present study aimed spatial differential protein expression profiling of three distinct regions of SZ brain and identification of associated affected biological pathways in SZ progression. METHODS AND RESULTS Comparative protein expression profiling of three distinct autopsied human brain regions (i.e., substantia nigra, hippocampus and prefrontal cortex) of SZ was performed with respective healthy controls. Using two-dimensional electrophoresis (2DE)-based nano liquid chromatography tandem mass spectrometry (Nano-LC MS /MS) analysis, 1443 proteins were identified out of which 58 connote to be significantly dysregulated, representing 26 of substantia nigra,14 of hippocampus and 18 of prefrontal cortex. The 58 differentially expressed proteins were further analyzed using Ingenuity pathway analysis (IPA). The IPA analysis provided protein-protein interaction networks of several proteins including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kb), extracellular signal regulated kinases 1/2 (ERK1/2), alpha serine / Threonine-protein kinase (AKT1), cellular tumor antigen p53 (TP53) and amyloid precursor protein (APP), holding prime positions in networks and interacts with most of the identified proteins and their closely interacting partners. CONCLUSION These findings provide conceptual insights of novel SZ related pathways and the cross talk of co and contra regulated proteins. This spatial proteomic analysis will further broaden the conceptual framework for schizophrenia research in future.
Collapse
Affiliation(s)
- Ayesha Khan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Saadia Zahid
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Beena Hasan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Abdul R Asif
- Institute of Clinical Chemistry, University Medical Center, Robert-Koch-Str. 40, 37075, Göttingen, Göttingen, Germany
| | - Nikhat Ahmed
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
21
|
Harris A. Approach to schizophrenia. Intern Med J 2023; 53:473-480. [PMID: 37070777 DOI: 10.1111/imj.16068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 04/19/2023]
Abstract
Schizophrenia is the most common of a group of psychotic disorders that occur in approximately 3% of the population over the lifespan. It has clear genetic antecedents, which are shared across the spectrum of psychotic disorders; however, a range of other biological and social factors influence the onset and treatment of the disorder. Schizophrenia is diagnosed by a characteristic set of symptoms (positive, negative, disorganisation, cognitive and affective) accompanied by a functional decline. Investigations are used to exclude other organic causes of psychosis and to provide a baseline for the negative effects of pharmacological treatments. Treatment requires a combination of pharmacological and psychosocial interventions. Physical health is poor in this group of people and this is not helped by inconsistent care from health services. Although earlier intervention has improved the immediate outcomes, the longer-term outcome has not significantly shifted.
Collapse
Affiliation(s)
- Anthony Harris
- Specialty of Psychiatry, Sydney Medical School, Faculty of Medicine and Health Sciences, University of Sydney, Sydney, New South Wales, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Prevention Early Intervention and Recovery Service, Western Sydney Local Health District, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Yang C, Zhang W, Liu J, Yao L, Bishop JR, Lencer R, Gong Q, Yang Z, Lui S. Disrupted subcortical functional connectome gradient in drug-naïve first-episode schizophrenia and the normalization effects after antipsychotic treatment. Neuropsychopharmacology 2023; 48:789-796. [PMID: 36496508 PMCID: PMC10066388 DOI: 10.1038/s41386-022-01512-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Antipsychotics are thought to improve schizophrenia symptoms through the antagonism of dopamine D2 receptors, which are abundant mainly in subcortical regions. By introducing functional gradient, a novel approach to identify hierarchy alterations by capturing the similarity of whole brain fucntional connectivity (FC) profiles between two voxels, the present study aimed to characterize how the subcortical gradient is associated with treatment effects and response in first-episode schizophrenia in vivo. Two independent samples of first-episode schizophrenia (FES) patients with matched healthy controls (HC) were obtained: the discovery dataset included 71 patients (FES0W) and 64 HC at baseline, and patients were re-scanned after either 6 weeks (FES6W, N = 33) or 12 months (FES12M, N = 57) of antipsychotic treatment, of which 19 patients finished both 6-week and 12-month evaluation. The validation dataset included 22 patients and 24 HC at baseline and patients were re-scanned after 6 weeks. Gradient metrics were calculated using BrainSpace Toolbox. Voxel-based gradient values were generated and group-averaged gradient values were further extracted across all voxels (global), three systems (thalamus, limbic and striatum) and their subcortical subfields. The comparisons were conducted separately between FES0W and HC for investigating illness effects, and between FES6W/FES12M and FES0W for treatment effects. Correlational analyses were then conducted between the longitudinal gradient alterations and the improvement of clinical ratings. Before treatment, schizophrenia patients exhibited an expanded range of global gradient scores compared to HC which indicated functional segregation within subcortical systems. The increased gradient in limbic system and decreased gradient in thalamic and striatal system contributed to the baseline abnormalities and led to the disruption of the subcortical functional integration. After treatment, these disruptions were normalized and the longitudinal changes of gradient scores in limbic system were significantly associated with symptom improvement. Similar illness and treatment effects were also observed in the validation dataset. By measuring functional hierarchy of subcortical organization, our findings provide a novel imaging marker that is sensitive to treatment effects and may make a promising indicator of treatment response in schizophrenia.
Collapse
Affiliation(s)
- Chengmin Yang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jiajun Liu
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Li Yao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zhipeng Yang
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
23
|
Synaptic plasticity in Schizophrenia pathophysiology. IBRO Neurosci Rep 2023. [DOI: 10.1016/j.ibneur.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
24
|
Cameron D, Mi D, Vinh NN, Webber C, Li M, Marín O, O'Donovan MC, Bray NJ. Single-Nuclei RNA Sequencing of 5 Regions of the Human Prenatal Brain Implicates Developing Neuron Populations in Genetic Risk for Schizophrenia. Biol Psychiatry 2023; 93:157-166. [PMID: 36150908 PMCID: PMC10804933 DOI: 10.1016/j.biopsych.2022.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND While a variety of evidence supports a prenatal component in schizophrenia, there are few data regarding the cell populations involved. We sought to identify cells of the human prenatal brain mediating genetic risk for schizophrenia by integrating cell-specific gene expression measures generated through single-nuclei RNA sequencing with recent large-scale genome-wide association study (GWAS) and exome sequencing data for the condition. METHODS Single-nuclei RNA sequencing was performed on 5 brain regions (frontal cortex, ganglionic eminence, hippocampus, thalamus, and cerebellum) from 3 fetuses from the second trimester of gestation. Enrichment of schizophrenia common variant genetic liability and rare damaging coding variation was assessed in relation to gene expression specificity within each identified cell population. RESULTS Common risk variants were prominently enriched within genes with high expression specificity for developing neuron populations within the frontal cortex, ganglionic eminence, and hippocampus. Enrichments were largely independent of genes expressed in neuronal populations of the adult brain that have been implicated in schizophrenia through the same methods. Genes containing an excess of rare damaging variants in schizophrenia had higher expression specificity for developing glutamatergic neurons of the frontal cortex and hippocampus that were also enriched for common variant liability. CONCLUSIONS We found evidence for a distinct contribution of prenatal neuronal development to genetic risk for schizophrenia, involving specific populations of developing neurons within the second-trimester fetal brain. Our study significantly advances the understanding of the neurodevelopmental origins of schizophrenia and provides a resource with which to investigate the prenatal antecedents of other psychiatric and neurologic disorders.
Collapse
Affiliation(s)
- Darren Cameron
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff, United Kingdom
| | - Da Mi
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ngoc-Nga Vinh
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff, United Kingdom
| | - Caleb Webber
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Meng Li
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff, United Kingdom; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Oscar Marín
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom; Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff, United Kingdom
| | - Nicholas J Bray
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff, United Kingdom; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
25
|
Progressive brain abnormalities in schizophrenia across different illness periods: a structural and functional MRI study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:2. [PMID: 36604437 PMCID: PMC9816110 DOI: 10.1038/s41537-022-00328-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/16/2022] [Indexed: 01/07/2023]
Abstract
Schizophrenia is a chronic brain disorder, and neuroimaging abnormalities have been reported in different stages of the illness for decades. However, when and how these brain abnormalities occur and evolve remains undetermined. We hypothesized structural and functional brain abnormalities progress throughout the illness course at different rates in schizophrenia. A total of 115 patients with schizophrenia were recruited and stratified into three groups of different illness periods: 5-year group (illness duration: ≤5 years), 15-year group (illness duration: 12-18 years), and 25-year group (illness duration: ≥25 years); 230 healthy controls were matched by age and sex to the three groups, respectively. All participants underwent resting-state MRI scanning. Each group of patients with schizophrenia was compared with the corresponding controls in terms of voxel-based morphometry (VBM), fractional anisotropy (FA), global functional connectivity density (gFCD), and sample entropy (SampEn) abnormalities. In the 5-year group we observed only SampEn abnormalities in the putamen. In the 15-year group, we observed VBM abnormalities in the insula and cingulate gyrus and gFCD abnormalities in the temporal cortex. In the 25-year group, we observed FA abnormalities in nearly all white matter tracts, and additional VBM and gFCD abnormalities in the frontal cortex and cerebellum. By using two structural and two functional MRI analysis methods, we demonstrated that individual functional abnormalities occur in limited brain areas initially, functional connectivity and gray matter density abnormalities ensue later in wider brain areas, and structural connectivity abnormalities involving almost all white matter tracts emerge in the third decade of the course in schizophrenia.
Collapse
|
26
|
Khan AQ, Thielen L, Le Pen G, Krebs MO, Kebir O, Groh A, Deest M, Bleich S, Frieling H, Jahn K. Methylation pattern and mRNA expression of synapse-relevant genes in the MAM model of schizophrenia in the time-course of adolescence. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:110. [PMID: 36481661 PMCID: PMC9732294 DOI: 10.1038/s41537-022-00319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
Schizophrenia is highly heritable and aggregating in families, but genetics alone does not exclusively explain the pathogenesis. Many risk factors, including childhood trauma, viral infections, migration, and the use of cannabis, are associated with schizophrenia. Adolescence seems to be the critical period where symptoms of the disease manifest. This work focuses on studying an epigenetic regulatory mechanism (the role of DNA methylation) and its interaction with mRNA expression during development, with a particular emphasis on adolescence. The presumptions regarding the role of aberrant neurodevelopment in schizophrenia were tested in the Methyl-Azoxy-Methanol (MAM) animal model. MAM treatment induces neurodevelopmental disruptions and behavioral deficits in off-springs of the treated animals reminiscent of those observed in schizophrenia and is thus considered a promising model for studying this pathology. On a gestational day-17, adult pregnant rats were treated with the antimitotic agent MAM. Experimental animals were divided into groups and subgroups according to substance treatment (MAM and vehicle agent [Sham]) and age of analysis (pre-adolescent and post-adolescent). Methylation and mRNA expression analysis of four candidate genes, which are often implicated in schizophrenia, with special emphasis on the Dopamine hypothesis i.e., Dopamine receptor D2 (Drd2), and the "co-factors" Disrupted in schizophrenia 1 (DISC1), Synaptophysin (Syp), and Dystrobrevin-binding protein 1 (Dtnbp1), was performed in the Gyrus cingulum (CING) and prefrontal cortex (PFC). Data were analyzed to observe the effect of substance treatment between groups and the impact of adolescence within-group. We found reduced pre-adolescent expression levels of Drd2 in both brain areas under the application of MAM. The "co-factor genes" did not show high deviations in mRNA expression levels but high alterations of methylation rates under the application of MAM (up to ~20%), which diminished in the further time course, reaching a comparable level like in Sham control animals after adolescence. The pre-adolescent reduction in DRD2 expression might be interpreted as downregulation of the receptor due to hyperdopaminergic signaling from the ventral tegmental area (VTA), eventually even to both investigated brain regions. The notable alterations of methylation rates in the three analyzed co-factor genes might be interpreted as attempt to compensate for the altered dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Abdul Qayyum Khan
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,grid.444940.9University of Management and Technology—School of Pharmacy, 72-A Raiwind Rd, Dubai Town, Lahore Pakistan
| | - Lukas Thielen
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gwenaëlle Le Pen
- grid.512035.0Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Pathophysiology of Psychiatric disorders: Development and Vulnerability, U1266, 102-108 Rue de la Santé, 75014 Paris, France
| | - Marie-Odile Krebs
- grid.512035.0Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Pathophysiology of Psychiatric disorders: Development and Vulnerability, U1266, 102-108 Rue de la Santé, 75014 Paris, France ,GHU Paris Psychiatrie et Neurosciences, 1 Rue Cabanis, 75014 Paris, France
| | - Oussama Kebir
- grid.512035.0Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Pathophysiology of Psychiatric disorders: Development and Vulnerability, U1266, 102-108 Rue de la Santé, 75014 Paris, France ,GHU Paris Psychiatrie et Neurosciences, 1 Rue Cabanis, 75014 Paris, France
| | - Adrian Groh
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Maximilian Deest
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Stefan Bleich
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Helge Frieling
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Kirsten Jahn
- grid.10423.340000 0000 9529 9877Laboratory for Molecular Neurosciences (LMN), Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School Hannover (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
27
|
Zeppillo T, Schulmann A, Macciardi F, Hjelm BE, Föcking M, Sequeira PA, Guella I, Cotter D, Bunney WE, Limon A, Vawter MP. Functional impairment of cortical AMPA receptors in schizophrenia. Schizophr Res 2022; 249:25-37. [PMID: 32513544 PMCID: PMC7718399 DOI: 10.1016/j.schres.2020.03.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
Clinical and preclinical studies suggest that some of the behavioral alterations observed in schizophrenia (SZ) may be mechanistically linked to synaptic dysfunction of glutamatergic signaling. Recent genetic and proteomic studies suggest alterations of cortical glutamate receptors of the AMPA-type (AMPARs), which are the predominant ligand-gated ionic channels of fast transmission at excitatory synapses. The impact of gene and protein alterations on the electrophysiological activity of AMPARs is not known in SZ. In this proof of principle work, using human postmortem brain synaptic membranes isolated from the dorsolateral prefrontal cortex (DLPFC), we combined electrophysiological analysis from microtransplanted synaptic membranes (MSM) with transcriptomic (RNA-Seq) and label-free proteomics data in 10 control and 10 subjects diagnosed with SZ. We observed in SZ a reduction in the amplitude of AMPARs currents elicited by kainate, an agonist of AMPARs that blocks the desensitization of the receptor. This reduction was not associated with protein abundance but with a reduction in kainate's potency to activate AMPARs. Electrophysiologically-anchored dataset analysis (EDA) was used to identify synaptosomal proteins that linearly correlate with the amplitude of the AMPARs responses, gene ontology functional annotations were then used to determine protein-protein interactions. Protein modules associated with positive AMPARs current increases were downregulated in SZ, while protein modules that were upregulated in SZ were associated with decreased AMPARs currents. Our results indicate that transcriptomic and proteomic alterations, frequently observed in the DLPFC in SZ, converge at the synaptic level producing a functional electrophysiological impairment of AMPARs.
Collapse
Affiliation(s)
- Tommaso Zeppillo
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, USA; Department of Life Sciences, University of Trieste, B.R.A.I.N., Centre for Neuroscience, Trieste, Italy
| | - Anton Schulmann
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA; Current address: National Institute of Mental Health, Human Genetics Branch, Bethesda, MD, USA
| | - Fabio Macciardi
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - Brooke E Hjelm
- Department of Translational Genomics, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, USA
| | | | - P Adolfo Sequeira
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - Ilaria Guella
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - David Cotter
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - William E Bunney
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, USA.
| | - Marquis P Vawter
- Department of Psychiatry & Human Behavior, University of California Irvine, CA 92697, USA.
| |
Collapse
|
28
|
Zhang K, Liao P, Wen J, Hu Z. Synaptic plasticity in schizophrenia pathophysiology. IBRO Neurosci Rep 2022; 13:478-487. [PMID: 36590092 PMCID: PMC9795311 DOI: 10.1016/j.ibneur.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric syndrome with psychotic behavioral abnormalities and marked cognitive deficits. It is widely accepted that genetic and environmental factors contribute to the onset of schizophrenia. However, the etiology and pathology of the disease remain largely unexplored. Recently, the synaptopathology and the dysregulated synaptic plasticity and function have emerging as intriguing and prominent biological mechanisms of schizophrenia pathogenesis. Synaptic plasticity is the ability of neurons to change the strength of their connections in response to internal or external stimuli, which is essential for brain development and function, learning and memory, and vast majority of behavior responses relevant to psychiatric diseases including schizophrenia. Here, we reviewed molecular and cellular mechanisms of the multiple forms synaptic plasticity, and the functional regulations of schizophrenia-risk factors including disease susceptible genes and environmental alterations on synaptic plasticity and animal behavior. Recent genome-wide association studies have provided fruitful findings of hundreds of risk gene variances associated with schizophrenia, thus further clarifying the role of these disease-risk genes in synaptic transmission and plasticity will be beneficial to advance our understanding of schizophrenia pathology, as well as the molecular mechanism of synaptic plasticity.
Collapse
Affiliation(s)
- Kexuan Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China
| | - Panlin Liao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Jin Wen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhonghua Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410008, Hunan, PR China,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha 410008, Hunan, PR China,Correspondence to: Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, PR China.
| |
Collapse
|
29
|
Paredes R, Ferri F, Seriès P. Influence of E/I balance and pruning in peri-personal space differences in schizophrenia: A computational approach. Schizophr Res 2022; 248:368-377. [PMID: 34509334 DOI: 10.1016/j.schres.2021.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022]
Abstract
The encoding of the space close to the body, named peri-personal space (PPS), is thought to play a crucial role in the unusual experiences of the self observed in schizophrenia (SCZ). However, it is unclear why SCZ patients and high schizotypal (H-SPQ) individuals present a narrower PPS and why the boundaries of the PPS are more sharply defined in patients. We hypothesise that the unusual PPS representation observed in SCZ is caused by an imbalance of excitation and inhibition (E/I) in recurrent synapses of unisensory neurons or an impairment of bottom-up and top-down connectivity between unisensory and multisensory neurons. These hypotheses were tested computationally by manipulating the effects of E/I imbalance, feedback weights and synaptic density in the network. Using simulations we explored the effects of such impairments in the PPS representation generated by the network and fitted the model to behavioural data. We found that increased excitation of sensory neurons could account for the smaller PPS observed in SCZ and H-SPQ, whereas a decrease of synaptic density caused the sharp definition of the PPS observed in SCZ. We propose a novel conceptual model of PPS representation in the SCZ spectrum that can account for alterations in self-world demarcation, failures in tactile discrimination and symptoms observed in patients.
Collapse
Affiliation(s)
- Renato Paredes
- The University of Edinburgh, School of Informatics, 10 Crichton Street, Edinburgh, United Kingdom; Cognitive Science Group, Instituto de Investigaciones Psicológicas, Facultad de Psicología Universidad Nacional de Córdoba - CONICET, Argentina; Department of Psychology, Pontifical Catholic University of Peru, Lima, Peru
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Peggy Seriès
- The University of Edinburgh, School of Informatics, 10 Crichton Street, Edinburgh, United Kingdom.
| |
Collapse
|
30
|
Joe P, Clemente JC, Piras E, Wallach DS, Robinson-Papp J, Boka E, Remsen B, Bonner M, Kimhy D, Goetz D, Hoffman K, Lee J, Ruby E, Fendrich S, Gonen O, Malaspina D. An integrative study of the microbiome gut-brain-axis and hippocampal inflammation in psychosis: Persistent effects from mode of birth. Schizophr Res 2022; 247:101-115. [PMID: 34625336 PMCID: PMC8980116 DOI: 10.1016/j.schres.2021.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The mechanism producing psychosis appears to include hippocampal inflammation, which could be associated with the microbiome-gut-brain-axis (MGBS). To test this hypothesis we are conducting a multidisciplinary study, herein described. The procedures are illustrated with testing of a single subject and group level information on the impact of C-section birth are presented. METHOD Study subjects undergo research diagnostic interviews and symptom assessments to be categorized into one of 3 study groups: psychosis, nonpsychotic affective disorder or healthy control. Hippocampal volume and metabolite concentrations are assessed using 3-dimensional, multi-voxel H1 Magnetic Resonance Imaging (MRSI) encompassing all gray matter in the entire hippocampal volume. Rich self-report information is obtained with the PROMIS interview, which was developed by the NIH Commons for research in chronic conditions. Early trauma is assessed and cognition is quantitated using the MATRICS. The method also includes the most comprehensive autonomic nervous system (ANS) battery used to date in psychiatric research. Stool and oral samples are obtained for microbiome assessments and cytokines and other substances are measured in blood samples. RESULTS Group level preliminary data shows that C-section birth is associated with higher concentrations of GLX, a glutamate related hippocampal neurotransmitter in psychotic cases, worse symptoms in affective disorder cases and smaller hippocampal volume in controls. CONCLUSION Mode of birth appears to have persistent influences through adulthood. The methodology described for this study will define pathways through which the MGBA may influence the risk for psychiatric disorders.
Collapse
Affiliation(s)
- Peter Joe
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA.
| | - Jose C Clemente
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Enrica Piras
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - David S Wallach
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | | | - Emeka Boka
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Brooke Remsen
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA; Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Mharisi Bonner
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - David Kimhy
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Deborah Goetz
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| | - Kevin Hoffman
- Perelman School of Medicine, University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, USA
| | - Jakleen Lee
- Icahn School of Medicine at Mount Sinai, Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Eugene Ruby
- University of California, Los Angeles, Department of Psychology, Los Angeles, CA, USA
| | - Sarah Fendrich
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA; Perelman School of Medicine, University of Pennsylvania, Center for Health Care Incentives & Behavioral Economics, Philadelphia, PA, USA
| | - Oded Gonen
- NYU Langone Medical Center, Department of Radiology, New York, NY, USA
| | - Dolores Malaspina
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, USA
| |
Collapse
|
31
|
Li D, Wu Q, Han X. Application of Medial Ganglionic Eminence Cell Transplantation in Diseases Associated With Interneuron Disorders. Front Cell Neurosci 2022; 16:939294. [PMID: 35865112 PMCID: PMC9294455 DOI: 10.3389/fncel.2022.939294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Excitatory projection neurons and inhibitory interneurons primarily accomplish the neural activity of the cerebral cortex, and an imbalance of excitatory-inhibitory neural networks may lead to neuropsychiatric diseases. Gamma-aminobutyric acid (GABA)ergic interneurons mediate inhibition, and the embryonic medial ganglionic eminence (MGE) is a source of GABAergic interneurons. After transplantation, MGE cells migrate to different brain regions, differentiate into multiple subtypes of GABAergic interneurons, integrate into host neural circuits, enhance synaptic inhibition, and have tremendous application value in diseases associated with interneuron disorders. In the current review, we describe the fate of MGE cells derived into specific interneurons and the related diseases caused by interneuron loss or dysfunction and explore the potential of MGE cell transplantation as a cell-based therapy for a variety of interneuron disorder-related diseases, such as epilepsy, schizophrenia, autism spectrum disorder, and Alzheimer’s disease.
Collapse
|
32
|
Akram F, Sahreen S, Aamir F, Haq IU, Malik K, Imtiaz M, Naseem W, Nasir N, Waheed HM. An Insight into Modern Targeted Genome-Editing Technologies with a Special Focus on CRISPR/Cas9 and its Applications. Mol Biotechnol 2022; 65:227-242. [PMID: 35474409 PMCID: PMC9041284 DOI: 10.1007/s12033-022-00501-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/13/2022] [Indexed: 01/18/2023]
Abstract
Genome-editing technology has enabled scientists to make changes in model organisms' DNA at the genomic level to get biotechnologically important products from them. Most commonly employed technologies for this purpose are transcription activator like effector nucleases (TALENs), homing-endonucleases or meganucleases, zinc finger nucleases (ZFNs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9). Among these tools, CRISPR/Cas9 is most preferred because it's easy to use, has a small mutation rate, has great effectiveness, low cost of development, and decreased rate of advancement. CRISPR/Cas9 has a lot of applications in plants, animals, humans, and microbes. It also has applications in many fields such as horticulture, cancer, food biotechnology, and targeted human genome treatments. CRISPR technology has shown great potential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic to provide early and easy detection methods, possible treatment, and vaccine development. In the present review, genome-editing tools with their basic assembly and features have been discussed. Exceptional notice has been paid to CRISPR technology on basis of its structure and significant applications in humans, plants, animals, and microbes such as bacteria, viruses, and fungi. The review has also shed a little light on current CRISPR challenges and future perspectives.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan
| | - Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan
| | - Farheen Aamir
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan ,Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Kausar Malik
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Memoona Imtiaz
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan
| | - Waqas Naseem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan
| | - Narmeen Nasir
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan
| | - Hafiza Mariam Waheed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000 Pakistan
| |
Collapse
|
33
|
Hall J, Bray NJ. Schizophrenia Genomics: Convergence on Synaptic Development, Adult Synaptic Plasticity, or Both? Biol Psychiatry 2022; 91:709-717. [PMID: 34974922 PMCID: PMC8929434 DOI: 10.1016/j.biopsych.2021.10.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/19/2022]
Abstract
Large-scale genomic studies of schizophrenia have identified hundreds of genetic loci conferring risk to the disorder. This progress offers an important route toward defining the biological basis of the condition and potentially developing new treatments. In this review, we discuss insights from recent genome-wide association study, copy number variant, and exome sequencing analyses of schizophrenia, together with functional genomics data from the pre- and postnatal brain, in relation to synaptic development and function. These data provide strong support for the view that synaptic dysfunction within glutamatergic and GABAergic (gamma-aminobutyric acidergic) neurons of the cerebral cortex, hippocampus, and other limbic structures is a central component of schizophrenia pathophysiology. Implicated genes and functional genomic data suggest that disturbances in synaptic connectivity associated with susceptibility to schizophrenia begin in utero but continue throughout development, with some alleles conferring risk to the disorder through direct effects on synaptic function in adulthood. This model implies that novel interventions for schizophrenia could include broad preventive approaches aimed at enhancing synaptic health during development as well as more targeted treatments aimed at correcting synaptic function in affected adults.
Collapse
Affiliation(s)
- Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom; Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.
| | | |
Collapse
|
34
|
Fountoulakis KN, Stahl SM. The effect of first- and second-generation antipsychotics on brain morphology in schizophrenia: A systematic review of longitudinal magnetic resonance studies with a randomized allocation to treatment arms. J Psychopharmacol 2022; 36:428-438. [PMID: 35395911 DOI: 10.1177/02698811221087645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Schizophrenia manifests as loss of brain volume in specific areas in a progressive nature and an important question concerns whether long-term treatment with medications contributes to this. The aim of the current PRISMA systematic review was to search for prospective studies involving randomization to treatment. PROSPERO ID: CRD42020197874. The MEDLINE/PUBMED was searched and it returned 2638 articles; 3 were fulfilling the inclusion criteria. A fourth was published later; they included 359 subjects, of whom 86 were healthy controls, while the rest were first-episode patients, with 91 under olanzapine, 93 under haloperidol, 48 under risperidone, 5 under paliperidone, 6 under ziprasidone, and 30 under placebo. Probably one-third of patients were suffering from a psychotic disorder other than schizophrenia. The consideration of their results suggested that there is no significant difference between these medications concerning their effects on brain structure and also in comparison to healthy subjects. There does not seem to be any strong support to the opinion that medications that treat psychosis cause loss of brain volume in patients with schizophrenia. On the contrary, the data might imply the possible presence of a protective effect for D2, 5-HT2, and NE alpha-2 antagonists (previously called SGAs). However, the literature is limited and focused research in large study samples is essential to clarify the issue, since important numerical differences do exist. The possibility of the results and their heterogeneity to be artifacts secondary to a modification of magnetic resonance imaging (MRI) signal by antipsychotics should not be easily rejected until relevant data are available.
Collapse
Affiliation(s)
- Konstantinos N Fountoulakis
- 3rd Department of Psychiatry, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stephen M Stahl
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.,Department of Psychiatry, Cambridge University, Cambridge, UK
| |
Collapse
|
35
|
Qian L, Wang S, Zhou S, Sun Y, Zhao H. Influence of pia-arachnoid complex on the indentation response of porcine brain at different length scales. J Mech Behav Biomed Mater 2022; 127:104925. [DOI: 10.1016/j.jmbbm.2021.104925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
|
36
|
Buchsbaum MS, Mitelman SA, Christian BT, Merrill BM, Buchsbaum BR, Mitelman D, Mukherjee J, Lehrer DS. Four-modality imaging of unmedicated subjects with schizophrenia: 18F-fluorodeoxyglucose and 18F-fallypride PET, diffusion tensor imaging, and MRI. Psychiatry Res Neuroimaging 2022; 320:111428. [PMID: 34954446 DOI: 10.1016/j.pscychresns.2021.111428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022]
Abstract
Diminished prefrontal function, dopaminergic abnormalities in the striatum and thalamus, reductions in white matter integrity and frontotemporal gray matter deficits are the most replicated findings in schizophrenia. We used four imaging modalities (18F-fluorodeoxyglucose and 18F-fallypride PET, diffusion tensor imaging, structural MRI) in 19 healthy and 25 schizophrenia subjects to assess the relationship between functional (dopamine D2/D3 receptor binding potential, glucose metabolic rate) and structural (fractional anisotropy, MRI) correlates of schizophrenia and their additive diagnostic prediction potential. Multivariate ANOVA was used to compare structural and functional image sets for identification of schizophrenia. Integration of data from all four modalities yielded better predictive power than less inclusive combinations, specifically in the thalamus, left dorsolateral prefrontal and temporal regions. Among the modalities, fractional anisotropy showed highest discrimination in white matter whereas 18F-fallypride binding showed highest discrimination in gray matter. Structural and functional modalities displayed comparable discriminative power but different topography, with higher sensitivity of structural modalities in the left prefrontal region. Combination of functional and structural imaging modalities with inclusion of both gray and white matter appears most effective in diagnostic discrimination. The highest sensitivity of 18F-fallypride PET to gray matter changes in schizophrenia supports the primacy of dopaminergic abnormalities in its pathophysiology.
Collapse
Affiliation(s)
- Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, Irvine and San Diego, 11388 Sorrento Valley Road, San Diego, CA 92121, United States
| | - Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, United States.
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI 53705, United States
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St., Toronto, Ontario, Canada, M6A 2E1
| | - Danielle Mitelman
- The Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, 75 Dekalb Avenue, Brooklyn, NY 11201, United States
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH 45408, United States
| |
Collapse
|
37
|
Abstract
Schizophrenia, characterised by psychotic symptoms and in many cases social and occupational decline, remains an aetiological and therapeutic challenge. Contrary to popular belief, the disorder is modestly more common in men than in women. Nor is the outcome uniformly poor. A division of symptoms into positive, negative, and disorganisation syndromes is supported by factor analysis. Catatonic symptoms are not specific to schizophrenia and so-called first rank symptoms are no longer considered diagnostically important. Cognitive impairment is now recognised as a further clinical feature of the disorder. Lateral ventricular enlargement and brain volume reductions of around 2% are established findings. Brain functional changes occur in different subregions of the frontal cortex and might ultimately be understandable in terms of disturbed interaction among large-scale brain networks. Neurochemical disturbance, involving dopamine function and glutamatergic N-methyl-D-aspartate receptor function, is supported by indirect and direct evidence. The genetic contribution to schizophrenia is now recognised to be largely polygenic. Birth and early life factors also have an important aetiological role. The mainstay of treatment remains dopamine receptor-blocking drugs; a psychological intervention, cognitive behavioural therapy, has relatively small effects on symptoms. The idea that schizophrenia is better regarded as the extreme end of a continuum of psychotic symptoms is currently influential. Other areas of debate include cannabis and childhood adversity as causative factors, whether there is progressive brain change after onset, and the long-term success of early intervention initiatives.
Collapse
Affiliation(s)
- Sameer Jauhar
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - Mandy Johnstone
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK; National Psychosis Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Peter J McKenna
- FIDMAG Hermanas Hospitalarias Research Foundation, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.
| |
Collapse
|
38
|
Tolomeo S, Yu R. Brain network dysfunctions in addiction: a meta-analysis of resting-state functional connectivity. Transl Psychiatry 2022; 12:41. [PMID: 35091540 PMCID: PMC8799706 DOI: 10.1038/s41398-022-01792-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Resting-state functional connectivity (rsFC) provides novel insights into variabilities in neural networks associated with the use of addictive drugs or with addictive behavioral repertoire. However, given the broad mix of inconsistent findings across studies, identifying specific consistent patterns of network abnormalities is warranted. Here we aimed at integrating rsFC abnormalities and systematically searching for large-scale functional brain networks in substance use disorder (SUD) and behavioral addictions (BA), through a coordinate-based meta-analysis of seed-based rsFC studies. A total of fifty-two studies are eligible in the meta-analysis, including 1911 SUD and BA patients and 1580 healthy controls. In addition, we performed multilevel kernel density analysis (MKDA) for the brain regions reliably involved in hyperconnectivity and hypoconnectivity in SUD and BA. Data from fifty-two studies showed that SUD was associated with putamen, caudate and middle frontal gyrus hyperconnectivity relative to healthy controls. Eight BA studies showed hyperconnectivity clusters within the putamen and medio-temporal lobe relative to healthy controls. Altered connectivity in salience or emotion-processing areas may be related to dysregulated affective and cognitive control-related networks, such as deficits in regulating elevated sensitivity to drug-related stimuli. These findings confirm that SUD and BA might be characterized by dysfunctions in specific brain networks, particularly those implicated in the core cognitive and affective functions. These findings might provide insight into the development of neural mechanistic biomarkers for SUD and BA.
Collapse
Affiliation(s)
- Serenella Tolomeo
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China.
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China.
- Department of Physics, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
39
|
Corripio I, Roldán A, McKenna P, Sarró S, Alonso-Solís A, Salgado L, Álvarez E, Molet J, Pomarol-Clotet E, Portella M. Target selection for deep brain stimulation in treatment resistant schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110436. [PMID: 34517055 DOI: 10.1016/j.pnpbp.2021.110436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022]
Abstract
The use of deep brain stimulation (DBS) in treatment resistant patients with schizophrenia is of considerable current interest, but where to site the electrodes is challenging. This article reviews rationales for electrode placement in schizophrenia based on evidence for localized brain abnormality in the disorder and the targets that have been proposed and employed to date. The nucleus accumbens and the subgenual anterior cingulate cortex are of interest on the grounds that they are sites of potential pathologically increased brain activity in schizophrenia and so susceptible to the local inhibitory effects of DBS; both sites have been employed in trials of DBS in schizophrenia. Based on other lines of reasoning, the ventral tegmental area, the substantia nigra pars reticulata and the habenula have also been proposed and in some cases employed. The dorsolateral prefrontal cortex has not been suggested, probably reflecting evidence that it is underactive rather than overactive in schizophrenia. The hippocampus is also of theoretical interest but there is no clear functional imaging evidence that it shows overactivity in schizophrenia. On current evidence, the nucleus accumbens may represent the strongest candidate for DBS electrode placement in schizophrenia, with the substantia nigra pars reticulata also showing promise in a single case report; the ventral tegmental area is also of potential interest, though it remains untried.
Collapse
Affiliation(s)
- Iluminada Corripio
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Alexandra Roldán
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Peter McKenna
- FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Anna Alonso-Solís
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Laura Salgado
- Neurosurgery Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Enric Álvarez
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Joan Molet
- Neurosurgery Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Maria Portella
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
40
|
Osuch E, Ursano R, Li H, Webster M, Hough C, Fullerton C, Leskin G. Brain Environment Interactions: Stress, Posttraumatic Stress Disorder, and the Need for a Postmortem Brain Collection. Psychiatry 2022; 85:113-145. [PMID: 35588486 DOI: 10.1080/00332747.2022.2068916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stress, especially the extreme stress of traumatic events, can alter both neurobiology and behavior. Such extreme environmental situations provide a useful model for understanding environmental influences on human biology and behavior. This paper will review some of the evidence of brain alterations that occur with exposure to environmental stress. This will include recent studies using neuroimaging and will address the need for histological confirmation of imaging study results. We will review the current scientific approaches to understanding brain environment interactions, and then make the case for the collection and study of postmortem brain tissue for the advancement of our understanding of the effects of environment on the brain.Creating a brain tissue collection specifically for the investigation of the effects of extreme environmental stressors fills a gap in the current research; it will provide another of the important pieces to the puzzle that constitutes the scientific investigation of negative effects of environmental exposures. Such a resource will facilitate new discoveries related to the psychiatric illnesses of acute stress disorder and posttraumatic stress disorder, and can enable scientists to correlate structural and functional imaging findings with tissue abnormalities, which is essential to validate the results of recent imaging studies.
Collapse
|
41
|
Gutman BA, van Erp TG, Alpert K, Ching CRK, Isaev D, Ragothaman A, Jahanshad N, Saremi A, Zavaliangos‐Petropulu A, Glahn DC, Shen L, Cong S, Alnæs D, Andreassen OA, Doan NT, Westlye LT, Kochunov P, Satterthwaite TD, Wolf DH, Huang AJ, Kessler C, Weideman A, Nguyen D, Mueller BA, Faziola L, Potkin SG, Preda A, Mathalon DH, Bustillo J, Calhoun V, Ford JM, Walton E, Ehrlich S, Ducci G, Banaj N, Piras F, Piras F, Spalletta G, Canales‐Rodríguez EJ, Fuentes‐Claramonte P, Pomarol‐Clotet E, Radua J, Salvador R, Sarró S, Dickie EW, Voineskos A, Tordesillas‐Gutiérrez D, Crespo‐Facorro B, Setién‐Suero E, van Son JM, Borgwardt S, Schönborn‐Harrisberger F, Morris D, Donohoe G, Holleran L, Cannon D, McDonald C, Corvin A, Gill M, Filho GB, Rosa PGP, Serpa MH, Zanetti MV, Lebedeva I, Kaleda V, Tomyshev A, Crow T, James A, Cervenka S, Sellgren CM, Fatouros‐Bergman H, Agartz I, Howells F, Stein DJ, Temmingh H, Uhlmann A, de Zubicaray GI, McMahon KL, Wright M, Cobia D, Csernansky JG, Thompson PM, Turner JA, Wang L. A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium. Hum Brain Mapp 2022; 43:352-372. [PMID: 34498337 PMCID: PMC8675416 DOI: 10.1002/hbm.25625] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.
Collapse
Affiliation(s)
- Boris A. Gutman
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Institute for Information Transmission Problems (Kharkevich Institute)MoscowRussia
| | - Theo G.M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of California IrvineIrvineCaliforniaUSA
| | - Kathryn Alpert
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Dmitry Isaev
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Anjani Ragothaman
- Department of biomedical engineeringOregon Health and Science universityPortlandOregonUSA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Arvin Saremi
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Artemis Zavaliangos‐Petropulu
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - David C. Glahn
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Li Shen
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shan Cong
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dag Alnæs
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Nhat Trung Doan
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Peter Kochunov
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Theodore D. Satterthwaite
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Daniel H. Wolf
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Alexander J. Huang
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Charles Kessler
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Andrea Weideman
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Dana Nguyen
- Department of PediatricsUniversity of California IrvineIrvineCaliforniaUSA
| | - Bryon A. Mueller
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lawrence Faziola
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Steven G. Potkin
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Adrian Preda
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Daniel H. Mathalon
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Judith Ford Mental HealthVA San Francisco Healthcare SystemSan FranciscoCaliforniaUSA
| | - Juan Bustillo
- Departments of Psychiatry & NeuroscienceUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Vince Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology]Emory UniversityAtlantaGeorgiaUSA
- Department of Electrical and Computer EngineeringThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - Judith M. Ford
- Judith Ford Mental HealthVA San Francisco Healthcare SystemSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental NeurosciencesFaculty of Medicine, TU‐DresdenDresdenGermany
| | | | - Nerisa Banaj
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Fabrizio Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Federica Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Gianfranco Spalletta
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | | | | | | | - Joaquim Radua
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
- Institut d'Investigacions Biomdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
| | - Erin W. Dickie
- Centre for Addiction and Mental Health (CAMH)TorontoCanada
| | | | | | | | | | | | - Stefan Borgwardt
- Department of PsychiatryUniversity of BaselBaselSwitzerland
- Department of Psychiatry and PsychotherapyUniversity of LübeckLübeckGermany
| | | | - Derek Morris
- Centre for Neuroimaging and Cognitive Genomics, Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, School of PsychologyNational University of Ireland GalwayGalwayIreland
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics, School of PsychologyNational University of Ireland GalwayGalwayIreland
| | - Dara Cannon
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive GenomicsNational University of Ireland GalwayGalwayIreland
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive GenomicsNational University of Ireland GalwayGalwayIreland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of PsychiatryTrinity College DublinDublinIreland
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of PsychiatryTrinity College DublinDublinIreland
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Geraldo Busatto Filho
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Pedro G. P. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Mauricio H. Serpa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Marcus V. Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Hospital Sirio‐LibanesSao PauloSPBrazil
| | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Vasily Kaleda
- Department of Endogenous Mental DisordersMental Health Research CenterMoscowRussia
| | - Alexander Tomyshev
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Tim Crow
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Anthony James
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Simon Cervenka
- Centre for Psychiatry Reserach, Department of Clinical NeuroscienceKarolinska Institutet, & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Carl M Sellgren
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Helena Fatouros‐Bergman
- Centre for Psychiatry Reserach, Department of Clinical NeuroscienceKarolinska Institutet, & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Ingrid Agartz
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Fleur Howells
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Neuroscience InstituteUniversity of Cape Town, Cape TownWCSouth Africa
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Neuroscience InstituteUniversity of Cape Town, Cape TownWCSouth Africa
- SA MRC Unit on Risk & Resilience in Mental DisordersUniversity of Cape TownCape TownWCSouth Africa
| | - Henk Temmingh
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Department of Child and Adolescent PsychiatryTU DresdenGermany
| | - Greig I. de Zubicaray
- School of Psychology, Faculty of HealthQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Katie L. McMahon
- School of Clinical SciencesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Margie Wright
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Derin Cobia
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Psychology and Neuroscience CenterBrigham Young UniversityProvoUtahUSA
| | - John G. Csernansky
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Lei Wang
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Psychiatry and Behavioral HealthOhio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
42
|
Shulgin AA, Lebedev TD, Prassolov VS, Spirin PV. Plasmolipin and Its Role in Cell Processes. Mol Biol 2021; 55:773-785. [PMID: 34955555 PMCID: PMC8682038 DOI: 10.1134/s0026893321050113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 12/04/2022]
Abstract
The mechanisms involved in the origin and development of malignant and neurodegenerative diseases are an important area of modern biomedicine. A crucial task is to identify new molecular markers that are associated with rearrangements of intracellular signaling and can be used for prognosis and the development of effective treatment approaches. The proteolipid plasmolipin (PLLP) is a possible marker. PLLP is a main component of the myelin sheath and plays an important role in the development and normal function of the nervous system. PLLP is involved in intracellular transport, lipid raft formation, and Notch signaling. PLLP is presumably involved in various disorders, such as cancer, schizophrenia, Alzheimer's disease, and type 2 diabetes mellitus. PLLP and its homologs were identified as possible virus entry receptors. The review summarizes the data on the PLLP structure, normal functions, and role in diseases.
Collapse
Affiliation(s)
- A. A. Shulgin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Moscow oblast Russia
| | - T. D. Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - P. V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
43
|
Büki A, Bohár Z, Kekesi G, Vécsei L, Horvath G. Wisket rat model of schizophrenia: Impaired motivation and, altered brain structure, but no anhedonia. Physiol Behav 2021; 244:113651. [PMID: 34800492 DOI: 10.1016/j.physbeh.2021.113651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/17/2023]
Abstract
It is well-known that the poor cognition in schizophrenia is strongly linked to negative symptoms, including motivational deficit, which due to, at least partially, anhedonia. The goal of this study was to explore whether the schizophrenia-like Wisket animals with impaired motivation (obtained in the reward-based hole-board test), also show decreased hedonic behavior (investigated with the sucrose preference test). While neurochemical alterations of different neurotransmitter systems have been detected in the Wisket rats, no research has been performed on structural changes. Therefore, our additional aim was to reveal potential neuroanatomical and structural alterations in different brain regions in these rats. The rats showed decreased general motor activity (locomotion, rearing and exploration) and impaired task performance in the hole-board test compared to the controls, whereas no significant difference was observed in the sucrose preference test between the groups. The Wisket rats exhibited a significant decrease in the frontal cortical thickness and the hippocampal area, and moderate increases in the lateral ventricles and cell disarray in the CA3 subfield of hippocampus. To our knowledge, this is the first study to investigate the hedonic behavior and neuroanatomical alterations in a multi-hit animal model of schizophrenia. The results obtained in the sucrose preference test suggest that anhedonic behavior might not be involved in the impaired motivation obtained in the hole-board test. The neuropathological changes agree with findings obtained in patients with schizophrenia, which refine the high face validity of the Wisket model.
Collapse
Affiliation(s)
- Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., Szeged, H-6720, Hungary.
| | - Zsuzsanna Bohár
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., Szeged, H-6720, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, H-6725, Hungary; Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., Szeged, H-6725, Hungary; Interdisciplinary Excellence Center, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., Szeged, H-6725 Hungary
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., Szeged, H-6720, Hungary
| |
Collapse
|
44
|
Ang G, Brown LA, Tam SKE, Davies KE, Foster RG, Harrison PJ, Sprengel R, Vyazovskiy VV, Oliver PL, Bannerman DM, Peirson SN. Deletion of AMPA receptor GluA1 subunit gene (Gria1) causes circadian rhythm disruption and aberrant responses to environmental cues. Transl Psychiatry 2021; 11:588. [PMID: 34782594 PMCID: PMC8593011 DOI: 10.1038/s41398-021-01690-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Dysfunction of the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 subunit and deficits in synaptic plasticity are implicated in schizophrenia and sleep and circadian rhythm disruption. To investigate the role of GluA1 in circadian and sleep behaviour, we used wheel-running, passive-infrared, and video-based home-cage activity monitoring to assess daily rest-activity profiles of GluA1-knockout mice (Gria1-/-). We showed that these mice displayed various circadian abnormalities, including misaligned, fragmented, and more variable rest-activity patterns. In addition, they showed heightened, but transient, behavioural arousal to light→dark and dark→light transitions, as well as attenuated nocturnal-light-induced activity suppression (negative masking). In the hypothalamic suprachiasmatic nuclei (SCN), nocturnal-light-induced cFos signals (a molecular marker of neuronal activity in the preceding ~1-2 h) were attenuated, indicating reduced light sensitivity in the SCN. However, there was no change in the neuroanatomical distribution of expression levels of two neuropeptides-vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP)-differentially expressed in the core (ventromedial) vs. shell (dorsolateral) SCN subregions and both are known to be important for neuronal synchronisation within the SCN and circadian rhythmicity. In the motor cortex (area M1/M2), there was increased inter-individual variability in cFos levels during the evening period, mirroring the increased inter-individual variability in locomotor activity under nocturnal light. Finally, in the spontaneous odour recognition task GluA1 knockouts' short-term memory was impaired due to enhanced attention to the recently encountered familiar odour. These abnormalities due to altered AMPA-receptor-mediated signalling resemble and may contribute to sleep and circadian rhythm disruption and attentional deficits in different modalities in schizophrenia.
Collapse
Affiliation(s)
- Gauri Ang
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laurence A Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- IT Services, University of Oxford, Oxford, UK
| | - Shu K E Tam
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kay E Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Rolf Sprengel
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter L Oliver
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, UK.
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
45
|
Klimczak P, Rizzo A, Castillo-Gómez E, Perez-Rando M, Gramuntell Y, Beltran M, Nacher J. Parvalbumin Interneurons and Perineuronal Nets in the Hippocampus and Retrosplenial Cortex of Adult Male Mice After Early Social Isolation Stress and Perinatal NMDA Receptor Antagonist Treatment. Front Synaptic Neurosci 2021; 13:733989. [PMID: 34630066 PMCID: PMC8493248 DOI: 10.3389/fnsyn.2021.733989] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Both early life aversive experiences and intrinsic alterations in early postnatal neurodevelopment are considered predisposing factors for psychiatric disorders, such as schizophrenia. The prefrontal cortex and the hippocampus have protracted postnatal development and are affected in schizophrenic patients. Interestingly, similar alterations have been observed in the retrosplenial cortex (RSC). Studies in patients and animal models of schizophrenia have found alterations in cortical parvalbumin (PV) expressing interneurons, making them good candidates to study the etiopathology of this disorder. Some of the alterations observed in PV+ interneurons may be mediated by perineuronal nets (PNNs), specialized regions of the extracellular matrix, which frequently surround these inhibitory neurons. In this study, we have used a double hit model (DHM) combining a single perinatal injection of an NMDAR antagonist (MK801) to disturb early postnatal development and post-weaning social isolation as an early life aversive experience. We have investigated PV expressing interneurons and PNNs in the hippocampus and the RSC of adult male mice, using unbiased stereology. In the CA1, but not in the CA3 region, of the hippocampus, the number of PNNs and PV + PNN+ cells was affected by the drug treatment, and a significant decrease of these parameters was observed in the groups of animals that received MK801. The percentage of PNNs surrounding PV+ cells was significantly decreased after treatment in both hippocampal regions; however, the impact of isolation was observed only in CA1, where isolated animals presented lower percentages. In the RSC, we observed significant effects of isolation, MK801 and the interaction of both interventions on the studied parameters; in the DHM, we observed a significantly lower number of PV+, PNNs, and PV+PNN+cells when compared to control mice. Similar significant decreases were observed for the groups of animals that were just isolated or treated with MK801. To our knowledge, this is the first report on such alterations in the RSC in an animal model combining neurodevelopmental alterations and aversive experiences during infancy/adolescence. These results show the impact of early-life events on different cortical regions, especially on the structure and plasticity of PV+ neurons and their involvement in the emergence of certain psychiatric disorders.
Collapse
Affiliation(s)
- Patrycja Klimczak
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Arianna Rizzo
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Esther Castillo-Gómez
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Marc Beltran
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain.,Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| |
Collapse
|
46
|
Zhou H, Wang D, Wang J, Xu H, Cao B, Zhang X. Association of altered cortical gyrification and psychopathological symptoms in patients with first-episode drug-naïve schizophrenia. Asian J Psychiatr 2021; 64:102749. [PMID: 34334350 DOI: 10.1016/j.ajp.2021.102749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023]
Abstract
Altered brain gyrification in diverse cortical regions has been reported in patients with schizophrenia, which possibly reflects deviations in early neurodevelopment. The main purpose of this study was to examine the relationship between clinical symptoms and abnormal cortical gyrification in drug-naïve patients with schizophrenia in a Chinese Han population. We calculated the whole-brain cortical gyrification of 41 patients with first-episode drug-naïve schizophrenia and 30 age- and sex-matched healthy controls. The Positive and Negative Syndrome Scale (PANSS) was used to evaluate the psychopathology of patients with schizophrenia. Our results showed that compared to healthy controls, patients had higher cortical gyrification in the left lateral occipital cortex, but lower cortical gyrification in the left transverse temporal cortex. Moreover, the cortical gyrification in the left entorhinal cortex and left fusiform were both positively correlated with the general psychopathology of PANSS. Our findings indicate that abnormal cortical gyrification has occurred in the early stage of schizophrenia, suggesting that abnormal cortical gyrification may play an important role in the pathogenesis and symptomatology of schizophrenia.
Collapse
Affiliation(s)
- Huixia Zhou
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
47
|
MRI-Based Markers of Changes in the Supragranular Cortical Layer in Individuals at Clinically High Risk of Endogenous Psychosis. Bull Exp Biol Med 2021; 171:483-488. [PMID: 34553301 DOI: 10.1007/s10517-021-05256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 10/20/2022]
Abstract
We analyzed morphometric MRI parameters indirectly attesting to structural changes in the supragranular layer in 33 non-converted individuals at clinical high risk for endogenous psychosis (follow-up period of 6.7±0.6 years) and in 34 sex- and age-matched healthy controls. In the group of clinical high-risk individuals, changes indicative of potential predominance of supragranular thinning in comparison with a decrease of infragranular cortical layer thickness were revealed. The results are discussed in the context of the concepts of resilience and risk markers of developing endogenous psychosis.
Collapse
|
48
|
De Los Angeles A, Fernando MB, Hall NAL, Brennand KJ, Harrison PJ, Maher BJ, Weinberger DR, Tunbridge EM. Induced Pluripotent Stem Cells in Psychiatry: An Overview and Critical Perspective. Biol Psychiatry 2021; 90:362-372. [PMID: 34176589 PMCID: PMC8375580 DOI: 10.1016/j.biopsych.2021.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023]
Abstract
A key challenge in psychiatry research is the development of high-fidelity model systems that can be experimentally manipulated to explore and test pathophysiological mechanisms of illness. In this respect, the emerging capacity to derive neural cells and circuits from human induced pluripotent stem cells (iPSCs) has generated significant excitement. This review aims to provide a critical appraisal of the potential for iPSCs in illuminating pathophysiological mechanisms in the context of other available technical approaches. We discuss the selection of iPSC phenotypes relevant to psychiatry, the information that researchers can draw on to help guide these decisions, and how researchers choose between the use of 2-dimensional cultures and the use of more complex 3-dimensional model systems. We discuss the strengths and limitations of current models and the challenges and opportunities that they present. Finally, we discuss the potential of iPSC-based model systems for clarifying the mechanisms underlying genetic risk for psychiatry and the steps that will be needed to ensure that robust and reliable conclusions can be drawn. We argue that while iPSC-based models are ideally placed to study fundamental processes occurring within and between neural cells, they are often less well suited for case-control studies, given issues relating to statistical power and the challenges in identifying which cellular phenotypes are meaningful at the level of the whole individual. Our aim is to highlight the importance of considering the hypotheses of a given study to guide decisions about which, if any, iPSC-based system is most appropriate to address it.
Collapse
Affiliation(s)
- Alejandro De Los Angeles
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Michael B Fernando
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicola A L Hall
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Brady J Maher
- Lieber Institute for Brain Development, Baltimore, Maryland; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, Maryland; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Tunbridge
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Oxford, United Kingdom.
| |
Collapse
|
49
|
Uchida M, Noda Y, Hasegawa S, Hida H, Taniguchi M, Mouri A, Yoshimi A, Nabeshima T, Yamada K, Aida T, Tanaka K, Ozaki N. Early postnatal inhibition of GLAST causes abnormalities of psychobehaviors and neuronal morphology in adult mice. Neurochem Int 2021; 150:105177. [PMID: 34481039 DOI: 10.1016/j.neuint.2021.105177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022]
Abstract
The importance of glutamate transporters in learning, memory, and emotion remains poorly understood; hence, in the present study, we investigated whether deficiency of pharmacological GLAST in neurodevelopmental processes affects cognitive and/or emotional behaviors in mice. The mice were injected with a glutamate transporter inhibitor, dl-threo-β-benzyloxyaspartate (dl-TBOA), during the early postnatal period. At 8 weeks of age, they showed impairments in cognitive or emotional behaviors; dysfunction of glutamatergic neurotransmission (increased expressions of GLAST, GLT-1, or GFAP protein, and decreased ability of glutamate release) in the cortex or hippocampus; morphological changes (decreased cell size in the cortex and thickness of the pyramidal neuronal layer of the CA1 area in the hippocampus). Such behavioral and morphological changes were not observed in adult mice injected with dl-TBOA. These results suggest that GLAST plays an important role in the regulation of cognitive and emotional behaviors. Early postnatal glutamatergic facilitation by GLAST dysfunction leads to cognitive and emotional abnormalities due to neurodevelopmental abnormalities such as morphological changes.
Collapse
Affiliation(s)
- Mizuki Uchida
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan; Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan.
| | - Sho Hasegawa
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Hirotake Hida
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan; Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Masayuki Taniguchi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Akihiro Mouri
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Tomomi Aida
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| |
Collapse
|
50
|
Mould AW, Hall NA, Milosevic I, Tunbridge EM. Targeting synaptic plasticity in schizophrenia: insights from genomic studies. Trends Mol Med 2021; 27:1022-1032. [PMID: 34419330 DOI: 10.1016/j.molmed.2021.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Patients with schizophrenia experience cognitive dysfunction and negative symptoms that do not respond to current drug treatments. Historical evidence is consistent with the hypothesis that these deficits are due, at least in part, to altered cortical synaptic plasticity (the ability of synapses to strengthen or weaken their activity), making this an attractive pathway for therapeutic intervention. However, while synaptic transmission and plasticity is well understood in model systems, it has been challenging to identify specific therapeutic targets for schizophrenia. New information is emerging from genomic findings, which converge on synaptic plasticity and provide a new window on the neurobiology of schizophrenia. Translating this information into therapeutic advances will require a multidisciplinary and collaborative approach.
Collapse
Affiliation(s)
- Arne W Mould
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Nicola A Hall
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Ira Milosevic
- Wellcome Centre for Human Genetics, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth M Tunbridge
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Foundation Trust, Oxford, UK.
| |
Collapse
|