1
|
Therkildsen ER, Lorentzen J, Perez MA, Nielsen JB. Evaluation of spasticity: IFCN Handbook Chapter. Clin Neurophysiol 2025; 173:1-23. [PMID: 40068367 DOI: 10.1016/j.clinph.2025.02.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 05/09/2025]
Abstract
There is no generally accepted definition of spasticity, but hyperexcitable stretch reflexes, exaggerated tendon jerks, clonus, spasms, cramps, increased resistance to passive joint movement, sustained involuntary muscle activity and aberrant muscle activation, including co-contraction of antagonist muscles are all signs and symptoms which are usually associated clinically to the term spasticity. This review describes how biomechanical and electrophysiological techniques may be used to provide quantitative and objective measures of each of these signs and symptoms. The review further describes how neurophysiological techniques may be used to evaluate pathophysiological changes in spinal motor control mechanisms. It is emphasized that understanding the pathophysiology and distinguishing the specific signs and symptoms associated with spasticity, using objective, valid, and reproducible measurements, is essential for providing optimal therapy.
Collapse
Affiliation(s)
- Eva Rudjord Therkildsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Jakob Lorentzen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark; Department of Pediatrics, Copenhagen University Hospital (Rigshospitalet), Blegdamsvej 10, Dk-2100 Copenhagen Ø, Denmark
| | - Monica A Perez
- Shirley Ryan Ability Lab, Chicago, USA; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, USA; Edward Jr. Hines VA Hospital, Chicago, USA
| | - Jens Bo Nielsen
- Department of Neuroscience, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark; The Elsass Foundation, Holmegårdsvej 28, Charlottenlund, 2920, Denmark.
| |
Collapse
|
2
|
Brangaccio JA, Gupta D, Mojtabavi H, Hardesty RL, Hill NJ, Carp JS, Gemoets DE, Vaughan TM, Norton JJS, Perez MA, Wolpaw JR. Soleus H-reflex size versus stimulation rate in the presence of background muscle activity: A methodological study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643784. [PMID: 40166215 PMCID: PMC11956921 DOI: 10.1101/2025.03.17.643784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Introduction Hoffmann reflex (HR) operant conditioning has emerged as an important intervention in neurorehabilitation. During conditioning, the HR is elicited at low rates (∼0.2 Hz) to avoid the initial reduction in HR size that can occur over repeated stimulation, i.e., rate-dependent depression (RDD), thereby maintaining reflex size. This study investigated the impact of higher stimulation rates on HR size, where a stable, low-level, background electromyographic (EMG) signal is maintained over 225 conditioning trials in each of 30 sessions. A higher rate could shorten session length and/or number. Methods Fifteen healthy participants maintained low background soleus EMG (5-18 µV, ∼1-3% of the maximum stimulation evoked direct muscle (M-wave) EMG response (M max ) while standing. Soleus HR and M-wave recruitment curves were obtained at rates of 0.2, 1, and 2 Hz, from which M max and H max were calculated. Seventy-five HR trials (HRT) were collected for each stimulation rate at a target M-wave size (∼10-20% of M max ). Results There was no evidence of RDD at higher stimulation rates. In addition, the mean HR over trials was reliable across participants and rates. The Intraclass Correlation Coefficient (ICC) was 0.965 (95%CI:0.915, 0.987). Discussion This study shows that H-reflex conditioning might be performed at rates up to 2 Hz with no RDD and with consistent HR values. A faster rate could increase the number of conditioning trials per session, reduce session duration, and/or reduce the number of sessions. It could thereby accelerate the conditioning process and make the process less demanding for participants. Support NIH Grant P41 EB018783 (Wolpaw), NYS Spinal Cord Injury Research Board C37714GG (Gupta) and C38338GG (Wolpaw), VA SPiRE NCT05880251 (Brangaccio), Stratton Veterans Affairs Medical Center.
Collapse
|
3
|
Cuadra C, Wolf SL, Lyle MA. Heteronymous feedback from quadriceps onto soleus in stroke survivors. J Neuroeng Rehabil 2025; 22:39. [PMID: 40011904 PMCID: PMC11866609 DOI: 10.1186/s12984-025-01572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Recent findings suggest increased excitatory heteronymous feedback from quadriceps onto soleus may contribute to abnormal coactivation of knee and ankle extensors after stroke. However, there is lack of consensus on whether persons post-stroke exhibit altered heteronymous reflexes and, when present, the origin of increased excitation (i.e. increased excitation alone and/or decreased inhibition). This study examined heteronymous excitation and inhibition from quadriceps onto soleus in paretic, nonparetic, and age-matched control limbs to determine whether increased excitation was due to excitatory and/or reduced inhibitory reflex circuits. A secondary purpose was to examine whether heteronymous reflex magnitudes were related to clinical measures of lower limb recovery, walking-speed, and dynamic balance. METHODS Heteronymous excitation and inhibition from quadriceps onto soleus were examined in fourteen persons post-stroke and fourteen age-matched unimpaired participants. Heteronymous feedback was elicited by femoral nerve and quadriceps muscle stimulation in separate trials while participants tonically activated soleus at 20% maximum voluntary isometric contraction. Fugl-Meyer assessment of lower extremity, 10-m walk test, and Mini-BESTest were assessed in stroke survivors. RESULTS Heteronymous excitation and inhibition onsets, durations, and magnitudes were not different between paretic, nonparetic or age-matched unimpaired limbs. Quadriceps stimulation elicited excitation that was half the magnitude of femoral nerve stimulation. Femoral nerve elicited paretic limb heteronymous excitation was positively correlated with walking speed but did not reach significance because only a subset of paretic limbs exhibited excitation (n = 8, Spearman r = 0.69, P = 0.058). CONCLUSIONS Heteronymous feedback from quadriceps onto soleus assessed in a seated posture was not impaired in persons post-stroke. Despite being unable to identify whether reduced inhibition contributes to abnormal excitation reported in prior studies, our results indicate quadriceps stimulation may allow a better estimate of heteronymous inhibition in those that exhibit exaggerated excitation. Heteronymous excitation magnitude in the paretic limb was positively correlated with self-selected walking speed suggesting paretic limb excitation at the higher end of a normal range may facilitate walking ability after stroke. Future studies are needed to identify whether heteronymous feedback from Q onto SOL is altered after stroke in upright postures and during motor tasks as a necessary next step to identify mechanisms underlying motor impairment.
Collapse
Affiliation(s)
- Cristian Cuadra
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy. Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Steven L Wolf
- Department of Rehabilitation Medicine, Division of Physical Therapy, Center for Physical Therapy and Movement Science, Emory University School of Medicine, Atlanta, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, GA, USA
| | - Mark A Lyle
- Department of Rehabilitation Medicine, Division of Physical Therapy, Center for Physical Therapy and Movement Science, Emory University School of Medicine, Atlanta, USA.
| |
Collapse
|
4
|
Urbin MA. Adaptation in the spinal cord after stroke: Implications for restoring cortical control over the final common pathway. J Physiol 2025; 603:685-721. [PMID: 38787922 DOI: 10.1113/jp285563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Control of voluntary movement is predicated on integration between circuits in the brain and spinal cord. Although damage is often restricted to supraspinal or spinal circuits in cases of neurological injury, both spinal motor neurons and axons linking these cells to the cortical origins of descending motor commands begin showing changes soon after the brain is injured by stroke. The concept of 'transneuronal degeneration' is not new and has been documented in histological, imaging and electrophysiological studies dating back over a century. Taken together, evidence from these studies comports more with a system attempting to survive rather than one passively surrendering to degeneration. There tends to be at least some preservation of fibres at the brainstem origin and along the spinal course of the descending white matter tracts, even in severe cases. Myelin-associated proteins are observed in the spinal cord years after stroke onset. Spinal motor neurons remain morphometrically unaltered. Skeletal muscle fibres once innervated by neurons that lose their source of trophic input receive collaterals from adjacent neurons, causing spinal motor units to consolidate and increase in size. Although some level of excitability within the distributed brain network mediating voluntary movement is needed to facilitate recovery, minimal structural connectivity between cortical and spinal motor neurons can support meaningful distal limb function. Restoring access to the final common pathway via the descending input that remains in the spinal cord therefore represents a viable target for directed plasticity, particularly in light of recent advances in rehabilitation medicine.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Gracies J, Alter KE, Biering‐Sørensen B, Dewald JP, Dressler D, Esquenazi A, Franco JH, Jech R, Kaji R, Jin L, Lim EC, Raghavan P, Rosales R, Shalash AS, Simpson DM, Suputtitada A, Vecchio M, Wissel J. Spastic Paresis: A Treatable Movement Disorder. Mov Disord 2025; 40:44-50. [PMID: 39548808 PMCID: PMC11752976 DOI: 10.1002/mds.30038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 11/18/2024] Open
Affiliation(s)
- Jean‐Michel Gracies
- Service de Rééducation Neurolocomotrice, Hôpitaux Universitaires Henri Mondor, Assistance Publique‐Hôpitaux de ParisParisFrance
- UR BIOTN, Université Paris Est Créteil (UPEC)CréteilFrance
| | - Katharine E. Alter
- Mount Washington Pediatric Hospital, An Affiliate of The University of Maryland System and Johns Hopkins Medical InstitutionBaltimoreMarylandUSA
| | - Bo Biering‐Sørensen
- Movement Disorder Clinic, Spasticity Clinic and Neuropathic Pain and CRPS Clinic, Neurological DepartmentCopenhagen University Hospital, RigshospitaletGlostrupDenmark
| | - Julius P.A. Dewald
- Department of Physical Therapy and Human Movement Sciences, Department of Biomedical EngineeringNorthwestern UniversityChicagoIllinoisUSA
| | - Dirk Dressler
- Movement Disorders Section, Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Alberto Esquenazi
- Department of PM&RMoss Rehab Gait and Motion Analysis Laboratory, Elkins Park, Albert Einstein Medical CenterPennsylvaniaUSA
| | - Jorge Hernandez Franco
- Department of RehabilitationNational Institute of Neurology and Neurosurgery MVS, Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Robert Jech
- Department of Neurology and Center of Clinical NeuroscienceFirst Faculty of Medicine Charles University and General University HospitalPragueCzech Republic
| | - Ryuji Kaji
- Tokushima University Graduate School of MedicineTokushimaJapan
| | - Lingjing Jin
- Department of NeurologySchool of Medicine, Tongji Hospital and Shanghai Sunshine Rehabilitation Hospital, Tongji University School of MedicineShanghaiChina
| | - Erle C.H. Lim
- Division of NeurologyNational University Health System, National University of SingaporeSingaporeSingapore
| | - Preeti Raghavan
- Department of Physical Medicine and Rehabilitation and Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Raymond Rosales
- Metropolitan Medical Center, Faculty of Medicine and Surgery, University of Santo Tomas Manila and Clinical Neurophysiology and Movement Disorders, St. Luke's Medical CenterQuezon CityPhilippines
| | - Ali S. Shalash
- Ain Shams Movement Disorders Group, Department of NeurologyAin Shams UniversityCairoEgypt
| | - David M. Simpson
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Areerat Suputtitada
- Department of Rehabilitation MedicineFaculty of Medicine, Chulalongkorn UniversityBangkokThailand
| | - Michele Vecchio
- Department of Biomedical and Biotechnological SciencesUniversity of Catania, Physical Medicine and Rehabilitation Unit, “AOU Policlinico G. Rodolico”CataniaItaly
| | - Jörg Wissel
- Neurology and Psychosomatic at WittenbergplatzBerlinGermany
- Center of Sports Medicine, University Outpatient ClinicUniversity of PotsdamPotsdamGermany
| |
Collapse
|
6
|
Colard J, Jubeau M, Crouzier M, Duclay J, Cattagni T. Effect of muscle length on the modulation of H-reflex and inhibitory mechanisms of Ia afferent discharges during passive muscle lengthening. J Neurophysiol 2024; 132:890-905. [PMID: 39015079 DOI: 10.1152/jn.00142.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024] Open
Abstract
The effectiveness of activated Ia afferents to discharge α-motoneurons is decreased during passive muscle lengthening compared with static and shortening muscle conditions. Evidence suggests that these regulations are explained by 1) greater postactivation depression induced by homosynaptic postactivation depression (HPAD) and 2) primary afferent depolarization (PAD). It remains uncertain whether muscle length impacts the muscle lengthening-related aspect of regulation of the effectiveness of activated Ia afferents to discharge α-motoneurons, HPAD, PAD, and heteronymous Ia facilitation (HF). We conducted a study involving 15 healthy young individuals. We recorded conditioned or nonconditioned soleus Hoffmann (H) reflex with electromyography (EMG) to estimate the effectiveness of activated Ia afferents to discharge α-motoneurons, HPAD, PAD, and HF during passive shortening, static, and lengthening muscle conditions at short, intermediate, and long lengths. Our results show that the decrease of effectiveness of activated Ia afferents to discharge α-motoneurons and increase of postactivation depression during passive muscle lengthening occur at all muscle lengths. For PAD and HF, we found that longer muscle length increases the magnitude of regulation related to muscle lengthening. To conclude, our findings support an inhibitory effect (resulting from increased postactivation depression) of muscle lengthening and longer muscle length on the effectiveness of activated Ia afferents to discharge α-motoneurons. The increase in postactivation depression associated with muscle lengthening can be attributed to the amplification of Ia afferents discharge.NEW & NOTEWORTHY Original results are that in response to passive muscle lengthening and increased muscle length, inhibition of the effectiveness of activated Ia afferents to discharge α-motoneurons increases, with primary afferent depolarization and homosynaptic postactivation depression mechanisms playing central roles in this regulatory process. Our findings highlight for the first time a cumulative inhibitory effect of muscle lengthening and increased muscle length on the effectiveness of activated Ia afferents to discharge α-motoneurons.
Collapse
Affiliation(s)
- Julian Colard
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| | - Marc Jubeau
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| | - Marion Crouzier
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| | - Julien Duclay
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Thomas Cattagni
- Movement-Interactions-Performance (MIP), UR-4334, Nantes Université, Nantes, UR-4334, France
| |
Collapse
|
7
|
Isumi S, Futamura D, Hanasaki T, Sako Y, Miyata S, Kan H, Suzuki Y, Hasegawa N, Mushiake H, Kametaka S, Uchiyama Y, Osanai M, Lee-Hotta S. Association of medullary reticular formation ventral part with spasticity in mice suffering from photothrombotic stroke. Neuroimage 2024; 298:120791. [PMID: 39147291 DOI: 10.1016/j.neuroimage.2024.120791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024] Open
Abstract
Strokes cause spasticity via stretch reflex hyperexcitability in the spinal cord, and spastic paralysis due to involuntary muscle contraction in the hands and fingers can severely restrict skilled hand movements. However, the underlying neurological mechanisms remain unknown. Using a mouse model of spasticity after stroke, we demonstrate changes in neuronal activity with and without electrostimulation of the afferent nerve to induce the stretch reflex, measured using quantitative activation-induced manganese-enhanced magnetic resonance imaging. Neuronal activity increased within the ventral medullary reticular formation (MdV) in the contralesional brainstem during the acute post-stroke phase, and this increase was characterised by activation of circuits involved in spasticity. Interestingly, ascending electrostimulation inhibited the MdV activity on the stimulation side in normal conditions. Moreover, immunohistochemical staining showed that, in the acute phase, the density of GluA1, one of the α-amino-3 hydroxy‑5 methyl -4 isoxazolepropionic acid receptor (AMPAR) subunits, at the synapses of MdV neurons was significantly increased. In addition, the GluA1/GluA2 ratio in these receptors was altered at 2 weeks post-stroke, confirming homeostatic plasticity as the underlying mechanisms of spasticity. These results provide new insights into the relationship between impaired skilled movements and spasticity at the acute post-stroke phase.
Collapse
Affiliation(s)
- Shogo Isumi
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Daiki Futamura
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Takuto Hanasaki
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yukito Sako
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Shotaro Miyata
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yumika Suzuki
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Naoki Hasegawa
- Department of Radiological Imaging and Informatics, School of Medicine, Tohoku University, Sendai, Japan
| | - Hajime Mushiake
- Department of Physiology, School of Medicine, Tohoku University, Sendai, Japan
| | - Satoshi Kametaka
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yasushi Uchiyama
- Division of Creative Physical Therapy, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Makoto Osanai
- Department of Physiology, School of Medicine, Tohoku University, Sendai, Japan; Laboratory for Physiological Functional Imaging, Department of Medical Physics and Engineering, Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Sachiko Lee-Hotta
- Division of Creative Physical Therapy, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan.
| |
Collapse
|
8
|
Mahmoud W, Baur D, Zrenner B, Brancaccio A, Belardinelli P, Ramos-Murguialday A, Zrenner C, Ziemann U. Brain state-dependent repetitive transcranial magnetic stimulation for motor stroke rehabilitation: a proof of concept randomized controlled trial. Front Neurol 2024; 15:1427198. [PMID: 39253360 PMCID: PMC11381265 DOI: 10.3389/fneur.2024.1427198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Background In healthy subjects, repetitive transcranial magnetic stimulation (rTMS) targeting the primary motor cortex (M1) demonstrated plasticity effects contingent on electroencephalography (EEG)-derived excitability states, defined by the phase of the ongoing sensorimotor μ-oscillation. The therapeutic potential of brain state-dependent rTMS in the rehabilitation of upper limb motor impairment post-stroke remains unexplored. Objective Proof-of-concept trial to assess the efficacy of rTMS, synchronized to the sensorimotor μ-oscillation, in improving motor impairment and reducing upper-limb spasticity in stroke patients. Methods We conducted a parallel group, randomized double-blind controlled trial in 30 chronic stroke patients (clinical trial registration number: NCT05005780). The experimental intervention group received EEG-triggered rTMS of the ipsilesional M1 [1,200 pulses; 0.33 Hz; 100% of the resting motor threshold (RMT)], while the control group received low-frequency rTMS of the contralesional motor cortex (1,200 pulses; 1 Hz, 115% RMT), i.e., an established treatment protocol. Both groups received 12 rTMS sessions (20 min, 3× per week, 4 weeks) followed by 50 min of physiotherapy. The primary outcome measure was the change in upper-extremity Fugl-Meyer assessment (FMA-UE) scores between baseline, immediately post-treatment and 3 months' follow-up. Results Both groups showed significant improvement in the primary outcome measure (FMA-UE) and the secondary outcome measures. This included the reduction in spasticity, measured objectively using the hand-held dynamometer, and enhanced motor function as measured by the Wolf Motor Function Test (WMFT). There were no significant differences between the groups in any of the outcome measures. Conclusion The application of brain state-dependent rTMS for rehabilitation in chronic stroke patients is feasible. This pilot study demonstrated that the brain oscillation-synchronized rTMS protocol produced beneficial effects on motor impairment, motor function and spasticity that were comparable to those observed with an established therapeutic rTMS protocol. Clinical Trial Registration ClinicalTrials.gov, identifier [NCT05005780].
Collapse
Affiliation(s)
- Wala Mahmoud
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - David Baur
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Brigitte Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Arianna Brancaccio
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Paolo Belardinelli
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - Ander Ramos-Murguialday
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Tecnalia, Basque Research and Technology Alliance, San Sebastián, Spain
- Athenea Neuroclinics, San Sebastián, Spain
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Al Amin R, Ali AS, Saab IM, Abbas RL. Immediate Neurophysiological effect of electrical stimulation via dry needling on H-reflex in post stroke spasticity. Physiother Theory Pract 2024; 40:1412-1420. [PMID: 36847265 DOI: 10.1080/09593985.2023.2182655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Many non-pharmacological interventions have been proposed for spasticity modulation in spastic stroke subjects. OBJECTIVE To investigate the immediate effect of dry needling (DN), electrical stimulation (ES), and dry needling with intramuscular electrical stimulation (DN+IMES) on H-reflex in post-stroke spasticity. METHODS Spastic subjects with stroke (N = 90) (55-85 years) were evaluated after 1 month of stroke onset using Modified Ashworth Scale (MAS) score ≥1. Subjects were randomly allocated to receive one session of DN - Soleus (N = 30), ES - posterior lateral side of the leg with 100 Hz and 250 μs pulse width (N = 30), or DN+IMES - Soleus (N = 30). MAS, H-reflex, maximum latency, H-amplitude, M-amplitude and H/M ratio, were recorded before and after one session of intervention. Relationships for each variable within group or the difference among groups were calculated by effect size. RESULTS Significant decrease in H/M ratio in Gastrocnemius and Soleus at post-treatment within DN group (P = .024 and P = .029, respectively), large effect size (d = 0.07 and 0.62, respectively); and DN+IMES group (P = .042 and P = .001, respectively), large effect size (d = 0.69 and 0.71, respectively). No significant differences in all variables at pre-treatment and post-treatment was recorded among ES, DN, and DN+IMES groups. Significant decrease in MAS was recorded at post-treatment compared to pre-treatment within ES group (P = .002), DN group (P = .0001), and DN+IMES group (P = .0001), but not significant (P > .05) among three groups at pre-treatment (P = .194) and post-treatment (P = .485). CONCLUSIONS Single session of DN, ES, and the DN+IMES can significantly modulate post-stroke spasticity by possible bottom-up regulation mechanisms.
Collapse
Affiliation(s)
- Ranim Al Amin
- Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Ahmed S Ali
- Department of Physical Therapy for Neurology, Faculty of Physical Therapy, Cairo University, Egypt
| | - Ibtissam M Saab
- Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Rami L Abbas
- Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
10
|
Cuadra C, Wolf SL, Lyle MA. Heteronymous feedback from quadriceps onto soleus in stroke survivors. RESEARCH SQUARE 2024:rs.3.rs-4540327. [PMID: 38978589 PMCID: PMC11230478 DOI: 10.21203/rs.3.rs-4540327/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Recent findings suggest increased excitatory heteronymous feedback from quadriceps onto soleus may contribute to abnormal coactivation of knee and ankle extensors after stroke. However, there is lack of consensus on whether persons post-stroke exhibit altered heteronymous reflexes and, when present, the origin of increased excitation (i.e. increased excitation alone and/or decreased inhibition). This study examined heteronymous excitation and inhibition from quadriceps onto soleus in paretic, nonparetic, and age-matched control limbs to determine whether increased excitation was due to excitatory and/or reduced inhibitory reflex circuits. A secondary purpose was to examine whether heteronymous reflex magnitudes were related to clinical measures of lower limb recovery, walking-speed, and dynamic balance. Methods Heteronymous excitation and inhibition from quadriceps onto soleus were examined in fourteen persons post-stroke and fourteen age-matched unimpaired participants. Heteronymous feedback was elicited by femoral nerve and quadriceps muscle stimulation in separate trials while participants tonically activated soleus at 20% max. Fugl-Myer assessment of lower extremity, 10-meter walk test, and Mini-BESTest were assessed in stroke survivors. Results Heteronymous excitation and inhibition onsets, durations, and magnitudes were not different between paretic, nonparetic or age-matched unimpaired limbs. Quadriceps stimulation elicited excitation that was half the magnitude of femoral nerve stimulation. Femoral nerve elicited paretic limb heteronymous excitation was positively correlated with walking speed but did not reach significance because only a subset of paretic limbs exhibited excitation (n = 8, Spearman r = 0.69, P = 0.058). Conclusions Heteronymous feedback from quadriceps onto soleus assessed in a seated posture was not impaired in persons post-stroke. Despite being unable to identify whether reduced inhibition contributes to abnormal excitation reported in prior studies, our results indicate quadriceps stimulation may allow a better estimate of heteronymous inhibition in those that exhibit exaggerated excitation. Heteronymous excitation magnitude in the paretic limb was positively correlated with self-selected walking speed suggesting paretic limb excitation at the higher end of a normal range may facilitate walking ability after stroke. Future studies are needed to identify whether heteronymous feedback from Q onto SOL is altered after stroke in upright postures and during motor tasks as a necessary next step to identify mechanisms underlying motor impairment.
Collapse
|
11
|
Liu L, Feng J, Li J, Chen W, Mao Z, Tan X. Multi-layer CNN-LSTM network with self-attention mechanism for robust estimation of nonlinear uncertain systems. Front Neurosci 2024; 18:1379495. [PMID: 38638692 PMCID: PMC11024260 DOI: 10.3389/fnins.2024.1379495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction With the help of robot technology, intelligent rehabilitation of patients with lower limb motor dysfunction caused by stroke can be realized. A key factor constraining the clinical application of rehabilitation robots is how to realize pattern recognition of human movement intentions by using the surface electromyography (sEMG) sensors to ensure unhindered human-robot interaction. Methods A multilayer CNN-LSTM prediction network incorporating the self-attention mechanism (SAM) is proposed, in this paper, which can extract and learn the periodic and trend characteristics of the sEMG signals, and realize the accurate autoregressive prediction of the human motion information. Firstly, the multilayer CNN-LSTM network utilizes the CNN layer for initial feature extraction of data, and the LSTM network is used to improve the enhancement of the historical time-series features. Then, the SAM is used to improve the global feature extraction performance and parallel computation speed of the network. Results In comparison with existing test is carried out using actual data from five healthy subjects as well as a clinical hemiplegic patient to verify the superiority and practicality of the proposed algorithm. The results show that most of the model's prediction R > 0.9 for different motion states of healthy subjects; in the experiments oriented to the motion characteristics of patient subjects, the angle prediction results of R > 0.99 for the untrained data on the affected side, which proves that our proposed model also has a better effect on the angle prediction of the affected side. Discussion The main contribution of this paper is to realize continuous motion estimation of ankle joint for healthy and hemiplegic individuals under non-ideal conditions (weak sEMG signals, muscle fatigue, high muscle tension, etc.), which improves the pattern recognition accuracy and robustness of the sEMG sensor-based system.
Collapse
Affiliation(s)
- Lin Liu
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Jun Feng
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Jiwei Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wanxin Chen
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhizhong Mao
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Xiaowei Tan
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Crouzier M, Avrillon S, Hug F, Cattagni T. Horizontal foot orientation affects the distribution of neural drive between gastrocnemii during plantarflexion, without changing neural excitability. J Appl Physiol (1985) 2024; 136:786-798. [PMID: 38205551 DOI: 10.1152/japplphysiol.00536.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The distribution of activation among muscles from the same anatomical group can be affected by the mechanical constraints of the task, such as limb orientation. For example, the distribution of activation between the gastrocnemius medialis (GM) and lateralis (GL) muscles during submaximal plantarflexion depends on the orientation of the foot in the horizontal plane. The neural mechanisms behind these modulations are not known. The overall aim of this study was to determine whether the excitability of the two gastrocnemius muscles is differentially affected by changes in foot orientation. Nineteen males performed isometric plantarflexions with their foot internally (toes-in) or externally (toes-out) rotated. GM and GL motor unit discharge characteristics were estimated from high-density surface electromyography to estimate neural drive. GM and GL corticospinal excitability and intracortical activity were assessed using transcranial magnetic stimulation through motor-evoked potentials. The efficacy of synaptic transmission between Ia-afferent fibers and α-motoneurons of the GM and GL was evaluated through the Hoffmann reflex. We observed a differential change in neural drive between GM (toes-out > toes-in) and GL (toes-out < toes-in). However, there was no foot orientation-related modulation in corticospinal excitability of the GM or GL, either at the cortical level or through modulation of the efficacy of Ia-α-motoneuron transmission. These results demonstrate that change in the motor pathway excitability is not the mechanism controlling the different distribution of neural drive between GM and GL with foot orientation.NEW & NOTEWORTHY Horizontal foot orientation affects the distribution of neural drive between the gastrocnemii during plantarflexion. There is no foot orientation-related modulation in the corticospinal excitability of the gastrocnemii, either at the cortical level or through modulation of the efficacy of Ia-α-motoneuron transmission. Change in motor pathway excitability is not the mechanism controlling the different distribution of neural drive between gastrocnemius medialis and lateralis with foot orientation.
Collapse
Affiliation(s)
- Marion Crouzier
- Nantes University, Movement - Interactions - Performance, MIP, UR-4334, Nantes, France
| | - Simon Avrillon
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - François Hug
- Université Côte d'Azur, LAMHESS, Nice, France
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Thomas Cattagni
- Nantes University, Movement - Interactions - Performance, MIP, UR-4334, Nantes, France
| |
Collapse
|
13
|
Tajali S, Balbinot G, Pakosh M, Sayenko DG, Zariffa J, Masani K. Modulations in neural pathways excitability post transcutaneous spinal cord stimulation among individuals with spinal cord injury: a systematic review. Front Neurosci 2024; 18:1372222. [PMID: 38591069 PMCID: PMC11000807 DOI: 10.3389/fnins.2024.1372222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Transcutaneous spinal cord stimulation (TSCS), a non-invasive form of spinal cord stimulation, has been shown to improve motor function in individuals living with spinal cord injury (SCI). However, the effects of different types of TSCS currents including direct current (DC-TSCS), alternating current (AC-TSCS), and spinal paired stimulation on the excitability of neural pathways have not been systematically investigated. The objective of this systematic review was to determine the effects of TSCS on the excitability of neural pathways in adults with non-progressive SCI at any level. Methods The following databases were searched from their inception until June 2022: MEDLINE ALL, Embase, Web of Science, Cochrane Library, and clinical trials. A total of 4,431 abstracts were screened, and 23 articles were included. Results Nineteen studies used TSCS at the thoracolumbar enlargement for lower limb rehabilitation (gait & balance) and four studies used cervical TSCS for upper limb rehabilitation. Sixteen studies measured spinal excitability by reporting different outcomes including Hoffmann reflex (H-reflex), flexion reflex excitability, spinal motor evoked potentials (SMEPs), cervicomedullay evoked potentials (CMEPs), and cutaneous-input-evoked muscle response. Seven studies measured corticospinal excitability using motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS), and one study measured somatosensory evoked potentials (SSEPs) following TSCS. Our findings indicated a decrease in the amplitude of H-reflex and long latency flexion reflex following AC-TSCS, alongside an increase in the amplitudes of SMEPs and CMEPs. Moreover, the application of the TSCS-TMS paired associative technique resulted in spinal reflex inhibition, manifested by reduced amplitudes in both the H-reflex and flexion reflex arc. In terms of corticospinal excitability, findings from 5 studies demonstrated an increase in the amplitude of MEPs linked to lower limb muscles following DC-TSCS, in addition to paired associative stimulation involving repetitive TMS on the brain and DC-TSCS on the spine. There was an observed improvement in the latency of SSEPs in a single study. Notably, the overall quality of evidence, assessed by the modified Downs and Black Quality assessment, was deemed poor. Discussion This review unveils the systematic evidence supporting the potential of TSCS in reshaping both spinal and supraspinal neuronal circuitries post-SCI. Yet, it underscores the critical necessity for more rigorous, high-quality investigations.
Collapse
Affiliation(s)
- Shirin Tajali
- KITE Research Institute – University Health Network, Toronto, ON, Canada
| | - Gustavo Balbinot
- KITE Research Institute – University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application – CRANIA, University Health Network, Toronto, ON, Canada
| | - Maureen Pakosh
- Library & Information Services, University Health Network, Toronto Rehabilitation Institute, ON, Canada
| | - Dimitry G. Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Jose Zariffa
- KITE Research Institute – University Health Network, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Kei Masani
- KITE Research Institute – University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Castro J, Oliveira Santos M, Swash M, de Carvalho M. Segmental motor neuron dysfunction in amyotrophic lateral sclerosis: Insights from H reflex paradigms. Muscle Nerve 2024; 69:303-312. [PMID: 38220221 DOI: 10.1002/mus.28035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
INTRODUCTION/AIMS In amyotrophic lateral sclerosis (ALS), the role of spinal interneurons in ALS is underrecognized. We aimed to investigate pre- and post-synaptic modulation of spinal motor neuron excitability by studying the H reflex, to understand spinal interneuron function in ALS. METHODS We evaluated the soleus H reflex, and three different modulation paradigms, to study segmental spinal inhibitory mechanisms. Homonymous recurrent inhibition (H'RI ) was assessed using the paired H reflex technique. Presynaptic inhibition of Ia afferents (H'Pre ) was evaluated using D1 inhibition after stimulation of the common peroneal nerve. We also studied inhibition of the H reflex after cutaneous stimulation of the sural nerve (H'Pos ). RESULTS Fifteen ALS patients (median age 57.0 years), with minimal signs of lower motor neuron involvement and good functional status, and a control group of 10 healthy people (median age 57.0 years) were studied. ALS patients showed reduced inhibition, compared to controls, in all paradigms (H'RI 0.35 vs. 0.11, p = .036; H'Pre 1.0 vs. 5.0, p = .001; H'Pos 0.0 vs. 2.5, p = .031). The clinical UMN score was a significant predictor of the amount of recurrent and presynaptic inhibition. DISCUSSION Spinal inhibitory mechanisms are impaired in ALS. We argue that hyperreflexia could be associated with dysfunction of spinal inhibitory interneurons. In this case, an interneuronopathy could be deemed a major feature of ALS.
Collapse
Affiliation(s)
- José Castro
- Faculdade de Medicina, Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Miguel Oliveira Santos
- Faculdade de Medicina, Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Michael Swash
- Faculdade de Medicina, Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Departments of Neurology and Neuroscience, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Mamede de Carvalho
- Faculdade de Medicina, Instituto de Fisiologia, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
15
|
Zschorlich VR, Qi F, Schorer J, Büsch D. Sensory Stimulation of the Triceps Surae Muscle Complex Modulates Spinal Reflex Responses-A Comparison between Tapotement Massage and Repetitive Peripheral Magnetic Stimulation (rPMS). Brain Sci 2024; 14:119. [PMID: 38391694 PMCID: PMC10887412 DOI: 10.3390/brainsci14020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND The reduction of muscular hypertonia is important in the treatment of various diseases or rehabilitation. This study aims to test the efficacy of a 5 Hz mechanical muscle stimulation (tapotement massage) in comparison to a 5 Hz repetitive peripheral magnetic stimulation (rPMS) on the neuromuscular reflex response. METHODS In a randomized control trial, 15 healthy volunteers were administered with either 5 Hz rPMS, tapotement massage, or rPMS sham stimulation. The posterior tibial nerve was stimulated with rPMS and sham stimulation. The Achilles tendon was exposed to a mechanically applied high-amplitude 5 Hz repetitive tendon tapotement massage (rTTM). The tendon reflex (TR) was measured for the spinal response of the soleus muscle. RESULTS After rPMS, there was a reduction of the TR response (-9.8%, p ≤ 0.034) with no significant changes after sham stimulation. Likewise, TR decreased significantly (-17.4%, p ≤ 0.002) after Achilles tendon tapotement intervention. CONCLUSIONS These findings support the hypothesis that both afferent 5 Hz sensory stimulations contributed to a modulation within the spinal and/or supraspinal circuits, which resulted in a reduction of the spinal reflex excitability. The effects could be beneficial for patients with muscle hypertonia and could improve the functional results of rehabilitation programs.
Collapse
Affiliation(s)
- Volker R Zschorlich
- Institute of Sports Science, Faculty of Philosophy, University of Rostock, Ulmenstr. 69-House 2, 18057 Rostock, Germany
- Institute of Sport Science, School IV-School of Humanities and Social Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
- Department Aging of Individuals and Society, Faculty of Interdisciplinary Research, University of Rostock, Gehlsheimer Str. 20, 18051 Rostock, Germany
| | - Fengxue Qi
- Sports, Exercise and Brain Sciences Laboratory, Beijing Sport University, Beijing 100084, China
| | - Jörg Schorer
- Institute of Sport Science, School IV-School of Humanities and Social Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
| | - Dirk Büsch
- Institute of Sport Science, School IV-School of Humanities and Social Sciences, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
16
|
Ogawa T, Fujita K, Kawabata K, Hori H, Hayashi K, Suzuki A, Nakaya Y, Kobayashi Y. Is it safe to control the car pedal with the lower limb of the unaffected side in patients with stroke? TRAFFIC INJURY PREVENTION 2023; 25:27-35. [PMID: 37773056 DOI: 10.1080/15389588.2023.2260914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
OBJECTIVES Few studies have examined motor function in determining the suitability of patients with stroke to resume driving a car. Patients with hemiplegia usually control car pedals with the unaffected lower limb. However, motor control on the unaffected side is also impaired in patients with stroke. This study aimed to clarify the neurophysiological characteristics of pedal switching control during emergency braking in patients with hemiplegia. METHODS The study participants consisted of 10 drivers with left hemiplegia and 10 age-matched healthy drivers. An experimental pedal was used to measure muscle activity and kinematic data during braking, triggered by the light from a light-emitting diode placed in front of the drivers. RESULTS The patient group took the same reaction time as the healthy group. However, from the visual stimulus to the release of the accelerator pedal, the patient group had higher muscle activity in the tibialis anterior and rectus femoris and had faster angular velocities of hip and knee flexion than the healthy group. In addition, the patient group had higher co-contraction activities between flexors and extensors. From the accelerator pedal release to brake contact, the patient group had slower angular velocities of hip adduction, internal rotation, ankle dorsiflexion, internal return, and internal rotation than the healthy group. CONCLUSIONS Patients with hemiplegia exhibited poor control of pedal switching using their unaffected side throughout the pedal-switching task. These results indicate that the safety related to car-pedal control should be carefully evaluated while deciding whether a patient can resume driving a car after a stroke.
Collapse
Affiliation(s)
- Tomoki Ogawa
- Department of Health Science, Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui, Japan
| | - Kazuki Fujita
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| | - Kaori Kawabata
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| | - Hideaki Hori
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| | - Koji Hayashi
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, Japan
| | - Asuka Suzuki
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, Japan
| | - Yuka Nakaya
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui, Japan
| | - Yasutaka Kobayashi
- Graduate School of Health Science, Fukui Health Science University, Fukui, Japan
| |
Collapse
|
17
|
Mahmoud W, Hultborn H, Zuluaga J, Zrenner C, Zrenner B, Ziemann U, Ramos-Murguialday A. Testing spasticity mechanisms in chronic stroke before and after intervention with contralesional motor cortex 1 Hz rTMS and physiotherapy. J Neuroeng Rehabil 2023; 20:150. [PMID: 37941036 PMCID: PMC10631065 DOI: 10.1186/s12984-023-01275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Previous studies showed that repetitive transcranial magnetic stimulation (rTMS) reduces spasticity after stroke. However, clinical assessments like the modified Ashworth scale, cannot discriminate stretch reflex-mediated stiffness (spasticity) from passive stiffness components of resistance to muscle stretch. The mechanisms through which rTMS might influence spasticity are also not understood. METHODS We measured the effects of contralesional motor cortex 1 Hz rTMS (1200 pulses + 50 min physiotherapy: 3×/week, for 4-6 weeks) on spasticity of the wrist flexor muscles in 54 chronic stroke patients using a hand-held dynamometer for objective quantification of the stretch reflex response. In addition, we measured the excitability of three spinal mechanisms thought to be related to post-stroke spasticity: post-activation depression, presynaptic inhibition and reciprocal inhibition before and after the intervention. Effects on motor impairment and function were also assessed using standardized stroke-specific clinical scales. RESULTS The stretch reflex-mediated torque in the wrist flexors was significantly reduced after the intervention, while no change was detected in the passive stiffness. Additionally, there was a significant improvement in the clinical tests of motor impairment and function. There were no significant changes in the excitability of any of the measured spinal mechanisms. CONCLUSIONS We demonstrated that contralesional motor cortex 1 Hz rTMS and physiotherapy can reduce the stretch reflex-mediated component of resistance to muscle stretch without affecting passive stiffness in chronic stroke. The specific physiological mechanisms driving this spasticity reduction remain unresolved, as no changes were observed in the excitability of the investigated spinal mechanisms.
Collapse
Affiliation(s)
- Wala Mahmoud
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Hans Hultborn
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Jagoba Zuluaga
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Brigitte Zrenner
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| | - Ander Ramos-Murguialday
- Institute for Clinical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
- Tecnalia, Basque Research and Technology Alliance, San Sebastián, Spain
- Athenea Neuroclinics, San Sebastián, Spain
| |
Collapse
|
18
|
Klein C, Liu H, Zhao C, Huang W. Altered flexor carpi radialis motor axon excitability properties after cerebrovascular stroke. Front Neurol 2023; 14:1172960. [PMID: 37284180 PMCID: PMC10240235 DOI: 10.3389/fneur.2023.1172960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Background Spinal motoneurons may become hyperexcitable after a stroke. Knowledge about motoneuron hyperexcitability remains clinically important as it may contribute to a number of phenomena including spasticity, flexion synergies, and abnormal limb postures. Hyperexcitability seems to occur more often in muscles that flex the wrist and fingers (forearm flexors) compared to other upper limb muscles. The cause of hyperexcitability remains uncertain but may involve plastic changes in motoneurons and their axons. Aim To characterize intrinsic membrane properties of flexor carpi radialis (FCR) motor axons after stroke using nerve excitability testing. Methods Nerve excitability testing using threshold tracking techniques was applied to characterize FCR motor axon properties in persons who suffered a first-time unilateral cortical/subcortical stroke 23 to 308 days earlier. The median nerve was stimulated at the elbow bilaterally in 16 male stroke subjects (51.4 ± 2.9 y) with compound muscle action potentials recorded from the FCR. Nineteen age-matched males (52.7 ± 2.4 y) were also tested to serve as controls. Results Axon parameters after stroke were consistent with bilateral hyperpolarization of the resting potential. Nonparetic and paretic side axons were modeled by a 2.6-fold increase in pump currents (IPumpNI) together with an increase (38%-33%) in internodal leak conductance (GLkI) and a decrease (23%-29%) in internodal H conductance (Ih) relative to control axons. A decrease (14%) in Na+ channel inactivation rate (Aah) was also needed to fit the paretic axon recovery cycle. "Fanning out" of threshold electrotonus and the resting I/V slope (stroke limbs combined) correlated with blood potassium [K+] (R = -0.61 to 0.62, p< 0.01) and disability (R = -0.58 to 0.55, p < 0.05), but not with spasticity, grip strength, or maximal FCR activity. Conclusion In contrast to our expectations, FCR axons were not hyperexcitable after stroke. Rather, FCR axons were found to be hyperpolarized bilaterally post stroke, and this was associated with disability and [K+]. Reduced FCR axon excitability may represent a kind of bilateral trans-synaptic homeostatic mechanism that acts to minimize motoneuron hyperexcitability.
Collapse
|
19
|
Metz K, Matos IC, Hari K, Bseis O, Afsharipour B, Lin S, Singla R, Fenrich KK, Li Y, Bennett DJ, Gorassini MA. Post-activation depression from primary afferent depolarization (PAD) produces extensor H-reflex suppression following flexor afferent conditioning. J Physiol 2023; 601:1925-1956. [PMID: 36928599 PMCID: PMC11064783 DOI: 10.1113/jp283706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Suppression of the extensor H-reflex by flexor afferent conditioning is thought to be produced by a long-lasting inhibition of extensor Ia afferent terminals via GABAA receptor-activated primary afferent depolarization (PAD). Given the recent finding that PAD does not produce presynaptic inhibition of Ia afferent terminals, we examined in 28 participants if H-reflex suppression is instead mediated by post-activation depression of the extensor Ia afferents triggered by PAD-evoked spikes and/or by a long-lasting inhibition of the extensor motoneurons. A brief conditioning vibration of the flexor tendon suppressed both the extensor soleus H-reflex and the tonic discharge of soleus motor units out to 150 ms following the vibration, suggesting that part of the H-reflex suppression during this period was mediated by postsynaptic inhibition of the extensor motoneurons. When activating the flexor afferents electrically to produce conditioning, the soleus H-reflex was also suppressed but only when a short-latency reflex was evoked in the soleus muscle by the conditioning input itself. In mice, a similar short-latency reflex was evoked when optogenetic or afferent activation of GABAergic (GAD2+ ) neurons produced a large enough PAD to evoke orthodromic spikes in the test Ia afferents, causing post-activation depression of subsequent monosynaptic EPSPs. The long duration of this post-activation depression and related H-reflex suppression (seconds) was similar to rate-dependent depression that is also due to post-activation depression. We conclude that extensor H-reflex inhibition by brief flexor afferent conditioning is produced by both post-activation depression of extensor Ia afferents and long-lasting inhibition of extensor motoneurons, rather than from PAD inhibiting Ia afferent terminals. KEY POINTS: Suppression of extensor H-reflexes by flexor afferent conditioning was thought to be mediated by GABAA receptor-mediated primary afferent depolarization (PAD) shunting action potentials in the Ia afferent terminal. In line with recent findings that PAD has a facilitatory role in Ia afferent conduction, we show here that when large enough, PAD can evoke orthodromic spikes that travel to the Ia afferent terminal to evoke EPSPs in the motoneuron. These PAD-evoked spikes also produce post-activation depression of Ia afferent terminals and may mediate the short- and long-lasting suppression of extensor H-reflexes in response to flexor afferent conditioning. Our findings highlight that we must re-examine how changes in the activation of GABAergic interneurons and PAD following nervous system injury or disease affects the regulation of Ia afferent transmission to spinal neurons and ultimately motor dysfunction in these disorders.
Collapse
Affiliation(s)
- Krista Metz
- Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Isabel Concha Matos
- Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Krishnapriya Hari
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Omayma Bseis
- Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Babak Afsharipour
- Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Shihao Lin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Rahul Singla
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Yaqing Li
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - David J Bennett
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Monica A Gorassini
- Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
20
|
Dukkipati SS, Walker SJ, Trevarrow MP, Busboom MT, Kurz MJ. Spinal cord H-reflex post-activation depression is linked with hand motor control in adults with cerebral palsy. Clin Neurophysiol 2023; 148:9-16. [PMID: 36773504 PMCID: PMC9998348 DOI: 10.1016/j.clinph.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/08/2022] [Accepted: 01/01/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Cerebral palsy (CP) is associated with upper extremity motor impairments that are largely assumed to arise from alterations in the supraspinal networks. The objective of this study was to determine if post-activation depression of the spinal H-reflexes is altered in adults with CP and connected with altered upper extremity function. METHODS The post-activation depression of the flexor carpi radialis (FCR) H-reflex of adults with CP and healthy adults (HA) controls were assessed by 1) a 1 Hz continuous single-pulse stimulus train and 2) 0.11 Hz / 1 Hz paired-pulse stimuli. Secondarily, we measured the maximum key grip force and the box and blocks assessment of manual dexterity. RESULTS Our results revealed that adults with CP had reduced post-activation depression of the FCR H-reflex during the stimulus train and the paired pulse protocol. A greater reduction in H-reflex post-activation depression was connected to lower manual dexterity and weaker grip forces. CONCLUSIONS Our results indicate that the post-activation depression of the upper extremity spinal H-reflex pathways is altered in adults with CP and possibly linked with their uncharacteristic upper extremity motor performance. Alterations in the spinal networks may also play a significant role in the altered motor control of adults with CP. SIGNIFICANCE Our results identify spinal H-reflex modulation as a possible locus for hand motor control in CP.
Collapse
Affiliation(s)
- Shekar S Dukkipati
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Sarah J Walker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Michael P Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Morgan T Busboom
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
21
|
Skiadopoulos A, Famodimu GO, Solomon SK, Agarwal P, Harel NY, Knikou M. Priming locomotor training with transspinal stimulation in people with spinal cord injury: study protocol of a randomized clinical trial. Trials 2023; 24:145. [PMID: 36841773 PMCID: PMC9960224 DOI: 10.1186/s13063-023-07193-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown. METHODS Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30 min of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30 min of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder, and sexual function are taken. DISCUSSION The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because, in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach. TRIAL REGISTRATION ClinicalTrials.gov NCT04807764 . Registered on March 19, 2021.
Collapse
Affiliation(s)
- Andreas Skiadopoulos
- grid.254498.60000 0001 2198 5185Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY USA ,grid.254498.60000 0001 2198 5185Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY USA
| | - Grace O. Famodimu
- Spinal Cord Damage Research Center, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY USA
| | - Shammah K. Solomon
- grid.254498.60000 0001 2198 5185Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY USA ,grid.254498.60000 0001 2198 5185Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY USA
| | - Parul Agarwal
- grid.59734.3c0000 0001 0670 2351Population Health Science & Policy, Institute for Health Care Delivery Science, Icahn School of Medicine at Mount Sinai, Manhattan, NY USA
| | - Noam Y. Harel
- Spinal Cord Damage Research Center, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY USA ,grid.59734.3c0000 0001 0670 2351Population Health Science & Policy, Institute for Health Care Delivery Science, Icahn School of Medicine at Mount Sinai, Manhattan, NY USA
| | - Maria Knikou
- Klab4Recovery Research Program, The City University of New York, College of Staten Island, Staten Island, NY, USA. .,Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, NY, USA. .,PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York and College of Staten Island, Manhattan & Staten Island, NY, USA.
| |
Collapse
|
22
|
Skiadopoulos A, Famodimu GO, Solomon SK, Agrawal P, Harel NY, Knikou M. Priming locomotor training with transspinal stimulation in people with spinal cord injury: study protocol of a randomized clinical trial. RESEARCH SQUARE 2023:rs.3.rs-2527617. [PMID: 36824823 PMCID: PMC9949167 DOI: 10.21203/rs.3.rs-2527617/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Background The seemingly simple tasks of standing and walking require continuous integration of complex spinal reflex circuits between descending motor commands and ascending sensory inputs. Spinal cord injury greatly impairs standing and walking ability, but both improve with locomotor training. However, even after multiple locomotor training sessions, abnormal muscle activity and coordination persist. Thus, locomotor training alone cannot fully optimize the neuronal plasticity required to strengthen the synapses connecting the brain, spinal cord, and local circuits and potentiate neuronal activity based on need. Transcutaneous spinal cord (transspinal) stimulation alters motoneuron excitability over multiple segments by bringing motoneurons closer to threshold, a prerequisite for effectively promoting spinal locomotor network neuromodulation and strengthening neural connectivity of the injured human spinal cord. Importantly, whether concurrent treatment with transspinal stimulation and locomotor training maximizes motor recovery after spinal cord injury is unknown. Methods Forty-five individuals with chronic spinal cord injury are receiving 40 sessions of robotic gait training primed with 30 Hz transspinal stimulation at the Thoracic 10 vertebral level. Participants are randomized to receive 30-minutes of active or sham transspinal stimulation during standing or active transspinal stimulation while supine followed by 30-minutes of robotic gait training. Over the course of locomotor training, the body weight support, treadmill speed, and leg guidance force are adjusted as needed for each participant based on absence of knee buckling during the stance phase and toe dragging during the swing phase. At baseline and after completion of all therapeutic sessions, neurophysiological recordings registering corticospinal and spinal neural excitability changes along with clinical assessment measures of standing and walking, and autonomic function via questionnaires regarding bowel, bladder and sexual function are taken. Discussion The results of this mechanistic randomized clinical trial will demonstrate that tonic transspinal stimulation strengthens corticomotoneuronal connectivity and dynamic neuromodulation through posture-dependent corticospinal and spinal neuroplasticity. We anticipate that this mechanistic clinical trial will greatly impact clinical practice because in real-world clinical settings, noninvasive transspinal stimulation can be more easily and widely implemented than invasive epidural stimulation. Additionally, by applying multiple interventions to accelerate motor recovery, we are employing a treatment regimen that reflects a true clinical approach. Trial registration ClinicalTrials.gov: NCT04807764; Registered on March 19, 2021.
Collapse
Affiliation(s)
| | | | | | - Parul Agrawal
- Icahn School of Medicine at Mount Sinai Department of Population Health Science and Policy
| | - Noam Y Harel
- James J Peters VAMC: James J Peters VA Medical Center
| | - Maria Knikou
- College of Staten Island School of Health Sciences
| |
Collapse
|
23
|
Colard J, Jubeau M, Duclay J, Cattagni T. Regulation of primary afferent depolarization and homosynaptic post-activation depression during passive and active lengthening, shortening and isometric conditions. Eur J Appl Physiol 2023; 123:1257-1269. [PMID: 36781424 DOI: 10.1007/s00421-023-05147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE This study aimed to determine whether the modulation of primary afferent depolarization (PAD) and homosynaptic post-activation depression (HPAD) are involved in the lower efficacy of Ia-afferent-α-motoneuron transmission commonly observed during lengthening compared to isometric and shortening conditions. METHODS 15 healthy young individuals participated in two experimental sessions dedicated to measurement in passive and active muscle states, respectively. In each session, PAD, HPAD and the efficacy of Ia-afferent-α-motoneuron transmission were evaluated during lengthening, shortening and isometric conditions. PAD was evaluated with D1 inhibition technique. Posterior tibial nerve stimulation was used to study HPAD and the efficacy of the Ia-afferent-α-motoneuron transmission through the recording of the soleus Hoffmann reflex (H reflex). RESULTS PAD was increased in lengthening than shortening (11.2%) and isometric (12.3%) conditions regardless of muscle state (P < 0.001). HPAD was increased in lengthening than shortening (5.1%) and isometric (4.2%) conditions in the passive muscle state (P < 0.05), while no difference was observed in the active muscle state. H reflex was lower in lengthening than shortening (- 13.2%) and isometric (- 9.4%) conditions in both muscle states (P < 0.001). CONCLUSION These results highlight the specific regulation of PAD and HPAD during lengthening conditions. However, the differences observed during passive lengthening compared to shortening and isometric conditions seem to result from an increase in Ia-afferent discharge, while the variations highlighted during active lengthening might come from polysynaptic descending pathways involving supraspinal centres that could regulate PAD mechanism.
Collapse
Affiliation(s)
- Julian Colard
- Nantes University, Movement-Interactions-Performance, MIP, 25 Bis Boulevard Guy Mollet-BP 72206, UR 4334, 44322, Nantes, France
| | - Marc Jubeau
- Nantes University, Movement-Interactions-Performance, MIP, 25 Bis Boulevard Guy Mollet-BP 72206, UR 4334, 44322, Nantes, France.
| | - Julien Duclay
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Thomas Cattagni
- Nantes University, Movement-Interactions-Performance, MIP, 25 Bis Boulevard Guy Mollet-BP 72206, UR 4334, 44322, Nantes, France
| |
Collapse
|
24
|
Abstract
Spasticity is characterized by an enhanced size and reduced threshold for activation of stretch reflexes and is associated with "positive signs" such as clonus and spasms, as well as "negative features" such as paresis and a loss of automatic postural responses. Spasticity develops over time after a lesion and can be associated with reduced speed of movement, cocontraction, abnormal synergies, and pain. Spasticity is caused by a combination of damage to descending tracts, reductions in inhibitory activity within spinal cord circuits, and adaptive changes within motoneurons. Increased tone, hypertonia, can also be caused by changes in passive stiffness due to, for example, increase in connective tissue and reduction in muscle fascicle length. Understanding the cause of hypertonia is important for determining the management strategy as nonneural, passive causes of stiffness will be more amenable to physical rather than pharmacological interventions. The management of spasticity is determined by the views and goals of the patient, family, and carers, which should be integral to the multidisciplinary assessment. An assessment, and treatment, of trigger factors such as infection and skin breakdown should be made especially in people with a recent change in tone. The choice of management strategies for an individual will vary depending on the severity of spasticity, the distribution of spasticity (i.e., whether it affects multiple muscle groups or is more prominent in one or two groups), the type of lesion, and the potential for recovery. Management options include physical therapy, oral agents; focal therapies such as botulinum injections; and peripheral nerve blocks. Intrathecal baclofen can lead to a reduction in required oral antispasticity medications. When spasticity is severe intrathecal phenol may be an option. Surgical interventions, largely used in the pediatric population, include muscle transfers and lengthening and selective dorsal root rhizotomy.
Collapse
Affiliation(s)
- Jonathan Marsden
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, United Kingdom.
| | - Valerie Stevenson
- Department of Therapies and Rehabilitation, National Hospital for Neurology and Neurosurgery UCLH, London, United Kingdom
| | - Louise Jarrett
- Department of Neurology, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| |
Collapse
|
25
|
Dietz N, Wagers S, Harkema SJ, D'Amico JM. Intrathecal and Oral Baclofen Use in Adults With Spinal Cord Injury: A Systematic Review of Efficacy in Spasticity Reduction, Functional Changes, Dosing, and Adverse Events. Arch Phys Med Rehabil 2023; 104:119-131. [PMID: 35750207 DOI: 10.1016/j.apmr.2022.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To examine the efficacy, dosing, and safety profiles of intrathecal and oral baclofen in treating spasticity after spinal cord injury (SCI). DATA SOURCES PubMed and Cochrane Databases were searched from 1970-2018 with keywords baclofen, spinal cord injury, and efficacy. STUDY SELECTION The database search yielded 588 sources and 10 additional relevant publications. After removal of duplicates, 398 publications were screened. DATA EXTRACTION Data were extracted using the following population, intervention, comparator, outcomes, and study designs criteria: studies including adult patients with SCI with spasticity; the intervention could be oral or intrathecal administration of baclofen; selection was inclusive for control groups, surgical management, rehabilitation, and alternative pharmaceutical agents; outcomes were efficacy, dosing, and adverse events. Randomized controlled trials, observational studies, and case reports were included. Meta-analyses and systematic reviews were excluded. DATA SYNTHESIS A total of 98 studies were included with 1943 patients. Only 4 randomized, double-blinded, and placebo-controlled trials were reported. Thirty-nine studies examined changes in the Modified Ashworth Scale (MAS; 34 studies) and Penn Spasm scores (Penn Spasm Frequency; 19 studies), with average reductions of 1.7±1.3 and 1.6±1.4 in individuals with SCI, respectively. Of these data, a total of 6 of the 34 studies (MAS) and 2 of the 19 studies (Penn Spasm Frequency) analyzed oral baclofen. Forty-three studies addressed adverse events with muscle weakness and fatigue frequently reported. CONCLUSIONS Baclofen is the most commonly-prescribed antispasmodic after SCI. Surprisingly, there remains a significant lack of large, placebo-controlled, double-blinded clinical trials, with most efficacy data arising from small studies examining treatment across different etiologies. In the studies reviewed, baclofen effectively improved spasticity outcome measures, with increased efficacy through intrathecal administration. Few studies assessed how reduced neural excitability affected residual motor function and activities of daily living. A host of adverse events were reported that may negatively affect quality of life. Comparative randomized controlled trials of baclofen and alternative treatments are warranted because these have demonstrated promise in relieving spasticity with reduced adverse events and without negatively affecting residual motor function.
Collapse
Affiliation(s)
- Nicholas Dietz
- Department of Neurological Surgery, University of Louisville, Louisville, KY; Kentucky Spinal Cord Injury Research Center, Louisville, KY
| | - Sarah Wagers
- Department of Neurological Surgery, University of Louisville, Louisville, KY; Kentucky Spinal Cord Injury Research Center, Louisville, KY
| | - Susan J Harkema
- Department of Neurological Surgery, University of Louisville, Louisville, KY; Kentucky Spinal Cord Injury Research Center, Louisville, KY
| | - Jessica M D'Amico
- Department of Neurological Surgery, University of Louisville, Louisville, KY; Kentucky Spinal Cord Injury Research Center, Louisville, KY.
| |
Collapse
|
26
|
Intrathecal Baclofen for Spasticity: Is There an Effect on Bladder Function? Report of Three Cases and Review of the Literature. Biomedicines 2022; 10:biomedicines10123266. [PMID: 36552022 PMCID: PMC9775073 DOI: 10.3390/biomedicines10123266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION traumatic brain injury (TBI) is very often associated with spasticity. Medical interventions may include medications such as baclofen, a Gamma-Aminobutyric Acid (GABA) -receptor agonist of poor lipid solubility. Intrathecal baclofen (ITB) administration is a contemporary treatment option which minimizes adverse effects in contrast with the oral form of the drug. Regarding low urinary tract dysfunction, TBI, as a suprapontine lesion, results in neurogenic detrusor overactivity. Frequency, urgency and urge incontinence are the predominant signs and symptoms of this condition. Our study aims to report the potential changes in bladder function in patients with spasticity, due to TBI, after the implantation of the baclofen pump and the control of spasticity. MATERIAL AND METHODS We report three cases of TBI whose spasticity responded well to ITB. We evaluated our medical reports regarding bladder function retrospectively, before and after baclofen pump implantation. We compared the data of bladder diaries and urodynamic parameters. RESULTS Bladder function was improved in all patients. Regarding bladder diaries; the number of incontinence and micturition episodes was decreased and the volume per void was slightly increased. Regarding urodynamic parameters; bladder capacity and reflex volume increased, Pdetmax decreased, PVR was the same and DLPP was slightly decreased. CONCLUSIONS Although the baclofen pump is implanted to treat spasticity, detrusor activity may be also affected. Therefore, patients' urologic profiles should also be reevaluated after ITB. Further prospective studies are required to investigate the effect of ITB on bladder function in the clinical field and also at the basic science level.
Collapse
|
27
|
Massey S, Vanhoestenberghe A, Duffell L. Neurophysiological and clinical outcome measures of the impact of electrical stimulation on spasticity in spinal cord injury: Systematic review and meta-analysis. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:1058663. [PMID: 36589715 PMCID: PMC9801305 DOI: 10.3389/fresc.2022.1058663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022]
Abstract
This systematic review and meta-analysis aims to determine whether non-invasive electrical stimulation (ES) is effective at reducing spasticity in people living with spinal cord injury (SCI). PubMed, Web of Science, Scopus and Cochrane Central Register of Controlled Trials databases were searched in April 2022. Primary outcome measures were the Ashworth scale (AS), Modified Ashworth scale (MAS), Pendulum test and the Penn spasm frequency scale (PSFS). Secondary outcomes were the Hoffman (H)- reflex, motor-evoked potentials (MEPs) and posterior-root reflexes (PRRs). A random-effects model, using two correlation coefficients, ( C o r r = 0.1 , C o r r = 0.2 ) determined the difference between baseline and post-intervention measures for RCTs. A quantitative synthesis amalgamated data from studies with no control group (non-RCTs). Twenty-nine studies were included: five in the meta-analysis and 17 in the amalgamation of non-RCT studies. Twenty studies measured MAS or AS scores, 14 used the Pendulum test and one used the PSFS. Four measured the H-reflex and no studies used MEPs or PRRs. Types of ES used were: transcutaneous electrical nerve stimulation (TENS), transcutaneous spinal cord stimulation (TSCS), functional electrical stimulation (FES) cycling and FES gait. Meta-analyses of 3 studies using the MAS and 2 using the Pendulum test were carried out. For MAS scores, non-invasive ES was effective at reducing spasticity compared to a control group (p = 0.01, C o r r = 0.1 ; p = 0.002, C o r r = 0.2 ). For Pendulum test outcomes, there was no statistically significant difference between intervention and control groups. Quantitative synthesis of non-RCT studies revealed that 22 of the 29 studies reported improvement in at least one measure of spasticity following non-invasive ES, 13 of which were statistically significant (p < 0.05). Activation of the muscle was not necessary to reduce spasticity. Non-invasive ES can reduce spasticity in people with SCI, according to MAS scores, for both RCT and non-RCT studies, and Pendulum test values in non-RCT studies. This review could not correlate between clinical and neurophysiological outcomes; we recommend the additional use of neurophysiological outcomes for future studies. The use of TSCS and TENS, which did not induce a muscle contraction, indicate that activation of afferent fibres is at least required for non-invasive ES to reduce spasticity.
Collapse
Affiliation(s)
- Sarah Massey
- Aspire Centre for Rehabilitation Engineering and Assistive Technologies, Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
| | - Anne Vanhoestenberghe
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Lynsey Duffell
- Aspire Centre for Rehabilitation Engineering and Assistive Technologies, Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
- Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
28
|
Bakalkin G. The left-right side-specific endocrine signaling in the effects of brain lesions: questioning of the neurological dogma. Cell Mol Life Sci 2022; 79:545. [PMID: 36219330 PMCID: PMC9553812 DOI: 10.1007/s00018-022-04576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Each cerebral hemisphere is functionally connected to the contralateral side of the body through the decussating neural tracts. The crossed neural pathways set a basis for contralateral effects of brain injury such hemiparesis and hemiplegia as it has been already noted by Hippocrates. Recent studies demonstrated that, in addition to neural mechanisms, the contralateral effects of brain lesions are mediated through the humoral pathway by neurohormones that produce either the left or right side-specific effects. The side-specific humoral signaling defines whether the left or right limbs are affected after a unilateral brain injury. The hormonal signals are released by the pituitary gland and may operate through their receptors that are lateralized in the spinal cord and involved in the side-specific control of symmetric neurocircuits innervating the left and right limbs. Identification of features and a proportion of neurological deficits transmitted by neurohormonal signals vs. those mediated by neural pathways is essential for better understanding of mechanisms of brain trauma and stroke and development of new therapies. In a biological context, the left-right side-specific neuroendocrine signaling may be fundamental for the control of the left- and right-sided processes in bilaterally symmetric animals.
Collapse
Affiliation(s)
- Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
29
|
Benavides J, Castro OE. Validation of a semiological maneuver for the evaluation of spastic dynamic clubfoot: an approach based on the judgment of experts in physical medicine and rehabilitation. Eur J Phys Rehabil Med 2022; 58:575-583. [PMID: 35191656 PMCID: PMC9980492 DOI: 10.23736/s1973-9087.22.07355-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The evaluation of spasticity of the plantar flexors in dynamic clubfoot is difficult due to the almost invariable concomitance of Achilles clonus, which is a semiological artifact. No description was found in the literature of a technique for inhibiting or reducing the discharge generated by Achilles clonus to allow a correct assessment of spasticity in this segment. AIM Validation of a semiological maneuver that reduces or eliminates Achilles clonus for the adequate evaluation of spastic dynamic clubfoot. DESIGN Multicenter cross-sectional study. SETTING The study was conducted by 12 experts in physical medicine and rehabilitation from various clinics and hospitals in Colombia. POPULATION Thirty-five adults with dynamic spastic clubfoot and Achilles clonus secondary to upper motor neuron syndrome who attended outpatient consultation at physical medicine and rehabilitation services in eight cities Colombia from August 2020 to February 2021. METHODS The usual method for examining spastic plantar flexors was compared to the proposed semiological maneuver to evaluate the proposed maneuver contributed to the reduction or elimination of Achilles clonus to allow a more accurate measure of spasticity in this segment. Four dimensions were evaluated by the experts: time required for application, simplicity, effectiveness and clinical utility. A cutoff point was established to identify whether the maneuver was unacceptable, acceptable or excellent. RESULTS The application of the maneuver was able to reduce or eliminate Achilles clonus as a masking sign of spasticity in the plantar flexors in 100% of the patients and was considered excellent in 77.1% of the cases for the four dimensions evaluated. A decrease in the degree of spasticity of the plantar flexors was observed when the maneuver was applied. CONCLUSIONS The proposed maneuver reduces or eliminates Achilles clonus, which could allow a more precise evaluation of spasticity in this segment. All of the experts recommended including the maneuver in routine examinations of this population. CLINICAL REHABILITATION IMPACT Applying the proposed maneuver could improve the selection of patients with spastic dynamic clubfoot who require specific treatment.
Collapse
Affiliation(s)
- Javier Benavides
- Department of Physical Medicine and Rehabilitation, University of Valle, Cali, Colombia -
| | - Oscar E Castro
- Department of Physical Medicine and Rehabilitation, University of Valle, Cali, Colombia
| |
Collapse
|
30
|
Zhou X, Zhu Y, Wang Z, Lin Z, Zhu D, Xie C, Calcutt NA, Guan Y. Rate-Dependent Depression: A Predictor of the Therapeutic Efficacy in Treating Painful Diabetic Peripheral Neuropathy. Diabetes 2022; 71:1272-1281. [PMID: 35234842 DOI: 10.2337/db21-0960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022]
Abstract
We investigated the application of rate-dependent depression (RDD) of the Hoffmann (H) wave as a predictor of treatment efficacy in patients with painful diabetic peripheral neuropathy (DPN). General medical information, scales, and nerve conduction data were collected from 73 healthy subjects, 50 subjects with type 2 diabetes and painless DPN, and 71 subjects with type 2 diabetes and painful DPN. The left tibial nerve was stimulated, and RDD was calculated by the decline in amplitude of the third H wave relative to the first one. Gabapentin treatment was initiated after baseline evaluation, and the RDD and visual analog scale (VAS) score were both evaluated regularly during the 2-week study period. At baseline, the painful DPN group exhibited significant RDD impairment across all stimulation frequencies. Gabapentin treatment significantly reduced the VAS score and restored RDD during the 2-week observation period. RDD was found to be an independent factor of minimal VAS score improvement, such that the benefit increased by 1.27 times per 1% decrease in the RDD value. In conclusion, this study demonstrates that diabetes-induced loss of RDD can be modified by gabapentin and suggests that RDD may be valuable for predicting the initial efficacy of gabapentin therapy in patients with painful DPN.
Collapse
Affiliation(s)
- Xiajun Zhou
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Zhu
- Department of Neurology, Shanghai International Medical Center, Shanghai, China
| | - Ze Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhi Lin
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Desheng Zhu
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Nigel A Calcutt
- Department of Pathology, University of California, San Diego, San Diego, CA
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Hirabayashi R, Edama M, Saito A, Yamada Y, Nawa R, Onishi H. Effects of Clenching Strength on Exercise Performance: Verification Using Spinal Function Assessments. Sports Health 2022; 14:404-414. [PMID: 34053343 PMCID: PMC9112714 DOI: 10.1177/19417381211014836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND This study aimed to determine the relationship between exercise performance and spinal function based on clenching strength. HYPOTHESIS Low-intensity clenching contributes to joint movement, whereas high-intensity clenching contributes to joint fixation. STUDY DESIGN Randomized crossover trial. LEVEL OF EVIDENCE Level 3. METHODS Two experiments were conducted using 2 groups of 20 healthy adults. The 4 clenching conditions in experiment 1 were 0%, 12.5%, 25%, and 50% of the maximum voluntary contraction (MVC) of the masseter muscle. Experiment 2 consisted of 3 conditions: no-bite condition, moderate effort, and maximum effort (max condition). In experiment 1, spinal function and ankle dorsiflexion tasks were measured for each clenching condition, and the ankle dorsiflexion task was measured in experiment 2. Regarding spinal function, we measured spinal reciprocal inhibition (RI) and excitability of spinal anterior horn cells. For the ankle dorsiflexion task, ankle dorsiflexion MVC was performed for 3 seconds under each clenching condition. The items analyzed were reaction time, peak ankle dorsiflexion torque, and soleus (Sol)/tibialis anterior (TA) electromyography (EMG) ratio. RESULTS The results of experiment 1 illustrated that RI was significantly attenuated or eliminated with increasing clenching strength (>25% MVC). Spinal anterior horn cell excitability increased significantly with increasing clenching strength. The peak torque was significantly higher at 50% MVC than that at 0% MVC. In experiment 2, the peak torque was significantly higher under moderate and max conditions than no-bite condition, and the Sol/TA EMG ratio was significantly higher under max condition than that under moderate condition. CONCLUSION/CLINICAL RELEVANCE The results illustrated that during high-strength clenching (≥50% MVC), antagonist muscles are activated simultaneously to increase muscle strength. High-strength clenching improved kinetic performance (joint fixation), whereas low-strength clenching (<50% MVC) enhanced exercise performance (joint movement).
Collapse
Affiliation(s)
- Ryo Hirabayashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Mutsuaki Edama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Arisa Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yuki Yamada
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Ryohei Nawa
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
32
|
Carzoli JP, Alenazy M, Richmond SB, Enoka RM. Bursting TENS increases walking endurance more than Continuous TENS in middle-aged adults. J Electromyogr Kinesiol 2022; 63:102644. [DOI: 10.1016/j.jelekin.2022.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
|
33
|
Anodal tDCS of contralesional hemisphere modulates ipsilateral control of spinal motor networks targeting the paretic arm post-stroke. Clin Neurophysiol 2022; 136:1-12. [DOI: 10.1016/j.clinph.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/23/2021] [Accepted: 12/19/2021] [Indexed: 11/23/2022]
|
34
|
Bertschinger R, Giboin LS, Gruber M. Endurance Trained Athletes Do Not per se Have Higher Hoffmann Reflexes Than Recreationally Active Controls. Front Physiol 2021; 12:736067. [PMID: 34867445 PMCID: PMC8633408 DOI: 10.3389/fphys.2021.736067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
The impact of endurance training on spinal neural circuitries remains largely unknown. Some studies have reported higher H-reflexes in endurance trained athletes and therefore, adaptations within the Ia afferent pathways after long term endurance training have been suggested. In the present study we tested the hypothesis that cyclists (n = 12) demonstrate higher Hoffmann reflexes (H-reflexes) compared to recreationally active controls (n = 10). Notwithstanding, highly significant differences in endurance performance (VO2peak: 60.6 for cyclists vs. 46.3 ml/min/kg for controls (p < 0.001) there was no difference in the size of the SOL H-reflex between cyclists and controls (Hmax/Mmax ratio 61.3 vs. 60.0%, respectively (p = 0.840). Further analyses of the H and M recruitment curves for SOL revealed a significant steeper slope of the M recruitment curve in the group of cyclists (76.2 ± 3.8° vs. 72.0 ± 4.4°, p = 0.046) without a difference in the H-recruitment curve (84.6 ± 3.0° vs. 85.0 ± 2.8°, p = 0.784) compared to the control group. Cycling is classified as an endurance sport and thus the findings of the present study do not further support the assumption that long-term aerobic training leads to a general increase of the H-reflex. Amongst methodological differences in assessing the H-reflex, the training-specific sensorimotor control of the endurance sport itself might differently affect the responsiveness of spinal motoneurons on Ia-afferent inputs.
Collapse
Affiliation(s)
- Raphael Bertschinger
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Louis-Solal Giboin
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| |
Collapse
|
35
|
Rothwell J, Antal A, Burke D, Carlsen A, Georgiev D, Jahanshahi M, Sternad D, Valls-Solé J, Ziemann U. Central nervous system physiology. Clin Neurophysiol 2021; 132:3043-3083. [PMID: 34717225 PMCID: PMC8863401 DOI: 10.1016/j.clinph.2021.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
This is the second chapter of the series on the use of clinical neurophysiology for the study of movement disorders. It focusses on methods that can be used to probe neural circuits in brain and spinal cord. These include use of spinal and supraspinal reflexes to probe the integrity of transmission in specific pathways; transcranial methods of brain stimulation such as transcranial magnetic stimulation and transcranial direct current stimulation, which activate or modulate (respectively) the activity of populations of central neurones; EEG methods, both in conjunction with brain stimulation or with behavioural measures that record the activity of populations of central neurones; and pure behavioural measures that allow us to build conceptual models of motor control. The methods are discussed mainly in relation to work on healthy individuals. Later chapters will focus specifically on changes caused by pathology.
Collapse
Affiliation(s)
- John Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK,Corresponding author at: Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, (J. Rothwell)
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Germany
| | - David Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney 2050, Australia
| | - Antony Carlsen
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Dagmar Sternad
- Departments of Biology, Electrical & Computer Engineering, and Physics, Northeastern University, Boston, MA 02115, USA
| | - Josep Valls-Solé
- Institut d’Investigació Biomèdica August Pi I Sunyer, Villarroel, 170, Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
36
|
Zhou X, Wang Z, Lin Z, Zhu Y, Zhu D, Xie C, Calcutt NA, Guan Y. Rate-dependent depression is impaired in amyotrophic lateral sclerosis. Neurol Sci 2021; 43:1831-1838. [PMID: 34518934 DOI: 10.1007/s10072-021-05596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We investigated rate-dependent depression (RDD) of the Hoffman reflex (H-reflex) in patients with amyotrophic lateral sclerosis (ALS), a degenerative disease with ventral horn involvement. PATIENTS AND METHODS In this case-control study, we enrolled 27 patients with ALS and 30 matched healthy control subjects. Clinical and electrophysiological assessments, as well as RDD in response to various stimulation frequencies (0.5 Hz, 1 Hz, 3 Hz and 5 Hz), were compared between groups. Multiple clinical and electrophysiological factors were also explored to determine any underlying associations with RDD. RESULTS The ALS group showed a significant loss of RDD across all frequencies compared to the control group, most notably following 1 Hz stimulation (19.1 ± 20.3 vs. 34.0 ± 13.7%, p = 0.003). Among factors that might influence RDD, the enlargement of the motor unit potential (MUP) showed a significant relationship with RDD following multifactor analysis of variance (p = 0.007) and Pearson correlation analysis (ρ = - 0.70, p < 0.001), while various upper motor neuron manifestations were not correlated with RDD values (p > 0.05). CONCLUSION We report a loss of RDD in patients with ALS. The strong correlation detected between the RDD deficit and increased MUP suggests that RDD is a sensitive indicator of underlying spinal disinhibition in ALS. TRIAL REGISTRATION ChiCTR2000038848, 10/7/2020 (retrospectively registered), http://www.chictr.org.cn/ .
Collapse
Affiliation(s)
- Xiajun Zhou
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Ze Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Zhi Lin
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Ying Zhu
- Department of Neurology, Shanghai International Medical Center, Shanghai, 201318, China
| | - Desheng Zhu
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, San Diego, CA, 92093, USA
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
37
|
Vitry F, Papaiordanidou M, Martin A. Mechanisms modulating spinal excitability after nerve stimulation inducing extra torque. J Appl Physiol (1985) 2021; 131:1162-1175. [PMID: 34264132 DOI: 10.1152/japplphysiol.00005.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study included three experiments aiming to examine the mechanisms responsible for spinal excitability modulation, as assessed by the H-reflex, following stimulation trains delivered at two different frequencies (20 and 100 Hz) inducing extra torque (ET). A first experiment (n = 15) was conducted to evaluate changes in presynaptic inhibition acting on Ia afferents induced by these electrical stimulation trains, assessed by conditioning the soleus H-reflex (tibial nerve stimulation) with stimulation of the common peroneal nerve (D1 inhibition) and of the femoral nerve (heteronymous Ia facilitation, HF). A second experiment (n = 12) permitted to investigate homosynaptic postactivation depression (HPAD) changes after the stimulation trains. A third experiment (n = 14) analyzed changes in motoneuron intrinsic properties after the stimulation trains, by electrically stimulating the descending corticospinal tract at the thoracic level, evoking thoracic motor-evoked potentials (TMEP). Main results showed that in all experiments, spinal excitability decreased after the 20-Hz train (P < 0.05), whereas this parameter significantly increased after the 100-Hz stimulation (P < 0.05). D1 and HF were not significantly modified after either stimulation. HPAD was significantly decreased only after the 20-Hz train, whereas TMEP was significantly increased only after the 100-Hz train (P < 0.05). It is concluded that the decreased spinal excitability observed after the 20-Hz train cannot be attributed to D1 presynaptic inhibition but rather to increased HPAD of the Ia afferents terminals, whereas the increase of this parameter obtained after the 100-Hz train can be assigned to changes in intrinsic motoneuron properties allowing to maintain Ia-α-motoneurons transmission efficacy.NEW & NOTEWORTHY Using different electrophysiological techniques, results show that the downregulation of spinal excitability observed after the 20-Hz train could be ascribed to homosynaptic postactivation depression of the Ia afferents terminals, whereas changes in intrinsic motoneuron properties could explain the increased spinal excitability observed after the 100-Hz train. A novel methodology for assessing soleus D1 presynaptic inhibition and heteronymous Ia facilitation, accounting for eventual modulations of test reflex amplitude throughout the session, was developed.
Collapse
Affiliation(s)
- Florian Vitry
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Maria Papaiordanidou
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Alain Martin
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| |
Collapse
|
38
|
Effects of Ankle Continuous Passive Motion on Soleus Hypertonia in Individuals with Cerebral Palsy: A Case Series. Biomed J 2021; 45:708-716. [PMID: 34332162 PMCID: PMC9486241 DOI: 10.1016/j.bj.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background Continuous passive motion device (CPM) provides repetitive movement over extended periods of time for those who have low functional ability. The purpose of this research was to evaluate the effects of a four-week program of continuous passive motion of the ankle joint on the changes in soleus hypertonia in individuals with cerebral palsy who suffered from life-long hypertonia. Methods A single group, repeated-measures study was conducted. Eight individuals (7 males and 1 female with a mean age of 21.8 ± 8.5 years) with spastic cerebral palsy underwent bilateral ankle CPM for 1 h a day, 5 days a week, for 4 weeks. The outcome measures included the Modified Ashworth Scale (MAS) score, passive range of motion (PROM) of the ankle, the ratio of maximum H reflex to maximum soleus M-response (H/M ratio), and post-activation depression (PAD). All outcomes were measured before and after the intervention. A paired t-test was used to examine treatment effects pre-versus post-intervention. Results Paired t-tests showed that the CPM program significantly decreased the MAS score (p = 0.006), decreased the maximum H/M ratio (p=0.001), improved PAD (p = 0.003, p = 0.040, and p = 0.032 at 0.2 Hz, 1 Hz, and 2 Hz, respectively), and increased the passive ankle range of motion (p = 0.049). Conclusion Ankle CPM not only reduced soleus hypertonia but also improved the PROM in individuals with cerebral palsy. The results of this study show ankle CPM to be an effective intervention for individuals with cerebral palsy.
Collapse
|
39
|
Lalonde NR, Bui TV. Do spinal circuits still require gating of sensory information by presynaptic inhibition after spinal cord injury? CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Reliability of the Soleus H-Reflex in Different Sitting Postures. Med Sci (Basel) 2020; 8:medsci8040048. [PMID: 33255729 PMCID: PMC7712283 DOI: 10.3390/medsci8040048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 11/24/2022] Open
Abstract
The Soleus (SOL) Hoffmann reflex (H-reflex) is commonly recorded in sitting position. However, the reliability of recording is unknown. We assessed the reliability of SOL H-reflex amplitude measurements across multiple traces and sessions during erect, slumped, and slouched sitting postures using the generalizability theory. Five traces of the SOL H-reflex maximum amplitude (Hmax) were recorded from 10 healthy participants during erect, slumped, and slouched sitting postures in two sessions. A decision study analysis was then conducted to calculate the reliability coefficients of the Hmax for five traces and two sessions and to mathematically calculate the coefficients for seven and ten traces, and one and three sessions in the three sitting postures. For five traces and two sessions, the results showed reliability coefficients between 0.970 and 0.971, 0.980 and 0.979, and equal to 0.943 for erect, slumped, and slouched sitting, respectively. Averaging five traces of the Hmax in a single recording session was sufficient to obtain acceptable reliability in the three sitting postures (reliability range, 0.892–0.988). It was concluded that the SOL Hmax can be recorded during erect, slumped, and slouched sitting postures with adequate reliability.
Collapse
|
41
|
Özyurt MG, Topkara B, Şenocak BS, Budan AS, Yüce MN, Türker KS. Post-activation depression of primary afferents reevaluated in humans. J Electromyogr Kinesiol 2020; 54:102460. [PMID: 32905963 DOI: 10.1016/j.jelekin.2020.102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 11/26/2022] Open
Abstract
Amplitude variation of Hoffmann Reflex (H-reflex) was used as a tool to investigate many neuronal networks. However, H-reflex itself is a subject to intrinsic changes including post-activation depression (P-AD). We aimed to investigate P-AD and its implication on motor control in humans. Upon tibial nerve stimulation in 23 healthy participants, peak-to-peak amplitude change of H-reflex was investigated using surface electromyography (SEMG) of soleus muscle. Variety of stimulus intensities, interstimulus intervals (ISIs), voluntary contraction levels/types and force recording were used to investigate the nature of P-AD. We have shown that P-AD was significantly stronger in the shorter ISIs. The only exception was the ISI of 200 msecs which had a weaker P-AD than some of the longer ISIs. Sudden muscle relaxation, on the other hand, further increased the effectiveness of the ongoing P-AD. Moreover, P-AD displayed its full effect with the first stimulus when there was no muscle contraction and was efficient to reduce the muscle force output by about 30%. These findings provide insight about the variations and mechanism of P-AD and could lead to improvements in diagnostic tools in neurological diseases.
Collapse
Affiliation(s)
| | - Betilay Topkara
- Koç University, School of Medicine, 34450 Sariyer, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
42
|
Deficits in corticospinal control of stretch reflex thresholds in stroke: Implications for motor impairment. Clin Neurophysiol 2020; 131:2067-2078. [DOI: 10.1016/j.clinph.2020.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/24/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
|
43
|
Yurttutmuş Z, Ekici Zincirci D, Bardak AN, Topkara B, Aydın T, Karacan I, Türker KS. A stimulus rate that is not influenced by homosynaptic post-activation depression in chronic stroke. Somatosens Mot Res 2020; 37:271-276. [PMID: 32811248 DOI: 10.1080/08990220.2020.1807925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To determine a stimulus rate that is not influenced by homosynaptic post-activation depression for H-reflex studies in patients with chronic spasticity. MATERIALS AND METHODS A cohort of 15 chronic stroke patients with soleus spasticity who received inpatient treatment at our rehabilitation centre participated in this study. The effect of stimulus frequency related depression on H-reflex size was tested using four different stimulus rates (0.1, 0.2, 0.3 and 1 Hz). The affected sides stibial nerve was stimulated by a bipolar electrode. The H-reflex was recorded from the affected sideed sidee sidehe affected smine stimulus frequency related depression of H-reflex size, amplitude of the first H-reflex response (H1) was used as control and amplitude of the second H-reflex response (H2) as test. RESULTS H2 amplitude for frequency of 1 Hz, 0.3 Hz, 0.2 Hz and 0.1 Hz were 74.3, 84.1, 85.5 and 92.7% of H1, respectively. Depression of H2 amplitude was statistically significant for 1 Hz, 0.3 Hz and 0.2 Hz (p < 0.001, p = 0.002, p = 0.024, respectively). CONCLUSIONS Higher frequency stimulation of Ia afferents than 0.1 Hz induced a stimulus frequency-related depression of H-reflex size in patients with chronic spasticity. The optimal stimulus rate for H-reflex was found to be 0.1 Hz.
Collapse
Affiliation(s)
- Zeynep Yurttutmuş
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Dilara Ekici Zincirci
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Ayse Nur Bardak
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Betilay Topkara
- Physiology Department, Koç University School of Medicine, Istanbul, Turkey
| | - Tugba Aydın
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Ilhan Karacan
- Istanbul Physical Therapy Rehabilitation Training and Research Hospital, Istanbul, Turkey
| | - Kemal S Türker
- Physiology Department, Koç University School of Medicine, Istanbul, Turkey
| |
Collapse
|
44
|
Swash M, de Carvalho M. Measuring spinal presynaptic inhibition in human subjects. Clin Neurophysiol 2020; 131:1966-1967. [DOI: 10.1016/j.clinph.2020.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
|
45
|
Peeters N, Van Campenhout A, Hanssen B, Cenni F, Schless SH, Van den Broeck C, Desloovere K, Bar-On L. Joint and Muscle Assessments of the Separate Effects of Botulinum NeuroToxin-A and Lower-Leg Casting in Children With Cerebral Palsy. Front Neurol 2020; 11:210. [PMID: 32373040 PMCID: PMC7187925 DOI: 10.3389/fneur.2020.00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Botulinum NeuroToxin-A (BoNT-A) injections to the medial gastrocnemius (MG) and lower-leg casts are commonly combined to treat ankle equinus in children with spastic cerebral palsy (CP). However, the decomposed treatment effects on muscle or tendon structure, stretch reflexes, and joint are unknown. In this study, BoNT-A injections to the MG and casting of the lower legs were applied separately to gain insight into the working mechanisms of the isolated treatments on joint, muscle, and tendon levels. Thirty-one children with spastic CP (GMFCS I-III, age 7.4 ± 2.6 years) received either two weeks of lower-leg casts or MG BoNT-A injections. During full range of motion slow and fast passive ankle rotations, joint resistance and MG stretch reflexes were measured. MG muscle and tendon lengths were assessed at resting and at maximum dorsiflexion ankle angles using 3D-freehand ultrasound. Treatment effects were compared using non-parametric statistics. Associations between the effects on joint and muscle or tendon levels were performed using Spearman correlation coefficients (p < 0.05). Increased joint resistance, measured during slow ankle rotations, was not significantly reduced after either treatment. Additional joint resistance assessed during fast rotations only reduced in the BoNT-A group (-37.6%, p = 0.013, effect size = 0.47), accompanied by a reduction in MG stretch reflexes (-70.7%, p = 0.003, effect size = 0.56). BoNT-A increased the muscle length measured at the resting ankle angle (6.9%, p = 0.013, effect size = 0.53). Joint angles shifted toward greater dorsiflexion after casting (32.4%, p = 0.004, effect size = 0.56), accompanied by increases in tendon length (5.7%, p = 0.039, effect size = 0.57; r = 0.40). No associations between the changes in muscle or tendon lengths and the changes in the stretch reflexes were found. We conclude that intramuscular BoNT-A injections reduced stretch reflexes in the MG accompanied by an increase in resting muscle belly length, whereas casting resulted in increased dorsiflexion without any changes to the muscle length. This supports the need for further investigation on the effect of the combined treatments and the development of treatments that more effectively lengthen the muscle.
Collapse
Affiliation(s)
- Nicky Peeters
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Department of Rehabilitation Sciences, University of Ghent, Ghent, Belgium
| | | | - Britta Hanssen
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Department of Rehabilitation Sciences, University of Ghent, Ghent, Belgium
| | - Francesco Cenni
- Department of Rehabilitation Sciences, University of Ghent, Ghent, Belgium
| | - Simon-Henri Schless
- Motion Analysis and Biofeedback Laboratory, Alyn Hospital, Jerusalem, Israel
| | | | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Clinical Motion Analysis Laboratory, UZ Leuven, Pellenberg, Belgium
| | - Lynn Bar-On
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.,Department of Rehabilitation Medicine, Amsterdam UMC, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
46
|
Zhang M, Watanabe H, Sarkisyan D, Andersen MS, Nosova O, Galatenko V, Carvalho L, Lukoyanov N, Thelin J, Schouenborg J, Bakalkin G. Hindlimb motor responses to unilateral brain injury: spinal cord encoding and left-right asymmetry. Brain Commun 2020; 2:fcaa055. [PMID: 32954305 PMCID: PMC7425521 DOI: 10.1093/braincomms/fcaa055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/26/2022] Open
Abstract
Mechanisms of motor deficits (e.g. hemiparesis and hemiplegia) secondary to stroke and traumatic brain injury remain poorly understood. In early animal studies, a unilateral lesion to the cerebellum produced postural asymmetry with ipsilateral hindlimb flexion that was retained after complete spinal cord transection. Here we demonstrate that hindlimb postural asymmetry in rats is induced by a unilateral injury of the hindlimb sensorimotor cortex, and characterize this phenomenon as a model of spinal neuroplasticity underlying asymmetric motor deficits. After cortical lesion, the asymmetry was developed due to the contralesional hindlimb flexion and persisted after decerebration and complete spinal cord transection. The asymmetry induced by the left-side brain injury was eliminated by bilateral lumbar dorsal rhizotomy, but surprisingly, the asymmetry after the right-side brain lesion was resistant to deafferentation. Pancuronium, a curare-mimetic muscle relaxant, abolished the asymmetry after the right-side lesion suggesting its dependence on the efferent drive. The contra- and ipsilesional hindlimbs displayed different musculo-articular resistance to stretch after the left but not right-side injury. The nociceptive withdrawal reflexes evoked by electrical stimulation and recorded with EMG technique were different between the left and right hindlimbs in the spinalized decerebrate rats. On this asymmetric background, a brain injury resulted in greater reflex activation on the contra- versus ipsilesional side; the difference between the limbs was higher after the right-side brain lesion. The unilateral brain injury modified expression of neuroplasticity genes analysed as readout of plastic changes, as well as robustly impaired coordination of their expression within and between the ipsi- and contralesional halves of lumbar spinal cord; the effects were more pronounced after the left side compared to the right-side injury. Our data suggest that changes in the hindlimb posture, resistance to stretch and nociceptive withdrawal reflexes are encoded by neuroplastic processes in lumbar spinal circuits induced by a unilateral brain injury. Two mechanisms, one dependent on and one independent of afferent input may mediate asymmetric hindlimb motor responses. The latter, deafferentation resistant mechanism may be based on sustained muscle contractions which often occur in patients with central lesions and which are not evoked by afferent stimulation. The unusual feature of these mechanisms is their lateralization in the spinal cord.
Collapse
Affiliation(s)
- Mengliang Zhang
- Department of Experimental Medical Science, Neuronano Research Center, Lund University, 221 00 Lund, Sweden
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Daniil Sarkisyan
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Marlene Storm Andersen
- Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Olga Nosova
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Vladimir Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Liliana Carvalho
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Celular, 4200-319 Porto, Portugal
| | - Nikolay Lukoyanov
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Celular, 4200-319 Porto, Portugal
| | - Jonas Thelin
- Department of Experimental Medical Science, Neuronano Research Center, Lund University, 221 00 Lund, Sweden
| | - Jens Schouenborg
- Department of Experimental Medical Science, Neuronano Research Center, Lund University, 221 00 Lund, Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
47
|
Howells J, Sangari S, Matamala JM, Kiernan MC, Marchand-Pauvert V, Burke D. Interrogating interneurone function using threshold tracking of the H reflex in healthy subjects and patients with motor neurone disease. Clin Neurophysiol 2020; 131:1986-1996. [PMID: 32336595 DOI: 10.1016/j.clinph.2020.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Accepted: 03/15/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The excitability of the lower motoneurone pool is traditionally tested using the H reflex and a constant-stimulus paradigm, which measures changes in the amplitude of the reflex response. This technique has limitations because reflex responses of different size must involve the recruitment or inhibition of different motoneurones. The threshold-tracking technique ensures that the changes in excitability occur for an identical population of motoneurones. We aimed to assess this technique and then apply it in patients with motor neurone disease (MND). METHODS The threshold-tracking approach was assessed in 17 healthy subjects and 11 patients with MND. The soleus H reflex was conditioned by deep peroneal nerve stimulation producing reciprocal Ia and so-called D1 and D2 inhibitions, which are believed to reflect presynaptic inhibition of soleus Ia afferents. RESULTS Threshold tracking was quicker than the constant-stimulus technique and reliable, properties that may be advantageous for clinical studies. D1 inhibition was significantly reduced in patients with MND. CONCLUSIONS Threshold tracking is useful and may be preferable under some conditions for studying the excitability of the motoneurone pool. The decreased D1 inhibition in the patients suggests that presynaptic inhibition may be reduced in MND. SIGNIFICANCE Reduced presynaptic inhibition could be evidence of an interneuronopathy in MND. It is possible that the hyperreflexia is a spinal pre-motoneuronal disorder, and not definitive evidence of corticospinal involvement in MND.
Collapse
Affiliation(s)
- James Howells
- Brain & Mind Centre, The University of Sydney, N.S.W. 2006, Australia
| | - Sina Sangari
- Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, F-75006 Paris, France
| | - José Manuel Matamala
- Department of Neurological Science and Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Matthew C Kiernan
- Brain & Mind Centre, The University of Sydney, N.S.W. 2006, Australia; Department of Neurology, Royal Prince Alfred Hospital and The University of Sydney, N.S.W. 2006, Australia
| | | | - David Burke
- Department of Neurology, Royal Prince Alfred Hospital and The University of Sydney, N.S.W. 2006, Australia.
| |
Collapse
|
48
|
Sales RM, Cerqueira MS, Bezerra de Morais AT, de Paiva Lima CRO, Lemos A, Galvão de Moura Filho A. Acute effects of whole-body vibration on spinal excitability level and ankle plantar flexion spasticity in post-stroke individuals: A randomized controlled trial. J Bodyw Mov Ther 2020; 24:37-42. [DOI: 10.1016/j.jbmt.2019.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/15/2019] [Indexed: 11/30/2022]
|
49
|
Kim G, Ogawa T, Sekiguchi H, Nakazawa K. Acquisition and maintenance of motor memory through specific motor practice over the long term as revealed by stretch reflex responses in older ballet dancers. Physiol Rep 2020; 8:e14335. [PMID: 31960615 PMCID: PMC6971327 DOI: 10.14814/phy2.14335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The present study addressed whether motor memory acquired earlier in life through specific training can be maintained through later life with further training. To this end, the present study focused on the training effect of a specific ballet practice and investigated the spinally mediated stretch reflex responses of the soleus muscle in ballet dancers of upper-middle to old age (60.6 ± 5.4 years old) with experience levels of 28.4 ± 7.4 years ("older ballet" group). Comparisons were conducted with a group of young ballet dancers ("young ballet" group) and groups of both young and older individuals without weekly participation in physical activities ("young sedentary" and "older sedentary" groups). The results revealed natural age-dependent changes, with reflex responses being larger in older sedentary than in young sedentary individuals. A training-induced effect was also observed, with responses being smaller in ballet dancers than in sedentary groups of the same age. Furthermore, the responses were surprisingly smaller in the older ballet dancers than in the young sedentary group, at an equivalent level to that of the young ballet dancers. The influence of training, therefore, overcame the natural age-dependent changes. On the other hand, the onset latencies of the responses showed a solely age-dependent trend. Taken together, the present is the first to demonstrate that the motor memories in the spinal cord acquired through specific ballet training earlier in life can be maintained and carried forward in later life through further weekly participation in the same training.
Collapse
Affiliation(s)
- GeeHee Kim
- Graduate School of Arts and SciencesThe University of TokyoKomabaTokyoJapan
| | - Tetsuya Ogawa
- Graduate School of Arts and SciencesThe University of TokyoKomabaTokyoJapan
- Research InstituteNational Rehabilitation Center for Persons with DisabilitiesNamikiTokorozawaJapan
| | - Hirofumi Sekiguchi
- Sports Management ProgramFaculty of Business and Information SciencesJobu UniversityIsesakiGunmaJapan
| | - Kimitaka Nakazawa
- Graduate School of Arts and SciencesThe University of TokyoKomabaTokyoJapan
- Research InstituteNational Rehabilitation Center for Persons with DisabilitiesNamikiTokorozawaJapan
| |
Collapse
|
50
|
Liang JN, Lee YJ, Akoopie E, Kleven BC, Koch T, Ho KY. Impaired H-Reflex Adaptations Following Slope Walking in Individuals With Post-stroke Hemiparesis. Front Physiol 2019; 10:1232. [PMID: 31632287 PMCID: PMC6779794 DOI: 10.3389/fphys.2019.01232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/09/2019] [Indexed: 01/14/2023] Open
Abstract
Background and Purpose Short term adaptations in the Ia afferent-motoneuron pathway, as measured using the H-reflex, in response to altered ground reaction forces (GRFs) applied at the feet during slope walking have been observed in the non-impaired nervous system. The ability of the stroke-impaired nervous system to adapt to altered GRFs have not been examined. The purpose of this study was to examine the acute effects of altered propulsive and braking forces applied at the feet, which naturally occurs when walking on different slopes, on adaptations of the H-reflex pathway in individuals with chronic post-stroke hemiparesis. Methods Twelve individuals chronically post-stroke and 10 age-similar non-neurologically impaired controls walked on an instrumented treadmill for 20 min under level, upslope and downslope conditions. GRFs were measured during walking and soleus H-reflexes were recorded prior to and immediately after walking. A 3 (limbs: paretic, non-paretic, and non-impaired) × 3 (slope: level, upslope, downslope) mixed factorial ANOVA was conducted on the propulsive and braking forces. A 2 (limb: paretic and non-impaired) × 2 (time: pre and post) × 3 (slope: level, upslope, and downslope) mixed factorial ANOVA was conducted to assess the soleus H-reflex amplitudes. Results In both post-stroke and non-impaired groups, during downslope walking, peak propulsive forces decreased, while peak braking forces increased. In contrast, during upslope walking, peak propulsive forces increased and peak braking forces decreased. We observed reduced soleus H-reflex amplitudes immediately following 20 min of level, downslope and upslope walking in non-impaired individuals but not in the paretic legs of individuals with chronic post-stroke hemiparesis. Discussion and Conclusion Similar pattern of change in peak propulsive and braking forces with respect to different slopes was observed in both individuals post-stroke and non-impaired individuals, but the magnitude of GRFs were smaller in individuals post-stroke due to the slower walking speed. Our results suggested that impaired modulation of the H-reflex pathway potentially underlies the lack of neuroadaptations in individuals with chronic post-stroke hemiparesis.
Collapse
Affiliation(s)
- Jing Nong Liang
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Yun-Ju Lee
- Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan
| | - Eric Akoopie
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Brooke Conway Kleven
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Trisha Koch
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Kai-Yu Ho
- Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|