1
|
Niiranen M, Bendel P, Koikkalainen J, Lötjönen J, Selander T, Solje E, Hartikainen P, Simula S, Vanninen R, Portaankorva AM. AI-driven MRI analysis reveals brain atrophy patterns in benign relapsing-remitting multiple sclerosis. Front Neurol 2025; 16:1570566. [PMID: 40417125 PMCID: PMC12099013 DOI: 10.3389/fneur.2025.1570566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/21/2025] [Indexed: 05/27/2025] Open
Abstract
Background The existence and definition of benign multiple sclerosis (MS) remain controversial, particularly given the discrepancy between clinical presentation and underlying imaging changes. In this study, we aimed to investigate the brain atrophy patterns related to benign relapsing-remitting MS (BRRMS), particularly regarding location and extent. Methods We analyzed global and regional gray matter (GM) and white matter (WM) volumes, WM lesion load, corpus callosum index (CCI) and corpus callosum area (CCA) in well-defined benign relapsing-remitting MS patients (BRRMS, n = 35) compared to healthy controls (HC, n = 35). Imaging data were analyzed using an AI-based volumetric analysis MRI (cNeuro®) and confirmed visually by an experienced neuroradiologist, ensuring robust validation. Results Total brain tissue volume was significantly smaller in patients with BRRMS compared to HC (p < 0.001), but the cortical (p = 0.011) and cerebral (p = 0.002) GM volumes, as well as cingulate gyrus (p=0.032) and entorhinal area volumes (p < 0.001), were larger in BRRMS. GM volumes in the postcentral gyrus (p = 0.001), precentral gyrus (p < 0.001), the medial segment of the precentral gyrus (p < 0.001), supplementary motor cortex (p < 0.001) and thalamus (p < 0.001) were reduced in BRRMS compared to HC. Furthermore, both CCI and CCA were significantly smaller in BRRMS (p < 0.001 and p = 0.001, respectively). Conclusions Despite the overall reduced brain volume compared to HC, distinct cortical regions, especially within the limbic system (i.e., cingulate gyrus and entorhinal area) GM may be relatively well preserved, indicating a possible compensatory volume increase. Based on this study, the corpus callosum is a crucial structure in monitoring disease progression in BRRMS.
Collapse
Affiliation(s)
- M. Niiranen
- Department of Neurology, Neuro Center, Kuopio University Hospital, Kuopio, Finland
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - P. Bendel
- Department of Radiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Radiology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | | | | | - T. Selander
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - E. Solje
- Department of Neurology, Neuro Center, Kuopio University Hospital, Kuopio, Finland
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - P. Hartikainen
- Department of Neurology, Neuro Center, Kuopio University Hospital, Kuopio, Finland
| | - S. Simula
- Department of Neurology, Mikkeli Central Hospital, Mikkeli, Finland
| | - R. Vanninen
- Department of Radiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Radiology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | | |
Collapse
|
2
|
Tommasin S, Giannì C, Treaba CA, Herranz E, Barletta V, Loggia ML, Pantano P, Mainero C. The association between white matter chronic inflammation and degeneration in multiple sclerosis: A combined 11C-PBR28 PET-MRI study. Mult Scler Relat Disord 2025; 96:106350. [PMID: 40036908 DOI: 10.1016/j.msard.2025.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
In multiple sclerosis (MS), the interplay between white matter (WM) microglia mediated inflammation and degeneration is still unclear. Using positron emission tomography and diffusion tensor imaging, we assessed the association between WM chronic inflammation and damage in different regions including periventricular, deep, and subcortical WM and their association with clinical measures. Twenty-three people with MS (PwMS) and 13 healthy subjects underwent 11C-PBR28 imaging on an integrated 3T MR-Positron Emission Tomography system. PwMS showed a significantly higher normalized number of pathological voxels in normal appearing (NA) WM than in lesions (t = 5.51, p < 0.001), and this number was higher in subcortical than in periventricular (t = 5.49, p < 0.001) and deep NAWM (t = 4.94, p < 0.001). Number of pathological voxels in NAWM negatively correlated with fractional anisotropy (FA) in several areas. Expanded-Disability-Status-Scale correlated positively with number of pathological voxels within NAWM (r = 0.47, p < 0.02), while Symbol-Digit-Modalities-Test correlated positively with global NAWM FA (r = 0.57, p < 0.004) and negatively with lesion load (r=-0.55, p < 0.007). In the WM of PwMS, the higher the inflammation the higher the degeneration is, with both processes contributing to clinical measures. Inflammation and degeneration do not necessarily spatially overlap, and both follow a decreasing pattern from CSF, from periventricular surfaces for FA and cortical surfaces for inflammation.
Collapse
Affiliation(s)
- Silvia Tommasin
- Department of Human Neuroscienze, Sapienza University, Rome, Italy; UniCamillus - International Medical University in Rome, Italy
| | - Costanza Giannì
- Department of Human Neuroscienze, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Constantina A Treaba
- A. A. Martinos Center, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- A. A. Martinos Center, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Valeria Barletta
- A. A. Martinos Center, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marco L Loggia
- A. A. Martinos Center, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Patrizia Pantano
- Department of Human Neuroscienze, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Caterina Mainero
- A. A. Martinos Center, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Mirmosayyeb O, Yazdan Panah M, Vaheb S, Ghoshouni H, Mahmoudi F, Kord R, Kord A, Zabeti A, Shaygannejad V. Association between diffusion tensor imaging measurements and cognitive performances in people with multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2025; 94:106261. [PMID: 39798200 DOI: 10.1016/j.msard.2025.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Alterations in structural connectivity of brain networks have been linked to complex cognitive functions in people with multiple sclerosis (PwMS). However, a definitive consensus on the optimal diffusion tensor imaging (DTI) markers as indicators of cognitive performance remains incomplete and inconclusive. This systematic review and meta-analysis aimed to explore the evidence on the correlation between DTI metrics and cognitive functions in PwMS. METHODS A comprehensive literature search was conducted across PubMed/MEDLINE, Embase, Scopus, and the Web of Science up to March 2024 to identify studies reporting the correlation between DTI metrics and cognitive functions. Cognitive function was assessed using the Symbol Digit Modalities Test (SDMT), California Verbal Learning Test (CVLT), and Brief Visuospatial Memory Test-Revised (BVMT-R). The pooled correlation coefficients were estimated using R software version 4.4.0 with the random effect model. RESULTS Out of 1952 studies, 38 studies on 2055 PwMS fulfilled the inclusion criteria. The meta-analysis indicated that the SDMT exhibited the greatest correlation with corpus callosum fractional anisotropy (FA) (r = 0.54, 95 % CI: 0.4 to 0.66, p-value < 0.001, I2 = 34.1 %, p-heterogeneity = 0.19) and mean diffusivity (MD) (r = -0.48, 95 % CI: 0.61 to -0.33, p-value < 0.001, I2 = 0 %, p-heterogeneity = 0.77), white matter FA (r = 0.39, 95 % CI: 0.24 to 0.52, p-value < 0.001, I2 = 0 %, p-heterogeneity = 0.1), and fornix FA (r = 0.35, 95 % CI: 0.12 to 0.54, p-value = 0.003, I2 = 50.7 %, p-heterogeneity = 0.18) and MD (r = -0.35, 95 % CI: 0.49 to -0.19, p-value < 0.001, I2 = 0 %, p-heterogeneity = 0.5). CONCLUSION DTI measurements, including corpus callosum FA and MD, white matter FA, and fornix FA and MD, represent the indicators of cognitive performance in PwMS. Nonetheless, these findings warrant cautious interpretation due to the restricted kinds of cognitive tests and methodological variability across studies.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Mohammad Yazdan Panah
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Ghoshouni
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farhad Mahmoudi
- Department of Neurology, University of Miami, Miami, FL 33136, USA
| | - Reza Kord
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Ali Kord
- Division of Interventional Radiology, Department of Radiology, University of Cincinnati, Cincinnati, OH, USA
| | - Aram Zabeti
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Chung S, Fieremans E, Novikov DS, Lui YW. Microstructurally informed subject-specific parcellation of the corpus callosum using axonal water fraction. Brain Struct Funct 2024; 230:1. [PMID: 39671086 PMCID: PMC11995408 DOI: 10.1007/s00429-024-02872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 10/23/2024] [Indexed: 12/14/2024]
Abstract
The corpus callosum (CC) is the most important interhemispheric white matter (WM) structure composed of several anatomically and functionally distinct WM tracts. Resolving these tracts is a challenge since the callosum appears relatively homogenous in conventional structural imaging. Commonly used callosal parcellation methods such as Hofer and Frahm scheme rely on rigid geometric guidelines to separate the substructures that are limited to consider individual variation. Here we present a novel subject-specific and microstructurally-informed method for callosal parcellation based on axonal water fraction (ƒ) known as a diffusion metric reflective of axon caliber and density. We studied 30 healthy subjects from the Human Connectome Project dataset with multi-shell diffusion MRI. The biophysical parameter ƒ was derived from compartment-specific WM modeling. Inflection points were identified where there were concavity changes in ƒ across the CC to delineate callosal subregions. We observed relatively higher ƒ in anterior and posterior areas known to consist of a greater number of small diameter fibers and lower ƒ in posterior body areas of the CC known to consist of a greater number of large diameter fibers. Based on the degree of change in ƒ along the callosum, seven callosal subregions were consistently delineated for each individual. Therefore, this method provides microstructurally informed callosal parcellation in a subject-specific way, allowing for more accurate analysis in the corpus callosum.
Collapse
Affiliation(s)
- Sohae Chung
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, United States.
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, United States.
| | - Els Fieremans
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, United States
| | - Dmitry S Novikov
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, United States
| | - Yvonne W Lui
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, United States
| |
Collapse
|
5
|
Kim SJ, Cho W, Kim HJ, Na DL, Seo SW, Jung NY, Lee JH, Lee MJ, Kang H, Seong JK, Kim EJ. Distinct patterns of white matter hyperintensity and cortical thickness of CSF1R-related leukoencephalopathy compared with subcortical ischemic vascular dementia. PLoS One 2024; 19:e0308989. [PMID: 39374256 PMCID: PMC11458039 DOI: 10.1371/journal.pone.0308989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/02/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND CSF1R-related leukoencephalopathy is a type of autosomal dominant leukodystrophy caused by mutations in the colony stimulating factor 1 receptor (CSF1R) gene. Subcortical ischemic vascular dementia (SIVaD), which is caused by cerebral small vessel disease, is similar to CSF1R-related leukoencephalopathy in that it mainly affects subcortical white matter. In this study, we compared the patterns of white matter hyperintensity (WMH) and cortical thickness in CSF1R-related leukoencephalopathy with those in SIVaD. METHODS Fourteen patients with CSF1R-related leukoencephalopathy and 129 with SIVaD were retrospectively recruited from three tertiary medical centers. We extracted and visualized WMH data using voxel-based morphometry to compare the WMH distributions between the two groups. Cortical thickness was measured using a surface-based method. Statistical maps of differences in cortical thickness between the two groups were generated using a surface model, with age, sex, education, and intracranial volume as covariates. RESULTS Predominant distribution of WMH in the CSF1R-related leukoencephalopathy group was in the bilateral frontal and parietal areas, whereas the SIVaD group showed diffuse WMH involvement in the bilateral frontal, parietal, and temporal areas. Compared with the SIVaD group, the CSF1R-related leukoencephalopathy group showed more severe corpus callosum atrophy (CCA) and widespread cortical thinning. CONCLUSIONS To our knowledge, this is the first study using the automated MR measurement to capture WMH, cortical thinning, and CCA with signal changes in CSF1R-related leukoencephalopathy. It provides new evidence regarding differences in the patterns of WMH distribution and cortical thinning between CSF1R-related leukoencephalopathy and SIVaD.
Collapse
Affiliation(s)
- Seung Joo Kim
- Department of Neurology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon, South Korea
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wanzee Cho
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Alzheimer Disease Convergence Research Centre, Samsung Medical Centre, Seoul, South Korea
- Departments of Health Sciences and Technology and, Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Alzheimer Disease Convergence Research Centre, Samsung Medical Centre, Seoul, South Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Alzheimer Disease Convergence Research Centre, Samsung Medical Centre, Seoul, South Korea
- Departments of Health Sciences and Technology and, Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Na-Yeon Jung
- Department of Neurology Pusan National University Yangsan Hospital, Pusan national University School of Medicine, Yangsan, South Korea
| | - Jae-Hyeok Lee
- Department of Neurology Pusan National University Yangsan Hospital, Pusan national University School of Medicine, Yangsan, South Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Pusan national University School of Medicine, Yangsan, South Korea
| | - Myung Jun Lee
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, South Korea
| | - Heeyoung Kang
- Department of Neurology, Gyeongsang National University Hospital, Jinju, South Korea
| | - Joon-Kyung Seong
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
- School of Biomedical Engineering, Korea University, Seoul, South Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, South Korea
| |
Collapse
|
6
|
Mistry N, Hobart J, Rog D, Muhlert N, Mathews J, Baker D, Giovannoni G. Reconciling lesions, relapses and smouldering associated worsening: A unifying model for multiple sclerosis pathogenesis. Mult Scler Relat Disord 2024; 88:105706. [PMID: 38880031 DOI: 10.1016/j.msard.2024.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The failure of relapses and white matter lesions to properly explain long-term disability and progression in multiple sclerosis is compounded by its artificial separation into relapsing remitting, secondary progressive, and primary progressive pigeonholes. The well-known epidemiological disconnection between relapses and long-term disability progression has been rediscovered as "progression independent of relapse activity", i.e. smouldering multiple sclerosis. This smouldering associated worsening proceeds despite early and prolonged use of disease modification therapies, even those that are highly effective at preventing relapses and new/enhancing white matter lesions on MRI. We recognise that smouldering associated worsening and relapse/lesion associated worsening coexist, to varying extents. The extent of cortical demyelination has been shown to correlate significantly with the severity of diffuse injury in normal appearing white matter (post mortem histopathologically (r = 0.55; P = 0.001), and in vivo with MRI (r = -0.6874; P = 0.0006)) and does so independently of white matter lesion burden. Axon loss in the normal appearing white matter explains disability in multiple sclerosis better than focal white matter lesions do. Smouldering associated worsening typically manifests as a length-dependent central axonopathy. We propose a unifying model for multiple sclerosis pathogenesis, wherein accumulation of cortical lesion burden predisposes associated normal appearing white matter to diffuse injury, whilst also intensifying damage within white matter lesions. Our novel two-hit hypothesis implicates cortical disease as a culprit for smouldering multiple sclerosis, abetted by active focal inflammation in the white matter (and vice versa). Substantiation of the two-hit hypothesis would advance the importance of specific therapeutic intervention for (and monitoring of) cortical/meningeal inflammation in people with multiple sclerosis.
Collapse
Affiliation(s)
- Niraj Mistry
- Department of Clinical Neurosciences, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Jeremy Hobart
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - David Rog
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nils Muhlert
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Joela Mathews
- Department of Neurology, The Royal London Hospital, London, UK
| | - David Baker
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
7
|
Kenyon KH, Strik M, Noffs G, Morgan A, Kolbe S, Harding IH, Vogel AP, Boonstra FMC, van der Walt A. Volumetric and diffusion MRI abnormalities associated with dysarthria in multiple sclerosis. Brain Commun 2024; 6:fcae177. [PMID: 38846538 PMCID: PMC11154149 DOI: 10.1093/braincomms/fcae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Up to half of all people with multiple sclerosis experience communication difficulties due to dysarthria, a disorder that impacts the motor aspects of speech production. Dysarthria in multiple sclerosis is linked to cerebellar dysfunction, disease severity and lesion load, but the neuroanatomical substrates of these symptoms remain unclear. In this study, 52 participants with multiple sclerosis and 14 age- and sex-matched healthy controls underwent structural and diffusion MRI, clinical assessment of disease severity and cerebellar dysfunction and a battery of motor speech tasks. Assessments of regional brain volume and white matter integrity, and their relationships with clinical and speech measures, were undertaken. White matter tracts of interest included the interhemispheric sensorimotor tract, cerebello-thalamo-cortical tract and arcuate fasciculus, based on their roles in motor and speech behaviours. Volumetric analyses were targeted to Broca's area, Wernicke's area, the corpus callosum, thalamus and cerebellum. Our results indicated that multiple sclerosis participants scored worse on all motor speech tasks. Fixel-based diffusion MRI analyses showed significant evidence of white matter tract atrophy in each tract of interest. Correlational analyses further indicated that higher speech naturalness-a perceptual measure of dysarthria-and lower reading rate were associated with axonal damage in the interhemispheric sensorimotor tract and left arcuate fasciculus in people with multiple sclerosis. Axonal damage in all tracts of interest also correlated with clinical scales sensitive to cerebellar dysfunction. Participants with multiple sclerosis had lower volumes of the thalamus and corpus callosum compared with controls, although no brain volumetrics correlated with measures of dysarthria. These findings indicate that axonal damage, particularly when measured using diffusion metrics, underpin dysarthria in multiple sclerosis.
Collapse
Affiliation(s)
- Katherine H Kenyon
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Centre for Neuroscience of Speech, University of Melbourne, Parkville, VIC 3052, Australia
| | - Myrte Strik
- Spinoza Centre for Neuroimaging, Netherlands Institute for Neuroscience, Royal Academy for Arts and Sciences, KNAW, Amsterdam 1105 BK, The Netherlands
- Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Gustavo Noffs
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Centre for Neuroscience of Speech, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC 3052, Australia
- Redenlab Inc, Melbourne, VIC 3000, Australia
| | - Angela Morgan
- Murdoch Children’s Research Institute, Genomic Medicine, Speech and Language Group, Parkville 3052, Australia
- Department of Speech Pathology and Audiology, University of Melbourne, Parkville 3052, Australia
| | - Scott Kolbe
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Ian H Harding
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Adam P Vogel
- Centre for Neuroscience of Speech, University of Melbourne, Parkville, VIC 3052, Australia
- Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Parkville, VIC 3052, Australia
- Redenlab Inc, Melbourne, VIC 3000, Australia
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Center for Neurology, University Hospital Tübingen, Tübingen 72076, Germany
- The Bionics Institute, East Melbourne, VIC 3002, Australia
| | - Frederique M C Boonstra
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Anneke van der Walt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
- Spinoza Centre for Neuroimaging, Netherlands Institute for Neuroscience, Royal Academy for Arts and Sciences, KNAW, Amsterdam 1105 BK, The Netherlands
- The Bionics Institute, East Melbourne, VIC 3002, Australia
| |
Collapse
|
8
|
Russo AW, Stockel KE, Tobyne SM, Ngamsombat C, Brewer K, Nummenmaa A, Huang SY, Klawite EC. Associations between corpus callosum damage, clinical disability, and surface-based homologous inter-hemispheric connectivity in multiple sclerosis. Brain Struct Funct 2022; 227:2909-2922. [PMID: 35536387 PMCID: PMC9850837 DOI: 10.1007/s00429-022-02498-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/11/2022] [Indexed: 01/22/2023]
Abstract
Axonal damage in the corpus callosum is prevalent in multiple sclerosis (MS). Although callosal damage is associated with disrupted functional connectivity between hemispheres, it is unclear how this relates to cognitive and physical disability. We investigated this phenomenon using advanced measures of microstructural integrity in the corpus callosum and surface-based homologous inter-hemispheric connectivity (sHIC) in the cortex. We found that sHIC was significantly decreased in primary motor, somatosensory, visual, and temporal cortical areas in a group of 36 participants with MS (29 relapsing-remitting, 4 secondary progressive MS, and 3 primary-progressive MS) compared with 42 healthy controls (cluster level, p < 0.05). In participants with MS, global sHIC correlated with fractional anisotropy and restricted volume fraction in the posterior segment of the corpus callosum (r = 0.426, p = 0.013; r = 0.399, p = 0.020, respectively). Lower sHIC, particularly in somatomotor and posterior cortical areas, was associated with cognitive impairment and higher disability scores on the Expanded Disability Status Scale (EDSS). We demonstrated that higher levels of sHIC attenuated the effects of posterior callosal damage on physical disability and cognitive dysfunction, as measured by the EDSS and Brief Visuospatial Memory Test-Revised (interaction effect, p < 0.05). We also observed a positive association between global sHIC and years of education (r = 0.402, p = 0.018), supporting the phenomenon of "brain reserve" in MS. Our data suggest that preserved sHIC helps prevent cognitive and physical decline in MS.
Collapse
Affiliation(s)
- Andrew W. Russo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, US
| | | | - Sean M. Tobyne
- Department of Neurology, Massachusetts General Hospital, Boston, MA, US
| | - Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, No. 149, 13th Street, Charlestown, Boston, MA 02129, US
| | - Kristina Brewer
- Department of Neurology, Massachusetts General Hospital, Boston, MA, US
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, No. 149, 13th Street, Charlestown, Boston, MA 02129, US
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, No. 149, 13th Street, Charlestown, Boston, MA 02129, US
| | - Eric C. Klawite
- Department of Neurology, Massachusetts General Hospital, Boston, MA, US
| |
Collapse
|
9
|
Ladopoulos T, Matusche B, Bellenberg B, Heuser F, Gold R, Lukas C, Schneider R. Relaxometry and brain myelin quantification with synthetic MRI in MS subtypes and their associations with spinal cord atrophy. Neuroimage Clin 2022; 36:103166. [PMID: 36081258 PMCID: PMC9463599 DOI: 10.1016/j.nicl.2022.103166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/31/2022] [Accepted: 08/22/2022] [Indexed: 01/18/2023]
Abstract
Immune-mediated demyelination and neurodegeneration are pathophysiological hallmarks of Multiple Sclerosis (MS) and main drivers of disease related disability. The principal method for evaluating qualitatively demyelinating events in the clinical context is contrast-weighted magnetic resonance imaging (MRI). Moreover, advanced MRI sequences provide reliable quantification of brain myelin offering new opportunities to study tissue pathology in vivo. Towards neurodegenerative aspects of the disease, spinal cord atrophy - besides brain atrophy - is a powerful and validated predictor of disease progression. The etiology of spinal cord volume loss is still a matter of research, as it remains unclear whether the impact of local lesion pathology or the interaction with supra- and infratentorial axonal degeneration and demyelination of the long descending and ascending fiber tracts are the determining factors. Quantitative synthetic MR using a multiecho acquisition of saturation recovery pulse sequence provides fast automatic brain tissue and myelin volumetry based on R1 and R2 relaxation rates and proton density quantification, making it a promising modality for application in the clinical routine. In this cross sectional study a total of 91 MS patients and 31 control subjects were included to investigate group differences of global and regional measures of brain myelin and relaxation rates, in different MS subtypes, using QRAPMASTER sequence and SyMRI postprocessing software. Furthermore, we examined associations between these quantitative brain parameters and spinal cord atrophy to draw conclusions about possible pathophysiological relationships. Intracranial myelin volume fraction of the global brain exhibited statistically significant differences between control subjects (10.4%) and MS patients (RRMS 9.4%, PMS 8.1%). In a LASSO regression analysis with total brain lesion load, intracranial myelin volume fraction and brain parenchymal fraction, the intracranial myelin volume fraction was the variable with the highest impact on spinal cord atrophy (standardized coefficient 4.52). Regional supratentorial MRI metrics showed altered average myelin volume fraction, R1, R2 and proton density in MS patients compared to controls most pronounced in PMS. Interestingly, quantitative MRI parameters in supratentorial regions showed strong associations with upper cord atrophy, suggesting an important role of brain diffuse demyelination on spinal cord pathology possibly in the context of global disease activity. R1, R2 or proton density of the thalamus, cerebellum and brainstem correlated with upper cervical cord atrophy, probably reflecting the direct functional connection between these brain structures and the spinal cord as well as the effects of retrograde and anterograde axonal degeneration. By using Synthetic MR-derived myelin volume fraction, we were able to effectively detect significant differences of myelination in relapsing and progressive MS subtypes. Total intracranial brain myelin volume fraction seemed to predict spinal cord volume loss better than brain atrophy or total lesion load. Furthermore, demyelination in highly myelinated supratentorial regions, as an indicator of diffuse disease activity, as well as alterations of relaxation parameters in adjacent infratentorial and midbrain areas were strongly associated with upper cervical cord atrophy.
Collapse
Affiliation(s)
- Theodoros Ladopoulos
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany,Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany,Corresponding authors at: St. Josef Hospital, Department of Neurology, Gudrunstr. 56, 44791 Bochum, Germany.
| | - Britta Matusche
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Barbara Bellenberg
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Florian Heuser
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Carsten Lukas
- Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany,Department of Diagnostic and Interventional Radiology and Nuclear Medicine, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| | - Ruth Schneider
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany,Institute of Neuroradiology, St. Josef Hospital, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany
| |
Collapse
|
10
|
Alcalá C, Cubas L, Carratalá S, Gascón F, Quintanilla-Bordás C, Gil-Perotín S, Gorriz D, Pérez-Miralles F, Gasque R, Castillo J, Casanova B. NFL during acute spinal cord lesions in MS: a hurdle for the detection of inflammatory activity. J Neurol 2022; 269:3495-3500. [PMID: 35038000 DOI: 10.1007/s00415-021-10926-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Levels of neuro-filament light chain (NFL) correlate with clinical and radiological activity in multiple sclerosis (MS) and have been used as a surrogate biomarker of axonal destruction related to inflammatory activity. The main objective of this work is to explore the specific contribution of acute inflammation within the spinal cord to the elevation of NFL levels. PATIENTS AND METHODS MS patients with a baseline study of NFL at diagnosis of the disease and a brain and spinal cord MRI scan were selected. Patients were classified according to the presence, number and location of gadolinium enhancing lesion (GEL) and the relationship between NFL levels and both brain and spinal cord GEL were explored. RESULTS Seventy-seven patients were selected. NFL levels were significantly higher in patients with only one GEL restricted to the brain than those without GEL (1702 pg/ml vs 722.7 pg/mL, p = 0.03) and correlated with number. However, no differences were seen among patients with GEL limited to the spinal cord and those without GEL (735.2 pg/ml vs 722.7 pg/mL). CONCLUSION Our study reaffirms the value of NFL levels in monitoring asymptomatic inflammatory activity in the brain measured by GEL. However, NFL concentration is not as useful when only inflammatory activity occurs in the spinal cord.
Collapse
Affiliation(s)
- C Alcalá
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Fernando Abril Martorell Avenue 106, 46026, Valencia, Spain.
| | - L Cubas
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Fernando Abril Martorell Avenue 106, 46026, Valencia, Spain
| | - S Carratalá
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Fernando Abril Martorell Avenue 106, 46026, Valencia, Spain
| | - F Gascón
- Neurology Department, University Hospital Clinic of Valencia, Blasco Ibañez Avenue, 17, 46010, Valencia, Spain
| | - C Quintanilla-Bordás
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Fernando Abril Martorell Avenue 106, 46026, Valencia, Spain
| | - S Gil-Perotín
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Fernando Abril Martorell Avenue 106, 46026, Valencia, Spain
| | - D Gorriz
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Fernando Abril Martorell Avenue 106, 46026, Valencia, Spain
| | - F Pérez-Miralles
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Fernando Abril Martorell Avenue 106, 46026, Valencia, Spain
| | - R Gasque
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Fernando Abril Martorell Avenue 106, 46026, Valencia, Spain
| | - J Castillo
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Fernando Abril Martorell Avenue 106, 46026, Valencia, Spain
| | - B Casanova
- Neuroimmunology Unit, University and Polytechnic Hospital La Fe, Fernando Abril Martorell Avenue 106, 46026, Valencia, Spain
| |
Collapse
|
11
|
Niiranen M, Koikkalainen J, Lötjönen J, Selander T, Cajanus A, Hartikainen P, Simula S, Vanninen R, Remes AM. Grey matter atrophy in patients with benign multiple sclerosis. Brain Behav 2022; 12:e2679. [PMID: 35765699 PMCID: PMC9304852 DOI: 10.1002/brb3.2679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/22/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Brain atrophy appears during the progression of multiple sclerosis (MS) and is associated with the disability caused by the disease. METHODS We investigated global and regional grey matter (GM) and white matter (WM) volumes, WM lesion load, and corpus callosum index (CCI), in benign relapsing-remitting MS (BRRMS, n = 35) with and without any treatment and compared those to aggressive relapsing-remitting MS (ARRMS, n = 46). Structures were analyzed by using an automated MRI quantification tool (cNeuro®). RESULTS The total brain and cerebral WM volumes were larger in BRRMS than in ARRMS (p = .014, p = .017 respectively). In BRRMS, total brain volumes, regional GM volumes, and CCI were found similar whether or not disease-modifying treatment (DMT) was used. The total (p = .033), as well as subcortical (p = .046) and deep WM (p = .041) lesion load volumes were larger in BRRMS patients without DMT. Cortical GM volumes did not differ between BRRMS and ARRMS, but the volumes of total brain tissue (p = .014) and thalami (p = .003) were larger in patients with BRRMS compared to ARRMS. A positive correlation was found between CCI and whole-brain volume in both BRRMS (r = .73, p < .001) and ARRMS (r = .80, p < .01). CONCLUSIONS Thalamic volume is the most prominent measure to differentiate BRRMS and ARRMS. Validation of automated quantification of CCI provides an additional applicable MRI biomarker to detect brain atrophy in MS.
Collapse
Affiliation(s)
- Marja Niiranen
- Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | | | | | - Tuomas Selander
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Antti Cajanus
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Päivi Hartikainen
- Neuro Center, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Sakari Simula
- Department of Neurology, Mikkeli Central Hospital, Mikkeli, Finland
| | - Ritva Vanninen
- Institute of Clinical Medicine - Radiology, University of Eastern Finland, Kuopio, Finland.,Department of Radiology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Anne M Remes
- Unit of Clinical Neuroscience, Neurology, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
12
|
3-Dimensional Fluid and White Matter Suppression Magnetic Resonance Imaging Sequence Accelerated With Compressed Sensing Improves Multiple Sclerosis Cervical Spinal Cord Lesion Detection Compared With Standard 2-Dimensional Imaging. Invest Radiol 2022; 57:575-584. [PMID: 35318971 DOI: 10.1097/rli.0000000000000874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Fluid and white matter suppression (FLAWS) is a recently proposed magnetic resonance sequence derived from magnetization-prepared 2 rapid acquisition gradient-echo providing 2 coregistered datasets with white matter- and cerebrospinal fluid-suppressed signal, enabling synthetic imaging with amplified contrast. Although these features are high potential for brain multiple sclerosis (MS) imaging, spinal cord has never been evaluated with this sequence to date. The objective of this work was therefore to assess diagnostic performance and self-confidence provided by compressed-sensing (CS) 3-dimensional (3D) FLAWS for cervical MS lesion detection on a head scan that includes the cervical cord without changing standard procedures. MATERIALS AND METHODS Prospective 3 T scans (MS first diagnosis or follow-up) acquired between 2019 and 2020 were retrospectively analyzed. All patients underwent 3D CS-FLAWS (duration: 5 minutes 40 seconds), axial T2 turbo spin echo covering cervical spine from cervicomedullary junction to the same inferior level as FLAWS, and sagittal cervical T2/short tau inversion recovery imaging. Two readers performed a 2-stage double-blind reading, followed by consensus reading. Wilcoxon tests were used to compare the number of detected spinal cord lesions and the reader's diagnostic self-confidence when using FLAWS versus the reference 2D T2-weighted imaging. RESULTS Fifty-eight patients were included (mean age, 40 ± 13 years, 46 women, 7 ± 6 years mean disease duration). The CS-FLAWS detected significantly more lesions than the reference T2-weighted imaging (197 vs 152 detected lesions, P < 0.001), with a sensitivity of 98% (T2-weighted imaging sensitivity: 90%) after consensual reading. Considering the subgroup of patients who underwent sagittal T2 + short tau inversion recovery imaging (Magnetic Resonance Imaging for Multiple Sclerosis subgroup), +250% lesions were detected with FLAWS (63 vs 25 lesions detected, P < 0.001). Mean reading self-confidence was significantly better with CS-FLAWS (median, 5 [interquartile range, 1] [no doubt for diagnosis] vs 4 [interquartile range, 1] [high confidence]; P < 0.001). CONCLUSIONS Imaging with CS-FLAWS provides an improved cervical spinal cord exploration for MS with increased self-confidence compared with conventional T2-weighted imaging, in a clinically acceptable time.
Collapse
|
13
|
Bao J, Tu H, Li Y, Sun J, Hu Z, Zhang F, Li J. Diffusion Tensor Imaging Revealed Microstructural Changes in Normal-Appearing White Matter Regions in Relapsing–Remitting Multiple Sclerosis. Front Neurosci 2022; 16:837452. [PMID: 35310094 PMCID: PMC8924457 DOI: 10.3389/fnins.2022.837452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAxons and myelin sheaths are the physical foundation for white matter (WM) to perform normal functions. Our previous study found the metabolite abnormalities in frontal, parietal, and occipital normal-appearing white matter (NAWM) regions in relapsing–remitting multiple sclerosis (RRMS) patients by applying a 2D 1H magnetic resonance spectroscopic imaging method. Since the metabolite changes may associate with the microstructure changes, we used the diffusion tensor imaging (DTI) method to assess the integrity of NAWM in this study.MethodDiffusion tensor imaging scan was performed on 17 clinically definite RRMS patients and 21 age-matched healthy controls on a 3.0-T scanner. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were extracted from 19 predefined regions of interest (ROIs), which were generated by removing a mask of manually drawn probabilistic lesion map from the Johns Hopkins University white-matter atlas. The mean values of FA, MD, AD, and RD were compared between different groups in the same ROIs.ResultsA probabilistic lesion map was successfully generated, and the lesion regions were eliminated from the WM atlas. We found that the RRMS patients had significantly lower FA in the entire corpus callosum (CC), bilateral of anterior corona radiata, and right posterior thalamic radiation (PTR). At the same time, RRMS patients showed significantly higher MD in the bilateral anterior corona radiata and superior corona radiata. Moreover, all AD values increased, and the bilateral external capsule, PTR, and left tapetum NAWM show statistical significance. What is more, all NAWM tracts showed increasing RD values in RRMS patients, and the bilateral superior corona radiata, the anterior corona radiata, right PTR, and the genu CC reach statistical significance.ConclusionOur study revealed widespread microstructure changes in NAWM in RRMS patients through a ready-made WM atlas and probabilistic lesion map. These findings support the hypothesis of demyelination, accumulation of inflammatory cells, and axonal injury in NAWM for RRMS. The DTI-based metrics could be considered as potential non-invasive biomarkers of disease severity.
Collapse
Affiliation(s)
- Jianfeng Bao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hui Tu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yijia Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jubao Sun
- MRI Center, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhigang Hu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Fengshou Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Fengshou Zhang,
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Jinghua Li,
| |
Collapse
|
14
|
Platten M, Ouellette R, Herranz E, Barletta V, Treaba CA, Mainero C, Granberg T. Cortical and white matter lesion topology influences focal corpus callosum atrophy in multiple sclerosis. J Neuroimaging 2022; 32:471-479. [PMID: 35165979 PMCID: PMC9305945 DOI: 10.1111/jon.12977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Corpus callosum (CC) atrophy is a strong predictor of multiple sclerosis (MS) disability but the contributing pathological mechanisms remain uncertain. We aimed to apply advanced MRI to explore what drives the often nonuniform callosal atrophy. Methods Prospective brain 7 Tesla and 3 Tesla Human Connectom Scanner MRI were performed in 92 MS patients. White matter, leukocortical, and intracortical lesions were manually segmented. FreeSurfer was used to segment the CC and topographically classify lesions per lobe or as deep white matter lesions. Regression models were calculated to predict focal CC atrophy. Results The frontal and parietal lobes contained the majority (≥80%) of all lesion classifications in both relapsing‐remitting and secondary progressive MS subtypes. The anterior subsection of the CC had the smallest proportional volume difference between subtypes (11%). Deep, temporal, and occipital white matter lesions, and occipital intracortical lesions were the strongest predictors of middle‐posterior callosal atrophy (adjusted R2 = .54‐.39, P < .01). Conclusions Both white matter and cortical lesions contribute to regional corpus callosal atrophy. The lobe‐specific lesion topology does not fully explain the inhomogeneous CC atrophy.
Collapse
Affiliation(s)
- Michael Platten
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,School of chemistry, biotechnology, and health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Herranz
- Division of Multiple Sclerosis Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, Massachusetts, USA
| | - Valeria Barletta
- Division of Multiple Sclerosis Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, Massachusetts, USA
| | - Constantina A Treaba
- Division of Multiple Sclerosis Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, Massachusetts, USA
| | - Caterina Mainero
- Division of Multiple Sclerosis Imaging Laboratory, Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Katunina EA, Boyko OV, Shipilova NN, Kabaeva AR, Boyko AN. [A rare clinical case of comorbidity of early-onset Parkinson's disease and remitting multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:99-103. [PMID: 34387455 DOI: 10.17116/jnevro202112107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Comorbidities of extrapyramidal disorders and multiple sclerosis (MS) are rare. The chance of a combination of MS and Parkinson's disease (PD) is less than 1 in 12.5 million. In total, 42 cases of joint development of these disorders are described in the literature. All described patients had no initial changes in the basal ganglia on MRI, and the development of MS was diagnosed after 1-8 years. Possible common links in the pathogenesis of neurodegenerative disease and MS, as well as the cumulative effect of the two diseases on the severity of axonal degeneration and neuronal loss are discussed. A description of a clinical case of a combination of early onset PD and relapsing-remitting multiple sclerosis is presented.
Collapse
Affiliation(s)
- E A Katunina
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - O V Boyko
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - N N Shipilova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A R Kabaeva
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| |
Collapse
|
16
|
Barile B, Marzullo A, Stamile C, Durand-Dubief F, Sappey-Marinier D. Ensemble Learning for Multiple Sclerosis Disability Estimation Using Brain Structural Connectivity. Brain Connect 2021; 12:476-488. [PMID: 34269618 DOI: 10.1089/brain.2020.1003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Multiple Sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system characterized by demyelination and neurodegeneration processes. It leads to different clinical courses and degrees of disability that need to be anticipated by the neurologist for personalized therapy. Recently, machine learning (ML) techniques have reached a high level of performance in brain disease diagnosis and/or prognosis, but the decision process of a trained ML system is typically non-transparent. Using brain structural connectivity data, a fully automatic ensemble learning model, augmented with an interpretable model, is proposed for the estimation of MS patients' disability, measured by the Expanded Disability Status Scale (EDSS). METHOD An ensemble of four boosting-based models (GBM, XGBoost, CatBoost, LightBoost) organized following a stacking generalization scheme, was developed using DTI-based structural connectivity data. In addition, an interpretable model based on conditional logistic regression was developed to explain the best performances in terms of white matter (WM) links for three classes of EDSS (Low, Medium, High). RESULTS The ensemble model reached excellent level of performance (RMSE of 0.92 ± 0.28) compared to single-based models and provided a better EDSS estimation using DTI-based structural connectivity data compared to conventional MRI measures associated with patient data (age, gender and disease duration). Used for interpretation of the estimation process, the counterfactual method showed the importance of certain brain networks, corresponding mainly to left hemisphere WM links, connecting the left superior temporal with the left posterior cingulate and the right precuneus gray matter regions, and the inter-hemispheric WM links constituting the corpus callosum. Also, a better accuracy estimation was found for the high disability class. CONCLUSION The combination of advanced ML models and sensitive techniques such as DTI-based structural connectivity demonstrated to be useful for the estimation of MS patients' disability and to point out the most important brain WM networks involved in disability.
Collapse
Affiliation(s)
- Berardino Barile
- Université Claude Bernard Lyon 1, 27098, 1CREATIS (UMR5220 & INSERM U1206), 43 Boulevard du 11 Novembre 1918, Villeurbanne, Villeurbanne, France, 69100;
| | - Aldo Marzullo
- University of Calabria, 18950, Mathematics and Computer Science, Arcavacata di Rende, Calabria, Italy;
| | | | - Francoise Durand-Dubief
- Hospices Civils de Lyon, 26900, Lyon, Auvergne-Rhône-Alpes , France.,Université Claude Bernard Lyon 1, 27098, CREATIS (UMR5220 & INSERM U1206), Villeurbanne, Auvergne-Rhône-Alpes , France;
| | - Dominique Sappey-Marinier
- Université de Lyon, 133614, Lyon, Auvergne-Rhône-Alpes , France.,Université Claude Bernard Lyon 1, 27098, CREATIS (UMR5220 & INSERM U1206), Villeurbanne, Auvergne-Rhône-Alpes , France;
| |
Collapse
|
17
|
Vavasour IM, Sun P, Graf C, Yik JT, Kolind SH, Li DK, Tam R, Sayao AL, Schabas A, Devonshire V, Carruthers R, Traboulsee A, Moore GW, Song SK, Laule C. Characterization of multiple sclerosis neuroinflammation and neurodegeneration with relaxation and diffusion basis spectrum imaging. Mult Scler 2021; 28:418-428. [PMID: 34132126 DOI: 10.1177/13524585211023345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Advanced magnetic resonance imaging (MRI) methods can provide more specific information about various microstructural tissue changes in multiple sclerosis (MS) brain. Quantitative measurement of T1 and T2 relaxation, and diffusion basis spectrum imaging (DBSI) yield metrics related to the pathology of neuroinflammation and neurodegeneration that occurs across the spectrum of MS. OBJECTIVE To use relaxation and DBSI MRI metrics to describe measures of neuroinflammation, myelin and axons in different MS subtypes. METHODS 103 participants (20 clinically isolated syndrome (CIS), 33 relapsing-remitting MS (RRMS), 30 secondary progressive MS and 20 primary progressive MS) underwent quantitative T1, T2, DBSI and conventional 3T MRI. Whole brain, normal-appearing white matter, lesion and corpus callosum MRI metrics were compared across MS subtypes. RESULTS A gradation of MRI metric values was seen from CIS to RRMS to progressive MS. RRMS demonstrated large oedema-related differences, while progressive MS had the most extensive abnormalities in myelin and axonal measures. CONCLUSION Relaxation and DBSI-derived MRI measures show differences between MS subtypes related to the severity and composition of underlying tissue damage. RRMS showed oedema, demyelination and axonal loss compared with CIS. Progressive MS had even more evidence of increased oedema, demyelination and axonal loss compared with CIS and RRMS.
Collapse
Affiliation(s)
- Irene M Vavasour
- Department of Radiology, The University of British Columbia, UBC Hospital, Vancouver, BC, Canada/International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Vancouver, BC, Canada
| | - Peng Sun
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Carina Graf
- Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - Jackie T Yik
- Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC, Canada
| | - Shannon H Kolind
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada/International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Vancouver, BC, Canada/Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC, Canada/Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - David Kb Li
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada/Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Roger Tam
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada/School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Ana-Luiza Sayao
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Alice Schabas
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Virginia Devonshire
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Robert Carruthers
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Anthony Traboulsee
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Gr Wayne Moore
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada/Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Sheng-Kwei Song
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Cornelia Laule
- Department of Radiology, The University of British Columbia, Vancouver, BC, Canada/International Collaboration on Repair Discoveries (ICORD), The University of British Columbia, Vancouver, BC, Canada/Department of Physics & Astronomy, The University of British Columbia, Vancouver, BC, Canada/Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Di Giovanni R, Solaro C, Grange E, Masuccio FG, Brichetto G, Mueller M, Tacchino A. A comparison of upper limb function in subjects with multiple sclerosis and healthy controls using an inertial measurement unit. Mult Scler Relat Disord 2021; 53:103036. [PMID: 34051695 DOI: 10.1016/j.msard.2021.103036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Upper limbs (UL) dysfunction is frequent in people with Multiple Sclerosis (PwMS). Several objective measures of UL function are proposed; however, their use is mostly confined to assess subjects with mild-to-moderate disability and requires fine motor skills, often impaired in high disability level subjects. Thus, a tool to score UL function in the advanced disease stage is lacking. The aim of the study is to analyse and compare UL unilateral and bilateral movements of healthy control (HC) and PwMS, at different disability levels, using an instrumented version (Inertial Measurement Unit, IMU) of the 15-seconds finger-to-nose test (FNT). Each movement cycle was segmented in going/adjusting/returning phases. The inter-hand interval (IHI) allowed assessing bilateral coordination (i.e. synchrony) in each phase. The larger IHI, the more severe the bilateral coordination impairment is. After stratifying PwMS for disability level (PwMSLOW, Expanded Disability Status Scale, EDSS≤5.5 and PwMSHIGH, EDSS≥6), the ANOVA on IHI showed significant differences between PwMS and HC (p<0.001) in all phases. However, only the going phase IHI showed significantly higher asynchrony in PwMSHIGH than PwMSLOW and HC (p<0.001) and no differences between PwMSLOW and HC. The going phase IHI seems to be a clinical marker specific for high disability level PwMS. These findings suggest inertial sensors during FNT could be an easy-to-use method for a more detailed quantitative characterization of UL function in PwMS also in subjects with EDSS greater than 6.
Collapse
Affiliation(s)
| | - C Solaro
- CRRF "Mons. L. Novarese", Moncrivello (VC), Italy.
| | - E Grange
- CRRF "Mons. L. Novarese", Moncrivello (VC), Italy
| | - F G Masuccio
- CRRF "Mons. L. Novarese", Moncrivello (VC), Italy
| | - G Brichetto
- Italian Multiple Sclerosis Foundation (FISM), Scientific Research Area, Via Operai 40, 16149, Genoa, Italy
| | - M Mueller
- Italian Multiple Sclerosis Foundation (FISM), Scientific Research Area, Via Operai 40, 16149, Genoa, Italy
| | - A Tacchino
- Italian Multiple Sclerosis Foundation (FISM), Scientific Research Area, Via Operai 40, 16149, Genoa, Italy
| |
Collapse
|
19
|
Huang J, Yang J, Zou X, Zuo S, Wang J, Cheng J, Zhu H, Li W, Shi M, Zhao G, Liu Z. Ginkgolide B promotes oligodendrocyte precursor cell differentiation and survival via Akt/CREB/bcl-2 signaling pathway after white matter lesion. Exp Biol Med (Maywood) 2021; 246:1198-1209. [PMID: 33557607 PMCID: PMC8142115 DOI: 10.1177/1535370221989955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
White matter lesion (WML) is caused by chronic cerebral hypoperfusion, which are usually associated with cognitive impairment. Evidence from recent studies has shown that ginkgolide B has a neuroprotective effect that could be beneficial for the treatment of ischemia; however, it is not clear whether ginkgolide B has a protective effect on WML. Our data show that ginkgolide B can promote the differentiation of oligodendrocyte precursor cell (OPC) into oligodendrocytes and promote oligodendrocyte survival following a WML. Ginkgolide B (5, 10, 20 mg/kg) or saline is administered intraperitoneally every day after WML. After 4 weeks, the data of Morris water maze suggested that rats' memory and learning abilities were impaired, and the administration of ginkgolide B enhanced behavioral achievement. Also, treatment with ginkgolide B significantly attenuated this loss of myelin. Our result suggests that ginkgolide B promotes the differentiation of OPC into oligodendrocytes. We also found that ginkgolide B ameliorates oligodendrocytes apoptosis. Furthermore, ginkgolide B enhanced the expression of phosphorylated Akt and CREB. In conclusion, our data firstly show that ginkgolide B promotes oligodendrocyte genesis and oligodendrocyte myelin following a WML, possibly involving the Akt and CREB pathways.
Collapse
Affiliation(s)
- Jian Huang
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jun Yang
- Department of Nephrology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xingju Zou
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shilun Zuo
- Department of Neurology, Second Affiliated Hospital of Army Military Medical University, Chongqing 400038, China
| | - Jing Wang
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Cheng
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Zhu
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weiwang Li
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming Shi
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhirong Liu
- Department of Neurology, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
20
|
Schiavi S, Petracca M, Sun P, Fleysher L, Cocozza S, El Mendili MM, Signori A, Babb JS, Podranski K, Song SK, Inglese M. Non-invasive quantification of inflammation, axonal and myelin injury in multiple sclerosis. Brain 2021; 144:213-223. [PMID: 33253366 DOI: 10.1093/brain/awaa381] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to determine the feasibility of diffusion basis spectrum imaging in multiple sclerosis at 7 T and to investigate the pathological substrates of tissue damage in lesions and normal-appearing white matter. To this end, 43 patients with multiple sclerosis (24 relapsing-remitting, 19 progressive), and 21 healthy control subjects were enrolled. White matter lesions were classified in T1-isointense, T1-hypointense and black holes. Mean values of diffusion basis spectrum imaging metrics (fibres, restricted and non-restricted fractions, axial and radial diffusivities and fractional anisotropy) were measured from whole brain white matter lesions and from both lesions and normal appearing white matter of the corpus callosum. Significant differences were found between T1-isointense and black holes (P ranging from 0.005 to <0.001) and between lesions' centre and rim (P < 0.001) for all the metrics. When comparing the three subject groups in terms of metrics derived from corpus callosum normal appearing white matter and T2-hyperintense lesions, a significant difference was found between healthy controls and relapsing-remitting patients for all metrics except restricted fraction and fractional anisotropy; between healthy controls and progressive patients for all metrics except restricted fraction and between relapsing-remitting and progressive multiple sclerosis patients for all metrics except fibres and restricted fractions (P ranging from 0.05 to <0.001 for all). Significant associations were found between corpus callosum normal-appearing white matter fibres fraction/non-restricted fraction and the Symbol Digit Modality Test (respectively, r = 0.35, P = 0.043; r = -0.35, P = 0.046), and between black holes radial diffusivity and Expanded Disability Status Score (r = 0.59, P = 0.002). We showed the feasibility of diffusion basis spectrum imaging metrics at 7 T, confirmed the role of the derived metrics in the characterization of lesions and normal appearing white matter tissue in different stages of the disease and demonstrated their clinical relevance. Thus, suggesting that diffusion basis spectrum imaging is a promising tool to investigate multiple sclerosis pathophysiology, monitor disease progression and treatment response.
Collapse
Affiliation(s)
- Simona Schiavi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Italy.,Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Sun
- Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lazar Fleysher
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sirio Cocozza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Alessio Signori
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - James S Babb
- Department of Radiology, Center for Biomedical Imaging, New York University, Langone Medical Center, New York, USA
| | - Kornelius Podranski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheng-Kwei Song
- Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.,Biomedical Engineering, Washington University, St. Louis, MO, USA.,Biomedical MR Laboratory, Washington University School of Medicine, St. Louis, MO, USA
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Italy.,Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| |
Collapse
|
21
|
Bagnato F, Gauthier SA, Laule C, Moore GRW, Bove R, Cai Z, Cohen-Adad J, Harrison DM, Klawiter EC, Morrow SA, Öz G, Rooney WD, Smith SA, Calabresi PA, Henry RG, Oh J, Ontaneda D, Pelletier D, Reich DS, Shinohara RT, Sicotte NL. Imaging Mechanisms of Disease Progression in Multiple Sclerosis: Beyond Brain Atrophy. J Neuroimaging 2021; 30:251-266. [PMID: 32418324 DOI: 10.1111/jon.12700] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinicians involved with different aspects of the care of persons with multiple sclerosis (MS) and scientists with expertise on clinical and imaging techniques convened in Dallas, TX, USA on February 27, 2019 at a North American Imaging in Multiple Sclerosis Cooperative workshop meeting. The aim of the workshop was to discuss cardinal pathobiological mechanisms implicated in the progression of MS and novel imaging techniques, beyond brain atrophy, to unravel these pathologies. Indeed, although brain volume assessment demonstrates changes linked to disease progression, identifying the biological mechanisms leading up to that volume loss are key for understanding disease mechanisms. To this end, the workshop focused on the application of advanced magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging techniques to assess and measure disease progression in both the brain and the spinal cord. Clinical translation of quantitative MRI was recognized as of vital importance, although the need to maintain a relatively short acquisition time mandated by most radiology departments remains the major obstacle toward this effort. Regarding PET, the panel agreed upon its utility to identify ongoing pathological processes. However, due to costs, required expertise, and the use of ionizing radiation, PET was not considered to be a viable option for ongoing care of persons with MS. Collaborative efforts fostering robust study designs and imaging technique standardization across scanners and centers are needed to unravel disease mechanisms leading to progression and discovering medications halting neurodegeneration and/or promoting repair.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Department of Neurology, Feil Family Brain and Mind Institute, and Department of Radiology, Weill Cornell Medicine, New York, NY
| | - Cornelia Laule
- Department of Radiology, Pathology, and Laboratory Medicine, Department of Physics and Astronomy, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - George R Wayne Moore
- Department of Pathology and Laboratory Medicine, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Riley Bove
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal and Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Quebec, Canada
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Eric C Klawiter
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sarah A Morrow
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Gülin Öz
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - William D Rooney
- Advanced Imaging Research Center, Departments of Biomedical Engineering, Neurology, and Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Seth A Smith
- Radiology and Radiological Sciences and Vanderbilt University Imaging Institute, Vanderbilt University Medical Center, and Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Roland G Henry
- Departments of Neurology, Radiology and Biomedical Imaging, and the UC San Francisco & Berkeley Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA
| | - Jiwon Oh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Division of Neurology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel Pelletier
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | -
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
22
|
Luchicchi A, Hart B, Frigerio I, van Dam AM, Perna L, Offerhaus HL, Stys PK, Schenk GJ, Geurts JJG. Axon-Myelin Unit Blistering as Early Event in MS Normal Appearing White Matter. Ann Neurol 2021; 89:711-725. [PMID: 33410190 PMCID: PMC8048993 DOI: 10.1002/ana.26014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 12/19/2020] [Accepted: 01/03/2021] [Indexed: 02/04/2023]
Abstract
Objective Multiple sclerosis (MS) is a chronic neuroinflammatory and neurodegenerative disease of unknown etiology. Although the prevalent view regards a CD4+‐lymphocyte autoimmune reaction against myelin at the root of the disease, recent studies propose autoimmunity as a secondary reaction to idiopathic brain damage. To gain knowledge about this possibility we investigated the presence of axonal and myelinic morphological alterations, which could implicate imbalance of axon‐myelin units as primary event in MS pathogenesis. Methods Using high resolution imaging histological brain specimens from patients with MS and non‐neurological/non‐MS controls, we explored molecular changes underpinning imbalanced interaction between axon and myelin in normal appearing white matter (NAWM), a region characterized by normal myelination and absent inflammatory activity. Results In MS brains, we detected blister‐like swellings formed by myelin detachment from axons, which were substantially less frequently retrieved in non‐neurological/non‐MS controls. Swellings in MS NAWM presented altered glutamate receptor expression, myelin associated glycoprotein (MAG) distribution, and lipid biochemical composition of myelin sheaths. Changes in tethering protein expression, widening of nodes of Ranvier and altered distribution of sodium channels in nodal regions of otherwise normally myelinated axons were also present in MS NAWM. Finally, we demonstrate a significant increase, compared with controls, in citrullinated proteins in myelin of MS cases, pointing toward biochemical modifications that may amplify the immunogenicity of MS myelin. Interpretation Collectively, the impaired interaction of myelin and axons potentially leads to myelin disintegration. Conceptually, the ensuing release of (post‐translationally modified) myelin antigens may elicit a subsequent immune attack in MS. ANN NEUROL 2021;89:711–725
Collapse
Affiliation(s)
- Antonio Luchicchi
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Bert't Hart
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands.,Department Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Irene Frigerio
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Laura Perna
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Herman L Offerhaus
- Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Peter K Stys
- Cummings School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Geert J Schenk
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| | - Jeroen J G Geurts
- Amsterdam UMC, Vrije Universiteit, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Clarke MA, Lakhani DA, Wen S, Gao S, Smith SA, Dortch R, Xu J, Bagnato F. Perilesional neurodegenerative injury in multiple sclerosis: Relation to focal lesions and impact on disability. Mult Scler Relat Disord 2021; 49:102738. [PMID: 33609957 DOI: 10.1016/j.msard.2021.102738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/21/2020] [Accepted: 01/03/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Axonal injury is the primary source of irreversible neurological decline in persons with multiple sclerosis (pwMS). Identifying and quantifying myelin and axonal loss in lesional and perilesional tissue in vivo is fundamental for a better understanding of multiple sclerosis (MS) outcomes and patient impairment. Using advanced magnetic resonance imaging (MRI) methods, consisting of selective inversion recovery quantitative magnetization transfer imaging (SIR-qMT) and multi-compartment diffusion MRI with the spherical mean technique (SMT), we conducted a cross-sectional pilot study to assess myelin and axonal damage in the normal appearing white matter (NAWM) surrounding chronic black holes (cBHs) and how this pathology correlates with disability in vivo. We hypothesized that lesional axonal transection propagates tissue injury in the surrounding NAWM and that the degree of this injury is related to patient disability. METHODS Eighteen pwMS underwent a 3.0 Tesla conventional clinical MRI, inclusive of T1 and T2 weighted protocols, as well as SIR-qMT and SMT. Regions of interests (ROIs) were manually delineated in cBHs, NAWM neighboring cBHs (perilesional NAWM), distant ipsilateral NAWM and contra-lateral distant NAWM. SIR-qMT-derived macromolecular-to-free pool size ratio (PSR) and SMT-derived apparent axonal volume fraction (Vax) were extracted to infer on myelin and axonal content, respectively. Group differences were assessed using mixed-effects regression models and correlation analyses were obtained by bootstrapping 95% confidence interval. RESULTS In comparison to perilesional NAWM, both PSR and Vax values were reduced in cBHs (p < 0.0001) and increased in distant contra-lateral NAWM ROIs (p < 0.001 for PSR and p < 0.0001 for Vax) but not ipsilateral NAWM (p = 0.176 for PSR and p = 0.549 for Vax). Vax values measured in cBHs correlated with those in perilesional NAWM (Pearson rho = 0.63, p < 0.001). No statistically relevant associations were seen between PSR/Vax values and clinical and/or MRI metrics of the disease with the exception of cBH PSR values, which correlated with the Expanded Disability Status Scale (Pearson rho = -0.63, p = 0.03). CONCLUSIONS Our results show that myelin and axonal content, detected by PSR and Vax, are reduced in perilesional NAWM, as a function of the degree of focal cBH axonal injury. This finding is indicative of an ongoing anterograde/retrograde degeneration and suggests that treatment prevention of cBH development is a key factor for preserving NAWM integrity in surrounding tissue. It also suggests that measuring changes in perilesional areas over time may be a useful measure of outcome for proof-of-concept clinical trials on neuroprotection and repair. PSR and Vax largely failed to capture associations with clinical and MRI characteristics, likely as a result of the small sample size and cross-sectional design, however, longitudinal assessment of a larger cohort may unravel the impact of this pathology on disease progression.
Collapse
Affiliation(s)
- Margareta A Clarke
- Neuroimaging Unit, Neuro-immunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dhairya A Lakhani
- Neuroimaging Unit, Neuro-immunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology, West Virginia University, Morgantown, WV, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, WV, USA
| | - Si Gao
- Department of Biostatistics, West Virginia University, Morgantown, WV, USA
| | - Seth A Smith
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Sciences, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard Dortch
- Vanderbilt University Institute of Imaging Sciences, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Sciences, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Francesca Bagnato
- Neuroimaging Unit, Neuro-immunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, VA Hospital, TN Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
24
|
Sun C, Zhang AD, Chen HH, Bian J, Liu ZJ. Magnet-targeted delivery of bone marrow-derived mesenchymal stem cells improves therapeutic efficacy following hypoxic-ischemic brain injury. Neural Regen Res 2021; 16:2324-2329. [PMID: 33818519 PMCID: PMC8354132 DOI: 10.4103/1673-5374.310942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Stem cell transplantation may represent a feasible therapeutic option for the recovery of neurological function in children with hypoxic-ischemic brain injury; however, the therapeutic efficacy of bone marrow-derived mesenchymal stem cells largely depends on the number of cells that are successfully transferred to the target. Magnet-targeted drug delivery systems can use a specific magnetic field to attract the drug to the target site, increasing the drug concentration. In this study, we found that the double-labeling using superparamagnetic iron oxide nanoparticle and poly-L-lysine (SPIO-PLL) of bone marrow-derived mesenchymal stem cells had no effect on cell survival but decreased cell proliferation 48 hours after labeling. Rat models of hypoxic-ischemic brain injury were established by ligating the left common carotid artery. One day after modeling, intraventricular and caudal vein injections of 1 × 105 SPIO-PLL-labeled bone marrow-derived mesenchymal stem cells were performed. Twenty-four hours after the intraventricular injection, magnets were fixed to the left side of the rats’ heads for 2 hours. Intravoxel incoherent motion magnetic resonance imaging revealed that the perfusion fraction and the diffusion coefficient of rat brain tissue were significantly increased in rats treated with SPIO-PLL-labeled cells through intraventricular injection combined with magnetic guidance, compared with those treated with SPIO-PLL-labeled cells through intraventricular or tail vein injections without magnetic guidance. Hematoxylin-eosin and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining revealed that in rats treated with SPIO-PLL-labeled cells through intraventricular injection under magnetic guidance, cerebral edema was alleviated, and apoptosis was decreased. These findings suggest that targeted magnetic guidance can be used to improve the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for hypoxic-ischemic brain injury. This study was approved by the Animal Care and Use Committee of The Second Hospital of Dalian Medical University, China (approval No. 2016-060) on March 2, 2016.
Collapse
Affiliation(s)
- Chuang Sun
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ao-Dan Zhang
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Hong-Hai Chen
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jie Bian
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Zheng-Juan Liu
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
25
|
Saraste M, Bezukladova S, Sucksdorff M, Saunavaara V, Rissanen E, Matilainen M, Airas L. Fingolimod treatment reverses signs of diffuse white matter damage in multiple sclerosis: A pilot study. Mult Scler Relat Disord 2020; 48:102690. [PMID: 33352357 DOI: 10.1016/j.msard.2020.102690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/09/2020] [Accepted: 12/13/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND In multiple sclerosis (MS) diffuse normal appearing white matter (NAWM) damage may drive chronic worsening independent of relapse activity. Diffusion tensor imaging (DTI) is a nonconventional MRI technique that can be used to assess microstructural alterations in myelin and axons. The aim of our study was to investigate the effect of six months fingolimod treatment on the integrity of entire and segmented NAWM in patients with relapsing-remitting multiple sclerosis (RRMS). METHODS Ten RRMS patients initiating fingolimod treatment were included in the study. Patients underwent 3 T MRI including diffusion tensor sequences at baseline before the initiation of treatment and at six months. The mean values for fractional anisotropy (FA), and mean, radial and axial diffusivities (MD, RD and AD) were calculated within the whole NAWM and in six segmented sub-regions of NAWM (frontal, parietal, temporal, occipital, cingulate and deep NAWM). Clinical characteristics, Expanded Disability Status Scale (EDSS) and volumetric MRI data were also evaluated. RESULTS In the cingulate NAWM FA was increased and RD was decreased significantly at six months compared to baseline (0.462 vs. 0.472, P = 0.027 and 0.000646 vs. 0.000634, P = 0.041, respectively), indicating improvements in myelin and axonal integrity following fingolimod treatment, whereas there were no alterations in cingulate MD or AD. Cingulate and temporal FA and RD correlated with T2 lesion volume percentage of cingulate and temporal areas. EDSS change correlated with change of the whole NAWM AD. CONCLUSIONS Increased FA and decreased RD in the cingulate NAWM might suggest microstructural fingolimod-induced improvements in the normal appearing cingulate white matter. Our results support the concept that DTI can be used as a marker of diffuse neuronal damage also in interventional settings.
Collapse
Affiliation(s)
- Maija Saraste
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.
| | - Svetlana Bezukladova
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Marcus Sucksdorff
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Department of Medical Physics, Division of Medical Imaging, Turku University Hospital, Turku, Finland
| | - Eero Rissanen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Laura Airas
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| |
Collapse
|
26
|
Rajan S, Brettschneider J, Collingwood JF. Regional segmentation strategy for DTI analysis of human corpus callosum indicates motor function deficit in mild cognitive impairment. J Neurosci Methods 2020; 345:108870. [PMID: 32687851 DOI: 10.1016/j.jneumeth.2020.108870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The corpus callosum is the largest white matter tract in the human brain, involved in inter-hemispheric transfer and integration of lateralised visual, sensory-motor, language, and cognitive information. Microstructural alterations are implicated in ageing as well as various neurological conditions. NEW METHOD Cross-sectional diffusion-weighted images of 107 healthy adults were used to create a linear regression model of the ageing corpus callosum and its sub-regions to evaluate the impact of analysis by sub-region, and to test for deviations from healthy ageing parameters in 28 subjects with mild cognitive impairment (MCI). Alterations in diffusion properties including fractional anisotropy, mean, radial and axial diffusivities were investigated as a function of age. RESULTS Changes in DTI parameters showed age-dependent regional differences, likely arising from axonal diameter variation across cross-sectional regions of interest in the corpus callosum. Patterns suggestive of degeneration with healthy ageing were observed in all regions. Diffusion parameters in sub-regions projecting to pre-motor, primary, and supplementary motor areas of the brain differed for MCI versus healthy controls, and MCI subjects were more likely than healthy controls to experience a reduction in motor skills. COMPARISON WITH EXISTING METHODS Statistical analyses of the corpus callosum by five manually-defined sub-regions, instead of a single manually-defined region of interest, revealed region-specific changes in microstructure in healthy ageing and MCI, and accounted for clinically-evaluated differences in motor skills between cohorts. CONCLUSION This method will support future studies of corpus callosum, enabling identification and measurement of white matter changes that are undetectable with the single ROI approach.
Collapse
Affiliation(s)
- Surya Rajan
- School of Engineering, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
27
|
Mahajan KR, Nakamura K, Cohen JA, Trapp BD, Ontaneda D. Intrinsic and Extrinsic Mechanisms of Thalamic Pathology in Multiple Sclerosis. Ann Neurol 2020; 88:81-92. [PMID: 32286701 PMCID: PMC8291218 DOI: 10.1002/ana.25743] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Thalamic atrophy is among the earliest brain changes detected in patients with multiple sclerosis (MS) and the degree of thalamic atrophy is a strong predictor of disability progression. The causes of thalamic atrophy are not fully understood. Here, we investigate the contributions of thalamic demyelinated lesions, thalamic neuronal loss, and cerebral white matter (WM) lesions to thalamic volume. METHODS We used postmortem in situ magnetic resonance imaging (MRI) scans of 95 subjects with MS to correlate thalamic lesion volumes with global MRI metrics. We histologically characterized thalamic demyelination patterns and compared neuronal loss and neuritic pathology in the thalami with the extremes of volume. RESULTS Grossly apparent thalamic discolorations in cm-thick brain slices were T2/fluid-attenuated inversion recovery (FLAIR) hyperintense, T1-hypointense, and appeared as perivascular demyelinated lesions with dystrophic neurons/axons. Subependymal demyelinated lesions with axonal loss and microglial/macrophage activation were also observed. The 12 subjects with the least thalamic volume had a 17.6% reduction of median neuronal density in the dorsomedial/ventrolateral and pulvinar nuclei compared with the 14 subjects with the greatest thalamic volume (p = 0.03). After correcting for age, disease duration, sex, and T2 lesion volume, the total (p = 0.20), ovoid (p = 0.31), or subependymal (p = 0.44) MRI thalamic lesion volumes correlated with thalamic volume. Thalamic volume correlated with cerebral T2 lesion volume (Spearman's rho = -0.65, p < 0.001; p < 0.0001 after correcting for age, disease duration, and sex). INTERPRETATION Our findings suggest the degeneration of efferent/afferent thalamic projections and/or a neurodegenerative process as greater contributors to thalamic atrophy than thalamic demyelinating lesions. ANN NEUROL 2020 ANN NEUROL 2020;88:81-92.
Collapse
Affiliation(s)
- Kedar R. Mahajan
- Mellen Center for MS Treatment and Research, Neurologic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kunio Nakamura
- Department of Biomedical Engineering, Lerner Research Institute, Neurologic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jeffrey A. Cohen
- Mellen Center for MS Treatment and Research, Neurologic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bruce D. Trapp
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Daniel Ontaneda
- Mellen Center for MS Treatment and Research, Neurologic Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
28
|
Sugijono SE, Mulyadi R, Firdausia S, Prihartono J, Estiasari R. Corpus callosum index correlates with brain volumetry and disability in multiple sclerosis patients. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2020; 25:193-199. [PMID: 32683399 PMCID: PMC8015480 DOI: 10.17712/nsj.2020.3.20190093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/15/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To analyze the correlation between corpus callosum index (CCI), brain volumetry, and disability in multiple sclerosis (MS) patients. The brain volumetry consists of the corpus callosum, cortical gray matter, subcortical gray matter, and white matter volumes. METHODS This was a retrospective cross-sectional study from October 2018 to February 2019 of 30 patients with MS aged 20 to 61 years old. Brain volumetry was performed using FreeSurfer software. The CCI were measured manually using conventional best mid-sagittal T1W brain MRI. The anterior, posterior, and medium segments were measured and divided to its greatest anteroposterior diameter. Higher CCI values indicated greater corpus callosum volumes. Clinical evaluation was comprised of MS subtype, age of onset, relapse frequency and Expanded Disability Status Scale (EDSS). RESULTS Thirty MS patients with median of age 22 years were included. Relapsing-remitting (RRMS) subtype were 73.3%. Very significant correlations were shown between the CCI and corpus callosum volume (CCV) (r=0.79; p<0.0001) and cerebral white matter volume (r=0.81; p<0.0001). Significant correlations were shown between the CCI and cortical gray matter volume (r=0.64; p<0.0001) and subcortical gray matter volume (r=0.69; p<0.0001). The CCI was positively correlated with age of onset and inversely with EDSS. The CCV and CCI were smaller in secondary progressive MS (SPMS). CONCLUSION The CCI is easy and fast to obtain in conventional MRI and significantly correlated with brain volumetry, age of onset and disability in MS patients.
Collapse
Affiliation(s)
- Stefanus E. Sugijono
- From the Department of Radiology (Sugijono), Division of Neuroradiology (Mulyadi), Department of Radiology, Department of Neurology (Firdausia, Estiasari), Department of Community Medicine (Prihartono), Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Rahmad Mulyadi
- From the Department of Radiology (Sugijono), Division of Neuroradiology (Mulyadi), Department of Radiology, Department of Neurology (Firdausia, Estiasari), Department of Community Medicine (Prihartono), Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Salsabila Firdausia
- From the Department of Radiology (Sugijono), Division of Neuroradiology (Mulyadi), Department of Radiology, Department of Neurology (Firdausia, Estiasari), Department of Community Medicine (Prihartono), Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Joedo Prihartono
- From the Department of Radiology (Sugijono), Division of Neuroradiology (Mulyadi), Department of Radiology, Department of Neurology (Firdausia, Estiasari), Department of Community Medicine (Prihartono), Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| | - Riwanti Estiasari
- From the Department of Radiology (Sugijono), Division of Neuroradiology (Mulyadi), Department of Radiology, Department of Neurology (Firdausia, Estiasari), Department of Community Medicine (Prihartono), Faculty of Medicine, University of Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
| |
Collapse
|
29
|
Naeeni Davarani M, Arian Darestani A, Hassani-Abharian P, Vaseghi S, Zarrindast MR, Nasehi M. RehaCom rehabilitation training improves a wide-range of cognitive functions in multiple sclerosis patients. APPLIED NEUROPSYCHOLOGY-ADULT 2020; 29:262-272. [PMID: 32368936 DOI: 10.1080/23279095.2020.1747070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease that impairs cognitive performance. Attention, response control, working memory, and processing speed are highly impaired in MS. On the other hand, RehaCom is a computerized software that improves cognitive dysfunctions. In this study, we aimed to investigate the effect of RehaCom on attention, response control, processing speed, working memory, visuospatial skills, and verbal/non-verbal executive functions in MS patients. Sixty patients were selected randomly and divided into control (n = 30) and experimental (n = 30) groups. Integrated Auditory Visual-2 (IVA-2), Paced Auditory Serial Addition Test (PASAT), Symbol Digit Modalities Test (SDMT), Judgment of Line Orientation (JLO) and The Delis-Kaplan Executive Function System (DKEFS) were used to assess cognitive functions. Patients in the experimental group were treated by RehaCom for 5 weeks (two 60-min sessions per week). Cognitive performance of all patients in both groups was assessed at weeks 5 and 10 (post-test and follow-up stages, respectively). The results showed that RehaCom treatment improved all studied cognitive functions at the post-test stage. This effect also remained at the follow-up stage for some cognitive functions. In conclusion, treatment with RehaCom may have significant therapeutic effects on cognitive dysfunctions in MS patients.
Collapse
Affiliation(s)
- Mahsa Naeeni Davarani
- Department of Psychology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Arian Darestani
- Department of Psychology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Peyman Hassani-Abharian
- Department of Rehabilitation, Brain and Cognition Clinic, Tehran, Iran.,Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Salar Vaseghi
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Cappelle S, Pareto D, Tintoré M, Vidal-Jordana A, Alyafeai R, Alberich M, Sastre-Garriga J, Auger C, Montalban X, Rovira À. A validation study of manual atrophy measures in patients with Multiple Sclerosis. Neuroradiology 2020; 62:955-964. [PMID: 32246177 DOI: 10.1007/s00234-020-02401-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/10/2020] [Indexed: 01/18/2023]
Abstract
PURPOSE Manual measures such as corpus callosum index, normalized corpus callosum area, and width of the third ventricle are potential biomarkers for brain atrophy. In this work, we investigate their suitability to assess the neurodegenerative component of multiple sclerosis (MS) by comparing them to volumetric measures and expanded disability status scale (EDSS). METHODS Fifty-eight patients with a clinically isolated syndrome, 48 MS patients treated with interferon β, and 26 treated with natalizumab underwent a brain MRI at baseline and after 1 year. Manual measures were evaluated by two observers using Jim v.6.0 at both time points. Volumetric tools (SIENA/x and Freesurfer) were used to calculate normalized brain volume, brain parenchymal fraction, annualized percentage of brain volume change, corpus callosum volume, ventricle volume, and volume of the third ventricle. Statistical analyses were performed with SPSS v.13. RESULTS Usage of corpus callosum volume and third ventricle volume to validate normalized corpus callosum area and width of the third ventricle, respectively, showed very good correlations (r = 0.85, r = 0.83; p < 0.01). Width of the third ventricle, corpus callosum index, and normalized corpus callosum area correlations were significant with EDSS in all patients and moderate to strong with normalized brain volume and brain parenchymal fraction in natalizumab-treated patients (respectively r = - 0.54, r = - 0.61; r = 0.55, r = 0.67; and r = 0.58, r = 0.67; with p < 0.05). CONCLUSION Width of the third ventricle and normalized corpus callosum area seem the more robust manual measures regarding correlation with volumetric measures and EDSS, especially in patients with more advanced disease.
Collapse
Affiliation(s)
- Sarah Cappelle
- Section of Neuroradiology and Magnetic Resonance Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Radiology, University Hospital Leuven, Leuven, Belgium
| | - Deborah Pareto
- Section of Neuroradiology and Magnetic Resonance Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Mar Tintoré
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Angela Vidal-Jordana
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rumaiza Alyafeai
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manel Alberich
- Section of Neuroradiology and Magnetic Resonance Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Auger
- Section of Neuroradiology and Magnetic Resonance Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Department of Neurology/Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Division of Neurology, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - Àlex Rovira
- Section of Neuroradiology and Magnetic Resonance Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
31
|
Karaman A. What Else Can We Use in The Discrimination of Activated MS Plaques in Addition to Diffusion MRI? Eurasian J Med 2020; 52:98-99. [PMID: 32158324 DOI: 10.5152/eurasianjmed.2020.19238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute respiratory distress syndrome is characterized by dyspnea at presentation, tachypnea on physical examination, findings of bilateral infiltration in chest radiography, refractory hypoxia, and high mortality. Although the main treatment approach is to address the underlying disease, there are also pharmacological and nonpharmacological options for supportive treatment. There is currently no pharmacological agent with proven efficacy in this syndrome, and many drugs are being studied for this purpose. One of these is the endothelin receptor antagonist bosentan.
Collapse
Affiliation(s)
- Adem Karaman
- Department of Radiology, Ataturk University School of Medicine, Erzurum, Turkey
| |
Collapse
|
32
|
Sun P, George A, Perantie DC, Trinkaus K, Ye Z, Naismith RT, Song SK, Cross AH. Diffusion basis spectrum imaging provides insights into MS pathology. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 7:7/2/e655. [PMID: 31871296 PMCID: PMC7011117 DOI: 10.1212/nxi.0000000000000655] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/04/2019] [Indexed: 11/15/2022]
Abstract
Objective To use diffusion basis spectrum imaging (DBSI) to assess how damage to normal-appearing white matter (NAWM) in the corpus callosum (CC) influences neurologic impairment in people with MS (pwMS). Methods Using standard MRI, the primary pathologies in MS of axonal injury/loss, demyelination, and inflammation are not differentiated well. DBSI has been shown in animal models, phantoms, and in biopsied and autopsied human CNS tissues to distinguish these pathologies. Fifty-five pwMS (22 relapsing-remitting, 17 primary progressive, and 16 secondary progressive) and 13 healthy subjects underwent DBSI analyses of NAWM of the CC, the main WM tract connecting the cerebral hemispheres. Tract-based spatial statistics were used to minimize misalignment. Results were correlated with scores from a battery of clinical tests focused on deficits typical of MS. Results Normal-appearing CC in pwMS showed reduced fiber fraction and increased nonrestricted isotropic fraction, with the most extensive abnormalities in secondary progressive MS (SPMS). Reduced DBSI-derived fiber fraction and increased DBSI-derived nonrestricted isotropic fraction of the CC correlated with worse cognitive scores in pwMS. Increased nonrestricted isotropic fraction in the body of the CC correlated with impaired hand function in the SPMS cohort. Conclusions DBSI fiber fraction and nonrestricted isotropic fraction were the most useful markers of injury in the NAWM CC. These 2 DBSI measures reflect axon loss in animal models. Because of its ability to reveal axonal loss, as well as demyelination, DBSI may be a useful outcome measure for trials of CNS reparative treatments.
Collapse
Affiliation(s)
- Peng Sun
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Ajit George
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Dana C Perantie
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Kathryn Trinkaus
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Zezhong Ye
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Robert T Naismith
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Sheng-Kwei Song
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO
| | - Anne H Cross
- From the Radiology (P.S., A.G., Z.Y., S.-K.S.), Washington University in Saint Louis, MO; Neurology (D.C.P., R.T.N., A.H.C.), Washington University in Saint Louis, MO; and Biostatistics Shared Resource (K.T.), Washington University in Saint Louis, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO.
| |
Collapse
|
33
|
Platten M, Martola J, Fink K, Ouellette R, Piehl F, Granberg T. MRI-Based Manual versus Automated Corpus Callosum Volumetric Measurements in Multiple Sclerosis. J Neuroimaging 2019; 30:198-204. [PMID: 31750599 DOI: 10.1111/jon.12676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/13/2019] [Accepted: 10/26/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Corpus callosum atrophy is a neurodegenerative biomarker in multiple sclerosis (MS). Manual delineations are gold standard but subjective and labor intensive. Novel automated methods are promising but require validation. We aimed to compare the robustness of manual versus automatic corpus callosum segmentations based on FreeSurfer. METHODS Nine MS patients (6 females, age 38 ± 13 years, disease duration 7.3 ± 5.2 years) were scanned twice with repositioning using 3-dimensional T1 -weighted magnetic resonance imaging on three scanners (two 1.5 T and one 3.0 T), that is, six scans/patient, on the same day. Normalized corpus callosum areas were measured independently by a junior doctor and neuroradiologist. The cross-sectional and longitudinal streams of FreeSurfer were used to segment the corpus callosum volume. RESULTS Manual measurements had high intrarater (junior doctor .96 and neuroradiologist .96) and interrater agreement (.94), by intraclass correlation coefficient (P < .001). The coefficient of variation was lowest for longitudinal FreeSurfer (.96% within scanners; 2.0% between scanners) compared to cross-sectional FreeSurfer (3.7%, P = .001; 3.8%, P = .058) and the neuroradiologist (2.3%, P = .005; 2.4%, P = .33). Longitudinal FreeSurfer was also more accurate than cross-sectional (Dice scores 83.9 ± 7.5% vs. 78.9 ± 8.4%, P < .01 relative to manual segmentations). The corpus callosum measures correlated with physical disability (longitudinal FreeSurfer r = -.36, P < .01; neuroradiologist r = -.32, P < .01) and cognitive disability (longitudinal FreeSurfer r = .68, P < .001; neuroradiologist r = .64, P < .001). CONCLUSIONS FreeSurfer's longitudinal stream provides corpus callosum measures with better repeatability than current manual methods and with similar clinical correlations. However, due to some limitations in accuracy, caution is warranted when using FreeSurfer with clinical data.
Collapse
Affiliation(s)
- Michael Platten
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Division of Neuroradiology, Department of Radiology, Karolinska University Hospital, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Juha Martola
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Katharina Fink
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Center for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Russell Ouellette
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Division of Neuroradiology, Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.,Center for Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Division of Neuroradiology, Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
34
|
Eitel F, Soehler E, Bellmann-Strobl J, Brandt AU, Ruprecht K, Giess RM, Kuchling J, Asseyer S, Weygandt M, Haynes JD, Scheel M, Paul F, Ritter K. Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. Neuroimage Clin 2019; 24:102003. [PMID: 31634822 PMCID: PMC6807560 DOI: 10.1016/j.nicl.2019.102003] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Machine learning-based imaging diagnostics has recently reached or even surpassed the level of clinical experts in several clinical domains. However, classification decisions of a trained machine learning system are typically non-transparent, a major hindrance for clinical integration, error tracking or knowledge discovery. In this study, we present a transparent deep learning framework relying on 3D convolutional neural networks (CNNs) and layer-wise relevance propagation (LRP) for diagnosing multiple sclerosis (MS), the most widespread autoimmune neuroinflammatory disease. MS is commonly diagnosed utilizing a combination of clinical presentation and conventional magnetic resonance imaging (MRI), specifically the occurrence and presentation of white matter lesions in T2-weighted images. We hypothesized that using LRP in a naive predictive model would enable us to uncover relevant image features that a trained CNN uses for decision-making. Since imaging markers in MS are well-established this would enable us to validate the respective CNN model. First, we pre-trained a CNN on MRI data from the Alzheimer's Disease Neuroimaging Initiative (n = 921), afterwards specializing the CNN to discriminate between MS patients (n = 76) and healthy controls (n = 71). Using LRP, we then produced a heatmap for each subject in the holdout set depicting the voxel-wise relevance for a particular classification decision. The resulting CNN model resulted in a balanced accuracy of 87.04% and an area under the curve of 96.08% in a receiver operating characteristic curve. The subsequent LRP visualization revealed that the CNN model focuses indeed on individual lesions, but also incorporates additional information such as lesion location, non-lesional white matter or gray matter areas such as the thalamus, which are established conventional and advanced MRI markers in MS. We conclude that LRP and the proposed framework have the capability to make diagnostic decisions of CNN models transparent, which could serve to justify classification decisions for clinical review, verify diagnosis-relevant features and potentially gather new disease knowledge.
Collapse
Affiliation(s)
- Fabian Eitel
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin Center for Advanced Neuroimaging, Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany
| | - Emily Soehler
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin Center for Advanced Neuroimaging, Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin Institute of Health (BIH), Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, 10117 Berlin, Germany
| | - Alexander U Brandt
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany; Department of Neurology, University of California, Irvine, CA, USA
| | - Klemens Ruprecht
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany
| | - René M Giess
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany
| | - Joseph Kuchling
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin Institute of Health (BIH), Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, 10117 Berlin, Germany
| | - Susanna Asseyer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin Institute of Health (BIH), Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, 10117 Berlin, Germany
| | - Martin Weygandt
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany
| | - John-Dylan Haynes
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin Center for Advanced Neuroimaging, Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany; Einstein Center for Digital Future Berlin, Germany
| | - Michael Scheel
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin Institute of Health (BIH), Department of Neuroradiology, 10117 Berlin, Germany
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin Institute of Health (BIH), Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, 10117 Berlin, Germany; Einstein Center for Digital Future Berlin, Germany
| | - Kerstin Ritter
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin Center for Advanced Neuroimaging, Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany.
| |
Collapse
|
35
|
Chronic inflammation in multiple sclerosis - seeing what was always there. Nat Rev Neurol 2019; 15:582-593. [PMID: 31420598 DOI: 10.1038/s41582-019-0240-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 12/18/2022]
Abstract
Activation of innate immune cells and other compartmentalized inflammatory cells in the brains and spinal cords of people with relapsing-remitting multiple sclerosis (MS) and progressive MS has been well described histopathologically. However, conventional clinical MRI is largely insensitive to this inflammatory activity. The past two decades have seen the introduction of quantitative dynamic MRI scanning with contrast agents that are sensitive to the reduction in blood-brain barrier integrity associated with inflammation and to the trafficking of inflammatory myeloid cells. New MRI imaging sequences provide improved contrast for better detection of grey matter lesions. Quantitative lesion volume measures and magnetic resonance susceptibility imaging are sensitive to the activity of macrophages in the rims of white matter lesions. PET and magnetic resonance spectroscopy methods can also be used to detect contributions from innate immune activation in the brain and spinal cord. Some of these advanced research imaging methods for visualization of chronic inflammation are practical for relatively routine clinical applications. Observations made with the use of these techniques suggest ways of stratifying patients with MS to improve their care. The imaging methods also provide new tools to support the development of therapies for chronic inflammation in MS.
Collapse
|
36
|
Limiting Neuronal Nogo Receptor 1 Signaling during Experimental Autoimmune Encephalomyelitis Preserves Axonal Transport and Abrogates Inflammatory Demyelination. J Neurosci 2019; 39:5562-5580. [PMID: 31061088 DOI: 10.1523/jneurosci.1760-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022] Open
Abstract
We previously identified that ngr1 allele deletion limits the severity of experimental autoimmune encephalomyelitis (EAE) by preserving axonal integrity. However, whether this favorable outcome observed in EAE is a consequence of an abrogated neuronal-specific pathophysiological mechanism, is yet to be defined. Here we show that, Cre-loxP-mediated neuron-specific deletion of ngr1 preserved axonal integrity, whereas its re-expression in ngr1-/- female mice potentiated EAE-axonopathy. As a corollary, myelin integrity was preserved under Cre deletion in ngr1flx/flx , retinal ganglion cell axons whereas, significant demyelination occurred in the ngr1-/- optic nerves following the re-introduction of NgR1. Moreover, Cre-loxP-mediated axon-specific deletion of ngr1 in ngr1flx/flx mice also demonstrated efficient anterograde transport of fluorescently-labeled ChTxβ in the optic nerves of EAE-induced mice. However, the anterograde transport of ChTxβ displayed accumulation in optic nerve degenerative axons of EAE-induced ngr1-/- mice, when NgR1 was reintroduced but was shown to be transported efficiently in the contralateral non- recombinant adeno-associated virus serotype 2-transduced optic nerves of these mutant mice. We further identified that the interaction between the axonal motor protein, Kinesin-1 and collapsin response mediator protein 2 (CRMP2) was unchanged upon Cre deletion of ngr1 Whereas, this Kinesin-1/CRMP2 association was reduced when NgR1 was re-expressed in the ngr1-/- optic nerves. Our data suggest that NgR1 governs axonal degeneration in the context of inflammatory-mediated demyelination through the phosphorylation of CRMP2 by stalling axonal vesicular transport. Moreover, axon-specific deletion of ngr1 preserves axonal transport mechanisms, blunting the induction of inflammatory demyelination and limiting the severity of EAE.SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is commonly induced by aberrant immune-mediated destruction of the protective sheath of nerve fibers (known as myelin). However, it has been shown that MS lesions do not only consist of this disease pattern, exhibiting heterogeneity with continual destruction of axons. Here we investigate how neuronal NgR1 can drive inflammatory-mediated axonal degeneration and demyelination within the optic nerve by analyzing its downstream signaling events that govern axonal vesicular transport. We identify that abrogating the NgR1/pCRMP2 signaling cascade can maintain Kinesin-1-dependent anterograde axonal transport to limit inflammatory-mediated axonopathy and demyelination. The ability to differentiate between primary and secondary mechanisms of axonal degeneration may uncover therapeutic strategies to limit axonal damage and progressive MS.
Collapse
|
37
|
Cooper G, Finke C, Chien C, Brandt AU, Asseyer S, Ruprecht K, Bellmann-Strobl J, Paul F, Scheel M. Standardization of T1w/T2w Ratio Improves Detection of Tissue Damage in Multiple Sclerosis. Front Neurol 2019; 10:334. [PMID: 31024428 PMCID: PMC6465519 DOI: 10.3389/fneur.2019.00334] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/19/2019] [Indexed: 01/24/2023] Open
Abstract
Normal appearing white matter (NAWM) damage develops early in multiple sclerosis (MS) and continues in the absence of new lesions. The ratio of T1w and T2w (T1w/T2w ratio), a measure of white matter integrity, has previously shown reduced intensity values in MS NAWM. We evaluate the validity of a standardized T1w/T2w ratio (sT1w/T2w ratio) in MS and whether this method is sensitive in detecting MS-related differences in NAWM. T1w and T2w scans were acquired at 3 Tesla in 47 patients with relapsing-remitting MS and 47 matched controls (HC). T1w/T2w and sT1w/T2w ratios were then calculated. We compared between-group variability between T1w/T2w and sT1w/T2w ratio in HC and MS and assessed for group differences. We also evaluated the relationship between the T1w/T2w and sT1w/T2w ratios and clinically relevant variables. Compared to the classic T1w/T2w ratio, the between-subject variability in sT1w/T2w ratio showed a significant reduction in MS patients (p < 0.001) and HC (p < 0.001). However, only sT1w/T2w ratio values were reduced in patients compared to HC (p < 0.001). The sT1w/T2w ratio intensity values were significantly influenced by age, T2 lesion volume and group status (MS vs. HC) (adjusted R2 = 0.30, p < 0.001). We demonstrate the validity of the sT1w/T2w ratio in MS and that it is more sensitive to MS-related differences in NAWM compared to T1w/T2w ratio. The sT1w/T2w ratio shows promise as an easily-implemented measure of NAWM in MS using readily available scans and simple post-processing methods.
Collapse
Affiliation(s)
- Graham Cooper
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Einstein Center for Neurosciences, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Carsten Finke
- Einstein Center for Neurosciences, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Chien
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Susanna Asseyer
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Einstein Center for Neurosciences, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
38
|
Huang SY, Fan Q, Machado N, Eloyan A, Bireley JD, Russo AW, Tobyne SM, Patel KR, Brewer K, Rapaport SF, Nummenmaa A, Witzel T, Sherman JC, Wald LL, Klawiter EC. Corpus callosum axon diameter relates to cognitive impairment in multiple sclerosis. Ann Clin Transl Neurol 2019; 6:882-892. [PMID: 31139686 PMCID: PMC6529828 DOI: 10.1002/acn3.760] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 11/24/2022] Open
Abstract
Objective To evaluate alterations in apparent axon diameter and axon density obtained by high‐gradient diffusion MRI in the corpus callosum of MS patients and the relationship of these advanced diffusion MRI metrics to neurologic disability and cognitive impairment in MS. Methods Thirty people with MS (23 relapsing‐remitting MS [RRMS], 7 progressive MS [PMS]) and 23 healthy controls were scanned on a human 3‐tesla (3T) MRI scanner equipped with 300 mT/m maximum gradient strength using a comprehensive multishell diffusion MRI protocol. Data were fitted to a three‐compartment geometric model of white matter to estimate apparent axon diameter and axon density in the midline corpus callosum. Neurologic disability and cognitive function were measured using the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite (MSFC), and Minimal Assessment of Cognitive Function in MS battery. Results Apparent axon diameter was significantly larger and axon density reduced in the normal‐appearing corpus callosum (NACC) of MS patients compared to healthy controls, with similar trends seen in PMS compared to RRMS. Larger apparent axon diameter in the NACC of MS patients correlated with greater disability as measured by the EDSS (r = 0.555, P = 0.007) and poorer performance on the Symbol Digits Modalities Test (r = ‐0.593, P = 0.008) and Brief Visuospatial Memory Test–Revised (r = −0.632, P < 0.01), tests of interhemispheric processing speed and new learning and memory, respectively. Interpretation Apparent axon diameter in the corpus callosum obtained from high‐gradient diffusion MRI is a potential imaging biomarker that may be used to understand the development and progression of cognitive impairment in MS.
Collapse
Affiliation(s)
- Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Natalya Machado
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Ani Eloyan
- Department of Biostatistics School of Public Health Brown University Providence Rhode Island
| | - John D Bireley
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Andrew W Russo
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Sean M Tobyne
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Kevin R Patel
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Kristina Brewer
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Sarah F Rapaport
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Janet C Sherman
- Psychology Assessment Center Department of Neurology Massachusetts General Hospital Boston Massachusetts
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Charlestown Massachusetts
| | - Eric C Klawiter
- Department of Neurology Massachusetts General Hospital Boston Massachusetts
| |
Collapse
|
39
|
Chalah MA, Kauv P, Créange A, Hodel J, Lefaucheur JP, Ayache SS. Neurophysiological, radiological and neuropsychological evaluation of fatigue in multiple sclerosis. Mult Scler Relat Disord 2019; 28:145-152. [DOI: 10.1016/j.msard.2018.12.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
40
|
Laule C, Moore GW. Myelin water imaging to detect demyelination and remyelination and its validation in pathology. Brain Pathol 2018; 28:750-764. [PMID: 30375119 PMCID: PMC8028667 DOI: 10.1111/bpa.12645] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Damage to myelin is a key feature of multiple sclerosis (MS) pathology. Magnetic resonance imaging (MRI) has revolutionized our ability to detect and monitor MS pathology in vivo. Proton density, T1 and T2 can provide qualitative contrast weightings that yield superb in vivo visualization of central nervous system tissue and have proved invaluable as diagnostic and patient management tools in MS. However, standard clinical MR methods are not specific to the types of tissue damage they visualize, and they cannot detect subtle abnormalities in tissue that appears otherwise normal on conventional MRIs. Myelin water imaging is an MR method that provides in vivo measurement of myelin. Histological validation work in both human brain and spinal cord tissue demonstrates a strong correlation between myelin water and staining for myelin, validating myelin water as a marker for myelin. Myelin water varies throughout the brain and spinal cord in healthy controls, and shows good intra- and inter-site reproducibility. MS plaques show variably decreased myelin water fraction, with older lesions demonstrating the greatest myelin loss. Longitudinal study of myelin water can provide insights into the dynamics of demyelination and remyelination in plaques. Normal appearing brain and spinal cord tissues show reduced myelin water, an abnormality which becomes progressively more evident over a timescale of years. Diffusely abnormal white matter, which is evident in 20%-25% of MS patients, also shows reduced myelin water both in vivo and postmortem, and appears to originate from a primary lipid abnormality with relative preservation of myelin proteins. Active research is ongoing in the quest to refine our ability to image myelin and its perturbations in MS and other disorders of the myelin sheath.
Collapse
Affiliation(s)
- Cornelia Laule
- RadiologyUniversity of British ColumbiaVancouverBCCanada
- Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- Physics & AstronomyUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair Discoveries (ICORD)University of British ColumbiaVancouverBCCanada
| | - G.R. Wayne Moore
- Pathology & Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair Discoveries (ICORD)University of British ColumbiaVancouverBCCanada
- Medicine (Neurology)University of British ColumbiaVancouverBCCanada
| |
Collapse
|
41
|
Zhong J, Chen DQ, Nantes JC, Holmes SA, Hodaie M, Koski L. Combined structural and functional patterns discriminating upper limb motor disability in multiple sclerosis using multivariate approaches. Brain Imaging Behav 2018; 11:754-768. [PMID: 27146291 DOI: 10.1007/s11682-016-9551-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A structural or functional pattern of neuroplasticity that could systematically discriminate between people with impaired and preserved motor performance could help us to understand the brain networks contributing to preservation or compensation of behavior in multiple sclerosis (MS). This study aimed to (1) investigate whether a machine learning-based technique could accurately classify MS participants into groups defined by upper extremity function (i.e. motor function preserved (MP) vs. motor function impaired (MI)) based on their regional grey matter measures (GMM, cortical thickness and deep grey matter volume) and inter-regional functional connection (FC), (2) investigate which features (GMM, FC, or GMM + FC) could classify groups more accurately, and (3) identify the multivariate patterns of GMM and FCs that are most discriminative between MP and MI participants, and between each of these groups and the healthy controls (HCs). With 26 MP, 25 MI, and 21 HCs (age and sex matched) underwent T1-weighted and resting-state functional MRI at 3 T, we applied support vector machine (SVM) based classification to learn discriminant functions indicating regions in which GMM or between which FCs were most discriminative between groups. This study demonstrates that there exist structural and FC patterns sufficient for correct classification of upper limb motor ability of people with MS. The classifier with GMM + FC features yielded the highest accuracy of 85.61 % (p < 0.001) to distinguish between the MS groups using leave-one-out cross-validation. It suggests that a machine-learning approach combining structural and functional features is useful for identifying the specific neural substrates that are necessary and sufficient to preserve motor function among people with MS.
Collapse
Affiliation(s)
- Jidan Zhong
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada. .,Toronto Western Hospital, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada.
| | - David Qixiang Chen
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour-Systems, Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Julia C Nantes
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Scott A Holmes
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Mojgan Hodaie
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Brain, Imaging and Behaviour-Systems, Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, Toronto Western Hospital & University of Toronto, Toronto, ON, Canada
| | - Lisa Koski
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Psychology, McGill University, Montreal, QC, Canada
| |
Collapse
|
42
|
Guenette JP, Stern RA, Tripodis Y, Chua AS, Schultz V, Sydnor VJ, Somes N, Karmacharya S, Lepage C, Wrobel P, Alosco ML, Martin BM, Chaisson CE, Coleman MJ, Lin AP, Pasternak O, Makris N, Shenton ME, Koerte IK. Automated versus manual segmentation of brain region volumes in former football players. NEUROIMAGE-CLINICAL 2018; 18:888-896. [PMID: 29876273 PMCID: PMC5988230 DOI: 10.1016/j.nicl.2018.03.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/02/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Abstract
Objectives To determine whether or not automated FreeSurfer segmentation of brain regions considered important in repetitive head trauma can be analyzed accurately without manual correction. Materials and methods 3 T MR neuroimaging was performed with automated FreeSurfer segmentation and manual correction of 11 brain regions in former National Football League (NFL) players with neurobehavioral symptoms and in control subjects. Automated segmentation and manually-corrected volumes were compared using an intraclass correlation coefficient (ICC). Linear mixed effects regression models were also used to estimate between-group mean volume comparisons and to correlate former NFL player brain volumes with neurobehavioral factors. Results Eighty-six former NFL players (55.2 ± 8.0 years) and 22 control subjects (57.0 ± 6.6 years) were evaluated. ICC was highly correlated between automated and manually-corrected corpus callosum volumes (0.911), lateral ventricular volumes (right 0.980, left 0.967), and amygdala-hippocampal complex volumes (right 0.713, left 0.731), but less correlated when amygdalae (right -0.170, left -0.090) and hippocampi (right 0.539, left 0.637) volumes were separately delineated and also less correlated for cingulate gyri volumes (right 0.639, left 0.351). Statistically significant differences between former NFL player and controls were identified in 8 of 11 regions with manual correction but in only 4 of 11 regions without such correction. Within NFL players, manually corrected brain volumes were significantly associated with 3 neurobehavioral factors, but a different set of 3 brain regions and neurobehavioral factor correlations was observed for brain region volumes segmented without manual correction. Conclusions Automated FreeSurfer segmentation of the corpus callosum, lateral ventricles, and amygdala-hippocampus complex may be appropriate for analysis without manual correction. However, FreeSurfer segmentation of the amygdala, hippocampus, and cingulate gyrus need further manual correction prior to performing group comparisons and correlations with neurobehavioral measures.
Collapse
Affiliation(s)
- Jeffrey P Guenette
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert A Stern
- BU Alzheimer's Disease and CTE Center, Boston University, Boston, MA, United States; Departments of Neurology, Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Yorghos Tripodis
- BU Alzheimer's Disease and CTE Center, Boston University, Boston, MA, United States; Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Alicia S Chua
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Vivian Schultz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nathaniel Somes
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarina Karmacharya
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Christian Lepage
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Pawel Wrobel
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Michael L Alosco
- BU Alzheimer's Disease and CTE Center, Boston University, Boston, MA, United States
| | - Brett M Martin
- Data Coordinating Center, Boston University School of Public Health, Boston, MA, United States
| | - Christine E Chaisson
- BU Alzheimer's Disease and CTE Center, Boston University, Boston, MA, United States; Data Coordinating Center, Boston University School of Public Health, Boston, MA, United States
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alexander P Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Center for Neural Systems Investigations, Massachusetts General Hospital, Boston, MA, United States
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; VA Boston Healthcare System, Brockton Division, Brockton, MA, United States
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany.
| |
Collapse
|
43
|
Andersen O, Hildeman A, Longfils M, Tedeholm H, Skoog B, Tian W, Zhong J, Ekholm S, Novakova L, Runmarker B, Nerman O, Maier SE. Diffusion tensor imaging in multiple sclerosis at different final outcomes. Acta Neurol Scand 2018; 137:165-173. [PMID: 28741711 DOI: 10.1111/ane.12797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Methods to evaluate the relative contributions of demyelination vs axonal degeneration over the long-term course of MS are urgently needed. We used magnetic resonance diffusion tensor imaging (DTI) to estimate degrees of demyelination and axonal degeneration in the corpus callosum (CC) in cases of MS with different final outcomes. MATERIALS AND METHODS We determined DTI measures mean diffusivity (MD), fractional anisotropy (FA), and axial (AD) and radial (RD) diffusivities in the CC of 31 MS patients, of whom 13 presented a secondary progressive course, 11 a non-progressive course, and seven a monophasic course. The study participants were survivors from an incidence cohort of 254 attack-onset MS patients with 50 years of longitudinal follow-up. As reference, we included five healthy individuals without significant morbidity. RESULTS In patients with secondary progression, compared to all other groups, the corpus callosum showed increased RD and reduced FA, but no change in AD. None of the parameters exhibited differences among non-progressive and monophasic course groups and controls. CONCLUSION Increased RD was observed in secondary progressive MS, indicating significant myelin loss. Normal RD values observed in the clinically isolated syndrome and non-progressive groups confirm their benign nature. AD was not a characterizing parameter for long-term outcome. Demyelination revealed by increased RD is a distinguishing trait for secondary progression.
Collapse
Affiliation(s)
- O. Andersen
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - A. Hildeman
- Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Gothenburg Sweden
| | - M. Longfils
- Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Gothenburg Sweden
| | - H. Tedeholm
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - B. Skoog
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - W. Tian
- Department of Imaging Sciences Medical Center University of Rochester Rochester NY USA
| | - J. Zhong
- Department of Imaging Sciences Medical Center University of Rochester Rochester NY USA
| | - S. Ekholm
- Department of Imaging Sciences Medical Center University of Rochester Rochester NY USA
- Department of Radiology Sahlgrenska University Hospital Gothenburg Sweden
| | - L. Novakova
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - B. Runmarker
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - O. Nerman
- Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Gothenburg Sweden
| | - S. E. Maier
- Department of Radiology Sahlgrenska University Hospital Gothenburg Sweden
| |
Collapse
|
44
|
Scott-Hewitt NJ, Folts CJ, Hogestyn JM, Piester G, Mayer-Pröschel M, Noble MD. Heterozygote galactocerebrosidase (GALC) mutants have reduced remyelination and impaired myelin debris clearance following demyelinating injury. Hum Mol Genet 2018; 26:2825-2837. [PMID: 28575206 DOI: 10.1093/hmg/ddx153] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies are identifying multiple genetic risk factors for several diseases, but the functional role of these changes remains mostly unknown. Variants in the galactocerebrosidase (GALC) gene, for example, were identified as a risk factor for Multiple Sclerosis (MS); however, the potential biological relevance of GALC variants to MS remains elusive. We found that heterozygote GALC mutant mice have reduced myelin debris clearance and diminished remyelination after a demyelinating insult. We found no histological or behavioral differences between adult wild-type and GALC +/- animals under normal conditions. Following exposure to the demyelinating agent cuprizone, however, GALC +/- animals had significantly reduced remyelination during recovery. In addition, the microglial phagocytic response and elevation of Trem2, both necessary for clearing damaged myelin, were markedly reduced in GALC +/- animals. These altered responses could be corrected in vitro by treatment with NKH-477, a compound discovered as protective in our previous studies on Krabbe disease, which is caused by mutations in both GALC alleles. Our data are the first to show remyelination defects in individuals with a single mutant GALC allele, suggesting such carriers may have increased vulnerability to myelin damage following injury or disease due to inefficient myelin debris clearance. We thus provide a potential functional link between GALC variants and increased MS susceptibility, particularly due to the failure of remyelination associated with progressive MS. Finally, this work demonstrates that genetic variants identified through genome-wide association studies may contribute significantly to complex diseases, not by driving initial symptoms, but by altering repair mechanisms.
Collapse
Affiliation(s)
- Nicole J Scott-Hewitt
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Christopher J Folts
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jessica M Hogestyn
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Gavin Piester
- Department of Biochemistry, University of Rochester, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mark D Noble
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
45
|
Alrehaili AA, Lee JY, Bakhuraysah MM, Kim MJ, Aui PM, Magee KA, Petratos S. Nogo receptor expression in microglia/macrophages during experimental autoimmune encephalomyelitis progression. Neural Regen Res 2018; 13:896-907. [PMID: 29863021 PMCID: PMC5998626 DOI: 10.4103/1673-5374.232488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myelin-associated inhibitory factors within the central nervous system (CNS) are considered to be one of the main obstacles for axonal regeneration following disease or injury. The nogo receptor 1 (NgR1) has been well documented to play a key role in limiting axonal regrowth in the injured and diseased mammalian CNS. However, the role of nogo receptor in immune cell activation during CNS inflammation is yet to be mechanistically elucidated. Microglia/macrophages are immune cells that are regarded as pathogenic contributors to inflammatory demyelinating lesions in multiple sclerosis (MS). In this study, the animal model of MS, experimental autoimmune encephalomyelitis (EAE) was induced in ngr1+/+ and ngr1–/– female mice following injection with the myelin oligodendrocyte glycoprotein (MOG35–55) peptide. A fate-map analysis of microglia/macrophages was performed throughout spinal cord sections of EAE-induced mice at clinical scores of 0, 1, 2 and 3, respectively (increasing locomotor disability) from both genotypes, using the CD11b and Iba1 cell markers. Western immunoblotting using lysates from isolated spinal cord microglia/macrophages, along with immunohistochemistry and flow cytometric analysis, was performed to demonstrate the expression of nogo receptor and its two homologs during EAE progression. Myelin protein engulfment during EAE progression in ngr1+/+ and ngr1–/– mice was demonstrated by western immunblotting of lysates from isolated spinal cord microglia/macrophages, detecting levels of Nogo-A and MOG. The numbers of M1 and M2 microglia/macrophage phenotypes present in the spinal cords of EAE-induced ngr1+/+ and ngr1–/– mice, were assessed by flow cytometric analysis using CD38 and Erg-2 markers. A significant difference in microglia/macrophage numbers between ngr1+/+ and ngr1–/– mice was identified during the progression of the clinical symptoms of EAE, in the white versus gray matter regions of the spinal cord. This difference was unrelated to the expression of NgR on these macrophage/microglial cells. We have identified that as EAE progresses, the phagocytic activity of microglia/macrophages with myelin debris, in ngr1–/– mice, was enhanced. Moreover, we show a modulation from a predominant M1-pathogenic to the M2-neurotrophic cell phenotype in the ngr1–/– mice during EAE progression. These findings suggest that CNS-specific macrophages and microglia of ngr1–/– mice may exhibit an enhanced capacity to clear inhibitory molecules that are sequestered in inflammatory lesions.
Collapse
Affiliation(s)
- Amani A Alrehaili
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia; Department of Clinical Laboratories, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - Jae Young Lee
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia; Toolgen Inc., Gasan Digital-Ro, Geumcheon, Seoul, Korea
| | - Maha M Bakhuraysah
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia; Department of Clinical Laboratories, College of Applied Medical Sciences, Taif University, Taif, Kingdom of Saudi Arabia
| | - Min Joung Kim
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia
| | - Pei-Mun Aui
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia
| | - Kylie A Magee
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran Victoria, Australia
| |
Collapse
|
46
|
Backhaus I, Mannocci A, La Torre G. Tobacco smoking and multiple sclerosis: a systematic review of systematic and narrative reviews of observational studies. J Public Health (Oxf) 2017. [DOI: 10.1007/s10389-017-0811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
47
|
Groeschel S, Hertz-Pannier L, Delion M, Loustau S, Husson B, Kossorotoff M, Renaud C, Nguyen The Tich S, Chabrier S, Dinomais M. Association of transcallosal motor fibres with function of both hands after unilateral neonatal arterial ischemic stroke. Dev Med Child Neurol 2017; 59:1042-1048. [PMID: 28815625 DOI: 10.1111/dmcn.13517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2017] [Indexed: 12/30/2022]
Abstract
AIM The objective of this study was to investigate the involvement of the motor fibres of the corpus callosum after unilateral neonatal arterial ischemic stroke (NAIS) of the middle cerebral artery territory and the relationship to both ipsilesional and contralesional hand function. METHOD Using high-resolution structural magnetic resonance imaging (MRI), functional MRI, and magnetic resonance diffusion-tractography, we compared the midsagittal area of the motor part of the corpus callosum (defined by the fibres connecting the precentral gyri) between 33 7-year-old children after unilateral NAIS and 31 typically developing 7-year-old children. Hand motor performance was assessed by the box and blocks test. RESULTS Children after NAIS showed on average significantly smaller motor corpus callosum area compared to typically developing children (p<0.001, without differences of the non-motor corpus callosum area). In addition, there was a significant positive association between the motor part of the corpus callosum and both contralesional (Pr(>|t|)=0.034) and ipsilesional hand motor performance (Pr(>|t|)=0.006) after controlling for lesion volume and sex. In a post-hoc analysis the additional contribution of corticospinal tract damage was evaluated. INTERPRETATION Compared to typically developing children, children after NAIS exhibited a smaller motor part of their corpus callosum associated with reduced contralesional but also ipsilesional manual dexterity. These results indicate that the affection of transcallosal motor fibres in unilateral NAIS might be of functional relevance and an important part of the involved structural network that should be elucidated in further studies.
Collapse
Affiliation(s)
- Samuel Groeschel
- Experimental Pediatric Neuroimaging, Department of Child Neurology, University Hospital Tübingen, Tuebingen, Germany
| | | | - Matthieu Delion
- Département de neurochirurgie and Laboratoire d'anatomie, Faculté de médecine Angers, LUNAM Université d'Angers, Angers, France
| | - Sébastien Loustau
- Laboratoire Angevin de Recherche en Maths (LAREMA), LUNAM Université d'Angers, Angers, France
| | - Béatrice Husson
- Pediatric Radiology Department, University Hospital Bicêtre, Assistance-Publique-Hopitaux de Paris, Paris-Sud University, Paris, France
| | - Manoelle Kossorotoff
- Paediatric Neurology Department, French Center for Paediatric Stroke, University Hospital Necker-Enfants-Malades, AP-HP, Paris, France
| | - Cyrille Renaud
- CHU Saint-Étienne, Inserm, Univ Lyon, Centre national de référence de l'AVC de L'Enfant, Service de médecine physique et de réadaption pédiatrique, Saint-Étienne, France
| | - Sylvie Nguyen The Tich
- Pediatric Neurology Department and Environment Périnatale et Santé, University Hospital, Lille, France
| | - Stéphane Chabrier
- CHU Saint-Étienne, Inserm, Univ Lyon, Centre national de référence de l'AVC de L'Enfant, Service de médecine physique et de réadaption pédiatrique, Saint-Étienne, France
| | - Mickael Dinomais
- CHU Angers, Département de Médecine Physique et de Réadaption and LUNAM, Université d'Angers, Laboratoire Angevin de Rechereche en Ingénierie des Systèmes (LARIS), Angers, France
| | | |
Collapse
|
48
|
Shinohara RT, Oh J, Nair G, Calabresi PA, Davatzikos C, Doshi J, Henry RG, Kim G, Linn KA, Papinutto N, Pelletier D, Pham DL, Reich DS, Rooney W, Roy S, Stern W, Tummala S, Yousuf F, Zhu A, Sicotte NL, Bakshi R. Volumetric Analysis from a Harmonized Multisite Brain MRI Study of a Single Subject with Multiple Sclerosis. AJNR Am J Neuroradiol 2017; 38:1501-1509. [PMID: 28642263 PMCID: PMC5557658 DOI: 10.3174/ajnr.a5254] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/06/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE MR imaging can be used to measure structural changes in the brains of individuals with multiple sclerosis and is essential for diagnosis, longitudinal monitoring, and therapy evaluation. The North American Imaging in Multiple Sclerosis Cooperative steering committee developed a uniform high-resolution 3T MR imaging protocol relevant to the quantification of cerebral lesions and atrophy and implemented it at 7 sites across the United States. To assess intersite variability in scan data, we imaged a volunteer with relapsing-remitting MS with a scan-rescan at each site. MATERIALS AND METHODS All imaging was acquired on Siemens scanners (4 Skyra, 2 Tim Trio, and 1 Verio). Expert segmentations were manually obtained for T1-hypointense and T2 (FLAIR) hyperintense lesions. Several automated lesion-detection and whole-brain, cortical, and deep gray matter volumetric pipelines were applied. Statistical analyses were conducted to assess variability across sites, as well as systematic biases in the volumetric measurements that were site-related. RESULTS Systematic biases due to site differences in expert-traced lesion measurements were significant (P < .01 for both T1 and T2 lesion volumes), with site explaining >90% of the variation (range, 13.0-16.4 mL in T1 and 15.9-20.1 mL in T2) in lesion volumes. Site also explained >80% of the variation in most automated volumetric measurements. Output measures clustered according to scanner models, with similar results from the Skyra versus the other 2 units. CONCLUSIONS Even in multicenter studies with consistent scanner field strength and manufacturer after protocol harmonization, systematic differences can lead to severe biases in volumetric analyses.
Collapse
Affiliation(s)
- R T Shinohara
- From the Departments of Biostatistics and Epidemiology (R.T.S., K.A.L.)
| | - J Oh
- Department of Neurology (J.O., P.A.C., D.S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland.,St. Michael's Hospital (J.O.), University of Toronto, Toronto, Ontario, Canada
| | - G Nair
- Translational Neuroradiology Section (G.N., D.S.R.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - P A Calabresi
- Department of Neurology (J.O., P.A.C., D.S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - C Davatzikos
- Radiology (C.D., J.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Doshi
- Radiology (C.D., J.D.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - R G Henry
- Department of Neurology (R.G.H., N.P., W.S., A.Z.), University of California, San Francisco, San Francisco, California
| | - G Kim
- Laboratory for Neuroimaging Research (G.K., S.T., F.Y., R.B.), Partners Multiple Sclerosis Center
| | - K A Linn
- From the Departments of Biostatistics and Epidemiology (R.T.S., K.A.L.)
| | - N Papinutto
- Department of Neurology (R.G.H., N.P., W.S., A.Z.), University of California, San Francisco, San Francisco, California
| | - D Pelletier
- Department of Neurology (D.P.), Yale Medical School, New Haven, Connecticut
| | - D L Pham
- Henry M. Jackson Foundation for the Advancement of Military Medicine (D.L.P., S.R.), Bethesda, Maryland
| | - D S Reich
- Department of Neurology (J.O., P.A.C., D.S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland.,Translational Neuroradiology Section (G.N., D.S.R.), National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - W Rooney
- Advanced Imaging Research Center, Oregon Health & Science University (W.R.), Portland, Oregon
| | - S Roy
- Henry M. Jackson Foundation for the Advancement of Military Medicine (D.L.P., S.R.), Bethesda, Maryland
| | - W Stern
- Department of Neurology (R.G.H., N.P., W.S., A.Z.), University of California, San Francisco, San Francisco, California
| | - S Tummala
- Laboratory for Neuroimaging Research (G.K., S.T., F.Y., R.B.), Partners Multiple Sclerosis Center
| | - F Yousuf
- Laboratory for Neuroimaging Research (G.K., S.T., F.Y., R.B.), Partners Multiple Sclerosis Center
| | - A Zhu
- Department of Neurology (R.G.H., N.P., W.S., A.Z.), University of California, San Francisco, San Francisco, California
| | - N L Sicotte
- Department of Neurology (N.L.S.), Cedars-Sinai Medical Center, Los Angeles, California
| | - R Bakshi
- Laboratory for Neuroimaging Research (G.K., S.T., F.Y., R.B.), Partners Multiple Sclerosis Center.,Departments of Neurology and Radiology (R.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
49
|
|
50
|
Filippi M, Rovaris M, Rocca MA. Imaging primary progressive multiple sclerosis: the contribution of structural, metabolic, and functional MRI techniques. Mult Scler 2017; 10 Suppl 1:S36-44; discussion S44-5. [PMID: 15218808 DOI: 10.1191/1352458504ms1029oa] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Patients with primary progressive multiple sclerosis (PPMS) typically experience a progressive disease course from onset, leading to the accumulation of severe neurological disability. This is in contrast with the observation that the burden and activity of lesions on conventional magnetic resonance imaging (MRI) scans of the brain are much lower in patients with PPMS than in those with other less disabling forms of the disease. Studies with structural and functional MRI techniques are providing relevant contributions to the understanding of the mechanisms underlying the accumulatio n of irreversible neurological deficits in patients with PPMS. The results of these studies underpin that the main factors possibly explaining the clinical/MRI discrepancy observed in patients with PPMS include the presence of a diffuse tissue damage that is beyond the resolution of conventional imaging, the extent of cervical cord damage, and the impairment of the adaptive capacity of the cortex to limit the functional consequences of subcortical pathology.
Collapse
Affiliation(s)
- Massimo Filippi
- Department of Neurology, Neuroimaging Research Unit, Scientific Institute and University Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy.
| | | | | |
Collapse
|