1
|
Mathew R, Sapru K, Gandhi DN, Surve TAN, Pande D, Parikh A, Sharma RB, Kaur R, Hasibuzzaman MA. Impact of cognitive rehabilitation interventions on memory improvement in patients after stroke: A systematic review. World J Methodol 2025; 15:98132. [DOI: 10.5662/wjm.v15.i3.98132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/07/2024] [Accepted: 12/18/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Cognitive impairment is a major cause of disability in patients who have suffered from a stroke, and cognitive rehabilitation interventions show promise for improving memory.
AIM To examine the effectiveness of virtual reality (VR) and non-VR (NVR) cognitive rehabilitation techniques for improving memory in patients after stroke.
METHODS An extensive and thorough search was executed across five pertinent electronic databases: Cumulative Index to Nursing and Allied Health Literature; MEDLINE (PubMed); Scopus; ProQuest Central; and Google Scholar. This systematic review was conducted following the preferred reporting items for systematic reviews and meta-analyses guideline. Studies that recruited participants who experienced a stroke, utilized cognitive rehabilitation interventions, and published in the last 10 years were included in the review.
RESULTS Thirty studies met the inclusion criteria. VR interventions significantly improved memory and cognitive function (mean difference: 4.2 ± 1.3, P < 0.05), whereas NVR (including cognitive training, music, and exercise) moderately improved memory. Compared with traditional methods, technology-driven VR approaches were particularly beneficial for enhancing daily cognitive tasks.
CONCLUSION VR and NVR reality interventions are beneficial for post-stroke cognitive recovery, with VR providing enhanced immersive experiences. Both approaches hold transformative potential for post-stroke rehabilitation.
Collapse
Affiliation(s)
- Rebecca Mathew
- Instructor Nursing, Fatima College of Health Sciences, Ajman 3798, United Arab Emirates
| | - Komudi Sapru
- Department of Medicine, Saraswati Medical College, Unnao 55905, Uttar Pradesh, India
| | - Dhruv Nihal Gandhi
- Department of Internal Medicine, KJ Somaiya Medical College and Research Center, Mumbai 400022, India
| | | | - Devina Pande
- Department of Medicine, KJ Somaiya Medical College, Mumbai 400022, India
| | - Anushri Parikh
- Department of Medicine, Medical College Baroda, Vadodara 33872, India
| | | | - Ravneet Kaur
- Department of Medicine, Lady Hardinge Medical College, Delhi 33872, India
| | | |
Collapse
|
2
|
Sánchez-Gil JJ, Sáez-Manzano A, López-Luque R, Ochoa-Sepúlveda JJ, Cañete-Carmona E. Gamified devices for stroke rehabilitation: A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 258:108476. [PMID: 39520875 DOI: 10.1016/j.cmpb.2024.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Rehabilitation after stroke is essential to minimize permanent disability. Gamification, the integration of game elements into non-game environments, has emerged as a promising strategy for increasing motivation and rehabilitation effectiveness. This article systematically reviews the gamified devices used in stroke rehabilitation and evaluates their impact on emotional, social, and personal effects on patients, providing a comprehensive view of gamified rehabilitation. METHODS A comprehensive search using the PRISMA 2020 guidelines was conducted using the IEEE Xplore, PubMed, Springer Link, APA PsycInfo, and ScienceDirect databases. Empirical studies published between January 2019 and December 2023 that quantified the effects of gamification in terms of usability, motivation, engagement, and other qualitative patient responses were selected. RESULTS In total, 169 studies involving 6404 patients were included. Gamified devices are categorized into four types: robotic/motorized, non-motorized, virtual reality, and neuromuscular electrical stimulation. The results showed that gamified devices not only improved motor and cognitive function but also had a significant positive impact on patients' emotional, social and personal levels. Most studies have reported high levels of patient satisfaction and motivation, highlighting the effectiveness of gamification in stroke rehabilitation. CONCLUSIONS Gamification in stroke rehabilitation offers significant benefits beyond motor and cognitive recovery by improving patients' emotional and social well-being. This systematic review provides a comprehensive overview of the most effective gamified technologies and highlights the need for future multidisciplinary research to optimize the design and implementation of gamified solutions in stroke rehabilitation.
Collapse
Affiliation(s)
- Juan J Sánchez-Gil
- Department of Electronic and Computer Engineering, University of Córdoba, Córdoba, Spain.
| | - Aurora Sáez-Manzano
- Department of Electronic and Computer Engineering, University of Córdoba, Córdoba, Spain
| | - Rafael López-Luque
- Institute of Neurosciences, Hospital Cruz Roja de Córdoba, Córdoba, Spain
| | | | - Eduardo Cañete-Carmona
- Department of Electronic and Computer Engineering, University of Córdoba, Córdoba, Spain
| |
Collapse
|
3
|
Guan X, Zhu S, Song J, Liu K, Liu M, Xie L, Wang Y, Wu J, Xu X, Pang T. Microglial CMPK2 promotes neuroinflammation and brain injury after ischemic stroke. Cell Rep Med 2024; 5:101522. [PMID: 38701781 PMCID: PMC11148565 DOI: 10.1016/j.xcrm.2024.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/08/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024]
Abstract
Neuroinflammation plays a significant role in ischemic injury, which can be promoted by oxidized mitochondrial DNA (Ox-mtDNA). Cytidine/uridine monophosphate kinase 2 (CMPK2) regulates mtDNA replication, but its role in neuroinflammation and ischemic injury remains unknown. Here, we report that CMPK2 expression is upregulated in monocytes/macrophages and microglia post-stroke in humans and mice, respectively. Microglia/macrophage CMPK2 knockdown using the Cre recombination-dependent adeno-associated virus suppresses the inflammatory responses in the brain, reduces infarcts, and improves neurological outcomes in ischemic CX3CR1Cre/ERT2 mice. Mechanistically, CMPK2 knockdown limits newly synthesized mtDNA and Ox-mtDNA formation and subsequently blocks NLRP3 inflammasome activation in microglia/macrophages. Nordihydroguaiaretic acid (NDGA), as a CMPK2 inhibitor, is discovered to reduce neuroinflammation and ischemic injury in mice and prevent the inflammatory responses in primary human monocytes from ischemic patients. Thus, these findings identify CMPK2 as a promising therapeutic target for ischemic stroke and other brain disorders associated with neuroinflammation.
Collapse
Affiliation(s)
- Xin Guan
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Sitong Zhu
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jinqian Song
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Kui Liu
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Mei Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P.R. China
| | - Luyang Xie
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yifang Wang
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P.R. China
| | - Jin Wu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, P.R. China.
| | - Xiaojun Xu
- Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang Province 322000, P.R. China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P.R. China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, P.R. China.
| |
Collapse
|
4
|
Shen G, Zhou Z, Guo Y, Li L, Zeng J, Wang J, Zhao J. Cholinergic signaling of muscarinic receptors directly involves in the neuroprotection of muscone by inducing Ca 2+ antagonism and maintaining mitochondrial function. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117192. [PMID: 37734472 DOI: 10.1016/j.jep.2023.117192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Musk, a traditional Chinese medicine, is broadly used in inducing resuscitation and refreshing the mind, activating blood and alleviating pain. It is commonly used for the treatment of ischemic stroke, and muscone is its core medicinal component. AIM OF THE STUDY The aim of this study was to explore whether muscone ameliorates neuronal damage through cholinergic signaling of muscarinic receptors. MATERIALS AND METHODS The effects of muscone were tested in a rat model of middle cerebral artery occlusion (MCAO) as well as injured neurons induced by oxygen-glucose deprivation (OGD) in PC12 cells. Cell counting kit 8 (CCK8) assay was used to measure the cell viability, and the production of lactate dehydrogenase (LDH) and adenosine-triphosphate (ATP) were examined by kit. 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA), tetramethylrhodamine ethyl ester (TMRE) and Fluo-4 acetoxymethyl ester (Fluo-4 AM) staining were used to demonstrate effect of muscone on the reactive oxygen species (ROS) level, mitochondria membrane potential (MMP) and intracellular Ca2+ measurement in cells respectively, in which all of those staining was visualized by laser confocal microscope. For in vivo experiments, rats' cerebral blood flow was measured using laser Doppler blood flowmetry to evaluate the MCAO model, and a modified neurological severity score (mNSS) was used to assess the recovery of neurological function. Calculate infarct rate was measured by 2,3,5-Triphenyl Tetrazolium Chloride (TTC) staining. Except DCFH-DA and Fluo-4 AM staining, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazolylcarbocyanine iodide (JC-1) staining was used to observe intracellular Ca2+ measurement in brain cells. Protein levels in cells and tissues were detected by Western blot. RESULTS Pretreatment with muscone significantly improved the cell viability, lactic acid production, mitochondrial membrane potential collapse and function, Ca2+ overload, ROS generation, and cell apoptosis in OGD PC12 cells. Muscone also regulated PI3K, ERK and AKT signal pathways by activating cholinergic signaling of muscarinic receptors in PC12 cells induced with OGD. More importantly, the blocking of cholinergic signaling of muscarinic receptors by atropine significantly reduces the neuroprotective effects of muscone, including the cell viability, Ca2+ efflux, and mitochondrial repair. Furthermore, muscone was found to effectively alleviate mitochondrial dysfunction and elevated levels of ROS induced by the MCAO in the brain tissue. Notably, this beneficial effect of muscone was attenuated by atropine but not by (+)-Sparteine. CONCLUSIONS Our study indicates that muscone exerts its neuroprotective effects by activating muscarinic receptors of cholinergic signaling, thus providing a promising therapeutic target for the treatment of OGD-induced nerve injury in stroke. The findings suggest that these treatments may hold potential benefits for stroke patients.
Collapse
Affiliation(s)
- Gang Shen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China; Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Zongyuan Zhou
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yanlei Guo
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China
| | - Jianbo Wang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China.
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Science, Chengdu, 610000, China.
| |
Collapse
|
5
|
Knecht S, Reiners H, Siebler M, Platz T, Flöel A, Busse R. [Slow demographic change and neurological rehabilitation-Part 2: what we can do]. DER NERVENARZT 2023; 94:718-724. [PMID: 36629886 PMCID: PMC9832254 DOI: 10.1007/s00115-022-01416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 01/12/2023]
Abstract
In its current state the German healthcare system will not be able to adequately care for a growing proportion of older patients with a decreasing healthcare work force. This is particularly so in the postacute care of severely ill patients. In a second of two parts we discuss the perspectives and options at hand. A major conclusion is that substantial gains could be obtained by regulatory adjustments that better align acute care and rehabilitative measures.
Collapse
Affiliation(s)
- Stefan Knecht
- Institut für Klinische Neurowissenschaften, AG Neurorehabilitation, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Deutschland.
| | - Harmut Reiners
- Referat Grundsatzfragen der Gesundheitspolitik, Ministerium für Arbeit, Soziales, Gesundheit und Familie (MAGS) Brandenburg, Potsdam, Deutschland
| | - Mario Siebler
- Fachklinik für Neurologie, Rhein/Ruhr, Essen, Deutschland
| | - Thomas Platz
- Institut für Neurorehabilitation und Evidenzbasierung, An-Institut der Universität Greifswald, BDH-Klinik Greifswald, Greifswald, Deutschland
- AG Neurorehabilitation, Universitätsmedizin Greifswald, Greifswald, Deutschland
| | - Agnes Flöel
- Klinik und Poliklinik für Neurologie, Universitätsmedizin Greifswald, Greifswald, Deutschland
| | - Reinhard Busse
- Management im Gesundheitswesen, Fakultät Wirtschaft und Management, Technische Universität Berlin, Berlin, Deutschland
| |
Collapse
|
6
|
Zhou P, Li W, Zhao J, Chen S, Chen Y, Shen X, Xu D. Modulated effectiveness of rehabilitation motivation by reward strategies combined with tDCS in stroke: study protocol for a randomized controlled trial. Front Neurol 2023; 14:1200741. [PMID: 37396764 PMCID: PMC10310965 DOI: 10.3389/fneur.2023.1200741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Background Stroke survivors often exhibit low motivation for rehabilitation, hindering their ability to effectively complete rehabilitation training task effectively and participate in daily activities actively. Reward strategies have been identified as an effective method for boosting rehabilitation motivation, but their long-term efficacy remains uncertain. Transcranial direct current stimulation (tDCS) has been recognized as a technique that facilitates plastic changes and functional reorganization of cortical areas. Particularly, tDCS can improve the functional connectivity between brain regions associated with goal-directed behavior when applied to the left dorsolateral prefrontal cortex (dlPFC). Combing reward strategies with tDCS (RStDCS) has been shown to motivate healthy individuals to exert more effort in task performance. However, research exploring the combined and sustained effects of these strategies on rehabilitation motivation in stroke survivors is lacking. Methods and design Eighty-seven stroke survivors with low motivation and upper extremity dysfunction will be randomized to receive either conventional treatment, RS treatment, or RStDCS treatment. The RStDCS group will receive reward strategies combined with anodal tDCS stimulation of the left dlPFC. The RS group will receive reward strategies combined with sham stimulation. The conventional group will receive conventional treatment combined with sham stimulation. tDCS stimulation is performed over 3 weeks of hospitalization, 20 min/time, five times a week. Reward strategies refers to personalized active exercise programs for patients during hospitalization and at home. Patients can voluntarily choose tasks for active exercise and self-report to the therapist so as to punch a card for points and exchange gifts. The conventional group will receive home rehabilitation instructions prior to discharge. Rehabilitation motivation, measured using RMS. RMS, FMA, FIM, and ICF activity and social engagement scale will be compared at baseline, 3 weeks, 6 weeks, and 3 months post-enrollment to evaluate patients' multifaceted health condition based on the ICF framework. Discussion This study integrates knowledge from social cognitive science, economic behavioral science, and other relevant fields. We utilize straightforward and feasible reward strategies, combined with neuromodulation technology, to jointly improve patients' rehabilitation motivation. Behavioral observations and various assessment tools will be used to monitor patients' rehabilitation motivation and multifaceted health condition according to the ICF framework. The aim is to provide a preliminary exploration path for professionals to develop comprehensive strategies for improving patient rehabilitation motivation and facilitating a complete "hospital-home-society" rehabilitation process. Clinical trial registration https://www.chictr.org.cn/showproj.aspx?proj=182589, ChiCTR2300069068.
Collapse
Affiliation(s)
- Ping Zhou
- Rehabilitation Medicine Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University School of Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxi Li
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingwang Zhao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyun Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufeng Chen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Shen
- Rehabilitation Medicine Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University School of Medicine, Shanghai, China
| | - Dongsheng Xu
- Department of Rehabilitation Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Muacevic A, Adler JR. Comparison of Rehabilitative Interventions That Ameliorate Post-stroke Working Memory Deficit: A Systematic Review. Cureus 2022; 14:e30014. [PMID: 36348933 PMCID: PMC9637249 DOI: 10.7759/cureus.30014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023] Open
Abstract
Stroke is one of the most common causes of disability in the world. It has sensory, motor, and cognitive symptoms. Many cognitive domains might get involved in a stroke. This systematic review focuses on working memory domain deficits after stroke and their various rehabilitation methods. This review is based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA) guidelines. For this review, we have searched PubMed, Google Scholar, and Science Direct databases and screened thoroughly with the inclusion criteria of free full-text English papers in the last 10 years that have exclusively studied humans. The articles included in the search are randomized control trials (RCTs), observational studies, meta-analysis studies, systematic reviews, and traditional reviews. Consequent quality assessment was done using the most commonly used tools for each type of study and eight papers were selected. From these papers, full-text articles were studied, analyzed, and tabulated. We found five different rehabilitation methods: transcranial direct-current stimulation, computer-assisted cognitive rehabilitation, physical activity, goal setting, and multimodal rehabilitation. We found that goal setting, computer-assisted cognitive rehabilitation, and multimodal rehabilitation can improve working memory deficits. While transcranial direct current stimulation and physical activity were inconsistent, further studies are needed. The small sample size, no follow-up, the inclusion of only a few studies, the size of the stroke, and comorbid conditions like mild cognitive impairment, dementia, and depression were the main limitations of this study. Future reviews must include a larger number of studies with large sample sizes, including follow-up as an inclusion criterion. We need more clinical trials on these methods for better knowledge.
Collapse
|
8
|
Yang L, Tao Y, Luo L, Zhang Y, Wang X, Meng X. Dengzhan Xixin injection derived from a traditional Chinese herb Erigeron breviscapus ameliorates cerebral ischemia/reperfusion injury in rats via modulation of mitophagy and mitochondrial apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114988. [PMID: 35032588 DOI: 10.1016/j.jep.2022.114988] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengzhan Xixin injection (DX), a preparation of extracts from traditional Chinese medicine Erigeron breviscapus (Vaniot) Hand.-Mazz., has been widely used in clinical treatment of cerebral ischemia sequelae in China for a long history. However, its underlying mechanisms remain unclear. AIM OF THE STUDY The objective of this present study aimed to investigate the therapeutic effects of DX on cerebral ischemia/reperfusion (I/R) injury in a rat model. Meanwhile, its underlying molecular mechanisms on mitochondrial protection were further interpreted. MATERIALS AND METHODS The major components of DX were detected by high-performance liquid chromatography analysis. The model of cerebral I/R injury was established by middle cerebral artery occlusion (MCAO) in SD rats. We firstly performed neurobehavioral score, the regional cerebral blood flow (rCBF) assay, and TTC, HE and Nissl staining for evaluating the effects of DX on I/R injury. And then, the cortical levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP) were determined by commercial kits. Whereafter, real time-PCR and transmission electron microscopy were employed to investigate the relative copy number of mitochondrial DNA (mtDNA) and neuronal ultrastructure changes, respectively. Further, the potential interactions of major components in DX with mitophagy/apoptosis-related proteins were predicted by Schrodinger molecular docking. The expression of mitophagy-related proteins LC3, p62, TOM20, PINK1 and Parkin was estimated by western blot and immunofluorescence analyses. Furthermore, TUNEL staining and western blot were used to detect the apoptotic phenomenon and the protein expression of Bax, Bcl-2, Cytochrome c (Cyto-c) and cleaved Caspase-3. RESULTS DX mainly contains scutellarin, 3,4-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, caffeic acid and 5-O-caffeoylquinic acid. Compared with the model group, DX could remarkably relieve ischemia-provoked neurological deficit, rCBF deficiency and cerebral infarction. Pathological changes and neuronal loss in a MCAO model of rats were memorably ameliorated by DX administration. Meanwhile, DX reduced the surged ROS and MDA, while increased the level of SOD. Notably, DX treatment conversed the collapse of ATP and MMP, along with decreased in the relative copy number of mtDNA, contributing to the maintaining of mitochondrial ultrastructure via the increased number of autophagy lysosomes. The representative ingredients in DX had a potential bind with the active sites of mitophagy/apoptosis-related proteins. DX stimulated the protein expression of LC3, PINK1 and Parkin, while reduced the levels of p62 and TOM20. In addition, DX confined TUNEL-positive cell rate with the decreased expressions of Bax, Cyto-c and cleaved Caspase-3 as well as the increased Bcl-2 level. CONCLUSIONS We demonstrated that the protection of DX against brain ischemia could attribute to alleviating mitochondrial damage by upregulating mitophagy and inhibiting mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liuling Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|