1
|
Sainburg LE, Hoang J, Doss DJ, Berry V, Roche A, Lagrange AH, Peterson TE, Smith GT, Englot DJ, Morgan VL. Surgical targeting of lateralized 18F-fluorodeoxyglucose positron emission tomography hypometabolism relates to long-term epilepsy surgery outcomes. Epilepsia 2025. [PMID: 40202811 DOI: 10.1111/epi.18402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
OBJECTIVE Surgical resection of the seizure onset zone can be an effective treatment for patients with drug-resistant focal epilepsy. Clinical, electrophysiological, and imaging data are all gathered prior to surgery to localize the seizure onset zone. However, only ~62% of patients become seizure-free after surgery, highlighting the need for improved methods to prospectively predict seizure recurrence after resection. 18F-Fluorodeoxyglucose (FDG) positron emission tomography (PET) is routinely acquired to guide epilepsy surgery; however, these scans are often assessed qualitatively in the clinic. Here, we quantified the surgical targeting of lateralized FDG-PET hypometabolism and assessed its relationship to surgical outcomes. METHODS We included 55 patients who underwent resective epilepsy surgery (46 with temporal lobe epilepsy). We calculated laterality of the patients' presurgical FDG-PET scans and used pre- and postsurgical magnetic resonance imaging to delineate the surgically resected regions. Surgical targeting of FDG-PET laterality was computed using the discriminability between resected and spared regions statistic. RESULTS We found that surgical targeting of FDG-PET laterality could distinguish temporal lobe epilepsy patients who achieve freedom from disabling seizures in the long term (3 years) from those who do not (area under the curve [AUC] = .83), outperforming the standard clinical assessment (AUC = .68). We additionally found that this method generalized to the nine patients with extratemporal lobe focal epilepsy. SIGNIFICANCE This study highlights the benefit of quantifying FDG-PET to guide epilepsy surgery. The presented quantitative FDG-PET method could be used prospectively in the clinic to aid in surgical guidance and patient counseling.
Collapse
Affiliation(s)
- Lucas E Sainburg
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joseph Hoang
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Derek J Doss
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Virginia Berry
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexandra Roche
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andre H Lagrange
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Todd E Peterson
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gary T Smith
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Dollomaja B, Wang HE, Guye M, Makhalova J, Bartolomei F, Jirsa VK. Virtual epilepsy patient cohort: Generation and evaluation. PLoS Comput Biol 2025; 21:e1012911. [PMID: 40215461 PMCID: PMC12043236 DOI: 10.1371/journal.pcbi.1012911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/30/2025] [Accepted: 02/25/2025] [Indexed: 05/02/2025] Open
Abstract
Epilepsy is a prevalent brain disorder, characterized by sudden, abnormal brain activity, making it difficult to live with. One-third of people with epilepsy do not respond to anti-epileptic drugs. Drug-resistant epilepsy is treated with brain surgery. Successful surgical treatment relies on identifying brain regions responsible for seizure onset, known as epileptogenic zones (EZ). Despite various methods for EZ estimation, evaluating their efficacy remains challenging due to a lack of ground truth for empirical data. To address this, we generated and evaluated a cohort of 30 virtual epilepsy patients, using patient-specific anatomical and functional data from 30 real drug-resistant epilepsy patients. This personalized modeling approach, based on each patient's brain data, is called a virtual brain twin. For each virtual patient, we provided data that included anatomically parcellated brain regions, structural connectivity, reconstructed intracranial electrodes, simulated brain activity at both the brain region and electrode levels, and key parameters of the virtual brain twin. These key parameters, which include the EZ hypothesis, serve as the ground truth for simulated brain activity. For each virtual brain twin, we generated synthetic spontaneous seizures, stimulation-induced seizures and interictal activity. We systematically evaluated these simulated brain signals by quantitatively comparing them against their corresponding empirical intracranial recordings. Simulated signals based on patient-specific EZ captured spatio-temporal seizure generation and propagation. Through in-silico exploration of stimulation parameters, we also demonstrated the role of patient-specific stimulation location and amplitude in reproducing empirically stimulated seizures. The virtual epileptic cohort is openly available, and can be used to systematically evaluate methods for the estimation of EZ or source localization using ground truth EZ parameters and source signals.
Collapse
Affiliation(s)
- Borana Dollomaja
- Institut de Neurosciences des Systèmes (INS) UMR1106, INSERM, Aix-Marseille Université, Marseille, France
| | - Huifang E. Wang
- Institut de Neurosciences des Systèmes (INS) UMR1106, INSERM, Aix-Marseille Université, Marseille, France
| | - Maxime Guye
- CRMBM, CNRS, Aix-Marseille Université, Marseille, France
- CEMEREM, Timone University Hospital, APHM, Marseille, France
| | - Julia Makhalova
- CRMBM, CNRS, Aix-Marseille Université, Marseille, France
- CEMEREM, Timone University Hospital, APHM, Marseille, France
- Epileptology and Clinical Neurophysiology Department, Timone Hospital, APHM, Marseille, France
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes (INS) UMR1106, INSERM, Aix-Marseille Université, Marseille, France
- Epileptology and Clinical Neurophysiology Department, Timone Hospital, APHM, Marseille, France
| | - Viktor K. Jirsa
- Institut de Neurosciences des Systèmes (INS) UMR1106, INSERM, Aix-Marseille Université, Marseille, France
| |
Collapse
|
3
|
Afnan J, Cai Z, Lina JM, Abdallah C, Pellegrino G, Arcara G, Khajehpour H, Frauscher B, Gotman J, Grova C. Validating MEG estimated resting-state connectome with intracranial EEG. Netw Neurosci 2025; 9:421-446. [PMID: 40161991 PMCID: PMC11949576 DOI: 10.1162/netn_a_00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/05/2025] [Indexed: 04/02/2025] Open
Abstract
Magnetoencephalography (MEG) is widely used for studying resting-state brain connectivity. However, MEG source imaging is ill posed and has limited spatial resolution. This introduces source-leakage issues, making it challenging to interpret MEG-derived connectivity in resting states. To address this, we validated MEG-derived connectivity from 45 healthy participants using a normative intracranial EEG (iEEG) atlas. The MEG inverse problem was solved using the wavelet-maximum entropy on the mean method. We computed four connectivity metrics: amplitude envelope correlation (AEC), orthogonalized AEC (OAEC), phase locking value (PLV), and weighted-phase lag index (wPLI). We compared spatial correlation between MEG and iEEG connectomes across standard canonical frequency bands. We found moderate spatial correlations between MEG and iEEG connectomes for AEC and PLV. However, when considering metrics that correct/remove zero-lag connectivity (OAEC/wPLI), the spatial correlation between MEG and iEEG connectomes decreased. MEG exhibited higher zero-lag connectivity compared with iEEG. The correlations between MEG and iEEG connectomes suggest that relevant connectivity patterns can be recovered from MEG. However, since these correlations are moderate/low, MEG connectivity results should be interpreted with caution. Metrics that correct for zero-lag connectivity show decreased correlations, highlighting a trade-off; while MEG may capture more connectivity due to source-leakage, removing zero-lag connectivity can eliminate true connections.
Collapse
Affiliation(s)
- Jawata Afnan
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Zhengchen Cai
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Jean-Marc Lina
- Physnum Team, Centre De Recherches Mathématiques, Montréal, Québec, Canada
- Electrical Engineering Department, École De Technologie Supérieure, Montréal, Québec H3C 1K3, Canada
- Center for Advanced Research in Sleep Medicine, Sacré-Coeur Hospital, Montréal, Québec, Canada
| | - Chifaou Abdallah
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Giovanni Pellegrino
- Epilepsy program, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Giorgio Arcara
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Hassan Khajehpour
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jean Gotman
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
- Physnum Team, Centre De Recherches Mathématiques, Montréal, Québec, Canada
- Multimodal Functional Imaging Lab, Department of Physics and Concordia School of Health, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Firestone E, Uda H, Kuroda N, Sakakura K, Sonoda M, Ueda R, Kitazawa Y, Lee MH, Jeong JW, Luat AF, Cools MJ, Sood S, Asano E. Normative high-frequency oscillation phase-amplitude coupling and effective connectivity under sevoflurane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644050. [PMID: 40166237 PMCID: PMC11956958 DOI: 10.1101/2025.03.18.644050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Resective surgery for pediatric drug-resistant focal epilepsy often requires extraoperative intracranial electroencephalography recording to accurately localize the epileptogenic zone. This procedure entails multiple neurosurgeries, intracranial electrode implantation and explantation, and days of invasive inpatient evaluation. There is a need for methods to reduce diagnostic burden and introduce objective epilepsy biomarkers. Our preliminary studies aimed to address these issues by using sevoflurane anesthesia to rapidly and reversibly activate intraoperative phase-amplitude coupling between delta and high-frequency activities, as well as high-frequency activity-based effective connectivity. Phase-amplitude coupling can serve as a proxy for spike-and-wave discharges, and effective connectivity describes the spatiotemporal dynamics of neural information flow among regions. Notably, sevoflurane activated these interictal electrocorticography biomarkers most robustly in areas whose resection led to seizure freedom. However, they were also increased in normative brain regions that did not require removal for seizure control. Before using these electrocorticography biomarkers prospectively to guide resection, we should understand their endogenous distribution and propagation pathways, at different anesthetic stages. In the current study, we highlighted the normative distribution of delta and high-frequency activity phase-amplitude coupling and effective connectivity under sevoflurane. Normative data was derived from nineteen patients, whose ages ranged from four to eighteen years and included eleven males. All achieved seizure control following focal resection. Electrocorticography was recorded at an isoflurane baseline, during stepwise increases in sevoflurane concentration, and also during extraoperative slow-wave sleep without anesthesia. Normative electrode sites were then mapped onto a standard cortical surface for anatomical visualization. Dynamic tractography traced white matter pathways that connected sites with significantly augmented biomarkers. Finally, we analyzed all sites -regardless of normal or abnormal status - to determine whether sevoflurane-enhanced biomarker values could intraoperatively localize the epileptogenic sites. We found that normative electrocorticography biomarkers increased as a function of sevoflurane concentration, especially in bilateral frontal and parietal lobe regions (Bonferroni-corrected p-values <0.05). Callosal fibers directly connected homotopic Rolandic regions exhibiting elevated phase-amplitude coupling. The superior longitudinal fasciculus linked frontal and parietal association cortices showing augmented effective connectivity. Higher biomarker values, particularly at three to four volume percent sevoflurane, characterized epileptogenicity and seizure-onset zone status (Bonferroni-corrected p-values <0.05). Supplementary analysis showed that epileptogenic sites exhibited less augmentation in delta-based effective connectivity. This study helps clarify the normative distribution of, and plausible propagation pathways supporting, sevoflurane enhanced electrocorticographic biomarkers. Future work should confirm that sevoflurane-activated electrocorticography biomarkers can predict postoperative seizure outcomes in larger cohorts, to establish their clinical utility.
Collapse
|
5
|
Mehraram R, Kries J, De Clercq P, Vandermosten M, Francart T. EEG reveals brain network alterations in chronic aphasia during natural speech listening. Sci Rep 2025; 15:2441. [PMID: 39828755 PMCID: PMC11743778 DOI: 10.1038/s41598-025-86192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Aphasia is a common consequence of a stroke which affects language processing. In search of an objective biomarker for aphasia, we used EEG to investigate how functional network patterns in the cortex are affected in persons with post-stroke chronic aphasia (PWA) compared to healthy controls (HC) while they are listening to a story. EEG was recorded from 22 HC and 27 PWA while they listened to a 25-min-long story. Functional connectivity between scalp regions was measured with the weighted phase lag index. The Network-Based Statistics toolbox was used to detect altered network patterns and to investigate correlations with behavioural tests within the aphasia group. Differences in network geometry were assessed by means of graph theory and a targeted node-attack approach. Group-classification accuracy was obtained with a support vector machine classifier. PWA showed stronger inter-hemispheric connectivity compared to HC in the theta-band (4.5-7 Hz), whilst a weaker subnetwork emerged in the low-gamma band (30.5-49 Hz). Two subnetworks correlated with semantic fluency in PWA respectively in delta- (1-4 Hz) and low-gamma-bands. In the theta-band network, graph alterations in PWA emerged at both local and global level, whilst only local changes were found in the low-gamma-band network. Network metrics discriminated PWA and HC with AUC = 83%. Overall, we demonstrate the potential of EEG-network metrics for the development of informative biomarkers to assess natural speech processing in chronic aphasia. We hypothesize that the detected alterations reflect compensatory mechanisms associated with recovery.
Collapse
Affiliation(s)
- Ramtin Mehraram
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium.
| | - Jill Kries
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Pieter De Clercq
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Maaike Vandermosten
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Tom Francart
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
6
|
Janiukstyte V, Kozma C, Owen TW, Chaudhary UJ, Diehl B, Lemieux L, Duncan JS, Rugg-Gunn F, de Tisi J, Wang Y, Taylor PN. Alpha rhythm slowing in temporal lobe epilepsy across scalp EEG and MEG. Brain Commun 2024; 6:fcae439. [PMID: 39691099 PMCID: PMC11650000 DOI: 10.1093/braincomms/fcae439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
EEG slowing is reported in various neurological disorders including Alzheimer's, Parkinson's and Epilepsy. Here, we investigate alpha rhythm slowing in individuals with refractory temporal lobe epilepsy compared with healthy controls, using scalp EEG and magnetoencephalography. We retrospectively analysed data from 17 (46) healthy controls and 22 (24) individuals with temporal lobe epilepsy who underwent scalp EEG and magnetoencephalography recordings as part of presurgical evaluation. Resting-state, eyes-closed recordings were source reconstructed using the standardized low-resolution brain electrographic tomography method. We extracted slow 6-9 Hz and fast 10-11 Hz alpha relative band power and calculated the alpha power ratio by dividing slow alpha by fast alpha. This ratio was computed for all brain regions in all individuals. Alpha oscillations were slower in individuals with temporal lobe epilepsy than controls (P< 0.05). This effect was present in both the ipsilateral and contralateral hemispheres and across widespread brain regions. Alpha slowing in temporal lobe epilepsy was found in both EEG and magnetoencephalography recordings. We interpret greater slow alpha as greater deviation from health.
Collapse
Affiliation(s)
- Vytene Janiukstyte
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, NE4 5DG Newcastle upon Tyne, UK
| | - Csaba Kozma
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, NE4 5DG Newcastle upon Tyne, UK
| | - Thomas W Owen
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, NE4 5DG Newcastle upon Tyne, UK
| | - Umair J Chaudhary
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, WC1N 3BG London, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, WC1N 3BG London, UK
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, WC1N 3BG London, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, WC1N 3BG London, UK
| | - Fergus Rugg-Gunn
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, WC1N 3BG London, UK
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, WC1N 3BG London, UK
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, NE4 5DG Newcastle upon Tyne, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, WC1N 3BG London, UK
- Faculty of Medical Sciences, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, NE4 5DG Newcastle upon Tyne, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, WC1N 3BG London, UK
- Faculty of Medical Sciences, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Clifford HJ, Paranathala MP, Wang Y, Thomas RH, da Silva Costa T, Duncan JS, Taylor PN. Vagus nerve stimulation for epilepsy: A narrative review of factors predictive of response. Epilepsia 2024; 65:3441-3456. [PMID: 39412361 PMCID: PMC11647441 DOI: 10.1111/epi.18153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 12/17/2024]
Abstract
Vagus nerve stimulation (VNS) is an established therapy for drug-resistant epilepsy. However, there is a lack of reliable predictors of VNS response in clinical use. The identification of factors predictive of VNS response is important for patient selection and stratification as well as tailored stimulation programming. We conducted a narrative review of the existing literature on prognostic markers for VNS response using clinical, demographic, biochemical, and modality-specific information such as from electroencephalography (EEG), magnetoencephalography, and magnetic resonance imaging (MRI). No individual marker demonstrated sufficient predictive power for individual patients, although several have been suggested, with some promising initial findings. Combining markers from underresearched modalities such as T1-weighted MRI morphometrics and EEG may provide better strategies for treatment optimization.
Collapse
Affiliation(s)
- Harry J. Clifford
- Computational Neurology Neurosicence and Psychiatry Lab, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | | | - Yujiang Wang
- Computational Neurology Neurosicence and Psychiatry Lab, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- UCL Queen Square Institute of NeurologyLondonUK
| | - Rhys H. Thomas
- NeurosciencesRoyal Victoria InfirmaryNewcastle Upon TyneUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
| | - Tiago da Silva Costa
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- Northern Centre for Mood Disorders, Newcastle University, Cumbria, NorthumberlandTyne and Wear NHS Foundation TrustNewcastle Upon TyneUK
- National Institute for Health and Care Research, Newcastle Biomedical Research CentreNewcastle Upon TyneUK
| | | | - Peter N. Taylor
- Computational Neurology Neurosicence and Psychiatry Lab, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- UCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
8
|
Hoogteijling S, Schaft EV, Dirks EHM, Straumann S, Demuru M, van Eijsden P, Gebbink T, Otte WM, Huiskamp GM, van 't Klooster MA, Zijlmans M. Machine learning for (non-)epileptic tissue detection from the intraoperative electrocorticogram. Clin Neurophysiol 2024; 167:14-25. [PMID: 39265288 DOI: 10.1016/j.clinph.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE Clinical visual intraoperative electrocorticography (ioECoG) reading intends to localize epileptic tissue and improve epilepsy surgery outcome. We aimed to understand whether machine learning (ML) could complement ioECoG reading, how subgroups affected performance, and which ioECoG features were most important. METHODS We included 91 ioECoG-guided epilepsy surgery patients with Engel 1A outcome. We allocated 71 training and 20 test set patients. We trained an extra trees classifier (ETC) with 14 spectral features to classify ioECoG channels as covering resected or non-resected tissue. We compared the ETC's performance with clinical ioECoG reading and assessed whether patient subgroups affected performance. Explainable artificial intelligence (xAI) unveiled the most important ioECoG features learnt by the ETC. RESULTS The ETC outperformed clinical reading in five test set patients, was inferior in six, and both were inconclusive in nine. The ETC performed best in the tumor subgroup (area under ROC curve: 0.84 [95%CI 0.79-0.89]). xAI revealed predictors of resected (relative theta, alpha, and fast ripple power) and non-resected tissue (relative beta and gamma power). CONCLUSIONS Combinations of subtle spectral ioECoG changes, imperceptible by the human eye, can aid healthy and pathological tissue discrimination. SIGNIFICANCE ML with spectral ioECoG features can support, rather than replace, clinical ioECoG reading, particularly in tumors.
Collapse
Affiliation(s)
- Sem Hoogteijling
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands; Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Eline V Schaft
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands
| | - Evi H M Dirks
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands; Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Sven Straumann
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands; Department of Anesthesiology, University Hospital Bern, Switzerland
| | - Matteo Demuru
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| | - Pieter van Eijsden
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands
| | - Tineke Gebbink
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands
| | - Willem M Otte
- Department of Child Neurology, University Medical Center Utrecht, and Utrecht University, Utrecht, The Netherlands
| | - Geertjan M Huiskamp
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands
| | - Maryse A van 't Klooster
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands
| | - Maeike Zijlmans
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Part of ERN EpiCARE, P.O. box 85500, 3508 GA Utrecht, The Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), The Netherlands.
| |
Collapse
|
9
|
Uda H, Kuroda N, Firestone E, Ueda R, Sakakura K, Kitazawa Y, Choromanski D, Cools M, Luat AF, Asano E. Normative atlases of high-frequency oscillation and spike rates under Sevoflurane anesthesia. Clin Neurophysiol 2024; 167:117-130. [PMID: 39307102 PMCID: PMC11588517 DOI: 10.1016/j.clinph.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 09/07/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE We analyzed the dose-dependent effects of Sevoflurane anesthesia on high-frequency oscillations (HFOs) and spike discharges at non-epileptic sites and evaluated their effectiveness in identifying the epileptogenic zone. METHODS We studied 21 children with drug-resistant focal epilepsy who achieved seizure control after focal resective surgery. Open-source detectors quantified HFO and spike rates during extraoperative and intraoperative intracranial EEG recordings performed before resection. We determined under which anesthetic conditions HFO and spike rates differentiated the seizure onset zone (SOZ) within the resected area from non-epileptic sites. RESULTS We analyzed 925 artifact-free electrodes, including 867 at non-epileptic sites and 58 at SOZ sites. Higher Sevoflurane doses significantly increased HFO and spike rates at non-epileptic sites, exhibiting spatial variability among different detectors. These biomarkers were elevated in the SOZ more than in non-epileptic sites under 2-4 vol% Sevoflurane anesthesia, with Cohen's d effect sizes above 3.0 and Mann-Whitney U-Test r effect sizes above 0.5. CONCLUSIONS We provided normative atlases of HFO and spike rates under different Sevoflurane anesthesia conditions. Sevoflurane elevates HFO and spike rates preferentially in the epileptogenic zone. SIGNIFICANCE Assessing the relative severity of biomarker levels across sites may be relevant for localizing the epileptogenic zone under Sevoflurane anesthesia.
Collapse
Affiliation(s)
- Hiroshi Uda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Ethan Firestone
- Department of Physiology, Wayne State University, Detroit, MI 48202, USA
| | - Riyo Ueda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Rush University Medical Center, Chicago, IL 60612, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba 3058575, Japan
| | - Yu Kitazawa
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama 2360004, Japan
| | - Dominik Choromanski
- Department of Anesthesiology, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Michael Cools
- Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48858, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48858, USA.
| |
Collapse
|
10
|
Steinschneider M, Rhone AE, Taylor PN, Nourski KV, Dlouhy BJ, Howard MA. Insights into epileptic aphasia: Intracranial recordings in a child with a left insular ganglioglioma. Epilepsy Behav Rep 2024; 28:100715. [PMID: 39968245 PMCID: PMC11832953 DOI: 10.1016/j.ebr.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 02/20/2025] Open
Abstract
Intracranial EEG was recorded during a dialog-based task in a 16-year-old boy with a left insular ganglioglioma, medically intractable epilepsy, epileptic foci in auditory cortex on the lateral superior temporal gyrus (STG) and language deficiencies. Performance of the task was highly erratic, characterized by rapid cycling between providing correct answers, incorrect answers and failure to respond. There was no relationship between performance and the degree of concurrent epileptic activity in auditory cortex. High gamma activity in core auditory cortex (posterior medial Heschl's gyrus, HGPM) was markedly diminished during listening and, with two exceptions, was less than activity from 17 control subjects. The two exceptions also had seizure onset zones in perisylvian cortex. Responses during listening were of smaller amplitude than those occurring during speaking, a pattern opposite that typically seen in the left HGPM. Within HGPM, lateral STG and pars opercularis of the inferior frontal gyrus, high gamma activity while listening was greatest when questions were correctly answered and least when the subject failed to respond. Alpha activity preceding utterances was lowest in pars opercularis when the subject failed to respond. Comparisons between resting state activity in another cohort of controls and the subject were most disparate in HGPM. Alpha activity during performance of the task was greatest in the mid-anterior cingulate when the subject failed to respond, suggesting dysfunction beyond the speech network and into the salience network. Multiple abnormalities noted in this patient paralleled those seen in epileptic aphasia and Rolandic epilepsy.
Collapse
Affiliation(s)
- Mitchell Steinschneider
- Department of Neurosurgery, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ariane E. Rhone
- Department of Neurosurgery, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Peter N. Taylor
- Institute of Neuroscience, Newcastle University, Henry Wellcome Building, Newcastle Upon Tyne NE2 4HH, UK
| | - Kirill V. Nourski
- Department of Neurosurgery, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Brian J Dlouhy
- Department of Neurosurgery, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Matthew A. Howard
- Department of Neurosurgery, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Thornton C, Panagiotopoulou M, Chowdhury FA, Diehl B, Duncan JS, Gascoigne SJ, Besne G, McEvoy AW, Miserocchi A, Smith BC, de Tisi J, Taylor PN, Wang Y. Diminished circadian and ultradian rhythms of human brain activity in pathological tissue in vivo. Nat Commun 2024; 15:8527. [PMID: 39358327 PMCID: PMC11447262 DOI: 10.1038/s41467-024-52769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Chronobiological rhythms, such as the circadian rhythm, have long been linked to neurological disorders, but it is currently unknown how pathological processes affect the expression of biological rhythms in the brain. Here, we use the unique opportunity of long-term, continuous intracranially recorded EEG from 38 patients (totalling 6338 hours) to delineate circadian (daily) and ultradian (minute to hourly) rhythms in different brain regions. We show that functional circadian and ultradian rhythms are diminished in pathological tissue, independent of regional variations. We further demonstrate that these diminished rhythms are persistent in time, regardless of load or occurrence of pathological events. These findings provide evidence that brain pathology is functionally associated with persistently diminished chronobiological rhythms in vivo in humans, independent of regional variations or pathological events. Future work interacting with, and restoring, these modulatory chronobiological rhythms may allow for novel therapies.
Collapse
Affiliation(s)
| | | | | | - Beate Diehl
- UCL Queen Square Institute of Neurology, London, UK
| | | | - Sarah J Gascoigne
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Guillermo Besne
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Billy C Smith
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Jane de Tisi
- UCL Queen Square Institute of Neurology, London, UK
| | - Peter N Taylor
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK
- UCL Queen Square Institute of Neurology, London, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yujiang Wang
- CNNP Lab, School of Computing, Newcastle University, Newcastle upon Tyne, UK.
- UCL Queen Square Institute of Neurology, London, UK.
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Latreille V, Corbin-Lapointe J, Peter-Derex L, Thomas J, Lina JM, Frauscher B. Oscillatory and nonoscillatory sleep electroencephalographic biomarkers of the epileptic network. Epilepsia 2024; 65:3038-3051. [PMID: 39180417 DOI: 10.1111/epi.18088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVE In addition to the oscillatory brain activity, the nonoscillatory (scale-free) components of the background electroencephalogram (EEG) may provide further information about the complexity of the underlying neuronal network. As epilepsy is considered a network disease, such scale-free metrics might help to delineate the epileptic network. Here, we performed an analysis of the sleep oscillatory (spindle, slow wave, and rhythmic spectral power) and nonoscillatory (H exponent) intracranial EEG using multiple interictal features to estimate whether and how they deviate from normalcy in 38 adults with drug-resistant epilepsy. METHODS To quantify intracranial EEG abnormalities within and outside the seizure onset areas, patients' values were adjusted based on normative maps derived from the open-access Montreal Neurological Institute open iEEG Atlas. In a subset of 29 patients who underwent resective surgery, we estimated the predictive value of these features to identify the epileptogenic zone in those with a good postsurgical outcome. RESULTS We found that distinct sleep oscillatory and nonoscillatory metrics behave differently across the epileptic network, with the strongest differences observed for (1) a reduction in spindle activity (spindle rates and rhythmic sigma power in the 10-16 Hz band), (2) a higher rhythmic gamma power (30-80 Hz), and (3) a higher H exponent (steeper 1/f slope). As expected, epileptic spikes were also highest in the seizure onset areas. Furthermore, in surgical patients, the H exponent achieved the highest performance (balanced accuracy of .76) for classifying resected versus nonresected channels in good outcome patients. SIGNIFICANCE This work suggests that nonoscillatory components of the intracranial EEG signal could serve as promising interictal sleep candidates of epileptogenicity in patients with drug-resistant epilepsy. Our findings further advance the understanding of epilepsy as a disease, whereby absence or loss of sleep physiology may provide information complementary to pathological epileptic processes.
Collapse
Affiliation(s)
- Véronique Latreille
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Justin Corbin-Lapointe
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Quebec, Canada
| | - Laure Peter-Derex
- Center for Sleep Medicine, Croix-Rousse Hospital, Lyon University Hospital, Lyon, France
| | - John Thomas
- Department of Neurology, Analytical Neurophysiology Lab, Duke University, Durham, North Carolina, USA
| | - Jean-Marc Lina
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Quebec, Canada
| | - Birgit Frauscher
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology, Analytical Neurophysiology Lab, Duke University, Durham, North Carolina, USA
| |
Collapse
|
13
|
Gallagher RS, Sinha N, Pattnaik AR, Ojemann WKS, Lucas A, LaRocque JJ, Bernabei JM, Greenblatt AS, Sweeney EM, Cajigas I, Chen HI, Davis KA, Conrad EC, Litt B. The sixth sense: how much does interictal intracranial EEG add to determining the focality of epileptic networks? Brain Commun 2024; 6:fcae320. [PMID: 39440305 PMCID: PMC11495218 DOI: 10.1093/braincomms/fcae320] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 06/20/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Intracranial EEG is used for two main purposes: to determine (i) if epileptic networks are amenable to focal treatment and (ii) where to intervene. Currently, these questions are answered qualitatively and differently across centres. There is a need to quantify the focality of epileptic networks systematically, which may guide surgical decision-making, enable large-scale data analysis and facilitate multi-centre prospective clinical trials. We analysed interictal data from 101 patients with drug-resistant epilepsy who underwent pre-surgical evaluation with intracranial EEG at a single centre. We chose interictal data because of its potential to reduce the morbidity and cost associated with ictal recording. Sixty-five patients had unifocal seizure onset on intracranial EEG, and 36 were non-focal or multi-focal. We quantified the spatial dispersion of implanted electrodes and interictal intracranial EEG abnormalities for each patient. We compared these measures against the '5 Sense Score,' a pre-implant prediction of the likelihood of focal seizure onset, assessed the ability to predict unifocal seizure onset by combining these metrics and evaluated how predicted focality relates to subsequent treatment and outcomes. The spatial dispersion of intracranial EEG electrodes predicted network focality with similar performance to the 5-SENSE score [area under the receiver operating characteristic curve = 0.68 (95% confidence interval 0.57, 0.78)], indicating that electrode placement accurately reflected pre-implant information. A cross-validated model combining the 5-SENSE score and the spatial dispersion of interictal intracranial EEG abnormalities significantly improved this prediction [area under the receiver operating characteristic curve = 0.79 (95% confidence interval 0.70, 0.88); P < 0.05]. Predictions from this combined model differed between surgical- from device-treated patients with an area under the receiver operating characteristic curve of 0.81 (95% confidence interval 0.68, 0.85) and between patients with good and poor post-surgical outcome at 2 years with an area under the receiver operating characteristic curve of 0.70 (95% confidence interval 0.56, 0.85). Spatial measures of interictal intracranial EEG abnormality significantly improved upon pre-implant predictions of network focality by area under the receiver operating characteristic curve and increased sensitivity in a single-centre study. Quantified focality predictions related to ultimate treatment strategy and surgical outcomes. While the 5-SENSE score weighed for specificity in their multi-centre validation to prevent unnecessary implantation, sensitivity improvement found in our single-centre study by including intracranial EEG may aid the decision on whom to perform the focal intervention. We present this study as an important step in building standardized, quantitative tools to guide epilepsy surgery.
Collapse
Affiliation(s)
- Ryan S Gallagher
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nishant Sinha
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akash R Pattnaik
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William K S Ojemann
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alfredo Lucas
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua J LaRocque
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M Bernabei
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam S Greenblatt
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth M Sweeney
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Iahn Cajigas
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H Isaac Chen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Kathryn A Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin C Conrad
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Litt
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Keefe DW, Christianson DT, Davis GW, Oya H, Howard MA, Petkov CI, Toor F. Modeling for neurosurgical laser interstitial thermal therapy with and without intracranial recording electrodes. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 7:100139. [PMID: 39347540 PMCID: PMC11437873 DOI: 10.1016/j.crneur.2024.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024] Open
Abstract
Laser thermal ablation has become a prominent neurosurgical treatment approach, but in epilepsy patients it cannot currently be safely implemented with intracranial recording electrodes that are used to study interictal or epileptiform activity. There is a pressing need for computational models of laser interstitial thermal therapy (LITT) with and without intracranial electrodes to enhance the efficacy and safety of optical neurotherapies. In this paper, we aimed to build a biophysical bioheat and ray optics model to study the effects of laser heating in the brain, with and without intracranial electrodes in the vicinity of the ablation zone during the LITT procedure. COMSOL Multiphysics finite element method (FEM) solver software was used to create a bioheat thermal model of brain tissue, with and without blood flow incorporation via Penne's model, to model neural tissue response to laser heating. We report that the close placement of intracranial electrodes can increase the maximum temperature of the brain tissue volume as well as impact the necrosis region volume if the electrodes are placed too closely to the laser coupled diffuse fiber tip. The model shows that an electrode displacement of 4 mm could be considered a safe distance of intracranial electrode placement away from the LITT probe treatment area. This work, for the first time, models the impact of intracranially implanted recording electrodes during LITT, which could improve the understanding of the LITT treatment procedure on the brain's neural networks a sufficient safe distance to the implanted intracranial recording electrodes. We recommend modeling safe distances for placing the electrodes with respect to the infrared laser coupled diffuse fiber tip.
Collapse
Affiliation(s)
- Daniel W. Keefe
- University of Iowa, Electrical and Computer Engineering Department, Iowa City, IA, 52242, USA
| | - David T. Christianson
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Greyson W. Davis
- University of Iowa, Electrical and Computer Engineering Department, Iowa City, IA, 52242, USA
| | - Hiroyuki Oya
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Matthew A. Howard
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Christopher I. Petkov
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Fatima Toor
- University of Iowa, Electrical and Computer Engineering Department, Iowa City, IA, 52242, USA
| |
Collapse
|
15
|
Gascoigne SJ, Evans N, Hall G, Kozma C, Panagiotopoulou M, Schroeder GM, Simpson C, Thornton C, Turner F, Woodhouse H, Blickwedel J, Chowdhury FA, Diehl B, Duncan JS, Faulder R, Thomas RH, Wilson K, Taylor PN, Wang Y. Incomplete resection of the intracranial electroencephalographic seizure onset zone is not associated with postsurgical outcomes. Epilepsia 2024; 65:e163-e169. [PMID: 38990082 DOI: 10.1111/epi.18061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Delineation of seizure onset regions using intracranial electroencephalography (icEEG) is vital in the surgical workup of drug-resistant epilepsy cases. However, it is unknown whether the complete resection of these regions is necessary for seizure freedom, or whether postsurgical seizure recurrence can be attributed to the incomplete removal of seizure onset regions. To address this gap, we retrospectively analyzed icEEG recordings from 63 subjects, identifying seizure onset regions visually and algorithmically. We assessed onset region resection and correlated this with postsurgical seizure control. The majority of subjects had more than half of their onset regions resected (82.46% and 80.65% of subjects using visual and algorithmic methods, respectively). There was no association between the proportion of the seizure onset zone (SOZ) that was subsequently resected and better surgical outcomes (area under the receiver operating characteristic curve [AUC] < .7). Investigating the spatial extent of onset regions, we found no substantial evidence of an association with postsurgical seizure control (all AUC < .7). Although seizure onset regions are typically resected completely or in large part, incomplete resection is not associated with worse postsurgical outcomes. We conclude that postsurgical seizure recurrence cannot be attributed to an incomplete resection of the icEEG SOZ alone. Other network mechanisms beyond icEEG seizure onset likely contribute.
Collapse
Affiliation(s)
- Sarah J Gascoigne
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Nathan Evans
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Gerard Hall
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Csaba Kozma
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Mariella Panagiotopoulou
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Gabrielle M Schroeder
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Callum Simpson
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Christopher Thornton
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Frances Turner
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Heather Woodhouse
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Jess Blickwedel
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Fahmida A Chowdhury
- University College London Queen Square Institute of Neurology, Queen Square, London, UK
| | - Beate Diehl
- University College London Queen Square Institute of Neurology, Queen Square, London, UK
| | - John S Duncan
- University College London Queen Square Institute of Neurology, Queen Square, London, UK
| | - Ryan Faulder
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | - Rhys H Thomas
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Kevin Wilson
- School of Mathematics, Statistics, and Physics, Newcastle University, Newcastle Upon Tyne, UK
| | - Peter N Taylor
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
- University College London Queen Square Institute of Neurology, Queen Square, London, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Yujiang Wang
- Computational Neurology, Neuroscience & Psychiatry (CNNP) Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
- University College London Queen Square Institute of Neurology, Queen Square, London, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
16
|
Conrad EC, Lucas A, Ojemann WKS, Aguila CA, Mojena M, LaRocque JJ, Pattnaik AR, Gallagher R, Greenblatt A, Tranquille A, Parashos A, Gleichgerrcht E, Bonilha L, Litt B, Sinha SR, Ungar L, Davis KA. Interictal intracranial EEG asymmetry lateralizes temporal lobe epilepsy. Brain Commun 2024; 6:fcae284. [PMID: 39234168 PMCID: PMC11372416 DOI: 10.1093/braincomms/fcae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Patients with drug-resistant temporal lobe epilepsy often undergo intracranial EEG recording to capture multiple seizures in order to lateralize the seizure onset zone. This process is associated with morbidity and often ends in postoperative seizure recurrence. Abundant interictal (between-seizure) data are captured during this process, but these data currently play a small role in surgical planning. Our objective was to predict the laterality of the seizure onset zone using interictal intracranial EEG data in patients with temporal lobe epilepsy. We performed a retrospective cohort study (single-centre study for model development; two-centre study for model validation). We studied patients with temporal lobe epilepsy undergoing intracranial EEG at the University of Pennsylvania (internal cohort) and the Medical University of South Carolina (external cohort) between 2015 and 2022. We developed a logistic regression model to predict seizure onset zone laterality using several interictal EEG features derived from recent publications. We compared the concordance between the model-predicted seizure onset zone laterality and the side of surgery between patients with good and poor surgical outcomes. Forty-seven patients (30 female; ages 20-69; 20 left-sided, 10 right-sided and 17 bilateral seizure onsets) were analysed for model development and internal validation. Nineteen patients (10 female; ages 23-73; 5 left-sided, 10 right-sided, 4 bilateral) were analysed for external validation. The internal cohort cross-validated area under the curve for a model trained using spike rates was 0.83 for a model predicting left-sided seizure onset and 0.68 for a model predicting right-sided seizure onset. Balanced accuracies in the external cohort were 79.3% and 78.9% for the left- and right-sided predictions, respectively. The predicted concordance between the laterality of the seizure onset zone and the side of surgery was higher in patients with good surgical outcome. We replicated the finding that right temporal lobe epilepsy was harder to distinguish in a separate modality of resting-state functional MRI. In conclusion, interictal EEG signatures are distinct across seizure onset zone lateralities. Left-sided seizure onsets are easier to distinguish than right-sided onsets. A model trained on spike rates accurately identifies patients with left-sided seizure onset zones and predicts surgical outcome. A potential clinical application of these findings could be to either support or oppose a hypothesis of unilateral temporal lobe epilepsy when deciding to pursue surgical resection or ablation as opposed to device implantation.
Collapse
Affiliation(s)
- Erin C Conrad
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alfredo Lucas
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William K S Ojemann
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carlos A Aguila
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marissa Mojena
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua J LaRocque
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akash R Pattnaik
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Gallagher
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Greenblatt
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ashley Tranquille
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Parashos
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Leonardo Bonilha
- Department of Neurology, Emory University, Atlanta, GA 30325, USA
| | - Brian Litt
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Saurabh R Sinha
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lyle Ungar
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Kozma C, Schroeder G, Owen T, de Tisi J, McEvoy AW, Miserocchi A, Duncan J, Wang Y, Taylor PN. Identifying epileptogenic abnormality by decomposing intracranial EEG and MEG power spectra. J Neurosci Methods 2024; 408:110180. [PMID: 38795977 DOI: 10.1016/j.jneumeth.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Accurate identification of abnormal electroencephalographic (EEG) activity is pivotal for diagnosing and treating epilepsy. Recent studies indicate that decomposing brain activity into periodic (oscillatory) and aperiodic (trend across all frequencies) components can illuminate the drivers of spectral activity changes. NEW METHODS We analysed intracranial EEG (iEEG) data from 234 subjects, creating a normative map. This map was compared to a cohort of 63 patients with refractory focal epilepsy under consideration for neurosurgery. The normative map was computed using three approaches: (i) relative complete band power, (ii) relative band power with the aperiodic component removed, and (iii) the aperiodic exponent. Abnormalities were calculated for each approach in the patient cohort. We evaluated the spatial profiles, assessed their ability to localize abnormalities, and replicated the findings using magnetoencephalography (MEG). RESULTS Normative maps of relative complete band power and relative periodic band power exhibited similar spatial profiles, while the aperiodic normative map revealed higher exponent values in the temporal lobe. Abnormalities estimated through complete band power effectively distinguished between good and bad outcome patients. Combining periodic and aperiodic abnormalities enhanced performance, like the complete band power approach. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS Sparing cerebral tissue with abnormalities in both periodic and aperiodic activity may result in poor surgical outcomes. Both periodic and aperiodic components do not carry sufficient information in isolation. The relative complete band power solution proved to be the most reliable method for this purpose. Future studies could investigate how cerebral location or pathology influences periodic or aperiodic abnormalities.
Collapse
Affiliation(s)
- Csaba Kozma
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Gabrielle Schroeder
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tom Owen
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jane de Tisi
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Andrew W McEvoy
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Anna Miserocchi
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - John Duncan
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Peter N Taylor
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| |
Collapse
|
18
|
Zhu H, Michalak AJ, Merricks EM, Agopyan-Miu AHCW, Jacobs J, Hamberger MJ, Sheth SA, McKhann GM, Feldstein N, Schevon CA, Hillman EMC. Spectral-switching analysis reveals real-time neuronal network representations of concurrent spontaneous naturalistic behaviors in human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.600416. [PMID: 39026706 PMCID: PMC11257469 DOI: 10.1101/2024.07.08.600416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Despite abundant evidence of functional networks in the human brain, their neuronal underpinnings, and relationships to real-time behavior have been challenging to resolve. Analyzing brain-wide intracranial-EEG recordings with video monitoring, acquired in awake subjects during clinical epilepsy evaluation, we discovered the tendency of each brain region to switch back and forth between 2 distinct power spectral densities (PSDs 2-55Hz). We further recognized that this 'spectral switching' occurs synchronously between distant sites, even between regions with differing baseline PSDs, revealing long-range functional networks that would be obscured in analysis of individual frequency bands. Moreover, the real-time PSD-switching dynamics of specific networks exhibited striking alignment with activities such as conversation and hand movements, revealing a multi-threaded functional network representation of concurrent naturalistic behaviors. Network structures and their relationships to behaviors were stable across days, but were altered during N3 sleep. Our results provide a new framework for understanding real-time, brain-wide neural-network dynamics.
Collapse
Affiliation(s)
- Hongkun Zhu
- Department of Biomedical Engineering, Columbia University
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Andrew J Michalak
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward M Merricks
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University
- Department of Neurological Surgery, Columbia University Medical Center, New York, 10032, New York, USA
| | - Marla J Hamberger
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Medical Center, New York, 10032, New York, USA
| | - Neil Feldstein
- Department of Neurological Surgery, Columbia University Medical Center, New York, 10032, New York, USA
| | - Catherine A Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elizabeth M C Hillman
- Department of Biomedical Engineering, Columbia University
- Department of Radiology, Columbia University Medical Center, New York, 10032, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| |
Collapse
|
19
|
Shi H, Pattnaik AR, Aguila C, Lucas A, Sinha N, Prager B, Mojena M, Gallagher R, Parashos A, Bonilha L, Gleichgerrcht E, Davis KA, Litt B, Conrad EC. Utility of intracranial EEG networks depends on re-referencing and connectivity choice. Brain Commun 2024; 6:fcae165. [PMID: 38799618 PMCID: PMC11126314 DOI: 10.1093/braincomms/fcae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Studies of intracranial EEG networks have been used to reveal seizure generators in patients with drug-resistant epilepsy. Intracranial EEG is implanted to capture the epileptic network, the collection of brain tissue that forms a substrate for seizures to start and spread. Interictal intracranial EEG measures brain activity at baseline, and networks computed during this state can reveal aberrant brain tissue without requiring seizure recordings. Intracranial EEG network analyses require choosing a reference and applying statistical measures of functional connectivity. Approaches to these technical choices vary widely across studies, and the impact of these technical choices on downstream analyses is poorly understood. Our objective was to examine the effects of different re-referencing and connectivity approaches on connectivity results and on the ability to lateralize the seizure onset zone in patients with drug-resistant epilepsy. We applied 48 pre-processing pipelines to a cohort of 125 patients with drug-resistant epilepsy recorded with interictal intracranial EEG across two epilepsy centres to generate intracranial EEG functional connectivity networks. Twenty-four functional connectivity measures across time and frequency domains were applied in combination with common average re-referencing or bipolar re-referencing. We applied an unsupervised clustering algorithm to identify groups of pre-processing pipelines. We subjected each pre-processing approach to three quality tests: (i) the introduction of spurious correlations; (ii) robustness to incomplete spatial sampling; and (iii) the ability to lateralize the clinician-defined seizure onset zone. Three groups of similar pre-processing pipelines emerged: common average re-referencing pipelines, bipolar re-referencing pipelines and relative entropy-based connectivity pipelines. Relative entropy and common average re-referencing networks were more robust to incomplete electrode sampling than bipolar re-referencing and other connectivity methods (Friedman test, Dunn-Šidák test P < 0.0001). Bipolar re-referencing reduced spurious correlations at non-adjacent channels better than common average re-referencing (Δ mean from machine ref = -0.36 versus -0.22) and worse in adjacent channels (Δ mean from machine ref = -0.14 versus -0.40). Relative entropy-based network measures lateralized the seizure onset hemisphere better than other measures in patients with temporal lobe epilepsy (Benjamini-Hochberg-corrected P < 0.05, Cohen's d: 0.60-0.76). Finally, we present an interface where users can rapidly evaluate intracranial EEG pre-processing choices to select the optimal pre-processing methods tailored to specific research questions. The choice of pre-processing methods affects downstream network analyses. Choosing a single method among highly correlated approaches can reduce redundancy in processing. Relative entropy outperforms other connectivity methods in multiple quality tests. We present a method and interface for researchers to optimize their pre-processing methods for deriving intracranial EEG brain networks.
Collapse
Affiliation(s)
- Haoer Shi
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akash Ranjan Pattnaik
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carlos Aguila
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alfredo Lucas
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nishant Sinha
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Prager
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marissa Mojena
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Gallagher
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Parashos
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Leonardo Bonilha
- Department of Neurology, Emory University, Atlanta, GA 30325, USA
| | | | - Kathryn A Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Litt
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin C Conrad
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Karimi-Rouzbahani H, McGonigal A. Generalisability of epileptiform patterns across time and patients. Sci Rep 2024; 14:6293. [PMID: 38491096 PMCID: PMC10942983 DOI: 10.1038/s41598-024-56990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
The complexity of localising the epileptogenic zone (EZ) contributes to surgical resection failures in achieving seizure freedom. The distinct patterns of epileptiform activity during interictal and ictal phases, varying across patients, often lead to suboptimal localisation using electroencephalography (EEG) features. We posed two key questions: whether neural signals reflecting epileptogenicity generalise from interictal to ictal time windows within each patient, and whether epileptiform patterns generalise across patients. Utilising an intracranial EEG dataset from 55 patients, we extracted a large battery of simple to complex features from stereo-EEG (SEEG) and electrocorticographic (ECoG) neural signals during interictal and ictal windows. Our features (n = 34) quantified many aspects of the signals including statistical moments, complexities, frequency-domain and cross-channel network attributes. Decision tree classifiers were then trained and tested on distinct time windows and patients to evaluate the generalisability of epileptogenic patterns across time and patients, respectively. Evidence strongly supported generalisability from interictal to ictal time windows across patients, particularly in signal power and high-frequency network-based features. Consistent patterns of epileptogenicity were observed across time windows within most patients, and signal features of epileptogenic regions generalised across patients, with higher generalisability in the ictal window. Signal complexity features were particularly contributory in cross-patient generalisation across patients. These findings offer insights into generalisable features of epileptic neural activity across time and patients, with implications for future automated approaches to supplement other EZ localisation methods.
Collapse
Affiliation(s)
- Hamid Karimi-Rouzbahani
- Neurosciences Centre, Mater Hospital, South Brisbane, 4101, Australia.
- Mater Research Institute, University of Queensland, South Brisbane, 4101, Australia.
- Queensland Brain Institute, University of Queensland, St Lucia, 4072, Australia.
| | - Aileen McGonigal
- Neurosciences Centre, Mater Hospital, South Brisbane, 4101, Australia
- Mater Research Institute, University of Queensland, South Brisbane, 4101, Australia
- Queensland Brain Institute, University of Queensland, St Lucia, 4072, Australia
| |
Collapse
|
21
|
Conrad EC, Lucas A, Ojemann WK, Aguila CA, Mojena M, LaRocque JJ, Pattnaik AR, Gallagher R, Greenblatt A, Tranquille A, Parashos A, Gleichgerrcht E, Bonilha L, Litt B, Sinha S, Ungar L, Davis KA. Interictal intracranial EEG asymmetry lateralizes temporal lobe epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.13.23299907. [PMID: 38168158 PMCID: PMC10760281 DOI: 10.1101/2023.12.13.23299907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Patients with drug-resistant temporal lobe epilepsy often undergo intracranial EEG recording to capture multiple seizures in order to lateralize the seizure onset zone. This process is associated with morbidity and often ends in postoperative seizure recurrence. Abundant interictal (between-seizure) data is captured during this process, but these data currently play a small role in surgical planning. Our objective was to predict the laterality of the seizure onset zone using interictal (between-seizure) intracranial EEG data in patients with temporal lobe epilepsy. We performed a retrospective cohort study (single-center study for model development; two-center study for model validation). We studied patients with temporal lobe epilepsy undergoing intracranial EEG at the University of Pennsylvania (internal cohort) and the Medical University of South Carolina (external cohort) between 2015 and 2022. We developed a logistic regression model to predict seizure onset zone laterality using interictal EEG. We compared the concordance between the model-predicted seizure onset zone laterality and the side of surgery between patients with good and poor surgical outcomes. 47 patients (30 women; ages 20-69; 20 left-sided, 10 right-sided, and 17 bilateral seizure onsets) were analyzed for model development and internal validation. 19 patients (10 women; ages 23-73; 5 left-sided, 10 right-sided, 4 bilateral) were analyzed for external validation. The internal cohort cross-validated area under the curve for a model trained using spike rates was 0.83 for a model predicting left-sided seizure onset and 0.68 for a model predicting right-sided seizure onset. Balanced accuracies in the external cohort were 79.3% and 78.9% for the left- and right-sided predictions, respectively. The predicted concordance between the laterality of the seizure onset zone and the side of surgery was higher in patients with good surgical outcome. In conclusion, interictal EEG signatures are distinct across seizure onset zone lateralities. Left-sided seizure onsets are easier to distinguish than right-sided onsets. A model trained on spike rates accurately identifies patients with left-sided seizure onset zones and predicts surgical outcome.
Collapse
Affiliation(s)
- Erin C. Conrad
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alfredo Lucas
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William K.S. Ojemann
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carlos A. Aguila
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marissa Mojena
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua J. LaRocque
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akash R. Pattnaik
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Gallagher
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Greenblatt
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ashley Tranquille
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Parashos
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Leonardo Bonilha
- Department of Neurology, Emory University, Atlanta, GA 30325, USA
| | - Brian Litt
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Saurabh Sinha
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lyle Ungar
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn A. Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Bou Assi E, Schindler K, de Bézenac C, Denison T, Desai S, Keller SS, Lemoine É, Rahimi A, Shoaran M, Rummel C. From basic sciences and engineering to epileptology: A translational approach. Epilepsia 2023; 64 Suppl 3:S72-S84. [PMID: 36861368 DOI: 10.1111/epi.17566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/03/2023]
Abstract
Collaborative efforts between basic scientists, engineers, and clinicians are enabling translational epileptology. In this article, we summarize the recent advances presented at the International Conference for Technology and Analysis of Seizures (ICTALS 2022): (1) novel developments of structural magnetic resonance imaging; (2) latest electroencephalography signal-processing applications; (3) big data for the development of clinical tools; (4) the emerging field of hyperdimensional computing; (5) the new generation of artificial intelligence (AI)-enabled neuroprostheses; and (6) the use of collaborative platforms to facilitate epilepsy research translation. We highlight the promise of AI reported in recent investigations and the need for multicenter data-sharing initiatives.
Collapse
Affiliation(s)
- Elie Bou Assi
- Department of Neuroscience, Université de Montréal, Montréal, Canada
- Centre de Recherche du CHUM (CRCHUM), Montréal, Canada
| | - Kaspar Schindler
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, Bern University, Bern, Switzerland
| | - Christophe de Bézenac
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
- Department of Engineering Science, University of Oxford, Oxford, UK
| | | | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Émile Lemoine
- Centre de Recherche du CHUM (CRCHUM), Montréal, Canada
- Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Canada
| | | | - Mahsa Shoaran
- Institute of Electrical and Micro Engineering, Neuro-X Institute, EPFL, Lausanne, Switzerland
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Ramantani G, Westover MB, Gliske S, Sarnthein J, Sarma S, Wang Y, Baud MO, Stacey WC, Conrad EC. Passive and active markers of cortical excitability in epilepsy. Epilepsia 2023; 64 Suppl 3:S25-S36. [PMID: 36897228 PMCID: PMC10512778 DOI: 10.1111/epi.17578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Electroencephalography (EEG) has been the primary diagnostic tool in clinical epilepsy for nearly a century. Its review is performed using qualitative clinical methods that have changed little over time. However, the intersection of higher resolution digital EEG and analytical tools developed in the past decade invites a re-exploration of relevant methodology. In addition to the established spatial and temporal markers of spikes and high-frequency oscillations, novel markers involving advanced postprocessing and active probing of the interictal EEG are gaining ground. This review provides an overview of the EEG-based passive and active markers of cortical excitability in epilepsy and of the techniques developed to facilitate their identification. Several different emerging tools are discussed in the context of specific EEG applications and the barriers we must overcome to translate these tools into clinical practice.
Collapse
Affiliation(s)
- Georgia Ramantani
- Department of Neuropediatrics and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - M Brandon Westover
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Data Science, Massachusetts General Hospital McCance Center for Brain Health, Boston, Massachusetts, USA
- Research Affiliate Faculty, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Research Affiliate Faculty, Broad Institute, Cambridge, Massachusetts, USA
| | - Stephen Gliske
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Sridevi Sarma
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yujiang Wang
- Interdisciplinary Computing and Complex BioSystems, School of Computing Science, Newcastle University, Newcastle Upon Tyne, UK
| | - Maxime O Baud
- Sleep-Wake-Epilepsy Center, NeuroTec, Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
| | - William C Stacey
- Department of Neurology, BioInterfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, BioInterfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Division of Neurology, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Erin C Conrad
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Knight A, Gschwind T, Galer P, Worrell GA, Litt B, Soltesz I, Beniczky S. Artificial intelligence in epilepsy phenotyping. Epilepsia 2023:10.1111/epi.17833. [PMID: 37983589 PMCID: PMC11102939 DOI: 10.1111/epi.17833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Artificial intelligence (AI) allows data analysis and integration at an unprecedented granularity and scale. Here we review the technological advances, challenges, and future perspectives of using AI for electro-clinical phenotyping of animal models and patients with epilepsy. In translational research, AI models accurately identify behavioral states in animal models of epilepsy, allowing identification of correlations between neural activity and interictal and ictal behavior. Clinical applications of AI-based automated and semi-automated analysis of audio and video recordings of people with epilepsy, allow significant data reduction and reliable detection and classification of major motor seizures. AI models can accurately identify electrographic biomarkers of epilepsy, such as spikes, high-frequency oscillations, and seizure patterns. Integrating AI analysis of electroencephalographic, clinical, and behavioral data will contribute to optimizing therapy for patients with epilepsy.
Collapse
Affiliation(s)
| | - Tilo Gschwind
- Department of Neurosurgery, Stanford University, Stanford, USA
| | - Peter Galer
- Center for Neuroengineering and Therapeutics; Department of Bioengineering; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, USA
| | | | - Brian Litt
- Center for Neuroengineering and Therapeutics; Department of Bioengineering; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, USA
| | - Sándor Beniczky
- Danish Epilepsy Centre Filadelfia, Dianalund, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Horsley JJ, Thomas RH, Chowdhury FA, Diehl B, McEvoy AW, Miserocchi A, de Tisi J, Vos SB, Walker MC, Winston GP, Duncan JS, Wang Y, Taylor PN. Complementary structural and functional abnormalities to localise epileptogenic tissue. EBioMedicine 2023; 97:104848. [PMID: 37898096 PMCID: PMC10630610 DOI: 10.1016/j.ebiom.2023.104848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND When investigating suitability for epilepsy surgery, people with drug-refractory focal epilepsy may have intracranial EEG (iEEG) electrodes implanted to localise seizure onset. Diffusion-weighted magnetic resonance imaging (dMRI) may be acquired to identify key white matter tracts for surgical avoidance. Here, we investigate whether structural connectivity abnormalities, inferred from dMRI, may be used in conjunction with functional iEEG abnormalities to aid localisation of the epileptogenic zone (EZ), improving surgical outcomes in epilepsy. METHODS We retrospectively investigated data from 43 patients (42% female) with epilepsy who had surgery following iEEG. Twenty-five patients (58%) were free from disabling seizures (ILAE 1 or 2) at one year. Interictal iEEG functional, and dMRI structural connectivity abnormalities were quantified by comparison to a normative map and healthy controls. We explored whether the resection of maximal abnormalities related to improved surgical outcomes, in both modalities individually and concurrently. Additionally, we suggest how connectivity abnormalities may inform the placement of iEEG electrodes pre-surgically using a patient case study. FINDINGS Seizure freedom was 15 times more likely in patients with resection of maximal connectivity and iEEG abnormalities (p = 0.008). Both modalities separately distinguished patient surgical outcome groups and when used simultaneously, a decision tree correctly separated 36 of 43 (84%) patients. INTERPRETATION Our results suggest that both connectivity and iEEG abnormalities may localise epileptogenic tissue, and that these two modalities may provide complementary information in pre-surgical evaluations. FUNDING This research was funded by UKRI, CDT in Cloud Computing for Big Data, NIH, MRC, Wellcome Trust and Epilepsy Research UK.
Collapse
Affiliation(s)
- Jonathan J Horsley
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rhys H Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fahmida A Chowdhury
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Andrew W McEvoy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia; Centre for Medical Image Computing, Computer Science Department, University College London, London, United Kingdom
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Division of Neurology, Department of Medicine, Queen's University, Kingston, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Peter N Taylor
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
26
|
Makhalova J, Madec T, Medina Villalon S, Jegou A, Lagarde S, Carron R, Scavarda D, Garnier E, Bénar CG, Bartolomei F. The role of quantitative markers in surgical prognostication after stereoelectroencephalography. Ann Clin Transl Neurol 2023; 10:2114-2126. [PMID: 37735846 PMCID: PMC10646998 DOI: 10.1002/acn3.51900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Stereoelectroencephalography (SEEG) is the reference method in the presurgical exploration of drug-resistant focal epilepsy. However, prognosticating surgery on an individual level is difficult. A quantified estimation of the most epileptogenic regions by searching for relevant biomarkers can be proposed for this purpose. We investigated the performances of ictal (Epileptogenicity Index, EI; Connectivity EI, cEI), interictal (spikes, high-frequency oscillations, HFO [80-300 Hz]; Spikes × HFO), and combined (Spikes × EI; Spikes × cEI) biomarkers in predicting surgical outcome and searched for prognostic factors based on SEEG-signal quantification. METHODS Fifty-three patients operated on following SEEG were included. We compared, using precision-recall, the epileptogenic zone quantified using different biomarkers (EZq ) against the visual analysis (EZC ). Correlations between the EZ resection rates or the EZ extent and surgical prognosis were analyzed. RESULTS EI and Spikes × EI showed the best precision against EZc (0.74; 0.70), followed by Spikes × cEI and cEI, whereas interictal markers showed lower precision. The EZ resection rates were greater in seizure-free than in non-seizure-free patients for the EZ defined by ictal biomarkers and were correlated with the outcome for EI and Spikes × EI. No such correlation was found for interictal markers. The extent of the quantified EZ did not correlate with the prognosis. INTERPRETATION Ictal or combined ictal-interictal markers overperformed the interictal markers both for detecting the EZ and predicting seizure freedom. Combining ictal and interictal epileptogenicity markers improves detection accuracy. Resection rates of the quantified EZ using ictal markers were the only statistically significant determinants for surgical prognosis.
Collapse
Affiliation(s)
- Julia Makhalova
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
- Aix Marseille Univ, CNRS, CRMBMMarseilleFrance
| | - Tanguy Madec
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
| | - Samuel Medina Villalon
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Aude Jegou
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Stanislas Lagarde
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | - Romain Carron
- APHM, Timone Hospital, Functional, and Stereotactic NeurosurgeryMarseilleFrance
| | | | - Elodie Garnier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| | | | - Fabrice Bartolomei
- APHM, Timone Hospital, Epileptology and Cerebral RhythmologyMarseilleFrance
- Aix Marseille Univ, INSERM, INS, Inst Neurosci SystMarseilleFrance
| |
Collapse
|
27
|
Ben-Menachem E, Schmitz B, Kälviäinen R, Thomas RH, Klein P. The burden of chronic drug-refractory focal onset epilepsy: Can it be prevented? Epilepsy Behav 2023; 148:109435. [PMID: 37748414 DOI: 10.1016/j.yebeh.2023.109435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
Despite the many therapeutic options for epilepsy available today, a third of patients still have poorly controlled epilepsy. Over the years, their transition through lines of treatment exposes them to increased risk of disease progression, mortality, morbidity, mental distress, and not least significantly impaired quality of life (QoL). The present review explores the multiple factors contributing to the impairment of health-related QoL in PWE-including both seizure-related and non seizure-related. The analysis aims to identify potential areas of intervention and strategies for a more holistic approach to epilepsy care and inform policy-makers and healthcare providers in their approach to this condition.
Collapse
Affiliation(s)
| | - Bettina Schmitz
- Neurology/Center for Epilepsy, Stroke Unit and Neurological Rehabilitation, Vivantes Humboldt Hospital, Berlin, Germany.
| | | | - Rhys H Thomas
- Department of Neurology, Royal Victoria Infirmary, Queen Victoria Rd, Newcastle-Upon-Tyne NE1 4LP, United Kingdom; Translational and Clinical Research Institute, Henry Wellcome Building, Framlington Place, Newcastle-Upon-Tyne NE2 4HH, United Kingdom.
| | - Pavel Klein
- Department of Neurology, George Washington University, Boston, United States.
| |
Collapse
|
28
|
Ojemann WKS, Scheid BH, Mouchtaris S, Lucas A, LaRocque JJ, Aguila C, Ashourvan A, Caciagli L, Davis KA, Conrad EC, Litt B. Resting-state background features demonstrate multidien cycles in long-term EEG device recordings. Brain Stimul 2023; 16:1709-1718. [PMID: 37979654 DOI: 10.1016/j.brs.2023.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Longitudinal EEG recorded by implanted devices is critical for understanding and managing epilepsy. Recent research reports patient-specific, multi-day cycles in device-detected epileptiform events that coincide with increased likelihood of clinical seizures. Understanding these cycles could elucidate mechanisms generating seizures and advance drug and neurostimulation therapies. OBJECTIVE/HYPOTHESIS We hypothesize that seizure-correlated cycles are present in background neural activity, independent of interictal epileptiform spikes, and that neurostimulation may temporarily interrupt these cycles. METHODS We analyzed regularly-recorded seizure-free data epochs from 20 patients implanted with a responsive neurostimulation (RNS) device for at least 1.5 years, to explore the relationship between cycles in device-detected interictal epileptiform activity (dIEA), clinician-validated interictal spikes, background EEG features, and neurostimulation. RESULTS Background EEG features tracked the cycle phase of dIEA in all patients (AUC: 0.63 [0.56-0.67]) with a greater effect size compared to clinically annotated spike rate alone (AUC: 0.55 [0.53-0.61], p < 0.01). After accounting for circadian variation and spike rate, we observed significant population trends in elevated theta and beta band power and theta and alpha connectivity features at the cycle peaks (sign test, p < 0.05). In the period directly after stimulation we observe a decreased association between cycle phase and EEG features compared to background recordings (AUC: 0.58 [0.55-0.64]). CONCLUSIONS Our findings suggest that seizure-correlated dIEA cycles are not solely due to epileptiform discharges but are associated with background measures of brain state; and that neurostimulation may temporarily interrupt these cycles. These results may help elucidate mechanisms underlying seizure generation, provide new biomarkers for seizure risk, and facilitate monitoring, treating, and managing epilepsy with implantable devices.
Collapse
Affiliation(s)
- William K S Ojemann
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA.
| | - Brittany H Scheid
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Sofia Mouchtaris
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Alfredo Lucas
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA; University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Joshua J LaRocque
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA; Hospital of the University of Pennsylvania, Department of Neurology, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Carlos Aguila
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Arian Ashourvan
- The University of Kansas, Department of Psychology, 1415 Jayhawk Blvd, Lawrence, KS, 66045, USA
| | - Lorenzo Caciagli
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Kathryn A Davis
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA; Hospital of the University of Pennsylvania, Department of Neurology, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Erin C Conrad
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA; Hospital of the University of Pennsylvania, Department of Neurology, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Brian Litt
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street, Philadelphia, PA, 19104, USA; Hospital of the University of Pennsylvania, Department of Neurology, 3400 Spruce St, Philadelphia, PA, 19104, USA
| |
Collapse
|
29
|
Owen TW, Janiukstyte V, Hall GR, Chowdhury FA, Diehl B, McEvoy A, Miserocchi A, de Tisi J, Duncan JS, Rugg-Gunn F, Wang Y, Taylor PN. Interictal magnetoencephalography abnormalities to guide intracranial electrode implantation and predict surgical outcome. Brain Commun 2023; 5:fcad292. [PMID: 37953844 PMCID: PMC10636564 DOI: 10.1093/braincomms/fcad292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/24/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Intracranial EEG is the gold standard technique for epileptogenic zone localization but requires a preconceived hypothesis of the location of the epileptogenic tissue. This placement is guided by qualitative interpretations of seizure semiology, MRI, EEG and other imaging modalities, such as magnetoencephalography. Quantitative abnormality mapping using magnetoencephalography has recently been shown to have potential clinical value. We hypothesized that if quantifiable magnetoencephalography abnormalities were sampled by intracranial EEG, then patients' post-resection seizure outcome may be better. Thirty-two individuals with refractory neocortical epilepsy underwent magnetoencephalography and subsequent intracranial EEG recordings as part of presurgical evaluation. Eyes-closed resting-state interictal magnetoencephalography band power abnormality maps were derived from 70 healthy controls as a normative baseline. Magnetoencephalography abnormality maps were compared to intracranial EEG electrode implantation, with the spatial overlap of intracranial EEG electrode placement and cerebral magnetoencephalography abnormalities recorded. Finally, we assessed if the implantation of electrodes in abnormal tissue and subsequent resection of the strongest abnormalities determined by magnetoencephalography and intracranial EEG corresponded to surgical success. We used the area under the receiver operating characteristic curve as a measure of effect size. Intracranial electrodes were implanted in brain tissue with the most abnormal magnetoencephalography findings-in individuals that were seizure-free postoperatively (T = 3.9, P = 0.001) but not in those who did not become seizure-free. The overlap between magnetoencephalography abnormalities and electrode placement distinguished surgical outcome groups moderately well (area under the receiver operating characteristic curve = 0.68). In isolation, the resection of the strongest abnormalities as defined by magnetoencephalography and intracranial EEG separated surgical outcome groups well, area under the receiver operating characteristic curve = 0.71 and area under the receiver operating characteristic curve = 0.74, respectively. A model incorporating all three features separated surgical outcome groups best (area under the receiver operating characteristic curve = 0.80). Intracranial EEG is a key tool to delineate the epileptogenic zone and help render individuals seizure-free postoperatively. We showed that data-driven abnormality maps derived from resting-state magnetoencephalography recordings demonstrate clinical value and may help guide electrode placement in individuals with neocortical epilepsy. Additionally, our predictive model of postoperative seizure freedom, which leverages both magnetoencephalography and intracranial EEG recordings, could aid patient counselling of expected outcome.
Collapse
Affiliation(s)
- Thomas W Owen
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Vytene Janiukstyte
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Gerard R Hall
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Fahmida A Chowdhury
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
| | - Andrew McEvoy
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
| | - Anna Miserocchi
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
| | - Jane de Tisi
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - John S Duncan
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Fergus Rugg-Gunn
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
30
|
Horsley JJ, Thomas RH, Chowdhury FA, Diehl B, McEvoy AW, Miserocchi A, de Tisi J, Vos SB, Walker MC, Winston GP, Duncan JS, Wang Y, Taylor PN. Complementary structural and functional abnormalities to localise epileptogenic tissue. ARXIV 2023:arXiv:2304.03192v3. [PMID: 37064531 PMCID: PMC10104180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background When investigating suitability for epilepsy surgery, people with drug-refractory focal epilepsy may have intracranial EEG (iEEG) electrodes implanted to localise seizure onset. Diffusion-weighted magnetic resonance imaging (dMRI) may be acquired to identify key white matter tracts for surgical avoidance. Here, we investigate whether structural connectivity abnormalities, inferred from dMRI, may be used in conjunction with functional iEEG abnormalities to aid localisation of the epileptogenic zone (EZ), improving surgical outcomes in epilepsy. Methods We retrospectively investigated data from 43 patients with epilepsy who had surgery following iEEG. Twenty-five patients (58%) were free from disabling seizures (ILAE 1 or 2) at one year. Interictal iEEG functional, and dMRI structural connectivity abnormalities were quantified by comparison to a normative map and healthy controls. We explored whether the resection of maximal abnormalities related to improved surgical outcomes, in both modalities individually and concurrently. Additionally, we suggest how connectivity abnormalities may inform the placement of iEEG electrodes pre-surgically using a patient case study. Findings Seizure freedom was 15 times more likely in patients with resection of maximal connectivity and iEEG abnormalities (p=0.008). Both modalities separately distinguished patient surgical outcome groups and when used simultaneously, a decision tree correctly separated 36 of 43 (84%) patients. Interpretation Our results suggest that both connectivity and iEEG abnormalities may localise epileptogenic tissue, and that these two modalities may provide complementary information in pre-surgical evaluations. Funding This research was funded by UKRI, CDT in Cloud Computing for Big Data, NIH, MRC, Wellcome Trust and Epilepsy Research UK.
Collapse
Affiliation(s)
- Jonathan J. Horsley
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rhys H. Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fahmida A. Chowdhury
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Andrew W. McEvoy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sjoerd B. Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
- Centre for Medical Image Computing, Computer Science Department, University College London, London, United Kingdom
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Gavin P. Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Division of Neurology, Department of Medicine, Queen’s University, Kingston, Canada
| | - John S. Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Peter N. Taylor
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
31
|
Sakakura K, Kuroda N, Sonoda M, Mitsuhashi T, Firestone E, Luat AF, Marupudi NI, Sood S, Asano E. Developmental atlas of phase-amplitude coupling between physiologic high-frequency oscillations and slow waves. Nat Commun 2023; 14:6435. [PMID: 37833252 PMCID: PMC10575956 DOI: 10.1038/s41467-023-42091-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
We investigated the developmental changes in high-frequency oscillation (HFO) and Modulation Index (MI) - the coupling measure between HFO and slow-wave phase. We generated normative brain atlases, using subdural EEG signals from 8251 nonepileptic electrode sites in 114 patients (ages 1.0-41.5 years) who achieved seizure control following resective epilepsy surgery. We observed a higher MI in the occipital lobe across all ages, and occipital MI increased notably during early childhood. The cortical areas exhibiting MI co-growth were connected via the vertical occipital fasciculi and posterior callosal fibers. While occipital HFO rate showed no significant age-association, the temporal, frontal, and parietal lobes exhibited an age-inversed HFO rate. Assessment of 1006 seizure onset sites revealed that z-score normalized MI and HFO rate were higher at seizure onset versus nonepileptic electrode sites. We have publicly shared our intracranial EEG data to enable investigators to validate MI and HFO-centric presurgical evaluations to identify the epileptogenic zone.
Collapse
Affiliation(s)
- Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Neurosurgery, University of Tsukuba, Tsukuba, 3058575, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, 9808575, Japan
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Neurosurgery, Yokohama City University, Yokohama-shi, 2360004, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Neurosurgery, Juntendo University, Tokyo, 1138421, Japan
| | - Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University, Detroit, MI, 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI, 48858, USA
| | - Neena I Marupudi
- Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA.
- Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
32
|
Sinha N, Duncan JS, Diehl B, Chowdhury FA, de Tisi J, Miserocchi A, McEvoy AW, Davis KA, Vos SB, Winston GP, Wang Y, Taylor PN. Intracranial EEG Structure-Function Coupling and Seizure Outcomes After Epilepsy Surgery. Neurology 2023; 101:e1293-e1306. [PMID: 37652703 PMCID: PMC10558161 DOI: 10.1212/wnl.0000000000207661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 06/02/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Surgery is an effective treatment for drug-resistant epilepsy, which modifies the brain's structure and networks to regulate seizure activity. Our objective was to examine the relationship between brain structure and function to determine the extent to which this relationship affects the success of the surgery in controlling seizures. We hypothesized that a stronger association between brain structure and function would lead to improved seizure control after surgery. METHODS We constructed functional and structural brain networks in patients with drug-resistant focal epilepsy by using presurgery functional data from intracranial EEG (iEEG) recordings, presurgery and postsurgery structural data from T1-weighted MRI, and presurgery diffusion-weighted MRI. We quantified the relationship (coupling) between structural and functional connectivity by using the Spearman rank correlation and analyzed this structure-function coupling at 2 spatial scales: (1) global iEEG network level and (2) individual iEEG electrode contacts using virtual surgeries. We retrospectively predicted postoperative seizure freedom by incorporating the structure-function connectivity coupling metrics and routine clinical variables into a cross-validated predictive model. RESULTS We conducted a retrospective analysis on data from 39 patients who met our inclusion criteria. Brain areas implanted with iEEG electrodes had stronger structure-function coupling in seizure-free patients compared with those with seizure recurrence (p = 0.002, d = 0.76, area under the receiver operating characteristic curve [AUC] = 0.78 [95% CI 0.62-0.93]). Virtual surgeries on brain areas that resulted in stronger structure-function coupling of the remaining network were associated with seizure-free outcomes (p = 0.007, d = 0.96, AUC = 0.73 [95% CI 0.58-0.89]). The combination of global and local structure-function coupling measures accurately predicted seizure outcomes with a cross-validated AUC of 0.81 (95% CI 0.67-0.94). These measures were complementary to other clinical variables and, when included for prediction, resulted in a cross-validated AUC of 0.91 (95% CI 0.82-1.0), accuracy of 92%, sensitivity of 93%, and specificity of 91%. DISCUSSION Our study showed that the strength of structure-function connectivity coupling may play a crucial role in determining the success of epilepsy surgery. By quantitatively incorporating structure-function coupling measures and standard-of-care clinical variables into presurgical evaluations, we may be able to better localize epileptogenic tissue and select patients for epilepsy surgery. CLASSIFICATION OF EVIDENCE This is a Class IV retrospective case series showing that structure-function mapping may help determine the outcome from surgical resection for treatment-resistant focal epilepsy.
Collapse
Affiliation(s)
- Nishant Sinha
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada.
| | - John S Duncan
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Beate Diehl
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Fahmida A Chowdhury
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Jane de Tisi
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Anna Miserocchi
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Andrew William McEvoy
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Kathryn A Davis
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Sjoerd B Vos
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Gavin P Winston
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Yujiang Wang
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Peter Neal Taylor
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| |
Collapse
|
33
|
Owen TW, Janiukstyte V, Hall GR, Horsley JJ, McEvoy A, Miserocchi A, de Tisi J, Duncan JS, Rugg‐Gunn F, Wang Y, Taylor PN. Identifying epileptogenic abnormalities through spatial clustering of MEG interictal band power. Epilepsia Open 2023; 8:1151-1156. [PMID: 37254660 PMCID: PMC10472397 DOI: 10.1002/epi4.12767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
Successful epilepsy surgery depends on localizing and resecting cerebral abnormalities and networks that generate seizures. Abnormalities, however, may be widely distributed across multiple discontiguous areas. We propose spatially constrained clusters as candidate areas for further investigation and potential resection. We quantified the spatial overlap between the abnormality cluster and subsequent resection, hypothesizing a greater overlap in seizure-free patients. Thirty-four individuals with refractory focal epilepsy underwent pre-surgical resting-state interictal magnetoencephalography (MEG) recording. Fourteen individuals were totally seizure-free (ILAE 1) after surgery and 20 continued to have some seizures post-operatively (ILAE 2+). Band power abnormality maps were derived using controls as a baseline. Patient abnormalities were spatially clustered using the k-means algorithm. The tissue within the cluster containing the most abnormal region was compared with the resection volume using the dice score. The proposed abnormality cluster overlapped with the resection in 71% of ILAE 1 patients. Conversely, an overlap only occurred in 15% of ILAE 2+ patients. This effect discriminated outcome groups well (AUC = 0.82). Our novel approach identifies clusters of spatially similar tissue with high abnormality. This is clinically valuable, providing (a) a data-driven framework to validate current hypotheses of the epileptogenic zone localization or (b) to guide further investigation.
Collapse
Affiliation(s)
- Thomas W. Owen
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Vytene Janiukstyte
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Gerard R. Hall
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Jonathan J. Horsley
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Andrew McEvoy
- UCL Queen Square Institute of NeurologyLondonUK
- National Hospital for Neurology & NeurosurgeryLondonUK
| | - Anna Miserocchi
- UCL Queen Square Institute of NeurologyLondonUK
- National Hospital for Neurology & NeurosurgeryLondonUK
| | - Jane de Tisi
- UCL Queen Square Institute of NeurologyLondonUK
- National Hospital for Neurology & NeurosurgeryLondonUK
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of NeurologyLondonUK
| | - John S. Duncan
- UCL Queen Square Institute of NeurologyLondonUK
- National Hospital for Neurology & NeurosurgeryLondonUK
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of NeurologyLondonUK
| | - Fergus Rugg‐Gunn
- UCL Queen Square Institute of NeurologyLondonUK
- National Hospital for Neurology & NeurosurgeryLondonUK
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
- UCL Queen Square Institute of NeurologyLondonUK
- National Hospital for Neurology & NeurosurgeryLondonUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Peter N. Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
- UCL Queen Square Institute of NeurologyLondonUK
- National Hospital for Neurology & NeurosurgeryLondonUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
34
|
Janiukstyte V, Owen TW, Chaudhary UJ, Diehl B, Lemieux L, Duncan JS, de Tisi J, Wang Y, Taylor PN. Normative brain mapping using scalp EEG and potential clinical application. Sci Rep 2023; 13:13442. [PMID: 37596291 PMCID: PMC10439201 DOI: 10.1038/s41598-023-39700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/29/2023] [Indexed: 08/20/2023] Open
Abstract
A normative electrographic activity map could be a powerful resource to understand normal brain function and identify abnormal activity. Here, we present a normative brain map using scalp EEG in terms of relative band power. In this exploratory study we investigate its temporal stability, its similarity to other imaging modalities, and explore a potential clinical application. We constructed scalp EEG normative maps of brain dynamics from 17 healthy controls using source-localised resting-state scalp recordings. We then correlated these maps with those acquired from MEG and intracranial EEG to investigate their similarity. Lastly, we use the normative maps to lateralise abnormal regions in epilepsy. Spatial patterns of band powers were broadly consistent with previous literature and stable across recordings. Scalp EEG normative maps were most similar to other modalities in the alpha band, and relatively similar across most bands. Towards a clinical application in epilepsy, we found abnormal temporal regions ipsilateral to the epileptogenic hemisphere. Scalp EEG relative band power normative maps are spatially stable across time, in keeping with MEG and intracranial EEG results. Normative mapping is feasible and may be potentially clinically useful in epilepsy. Future studies with larger sample sizes and high-density EEG are now required for validation.
Collapse
Affiliation(s)
- Vytene Janiukstyte
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5DG, UK
| | - Thomas W Owen
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5DG, UK
| | - Umair J Chaudhary
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5DG, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, NE4 5DG, UK.
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK.
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
35
|
Wang Y, Schroeder GM, Horsley JJ, Panagiotopoulou M, Chowdhury FA, Diehl B, Duncan JS, McEvoy AW, Miserocchi A, de Tisi J, Taylor PN. Temporal stability of intracranial electroencephalographic abnormality maps for localizing epileptogenic tissue. Epilepsia 2023; 64:2070-2080. [PMID: 37226553 PMCID: PMC10962550 DOI: 10.1111/epi.17663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE Identifying abnormalities on interictal intracranial electroencephalogram (iEEG), by comparing patient data to a normative map, has shown promise for the localization of epileptogenic tissue and prediction of outcome. The approach typically uses short interictal segments of approximately 1 min. However, the temporal stability of findings has not been established. METHODS Here, we generated a normative map of iEEG in nonpathological brain tissue from 249 patients. We computed regional band power abnormalities in a separate cohort of 39 patients for the duration of their monitoring period (.92-8.62 days of iEEG data, mean = 4.58 days per patient, >4800 hours recording). To assess the localizing value of band power abnormality, we computedD RS -a measure of how different the surgically resected and spared tissue was in terms of band power abnormalities-over time. RESULTS In each patient, theD RS value was relatively consistent over time. The medianD RS of the entire recording period separated seizure-free (International League Against Epilepsy [ILAE] = 1) and not-seizure-free (ILAE> 1) patients well (area under the curve [AUC] = .69). This effect was similar interictally (AUC = .69) and peri-ictally (AUC = .71). SIGNIFICANCE Our results suggest that band power abnormality D_RS, as a predictor of outcomes from epilepsy surgery, is a relatively robust metric over time. These findings add further support for abnormality mapping of neurophysiology data during presurgical evaluation.
Collapse
Affiliation(s)
- Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- UCL Queen Square Institute of NeurologyQueen SquareLondonUK
| | - Gabrielle M. Schroeder
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | - Jonathan J. Horsley
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | - Mariella Panagiotopoulou
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
| | | | - Beate Diehl
- UCL Queen Square Institute of NeurologyQueen SquareLondonUK
| | - John S. Duncan
- UCL Queen Square Institute of NeurologyQueen SquareLondonUK
| | | | | | - Jane de Tisi
- UCL Queen Square Institute of NeurologyQueen SquareLondonUK
| | - Peter N. Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of ComputingNewcastle UniversityNewcastle Upon TyneUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneUK
- UCL Queen Square Institute of NeurologyQueen SquareLondonUK
| |
Collapse
|
36
|
Gallagher RS, Sinha N, Pattnaik AR, Ojemann WK, Lucas A, LaRocque JJ, Bernabei JM, Greenblatt AS, Sweeney EM, Chen HI, Davis KA, Conrad EC, Litt B. Quantifying interictal intracranial EEG to predict focal epilepsy. ARXIV 2023:arXiv:2307.15170v1. [PMID: 37547655 PMCID: PMC10402195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Introduction Intracranial EEG (IEEG) is used for 2 main purposes, to determine: (1) if epileptic networks are amenable to focal treatment and (2) where to intervene. Currently these questions are answered qualitatively and sometimes differently across centers. There is a need for objective, standardized methods to guide surgical decision making and to enable large scale data analysis across centers and prospective clinical trials. Methods We analyzed interictal data from 101 patients with drug resistant epilepsy who underwent presurgical evaluation with IEEG. We chose interictal data because of its potential to reduce the morbidity and cost associated with ictal recording. 65 patients had unifocal seizure onset on IEEG, and 36 were non-focal or multi-focal. We quantified the spatial dispersion of implanted electrodes and interictal IEEG abnormalities for each patient. We compared these measures against the "5 Sense Score (5SS)," a pre-implant estimate of the likelihood of focal seizure onset, and assessed their ability to predict the clinicians' choice of therapeutic intervention and the patient outcome. Results The spatial dispersion of IEEG electrodes predicted network focality with precision similar to the 5SS (AUC = 0.67), indicating that electrode placement accurately reflected pre-implant information. A cross-validated model combining the 5SS and the spatial dispersion of interictal IEEG abnormalities significantly improved this prediction (AUC = 0.79; p<0.05). The combined model predicted ultimate treatment strategy (surgery vs. device) with an AUC of 0.81 and post-surgical outcome at 2 years with an AUC of 0.70. The 5SS, interictal IEEG, and electrode placement were not correlated and provided complementary information. Conclusions Quantitative, interictal IEEG significantly improved upon pre-implant estimates of network focality and predicted treatment with precision approaching that of clinical experts. We present this study as an important step in building standardized, quantitative tools to guide epilepsy surgery.
Collapse
Affiliation(s)
- Ryan S Gallagher
- Center for Neuroengineering and Therapeutics, University of Pennsylvania
- Perelman School of Medicine, University of Pennsylvania
| | - Nishant Sinha
- Center for Neuroengineering and Therapeutics, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
- Department of Neurology, University of Pennsylvania
| | - Akash R. Pattnaik
- Center for Neuroengineering and Therapeutics, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
| | - William K.S. Ojemann
- Center for Neuroengineering and Therapeutics, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
| | - Alfredo Lucas
- Center for Neuroengineering and Therapeutics, University of Pennsylvania
- Perelman School of Medicine, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
| | - Joshua J. LaRocque
- Center for Neuroengineering and Therapeutics, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
- Department of Neurology, University of Pennsylvania
| | - John M Bernabei
- Center for Neuroengineering and Therapeutics, University of Pennsylvania
- Perelman School of Medicine, University of Pennsylvania
- Department of Bioengineering, University of Pennsylvania
| | | | - Elizabeth M Sweeney
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania
| | - H Isaac Chen
- Department of Neurosurgery, University of Pennsylvania
- Corporal Michael J. Crescenz Veterans Affairs Medical Center
| | - Kathryn A Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania
- Department of Neurology, University of Pennsylvania
| | - Erin C Conrad
- Center for Neuroengineering and Therapeutics, University of Pennsylvania
- Department of Neurology, University of Pennsylvania
| | - Brian Litt
- Center for Neuroengineering and Therapeutics, University of Pennsylvania
- Department of Neurology, University of Pennsylvania
| |
Collapse
|
37
|
Ojemann WK, Scheid BH, Mouchtaris S, Lucas A, LaRocque JJ, Aguila C, Ashourvan A, Caciagli L, Davis KA, Conrad EC, Litt B. Resting-state background features demonstrate multidien cycles in long-term EEG device recordings. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.05.23291521. [PMID: 37461688 PMCID: PMC10350154 DOI: 10.1101/2023.07.05.23291521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Longitudinal EEG recorded by implanted devices is critical for understanding and managing epilepsy. Recent research reports patient-specific, multi-day cycles in device-detected epileptiform events that coincide with increased likelihood of clinical seizures. Understanding these cycles could elucidate mechanisms generating seizures and advance drug and neurostimulation therapies. Objective/Hypothesis We hypothesize that seizure-correlated cycles are present in background neural activity, independent of interictal epileptiform spikes, and that neurostimulation may disrupt these cycles. Methods We analyzed regularly-recorded seizure-free data epochs from 20 patients implanted with a responsive neurostimulation (RNS) device for at least 1.5 years, to explore the relationship between cycles in device-detected interictal epileptiform activity (dIEA), clinician-validated interictal spikes, background EEG features, and neurostimulation. Results Background EEG features tracked the cycle phase of dIEA in all patients (AUC: 0.63 [0.56 - 0.67]) with a greater effect size compared to clinically annotated spike rate alone (AUC: 0.55 [0.53-0.61], p < 0.01). After accounting for circadian variation and spike rate, we observed significant population trends in elevated theta and beta band power and theta and alpha connectivity features at the cycle peaks (sign test, p < 0.05). In the period directly after stimulation we observe a decreased association between cycle phase and EEG features compared to background recordings (AUC: 0.58 [0.55-0.64]). Conclusions Our findings suggest that seizure-correlated dIEA cycles are not solely due to epileptiform discharges but are associated with background measures of brain state; and that neurostimulation may disrupt these cycles. These results may help elucidate mechanisms underlying seizure generation, provide new biomarkers for seizure risk, and facilitate monitoring, treating, and managing epilepsy with implantable devices.
Collapse
Affiliation(s)
- William K.S. Ojemann
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street Philadelphia, PA 19104
| | - Brittany H. Scheid
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street Philadelphia, PA 19104
| | - Sofia Mouchtaris
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street Philadelphia, PA 19104
| | - Alfredo Lucas
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street Philadelphia, PA 19104
- University of Pennsylvania, Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, PA 19104
| | - Joshua J. LaRocque
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street Philadelphia, PA 19104
- Hospital of the University of Pennsylvania, Department of Neurology, 3400 Spruce St, Philadelphia, PA 19104
| | - Carlos Aguila
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street Philadelphia, PA 19104
| | - Arian Ashourvan
- The University of Kansas, Department of Psychology, 1415 Jayhawk Blvd. Lawrence, KS 66045
| | - Lorenzo Caciagli
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street Philadelphia, PA 19104
| | - Kathryn A. Davis
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street Philadelphia, PA 19104
- Hospital of the University of Pennsylvania, Department of Neurology, 3400 Spruce St, Philadelphia, PA 19104
| | - Erin C. Conrad
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street Philadelphia, PA 19104
- Hospital of the University of Pennsylvania, Department of Neurology, 3400 Spruce St, Philadelphia, PA 19104
| | - Brian Litt
- University of Pennsylvania, Department of Bioengineering, 210 S. 33rd Street Philadelphia, PA 19104
- Hospital of the University of Pennsylvania, Department of Neurology, 3400 Spruce St, Philadelphia, PA 19104
| |
Collapse
|
38
|
Johnson GW, Doss DJ, Morgan VL, Paulo DL, Cai LY, Shless JS, Negi AS, Gummadavelli A, Kang H, Reddy SB, Naftel RP, Bick SK, Williams Roberson S, Dawant BM, Wallace MT, Englot DJ. The Interictal Suppression Hypothesis in focal epilepsy: network-level supporting evidence. Brain 2023; 146:2828-2845. [PMID: 36722219 PMCID: PMC10316780 DOI: 10.1093/brain/awad016] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/24/2022] [Accepted: 01/08/2023] [Indexed: 02/02/2023] Open
Abstract
Why are people with focal epilepsy not continuously having seizures? Previous neuronal signalling work has implicated gamma-aminobutyric acid balance as integral to seizure generation and termination, but is a high-level distributed brain network involved in suppressing seizures? Recent intracranial electrographic evidence has suggested that seizure-onset zones have increased inward connectivity that could be associated with interictal suppression of seizure activity. Accordingly, we hypothesize that seizure-onset zones are actively suppressed by the rest of the brain network during interictal states. Full testing of this hypothesis would require collaboration across multiple domains of neuroscience. We focused on partially testing this hypothesis at the electrographic network level within 81 individuals with drug-resistant focal epilepsy undergoing presurgical evaluation. We used intracranial electrographic resting-state and neurostimulation recordings to evaluate the network connectivity of seizure onset, early propagation and non-involved zones. We then used diffusion imaging to acquire estimates of white-matter connectivity to evaluate structure-function coupling effects on connectivity findings. Finally, we generated a resting-state classification model to assist clinicians in detecting seizure-onset and propagation zones without the need for multiple ictal recordings. Our findings indicate that seizure onset and early propagation zones demonstrate markedly increased inwards connectivity and decreased outwards connectivity using both resting-state (one-way ANOVA, P-value = 3.13 × 10-13) and neurostimulation analyses to evaluate evoked responses (one-way ANOVA, P-value = 2.5 × 10-3). When controlling for the distance between regions, the difference between inwards and outwards connectivity remained stable up to 80 mm between brain connections (two-way repeated measures ANOVA, group effect P-value of 2.6 × 10-12). Structure-function coupling analyses revealed that seizure-onset zones exhibit abnormally enhanced coupling (hypercoupling) of surrounding regions compared to presumably healthy tissue (two-way repeated measures ANOVA, interaction effect P-value of 9.76 × 10-21). Using these observations, our support vector classification models achieved a maximum held-out testing set accuracy of 92.0 ± 2.2% to classify early propagation and seizure-onset zones. These results suggest that seizure-onset zones are actively segregated and suppressed by a widespread brain network. Furthermore, this electrographically observed functional suppression is disproportionate to any observed structural connectivity alterations of the seizure-onset zones. These findings have implications for the identification of seizure-onset zones using only brief electrographic recordings to reduce patient morbidity and augment the presurgical evaluation of drug-resistant epilepsy. Further testing of the interictal suppression hypothesis can provide insight into potential new resective, ablative and neuromodulation approaches to improve surgical success rates in those suffering from drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Graham W Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Derek J Doss
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Danika L Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
| | - Jared S Shless
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Aarushi S Negi
- Department of Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Abhijeet Gummadavelli
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37232, USA
| | - Shilpa B Reddy
- Department of Pediatrics, Vanderbilt Children’s Hospital, Nashville, TN 37232, USA
| | - Robert P Naftel
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah K Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Benoit M Dawant
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Surgery and Engineering (VISE), Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
39
|
Bernabei JM, Li A, Revell AY, Smith RJ, Gunnarsdottir KM, Ong IZ, Davis KA, Sinha N, Sarma S, Litt B. Quantitative approaches to guide epilepsy surgery from intracranial EEG. Brain 2023; 146:2248-2258. [PMID: 36623936 PMCID: PMC10232272 DOI: 10.1093/brain/awad007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Over the past 10 years, the drive to improve outcomes from epilepsy surgery has stimulated widespread interest in methods to quantitatively guide epilepsy surgery from intracranial EEG (iEEG). Many patients fail to achieve seizure freedom, in part due to the challenges in subjective iEEG interpretation. To address this clinical need, quantitative iEEG analytics have been developed using a variety of approaches, spanning studies of seizures, interictal periods, and their transitions, and encompass a range of techniques including electrographic signal analysis, dynamical systems modeling, machine learning and graph theory. Unfortunately, many methods fail to generalize to new data and are sensitive to differences in pathology and electrode placement. Here, we critically review selected literature on computational methods of identifying the epileptogenic zone from iEEG. We highlight shared methodological challenges common to many studies in this field and propose ways that they can be addressed. One fundamental common pitfall is a lack of open-source, high-quality data, which we specifically address by sharing a centralized high-quality, well-annotated, multicentre dataset consisting of >100 patients to support larger and more rigorous studies. Ultimately, we provide a road map to help these tools reach clinical trials and hope to improve the lives of future patients.
Collapse
Affiliation(s)
- John M Bernabei
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Li
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Andrew Y Revell
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel J Smith
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Neuroengineering Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristin M Gunnarsdottir
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ian Z Ong
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn A Davis
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nishant Sinha
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sridevi Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brian Litt
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Duncan JS, Taylor PN. Optimising epilepsy surgery. Lancet Neurol 2023; 22:373-374. [PMID: 36972721 DOI: 10.1016/s1474-4422(23)00082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 03/29/2023]
Affiliation(s)
- John S Duncan
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London WC1N 3NG, UK.
| | - Peter N Taylor
- Computational Neurology, Neuroscience & Psychiatry Lab, Interdisciplinary Computing and Complex BioSystems group, School of Computing, Newcastle Helix, Newcastle University, Newcastle, UK
| |
Collapse
|
41
|
Owen T, Janiukstyte V, Hall GR, Chowdhury FA, Diehl B, McEvoy A, Miserocchi A, de Tisi J, Duncan JS, Rugg-Gunn F, Wang Y, Taylor PN. Interictal MEG abnormalities to guide intracranial electrode implantation and predict surgical outcome. ARXIV 2023:arXiv:2304.05199v1. [PMID: 37090233 PMCID: PMC10120748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Intracranial EEG (iEEG) is the gold standard technique for epileptogenic zone (EZ) localisation, but requires a preconceived hypothesis of the location of the epileptogenic tissue. This placement is guided by qualitative interpretations of seizure semiology, MRI, EEG and other imaging modalities, such as magnetoencephalography (MEG). Quantitative abnormality mapping using MEG has recently been shown to have potential clinical value. We hypothesised that if quantifiable MEG abnormalities were sampled by iEEG, then patients' post-resection seizure outcome may be better. Thirty-two individuals with refractory neocortical epilepsy underwent MEG and subsequent iEEG recordings as part of pre-surgical evaluation. Eyes-closed resting-state interictal MEG band power abnormality maps were derived from 70 healthy controls as a normative baseline. MEG abnormality maps were compared to iEEG electrode implantation, with the spatial overlap of iEEG electrode placement and cerebral MEG abnormalities recorded. Finally, we assessed if the implantation of electrodes in abnormal tissue, and subsequent resection of the strongest abnormalities determined by MEG and iEEG corresponded to surgical success. Intracranial electrodes were implanted in brain tissue with the most abnormal MEG findings - in individuals that were seizure-free post-operatively (T=3.9, p=0.003), but not in those who did not become seizure free. The overlap between MEG abnormalities and electrode placement distinguished surgical outcome groups moderately well (AUC=0.68). In isolation, the resection of the strongest abnormalities as defined by MEG and iEEG separated surgical outcome groups well, AUC=0.71, AUC=0.74 respectively. A model incorporating all three features separated surgical outcome groups best (AUC=0.80). Intracranial EEG is a key tool to delineate the EZ and help render individuals seizure-free post-operatively. We showed that data-driven abnormality maps derived from resting-state MEG recordings demonstrate clinical value and may help guide electrode placement in individuals with neocortical epilepsy. Additionally, our predictive model of post-operative seizure-freedom, which leverages both MEG and iEEG recordings, could aid patient counselling of expected outcome.
Collapse
Affiliation(s)
- Tom Owen
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Vytene Janiukstyte
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gerard R Hall
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fahmida A Chowdhury
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - Andrew McEvoy
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - Anna Miserocchi
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - Jane de Tisi
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - John S Duncan
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - Fergus Rugg-Gunn
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| | - Peter Neal Taylor
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom
- National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom
| |
Collapse
|
42
|
Janiukstyte V, Owen TW, Chaudhary UJ, Diehl B, Lemieux L, Duncan JS, de Tisi J, Wang Y, Taylor PN. Normative brain mapping using scalp EEG and potential clinical application. ARXIV 2023:arXiv:2304.03204v1. [PMID: 37064533 PMCID: PMC10104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
A normative electrographic activity map could be a powerful resource to understand normal brain function and identify abnormal activity. Here, we present a normative brain map using scalp EEG in terms of relative band power. In this exploratory study we investigate its temporal stability, its similarity to other imaging modalities, and explore a potential clinical application. We constructed scalp EEG normative maps of brain dynamics from 17 healthy controls using source-localised resting-state scalp recordings. We then correlated these maps with those acquired from MEG and intracranial EEG to investigate their similarity. Lastly, we use the normative maps to lateralise abnormal regions in epilepsy. Spatial patterns of band powers were broadly consistent with previous literature and stable across recordings. Scalp EEG normative maps were most similar to other modalities in the alpha band, and relatively similar across most bands. Towards a clinical application in epilepsy, we found abnormal temporal regions ipsilateral to the epileptogenic hemisphere. Scalp EEG relative band power normative maps are spatially stable across time, in keeping with MEG and intracranial EEG results. Normative mapping is feasible and may be potentially clinically useful in epilepsy. Future studies with larger sample sizes and high-density EEG are now required for validation.
Collapse
Affiliation(s)
- Vytene Janiukstyte
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom, NE4 5DG
| | - Thomas W Owen
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom, NE4 5DG
| | - Umair J Chaudhary
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom, WC1N 3BG
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom, WC1N 3BG
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom, WC1N 3BG
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom, WC1N 3BG
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom, WC1N 3BG
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom, NE4 5DG
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom, NE2 4HH
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom, WC1N 3BG
| | - Peter N Taylor
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom, NE4 5DG
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom, NE2 4HH
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom, WC1N 3BG
| |
Collapse
|
43
|
Owen TW, Schroeder GM, Janiukstyte V, Hall GR, McEvoy A, Miserocchi A, de Tisi J, Duncan JS, Rugg‐Gunn F, Wang Y, Taylor PN. MEG abnormalities and mechanisms of surgical failure in neocortical epilepsy. Epilepsia 2023; 64:692-704. [PMID: 36617392 PMCID: PMC10952279 DOI: 10.1111/epi.17503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Epilepsy surgery fails to achieve seizure freedom in 30%-40% of cases. It is not fully understood why some surgeries are unsuccessful. By comparing interictal magnetoencephalography (MEG) band power from patient data to normative maps, which describe healthy spatial and population variability, we identify patient-specific abnormalities relating to surgical failure. We propose three mechanisms contributing to poor surgical outcome: (1) not resecting the epileptogenic abnormalities (mislocalization), (2) failing to remove all epileptogenic abnormalities (partial resection), and (3) insufficiently impacting the overall cortical abnormality. Herein we develop markers of these mechanisms, validating them against patient outcomes. METHODS Resting-state MEG recordings were acquired for 70 healthy controls and 32 patients with refractory neocortical epilepsy. Relative band-power spatial maps were computed using source-localized recordings. Patient and region-specific band-power abnormalities were estimated as the maximum absolute z-score across five frequency bands using healthy data as a baseline. Resected regions were identified using postoperative magnetic resonance imaging (MRI). We hypothesized that our mechanistically interpretable markers would discriminate patients with and without postoperative seizure freedom. RESULTS Our markers discriminated surgical outcome groups (abnormalities not targeted: area under the curve [AUC] = 0.80, p = .003; partial resection of epileptogenic zone: AUC = 0.68, p = .053; and insufficient cortical abnormality impact: AUC = 0.64, p = .096). Furthermore, 95% of those patients who were not seizure-free had markers of surgical failure for at least one of the three proposed mechanisms. In contrast, of those patients without markers for any mechanism, 80% were ultimately seizure-free. SIGNIFICANCE The mapping of abnormalities across the brain is important for a wide range of neurological conditions. Here we have demonstrated that interictal MEG band-power mapping has merit for the localization of pathology and improving our mechanistic understanding of epilepsy. Our markers for mechanisms of surgical failure could be used in the future to construct predictive models of surgical outcome, aiding clinical teams during patient pre-surgical evaluations.
Collapse
Affiliation(s)
- Thomas W. Owen
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Gabrielle M. Schroeder
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Vytene Janiukstyte
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Gerard R. Hall
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
| | | | | | | | | | | | - Yujiang Wang
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
- UCL Queen Square Institute of NeurologyLondonUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Peter N. Taylor
- Computational Neurology, Neuroscience & Psychiatry Lab, ICOS Group, School of ComputingNewcastle UniversityNewcastle upon TyneUK
- UCL Queen Square Institute of NeurologyLondonUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
44
|
Piper RJ, Richardson RM, Worrell G, Carmichael DW, Baldeweg T, Litt B, Denison T, Tisdall MM. Towards network-guided neuromodulation for epilepsy. Brain 2022; 145:3347-3362. [PMID: 35771657 PMCID: PMC9586548 DOI: 10.1093/brain/awac234] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is well-recognized as a disorder of brain networks. There is a growing body of research to identify critical nodes within dynamic epileptic networks with the aim to target therapies that halt the onset and propagation of seizures. In parallel, intracranial neuromodulation, including deep brain stimulation and responsive neurostimulation, are well-established and expanding as therapies to reduce seizures in adults with focal-onset epilepsy; and there is emerging evidence for their efficacy in children and generalized-onset seizure disorders. The convergence of these advancing fields is driving an era of 'network-guided neuromodulation' for epilepsy. In this review, we distil the current literature on network mechanisms underlying neurostimulation for epilepsy. We discuss the modulation of key 'propagation points' in the epileptogenic network, focusing primarily on thalamic nuclei targeted in current clinical practice. These include (i) the anterior nucleus of thalamus, now a clinically approved and targeted site for open loop stimulation, and increasingly targeted for responsive neurostimulation; and (ii) the centromedian nucleus of the thalamus, a target for both deep brain stimulation and responsive neurostimulation in generalized-onset epilepsies. We discuss briefly the networks associated with other emerging neuromodulation targets, such as the pulvinar of the thalamus, piriform cortex, septal area, subthalamic nucleus, cerebellum and others. We report synergistic findings garnered from multiple modalities of investigation that have revealed structural and functional networks associated with these propagation points - including scalp and invasive EEG, and diffusion and functional MRI. We also report on intracranial recordings from implanted devices which provide us data on the dynamic networks we are aiming to modulate. Finally, we review the continuing evolution of network-guided neuromodulation for epilepsy to accelerate progress towards two translational goals: (i) to use pre-surgical network analyses to determine patient candidacy for neurostimulation for epilepsy by providing network biomarkers that predict efficacy; and (ii) to deliver precise, personalized and effective antiepileptic stimulation to prevent and arrest seizure propagation through mapping and modulation of each patients' individual epileptogenic networks.
Collapse
Affiliation(s)
- Rory J Piper
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | | | - Torsten Baldeweg
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brian Litt
- Department of Neurology and Bioengineering, University of Pennsylvania, Philadelphia, USA
| | | | - Martin M Tisdall
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
45
|
Horsley JJ, Schroeder GM, Thomas RH, de Tisi J, Vos SB, Winston GP, Duncan JS, Wang Y, Taylor PN. Volumetric and structural connectivity abnormalities co-localise in TLE. Neuroimage Clin 2022; 35:103105. [PMID: 35863179 PMCID: PMC9421455 DOI: 10.1016/j.nicl.2022.103105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022]
Abstract
Patients with temporal lobe epilepsy (TLE) exhibit both volumetric and structural connectivity abnormalities relative to healthy controls. How these abnormalities inter-relate and their mechanisms are unclear. We computed grey matter volumetric changes and white matter structural connectivity abnormalities in 144 patients with unilateral TLE and 96 healthy controls. Regional volumes were calculated using T1-weighted MRI, while structural connectivity was derived using white matter fibre tractography from diffusion-weighted MRI. For each regional volume and each connection strength, we calculated the effect size between patient and control groups in a group-level analysis. We then applied hierarchical regression to investigate the relationship between volumetric and structural connectivity abnormalities in individuals. Additionally, we quantified whether abnormalities co-localised within individual patients by computing Dice similarity scores. In TLE, white matter connectivity abnormalities were greater when joining two grey matter regions with abnormal volumes. Similarly, grey matter volumetric abnormalities were greater when joined by abnormal white matter connections. The extent of volumetric and connectivity abnormalities related to epilepsy duration, but co-localisation did not. Co-localisation was primarily driven by neighbouring abnormalities in the ipsilateral hemisphere. Overall, volumetric and structural connectivity abnormalities were related in TLE. Our results suggest that shared mechanisms may underlie changes in both volume and connectivity alterations in patients with TLE.
Collapse
Affiliation(s)
- Jonathan J Horsley
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gabrielle M Schroeder
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rhys H Thomas
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jane de Tisi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia; Centre for Medical Image Computing, Computer Science Department, University College London, London, United Kingdom
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Division of Neurology, Department of Medicine, Queen's University, Kingston, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Peter N Taylor
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
46
|
Bernabei JM, Sinha N, Arnold TC, Conrad E, Ong I, Pattnaik AR, Stein JM, Shinohara RT, Lucas TH, Bassett DS, Davis KA, Litt B. Normative intracranial EEG maps epileptogenic tissues in focal epilepsy. Brain 2022; 145:1949-1961. [PMID: 35640886 PMCID: PMC9630716 DOI: 10.1093/brain/awab480] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/14/2021] [Accepted: 11/26/2021] [Indexed: 07/25/2023] Open
Abstract
Planning surgery for patients with medically refractory epilepsy often requires recording seizures using intracranial EEG. Quantitative measures derived from interictal intracranial EEG yield potentially appealing biomarkers to guide these surgical procedures; however, their utility is limited by the sparsity of electrode implantation as well as the normal confounds of spatiotemporally varying neural activity and connectivity. We propose that comparing intracranial EEG recordings to a normative atlas of intracranial EEG activity and connectivity can reliably map abnormal regions, identify targets for invasive treatment and increase our understanding of human epilepsy. Merging data from the Penn Epilepsy Center and a public database from the Montreal Neurological Institute, we aggregated interictal intracranial EEG retrospectively across 166 subjects comprising >5000 channels. For each channel, we calculated the normalized spectral power and coherence in each canonical frequency band. We constructed an intracranial EEG atlas by mapping the distribution of each feature across the brain and tested the atlas against data from novel patients by generating a z-score for each channel. We demonstrate that for seizure onset zones within the mesial temporal lobe, measures of connectivity abnormality provide greater distinguishing value than univariate measures of abnormal neural activity. We also find that patients with a longer diagnosis of epilepsy have greater abnormalities in connectivity. By integrating measures of both single-channel activity and inter-regional functional connectivity, we find a better accuracy in predicting the seizure onset zones versus normal brain (area under the curve = 0.77) compared with either group of features alone. We propose that aggregating normative intracranial EEG data across epilepsy centres into a normative atlas provides a rigorous, quantitative method to map epileptic networks and guide invasive therapy. We publicly share our data, infrastructure and methods, and propose an international framework for leveraging big data in surgical planning for refractory epilepsy.
Collapse
Affiliation(s)
- John M Bernabei
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Nishant Sinha
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - T Campbell Arnold
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Erin Conrad
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Ian Ong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Akash R Pattnaik
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy H Lucas
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Kathryn A Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Brian Litt
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
47
|
Sinha N, Joshi RB, Sandhu MRS, Netoff TI, Zaveri HP, Lehnertz K. Perspectives on Understanding Aberrant Brain Networks in Epilepsy. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:868092. [PMID: 36926081 PMCID: PMC10013006 DOI: 10.3389/fnetp.2022.868092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/21/2023]
Abstract
Epilepsy is a neurological disorder affecting approximately 70 million people worldwide. It is characterized by seizures that are complex aberrant dynamical events typically treated with drugs and surgery. Unfortunately, not all patients become seizure-free, and there is an opportunity for novel approaches to treat epilepsy using a network view of the brain. The traditional seizure focus theory presumed that seizures originated within a discrete cortical area with subsequent recruitment of adjacent cortices with seizure progression. However, a more recent view challenges this concept, suggesting that epilepsy is a network disease, and both focal and generalized seizures arise from aberrant activity in a distributed network. Changes in the anatomical configuration or widespread neural activities spanning lobes and hemispheres could make the brain more susceptible to seizures. In this perspective paper, we summarize the current state of knowledge, address several important challenges that could further improve our understanding of the human brain in epilepsy, and invite novel studies addressing these challenges.
Collapse
Affiliation(s)
- Nishant Sinha
- Department of Neurology, Penn Epilepsy Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| | - Rasesh B. Joshi
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Theoden I. Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Hitten P. Zaveri
- Department of Neurology, Yale University, New Haven, CT, United States
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|