1
|
Terzaghi M, d'Orio P, Sartori I, Pelliccia V, Zauli FM, Colnaghi S, Rustioni V, Caruana F, Vecchio MD, Versino M, Avanzini P. Spatio-temporal dynamics of sound-induced vestibular processing: insights from stereo-EEG recordings. Neuroimage 2025; 314:121261. [PMID: 40354844 DOI: 10.1016/j.neuroimage.2025.121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/02/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
Numerous functions rely on the activation of the vestibular system, resulting in widespread activation of cortical brain regions. However, although the topographical organization of vestibular processing is relatively well understood, the temporal dynamics of this information processing remain insufficiently explored. In this study, we conducted an in-depth analysis of intracerebral recordings from 107 patients (123 implanted hemispheres) to investigate the cortical response to acoustic and sound-induced vestibular stimuli (SVS), thus unveiling the spatiotemporal dynamics of vestibular processing. Our findings revealed the existence of distinct early components (phasic peak, 20-40 ms) localized in Heschl's area, planum temporale, retroinsula, posterior insular cortex, PFcm, parietal operculum, and structures above the Sylvian fissure. Moreover, we identified later, tonic components (peaking at 50-80 ms) characterized by an extended duration, returning to baseline between 200 and 300 ms. Remarkably, these latter components exclusively involved the perisylvian cortices. The findings demonstrated that the early stages of human otolithic vestibular information processing involve both parallel and hierarchical pathways distributed across the perisylvian and peri‑Rolandic regions, rather than being restricted to a single primary cortical area. Furthermore, two distinct streams reminiscent of the dorsal/ventral dichotomy with specific spatio-temporal characteristics were identified. Collectively, our study uncovers a complex and interconnected cortical network that underlies vestibular processing, shedding light on the temporal dynamics of this essential sensory system. These findings pave the way for a deeper understanding of the functional organization of the vestibular system and its implications for sensory perception and motor control.
Collapse
Affiliation(s)
- Michele Terzaghi
- Sleep and Epilepsy Unit, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Piergiorgio d'Orio
- Claudio Munari" Centre for Epilepsy Surgery, ASST GOM Niguarda, Milan, Italy; Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy.
| | - Ivana Sartori
- Claudio Munari" Centre for Epilepsy Surgery, ASST GOM Niguarda, Milan, Italy
| | - Veronica Pelliccia
- Claudio Munari" Centre for Epilepsy Surgery, ASST GOM Niguarda, Milan, Italy
| | - Flavia Maria Zauli
- Claudio Munari" Centre for Epilepsy Surgery, ASST GOM Niguarda, Milan, Italy; Department of Philosophy "Piero Martinetti", University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| | - Silvia Colnaghi
- SC Neurology and Stroke Unit, Ospedale Civile di Voghera, Dipartimento interaziendale di Neuroscienze, ASST Pavia, Italy
| | - Valter Rustioni
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Fausto Caruana
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Maria Del Vecchio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Maurizio Versino
- Istituto Clinico Mater Domini Humanitas, Castellanza, Italy; Istituto Auxologico Capitanio, IRCCS, Milan, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma, Italy
| |
Collapse
|
2
|
Del Vecchio M, Avanzini P, Gerbella M, Costa S, Zauli FM, d’Orio P, Focacci E, Sartori I, Caruana F. Anatomo-functional basis of emotional and motor resonance elicited by facial expressions. Brain 2024; 147:3018-3031. [PMID: 38365267 PMCID: PMC12007602 DOI: 10.1093/brain/awae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024] Open
Abstract
Simulation theories predict that the observation of other's expressions modulates neural activity in the same centres controlling their production. This hypothesis has been developed by two models, postulating that the visual input is directly projected either to the motor system for action recognition (motor resonance) or to emotional/interoceptive regions for emotional contagion and social synchronization (emotional resonance). Here we investigated the role of frontal/insular regions in the processing of observed emotional expressions by combining intracranial recording, electrical stimulation and effective connectivity. First, we intracranially recorded from prefrontal, premotor or anterior insular regions of 44 patients during the passive observation of emotional expressions, finding widespread modulations in prefrontal/insular regions (anterior cingulate cortex, anterior insula, orbitofrontal cortex and inferior frontal gyrus) and motor territories (Rolandic operculum and inferior frontal junction). Subsequently, we electrically stimulated the activated sites, finding that (i) in the anterior cingulate cortex and anterior insula, the stimulation elicited emotional/interoceptive responses, as predicted by the 'emotional resonance model'; (ii) in the Rolandic operculum it evoked face/mouth sensorimotor responses, in line with the 'motor resonance' model; and (iii) all other regions were unresponsive or revealed functions unrelated to the processing of facial expressions. Finally, we traced the effective connectivity to sketch a network-level description of these regions, finding that the anterior cingulate cortex and the anterior insula are reciprocally interconnected while the Rolandic operculum is part of the parieto-frontal circuits and poorly connected with the former. These results support the hypothesis that the pathways hypothesized by the 'emotional resonance' and the 'motor resonance' models work in parallel, differing in terms of spatio-temporal fingerprints, reactivity to electrical stimulation and connectivity patterns.
Collapse
Affiliation(s)
- Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Sara Costa
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Flavia Maria Zauli
- ‘Claudio Munari’ Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Piergiorgio d’Orio
- ‘Claudio Munari’ Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Elena Focacci
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Ivana Sartori
- ‘Claudio Munari’ Epilepsy Surgery Center, ASST GOM Niguarda, 20142 Milan, Italy
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy (CNR), 43125 Parma, Italy
| |
Collapse
|
3
|
Del Vecchio M, Bontemps B, Lance F, Gannerie A, Sipp F, Albertini D, Cassani CM, Chatard B, Dupin M, Lachaux JP. Introducing HiBoP: a Unity-based visualization software for large iEEG datasets. J Neurosci Methods 2024; 409:110179. [PMID: 38823595 DOI: 10.1016/j.jneumeth.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Intracranial EEG data offer a unique spatio-temporal precision to investigate human brain functions. Large datasets have become recently accessible thanks to new iEEG data-sharing practices and tighter collaboration with clinicians. Yet, the complexity of such datasets poses new challenges, especially regarding the visualization and anatomical display of iEEG. NEW METHOD We introduce HiBoP, a multi-modal visualization software specifically designed for large groups of patients and multiple experiments. Its main features include the dynamic display of iEEG responses induced by tasks/stimulations, the definition of Regions and electrodes Of Interest, and the shift between group-level and individual-level 3D anatomo-functional data. RESULTS We provide a use-case with data from 36 patients to reveal the global cortical dynamics following tactile stimulation. We used HiBoP to visualize high-gamma responses [50-150 Hz], and define three major response components in primary somatosensory and premotor cortices and parietal operculum. COMPARISON WITH EXISTING METHODS(S) Several iEEG softwares are now publicly available with outstanding analysis features. Yet, most were developed in languages (Python/Matlab) chosen to facilitate the inclusion of new analysis by users, rather than the quality of the visualization. HiBoP represents a visualization tool developed with videogame standards (Unity/C#), and performs detailed anatomical analysis rapidly, across multiple conditions, patients, and modalities with an easy export toward third-party softwares. CONCLUSION HiBoP provides a user-friendly environment that greatly facilitates the exploration of large iEEG datasets, and helps users decipher subtle structure/function relationships.
Collapse
Affiliation(s)
- Maria Del Vecchio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy
| | - Benjamin Bontemps
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Florian Lance
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Adrien Gannerie
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Florian Sipp
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Davide Albertini
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Volturno 39, Parma 43125, Italy
| | - Chiara Maria Cassani
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy; Department of School of Advanced Studies, University of Camerino, Italy
| | - Benoit Chatard
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Maryne Dupin
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France.
| |
Collapse
|
4
|
Pigorini A, Avanzini P, Barborica A, Bénar CG, David O, Farisco M, Keller CJ, Manfridi A, Mikulan E, Paulk AC, Roehri N, Subramanian A, Vulliémoz S, Zelmann R. Simultaneous invasive and non-invasive recordings in humans: A novel Rosetta stone for deciphering brain activity. J Neurosci Methods 2024; 408:110160. [PMID: 38734149 DOI: 10.1016/j.jneumeth.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
Simultaneous noninvasive and invasive electrophysiological recordings provide a unique opportunity to achieve a comprehensive understanding of human brain activity, much like a Rosetta stone for human neuroscience. In this review we focus on the increasingly-used powerful combination of intracranial electroencephalography (iEEG) with scalp electroencephalography (EEG) or magnetoencephalography (MEG). We first provide practical insight on how to achieve these technically challenging recordings. We then provide examples from clinical research on how simultaneous recordings are advancing our understanding of epilepsy. This is followed by the illustration of how human neuroscience and methodological advances could benefit from these simultaneous recordings. We conclude with a call for open data sharing and collaboration, while ensuring neuroethical approaches and argue that only with a true collaborative approach the promises of simultaneous recordings will be fulfilled.
Collapse
Affiliation(s)
- Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy; UOC Maxillo-facial Surgery and dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Pietro Avanzini
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | | | - Christian-G Bénar
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Olivier David
- Aix Marseille Univ, Inserm, U1106, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Michele Farisco
- Centre for Research Ethics and Bioethics, Department of Public Health and Caring Sciences, Uppsala University, P.O. Box 256, Uppsala, SE 751 05, Sweden; Science and Society Unit Biogem, Biology and Molecular Genetics Institute, Via Camporeale snc, Ariano Irpino, AV 83031, Italy
| | - Corey J Keller
- Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University Medical Center, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94394, USA
| | - Alfredo Manfridi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Ezequiel Mikulan
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angelique C Paulk
- Department of Neurology and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicolas Roehri
- EEG and Epilepsy Unit, Dpt of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Switzerland
| | - Ajay Subramanian
- Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University Medical Center, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA 94394, USA
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, Dpt of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Switzerland
| | - Rina Zelmann
- Department of Neurology and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Furuta T, Morita T, Miura G, Naito E. Structural and functional features characterizing the brains of individuals with higher controllability of motor imagery. Sci Rep 2024; 14:17243. [PMID: 39060339 PMCID: PMC11282224 DOI: 10.1038/s41598-024-68425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
Motor imagery is a higher-order cognitive brain function that mentally simulates movements without performing the actual physical one. Although motor imagery has attracted the interest of many researchers, and mental practice utilizing motor imagery has been widely used in sports training and post-stroke rehabilitation, neural bases that determine individual differences in motor imagery ability are not well understood. In this study, using controllability of motor imagery (CMI) test that can objectively evaluate individual ability to manipulate one's imaginary postures, we examined structural and functional features characterizing the brains of individuals with higher controllability of motor imagery, by analyzing T1-weighted structural MRI data obtained from 89 participants and functional MRI data obtained from 28 of 89 participants. The higher CMI test scorers had larger volume in the bilateral superior frontoparietal white matter regions. The CMI test activated the bilateral dorsal premotor cortex (PMD) and superior parietal lobule (SPL); specifically, the left PMD and/or the right SPL enhanced functional coupling with the visual body, somatosensory, and motor/kinesthetic areas in the higher scorers. Hence, controllability of motor imagery is higher for those who well-develop superior frontoparietal network, and for those whose this network accesses these sensory areas to predict the expected multisensory experiences during motor imagery. This study elucidated for the first time the structural and functional features characterizing the brains of individuals with higher controllability of motor imagery, and advanced understanding of individual differences in motor imagery ability.
Collapse
Affiliation(s)
- Tomoya Furuta
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Gen Miura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Cirillo E, Zavattaro C, Gammeri R, Serra H, Ricci R, Berti A. Have I Been Touched? Subjective and Objective Aspects of Tactile Awareness. Brain Sci 2024; 14:653. [PMID: 39061394 PMCID: PMC11274638 DOI: 10.3390/brainsci14070653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Somatosensory tactile experience is a key aspect of our interaction with the environment. It is involved in object manipulation, in the planning and control of actions and, in its affective components, in the relationships with other individuals. It is also a foundational component of body awareness. An intriguing aspect of sensory perception in general and tactile perception in particular is the way in which stimulation comes to consciousness. Indeed, although being aware of something seems a rather self-evident and monolithic aspect of our mental states, sensory awareness may be in fact modulated by many different processes that impact on the mere stimulation of the skin, including the way in which we perceive our bodies as belonging to us. In this review, we first took into consideration the pathological conditions of absence of phenomenal experience of touch, in the presence of implicit processing, as initial models for understanding the neural bases of conscious tactile experience. Subsequently, we discussed cases of tactile illusions both in normal subjects and in brain-damaged patients which help to understand which high-order processes impact tactile awareness. Finally, we discussed the observations reported in the review in light of some influential models of touch and body representation.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Berti
- Department of Psychology, University of Turin, Via Verdi 10, 10124 Turin, Italy; (E.C.); (C.Z.); (R.G.); (H.S.); (R.R.)
| |
Collapse
|
7
|
Storm JF, Klink PC, Aru J, Senn W, Goebel R, Pigorini A, Avanzini P, Vanduffel W, Roelfsema PR, Massimini M, Larkum ME, Pennartz CMA. An integrative, multiscale view on neural theories of consciousness. Neuron 2024; 112:1531-1552. [PMID: 38447578 DOI: 10.1016/j.neuron.2024.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories.
Collapse
Affiliation(s)
- Johan F Storm
- The Brain Signaling Group, Division of Physiology, IMB, Faculty of Medicine, University of Oslo, Domus Medica, Sognsvannsveien 9, Blindern, 0317 Oslo, Norway.
| | - P Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan 20122, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academisch Medisch Centrum, Postbus 22660, 1100 DD Amsterdam, the Netherlands
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan 20157, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20122, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Matthew E Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Ishida H, Grandi LC, Fornia L. Secondary somatosensory and posterior insular cortices: a somatomotor hub for object prehension and manipulation movements. Front Integr Neurosci 2024; 18:1346968. [PMID: 38725800 PMCID: PMC11079213 DOI: 10.3389/fnint.2024.1346968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
The secondary somatosensory cortex (SII) and posterior insular cortex (pIC) are recognized for processing touch and movement information during hand manipulation in humans and non-human primates. However, their involvement in three-dimensional (3D) object manipulation remains unclear. To investigate neural activity related to hand manipulation in the SII/pIC, we trained two macaque monkeys to grasp three objects (a cone, a plate, and a ring) and engage in visual fixation on the object. Our results revealed that 19.4% (n = 50/257) of the task-related neurons in SII/pIC were active during hand manipulations, but did not respond to passive somatosensory stimuli. Among these neurons, 44% fired before hand-object contact (reaching to grasping neurons), 30% maintained tonic activity after contact (holding neurons), and 26% showed continuous discharge before and after contact (non-selective neurons). Object grasping-selectivity varied and was weak among these neurons, with only 24% responding to fixation of a 3D object (visuo-motor neurons). Even neurons unresponsive to passive visual stimuli showed responses to set-related activity before the onset of movement (42%, n = 21/50). Our findings suggest that somatomotor integration within SII/pIC is probably integral to all prehension sequences, including reaching, grasping, and object manipulation movements. Moreover, the existence of a set-related activity within SII/pIC may play a role in directing somatomotor attention during object prehension-manipulation in the absence of vision. Overall, SII/pIC may play a role as a somatomotor hub within the lateral grasping network that supports the generation of intentional hand actions based on haptic information.
Collapse
Affiliation(s)
- Hiroaki Ishida
- Department of Neuroscience, Unit of Physiology, Parma University, Parma, Italy
- Italian Institute of Technology (IIT), Brain Center for Social and Motor Cognition (BCSMC), Parma, Italy
| | - Laura Clara Grandi
- Department of Neuroscience, Unit of Physiology, Parma University, Parma, Italy
| | - Luca Fornia
- Department of Neuroscience, Unit of Physiology, Parma University, Parma, Italy
| |
Collapse
|
9
|
Philippen S, Hanert A, Schönfeld R, Granert O, Yilmaz R, Jensen-Kondering U, Splittgerber M, Moliadze V, Siniatchkin M, Berg D, Bartsch T. Transcranial direct current stimulation of the right temporoparietal junction facilitates hippocampal spatial learning in Alzheimer's disease and mild cognitive impairment. Clin Neurophysiol 2024; 157:48-60. [PMID: 38056370 DOI: 10.1016/j.clinph.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/11/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Spatial memory deficits are an early symptom in Alzheimer's disease (AD), reflecting the neurodegenerative processes in the neuronal navigation network such as in hippocampal and parietal cortical areas. As no effective treatment options are available, neuromodulatory interventions are increasingly evaluated. Against this backdrop, we investigated the neuromodulatory effect of anodal transcranial direct current stimulation (tDCS) on hippocampal place learning in patients with AD or mild cognitive impairment (MCI). METHODS In this randomized, double-blind, sham-controlled study with a cross-over design anodal tDCS of the right temporoparietal junction (2 mA for 20 min) was applied to 20 patients diagnosed with AD or MCI and in 22 healthy controls while they performed a virtual navigation paradigm testing hippocampal place learning. RESULTS We show an improved recall performance of hippocampal place learning after anodal tDCS in the patient group compared to sham stimulation but not in the control group. CONCLUSIONS These results suggest that tDCS can facilitate spatial memory consolidation via stimulating the parietal-hippocampal navigation network in AD and MCI patients. SIGNIFICANCE Our findings suggest that tDCS of the temporoparietal junction may restore spatial navigation and memory deficits in patients with AD and MCI.
Collapse
Affiliation(s)
- S Philippen
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - A Hanert
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Schönfeld
- Psychology Department, Halle University, Germany
| | - O Granert
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - R Yilmaz
- Dept. of Neurology, University of Ankara, Medical School, Ankara, Turkey
| | - U Jensen-Kondering
- Dept. of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany; Dept. of Neuroradiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - M Splittgerber
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany
| | - V Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany
| | - M Siniatchkin
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Germany; Clinic for Child and Adolescent Psychiatry and Psychotherapy, Medical Center Bethel, University Clinics OWL, Bielefeld University, Germany
| | - D Berg
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - T Bartsch
- Dept. of Neurology, Memory Disorder and Plasticity Group, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
10
|
Montoya S, Badde S. Only visible flicker helps flutter: Tactile-visual integration breaks in the absence of visual awareness. Cognition 2023; 238:105528. [PMID: 37354787 DOI: 10.1016/j.cognition.2023.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Combining information from multiple senses enhances our perception of the world. Whether we need to be aware of all stimuli to benefit from multisensory integration, however, is still under investigation. Here, we tested whether tactile frequency perception benefits from the presence of congruent visual flicker even if the flicker is so rapid that it is perceptually fused into a steady light and therefore invisible. Our participants completed a tactile frequency discrimination task given either unisensory tactile or congruent tactile-visual stimulation. Tactile and tactile-visual test frequencies ranged from far below to far above participants' flicker fusion threshold (determined separately). For frequencies distinctively below their flicker fusion threshold, participants performed significantly better given tactile-visual stimulation than when presented with only tactile stimuli. Yet, for frequencies above their flicker fusion threshold, participants' tactile frequency perception did not profit from the presence of congruent but likely fused and thus invisible visual flicker. The results matched the predictions of an ideal-observer model in which tactile-visual integration is conditional on awareness of both stimuli. In contrast, it was impossible to reproduce the observed results with a model that assumed tactile-visual integration proceeds irrespective of stimulus awareness. In sum, we revealed that the benefits of congruent visual stimulation for tactile flutter frequency perception depend on the visibility of the visual flicker, suggesting that multisensory integration requires awareness.
Collapse
Affiliation(s)
- Sofia Montoya
- Department of Psychology, Tufts University, 490 Boston Avenue, 02155 Medford, MA, USA
| | - Stephanie Badde
- Department of Psychology, Tufts University, 490 Boston Avenue, 02155 Medford, MA, USA.
| |
Collapse
|
11
|
Fossataro C, Galigani M, Rossi Sebastiano A, Bruno V, Ronga I, Garbarini F. Spatial proximity to others induces plastic changes in the neural representation of the peripersonal space. iScience 2022; 26:105879. [PMID: 36654859 PMCID: PMC9840938 DOI: 10.1016/j.isci.2022.105879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Peripersonal space (PPS) is a highly plastic "invisible bubble" surrounding the body whose boundaries are mapped through multisensory integration. Yet, it is unclear how the spatial proximity to others alters PPS boundaries. Across five experiments (N = 80), by recording behavioral and electrophysiological responses to visuo-tactile stimuli, we demonstrate that the proximity to others induces plastic changes in the neural PPS representation. The spatial proximity to someone else's hand shrinks the portion of space within which multisensory responses occur, thus reducing the PPS boundaries. This suggests that PPS representation, built from bodily and multisensory signals, plastically adapts to the presence of conspecifics to define the self-other boundaries, so that what is usually coded as "my space" is recoded as "your space". When the space is shared with conspecifics, it seems adaptive to move the other-space away from the self-space to discriminate whether external events pertain to the self-body or to other-bodies.
Collapse
Affiliation(s)
- Carlotta Fossataro
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Mattia Galigani
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | | | - Valentina Bruno
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Irene Ronga
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Francesca Garbarini
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy,Neuroscience Institute of Turin (NIT), Turin 10123, Italy,Corresponding author
| |
Collapse
|
12
|
Del Vecchio M, De Marco D, Pigorini A, Fossataro C, Cassisi A, Avanzini P. Vision of haptics tunes the somatosensory threshold. Neurosci Lett 2022; 787:136823. [PMID: 35914589 DOI: 10.1016/j.neulet.2022.136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
The interaction between different sensory modalities represents a crucial issue in the neuroscience of consciousness: when the processing of one modality is deficient, the concomitant presentation of stimuli of other spared modalities may sustain the restoring of the damaged sensory functions. In this regard, visual enhancement of touch may represent a viable tool in the rehabilitation from tactile disorders, yet the specific visual features mostly modulating the somatosensory experience remain unsettled. In this study, healthy subjects underwent a tactile detection task during the observation of videos displaying different contents, including static gratings, meaningless motions, natural or point-lights reach-to-grasp-and-manipulate actions. Concurrently, near-threshold stimuli were delivered to the median nerve at different time-points. Subjective report was collected after each trial; the sensory detection rate was computed and compared across video conditions. Our results indicate that the specific presence of haptic contents (i.e., vision of manipulation), either fully displayed or implied by point-lights, magnifies tactile sensitivity. The notion that such stimuli prompt an aware tactile experience opens to novel rehabilitation approaches for tactile consciousness disorders.
Collapse
Affiliation(s)
- Maria Del Vecchio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy.
| | - Doriana De Marco
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy
| | - Andrea Pigorini
- University of Milan, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Milano 20157, Italy
| | - Carlotta Fossataro
- MANIBUS Laboratory, Dipartimento di Psicologia, Università di Torino, Torino 10124, Italy
| | - Annalisa Cassisi
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy; University of Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parma 43124,Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy
| |
Collapse
|