1
|
Frølich SV, Receveur N, Poulsen NS, Hansen AE, Vissing J. Whole-body muscle MRI in patients with spinal muscular atrophy. J Neurol 2025; 272:271. [PMID: 40089964 PMCID: PMC11911266 DOI: 10.1007/s00415-025-13005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a motor neuron disease with loss of musculature, which is replaced by fat. Previous magnetic resonance imaging (MRI) studies have focused on imaging muscles either in lower or upper extremities, but whole-body MRI can provide additional information on the involvement pattern. This study examined whole-body muscle fat replacement and the relationship between muscle structure, function, and bulbar symptoms. METHOD We conducted a descriptive, cross-sectional study. We assessed the fat replacement in skeletal muscles using whole-body MRI, the muscle function using the Motor Function Measurement 32, and bulbar muscle strength using the Bulbar Rating Scale. The presence of bulbar symptoms and function was assessed using the Voice Handicap Index, Eating Assessment Tool questionnaires, and a swallowing test. RESULTS We recruited 20 adult patients with type II and III SMA. The most affected muscles were the psoas major, soleus and rectus femoris, while the least affected muscles were the biceps brachii, deltoideus, and pterygoideus medialis. The tongue was involved in nearly half of the patients. Most patients reported issues with swallowing (75%) and voice (95%) but had relatively preserved strength of bulbar muscles. CONCLUSION Certain muscles are more prone to fat replacement than others in SMA, with a predominant proximal-distal and extensor-flexor involvement. Nearly half of the patients had increased fat content in the tongue, which is associated with dysphagia. In addition, most patients retained muscle strength in the bulbar muscles, despite advanced muscle weakness in the rest of the body.
Collapse
Affiliation(s)
- Sophia Vera Frølich
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Noémie Receveur
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Nanna Scharff Poulsen
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | | | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
2
|
Hooijmans MT, Jeneson JA, Jørstad HT, Bakermans AJ. Exercise MR of Skeletal Muscles, the Heart, and the Brain. J Magn Reson Imaging 2025; 61:535-560. [PMID: 38726984 PMCID: PMC11706321 DOI: 10.1002/jmri.29445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 01/11/2025] Open
Abstract
Magnetic resonance (MR) imaging (MRI) is routinely used to evaluate organ morphology and pathology in the human body at rest or in combination with pharmacological stress as an exercise surrogate. With MR during actual physical exercise, we can assess functional characteristics of tissues and organs under real-life stress conditions. This is particularly relevant in patients with limited exercise capacity or exercise intolerance, and where complaints typically present only during physical activity, such as in neuromuscular disorders, inherited metabolic diseases, and heart failure. This review describes practical and physiological aspects of exercise MR of skeletal muscles, the heart, and the brain. The acute effects of physical exercise on these organs are addressed in the light of various dynamic quantitative MR readouts, including phosphorus-31 MR spectroscopy (31P-MRS) of tissue energy metabolism, phase-contrast MRI of blood flow and muscle contraction, real-time cine MRI of cardiac performance, and arterial spin labeling MRI of muscle and brain perfusion. Exercise MR will help advancing our understanding of underlying mechanisms that contribute to exercise intolerance, which often proceed structural and anatomical changes in disease. Its potential to detect disease-driven alterations in organ function, perfusion, and metabolism under physiological stress renders exercise MR stress testing a powerful noninvasive imaging modality to aid in disease diagnosis and risk stratification. Although not yet integrated in most clinical workflows, and while some applications still require thorough validation, exercise MR has established itself as a comprehensive and versatile modality for characterizing physiology in health and disease in a noninvasive and quantitative way. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Melissa T. Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Human Movement Sciences, Faculty of Behavioral and Movement SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Jeroen A.L. Jeneson
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
- Center for Child Development and Exercise, Wilhelmina Children's Hospital/Division of Child HealthUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Harald T. Jørstad
- Department of CardiologyAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Adrianus J. Bakermans
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
3
|
McCrady AN, Masterson CD, Barnes LE, Scharf RJ, Blemker SS. Development of an ultrasound-based metric of muscle functional capacity for use in patients with neuromuscular disease. Muscle Nerve 2024; 70:1205-1214. [PMID: 39347560 DOI: 10.1002/mus.28263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION/AIMS Spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) are progressive neuromuscular disorders characterized by severe muscle weakness and functional decline (Pillen et al., Muscle Nerve 2008; 37(6):679-693). With new therapeutics, objective methods with increased sensitivity are needed to assess muscle function. Ultrasound imaging is a promising approach for assessing muscle fat and fibrosis in neuromuscular disorders. This study builds on prior work by combining ultrasound-based measurements of muscle size, shape, and quality, relating these measures to muscle strength, and proposing a multivariable image-based estimate of muscle function. METHODS Maximum voluntary elbow flexion torque of 36 participants (SMA, DMD, and healthy controls) was measured by hand-held dynamometry and elbow flexor muscles were imaged using ultrasound. Muscle size (cross-sectional area, maximum Feret diameter or width, and thickness), quality (echogenicity, texture anisotropy index), and cross-sectional shape (diameter ratio) were measured. Multivariable regression was used to select ultrasound measurements that predict elbow flexion torque. RESULTS Significant differences were observed in muscle size (decreased), shape (thinned), and quality (decreased) with increased disease severity and compared to healthy participants. CSA (brachioradialis R2 = 0.51), maximum Feret diameter (biceps R2 = 0.49, brachioradialis R2 = 0.58) and echogenicity (brachioradialis R2 = 0.61) were most correlated with torque production. Multivariable regression models identified that muscle size (CSA, maximum Feret diameter) and quality (echogenicity) were both essential to predict elbow flexion torque (R2 = 0.65). DISCUSSION A multivariable approach combining muscle size and quality improves strength predictions over single variable approaches. These methods present a promising avenue for the development of sensitive and functionally relevant biomarkers of neuromuscular disease.
Collapse
Affiliation(s)
- Allison N McCrady
- Department of Biomedical Engineering, University of Virginia School of Engineering & Applied Science, Charlottesville, Virginia, USA
| | - Chelsea D Masterson
- Department of Pediatrics, Neurology & Public Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Laura E Barnes
- Department of Systems and Information Engineering, University of Virginia School of Engineering & Applied Science, Charlottesville, Virginia, USA
| | - Rebecca J Scharf
- Department of Pediatrics, Neurology & Public Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Silvia S Blemker
- Department of Biomedical Engineering, University of Virginia School of Engineering & Applied Science, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Stam M, Tan HHG, Schmidt R, van den Heuvel MP, van den Berg LH, Wadman RI, van der Pol WL. Brain magnetic resonance imaging of patients with spinal muscular atrophy type 2 and 3. Neuroimage Clin 2024; 44:103708. [PMID: 39577334 PMCID: PMC11617753 DOI: 10.1016/j.nicl.2024.103708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND AND OBJECTIVE Proximal spinal muscular atrophy (SMA) is caused by deficiency of the ubiquitously expressed survival motor neuron protein. Although primarily a hereditary lower motor neuron disease, it is probably also characterized by abnormalities in other organs. Brain abnormalities and cognitive impairment have been reported in severe SMA. We aimed to systematically investigate brain structure in SMA using MRI. METHODS We acquired high-resolution T1-weighted images of treatment-naive patients with SMA, age- and sex-matched healthy and disease controls with other neuromuscular diseases, on a 3 T MRI scanner. We performed vertex-wise whole brain analysis and region of interest analysis of cortical thickness (CT), and volumetric analysis of the thalamus and compared findings in patients and controls using multiple linear regression models and Wald test. We correlated structural abnormalities with motor function as assessed by the Hammersmith Functional Motor Scale Expanded (HFMSE) and SMA Functional Rating Scale (SMA-FRS). RESULTS We included 30 patients, 12-70 years old, with SMA type 2 and 3, 30 age- and sex-matched healthy controls and 17 disease controls (with distal SMA, hereditary motor and sensory neuropathy, multifocal motor neuropathy, progressive muscular atrophy and segmental SMA). We found a reduced CT in patients with SMA compared to healthy controls at the precentral, postcentral and medial orbitofrontal gyri and at the temporal pole (mean differences -0.059(p = 0.04); -0.055(p = 0.04), -0.06(p = 0.04); -0.17 mm(p = 0.001)). Differences at the precentral gyrus and temporal pole were most pronounced in SMA type 2 (mean differences -0.07(p = 0.045); -0.26 mm(p < 0.001)) and were also present compared to disease controls (mean differences -0.08(p = 0.048); -0.19 mm(p = 0.003)). There was a positive correlation between CT at the temporal pole with motor function. Compared to healthy controls, we found a reduced volume of the whole thalamus (mean difference -325 mm3(p = 0.03)) and of the anterior, ventral and intralaminar thalamic nuclei (mean differences -9.9(p = 0.02); -157(p = 0.01); -24.2 mm3(p = 0.02) in patients with SMA and a positive correlation between these volumes and motor function. CONCLUSION MRI shows structural changes in motor and non-motor regions of the cortex and the thalamus of patients with SMA type 2 and 3, indicating that SMA pathology is not confined to motor neurons.
Collapse
Affiliation(s)
- Marloes Stam
- UMC Utrecht Brain Center, Department of Neurology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Harold H G Tan
- UMC Utrecht Brain Center, Department of Neurology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Ruben Schmidt
- UMC Utrecht Brain Center, Department of Neurology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Martijn P van den Heuvel
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Child Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Leonard H van den Berg
- UMC Utrecht Brain Center, Department of Neurology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Renske I Wadman
- UMC Utrecht Brain Center, Department of Neurology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - W Ludo van der Pol
- UMC Utrecht Brain Center, Department of Neurology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Grandi FC, Astord S, Pezet S, Gidaja E, Mazzucchi S, Chapart M, Vasseur S, Mamchaoui K, Smeriglio P. Characterization of SMA type II skeletal muscle from treated patients shows OXPHOS deficiency and denervation. JCI Insight 2024; 9:e180992. [PMID: 39264856 PMCID: PMC11530132 DOI: 10.1172/jci.insight.180992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a recessive developmental disorder caused by the genetic loss or mutation of the gene SMN1 (survival of motor neuron 1). SMA is characterized by neuromuscular symptoms and muscle weakness. Several years ago, SMA treatment underwent a radical transformation, with the approval of 3 different SMN-dependent disease-modifying therapies. This includes 2 SMN2 splicing therapies - risdiplam and nusinersen. One main challenge for type II SMA patients treated with these drugs is ongoing muscle fatigue, limited mobility, and other skeletal problems. To date, few molecular studies have been conducted on SMA patient-derived tissues after treatment, limiting our understanding of what targets remain unchanged after the spinal cord-targeted therapies are applied. Therefore, we collected paravertebral muscle from 8 type II patients undergoing spinal surgery for scoliosis and 7 controls. We used RNA-seq to characterize their transcriptional profiles and correlate these molecular changes with muscle histology. Despite the limited cohort size and heterogeneity, we observed a consistent loss of oxidative phosphorylation (OXPHOS) machinery of the mitochondria, a decrease in mitochondrial DNA copy number, and a correlation between signals of cellular stress, denervation, and increased fibrosis. This work provides new putative targets for combination therapies for type II SMA.
Collapse
Affiliation(s)
- Fiorella Carla Grandi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Stéphanie Astord
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Sonia Pezet
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Elèna Gidaja
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Sabrina Mazzucchi
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Maud Chapart
- Centre de Ressources Biologiques - Myobank-AFM de l’Institut de Myologie, Hôpital de la Pitié-Salpêtrière F - 75013 Paris, France
| | - Stéphane Vasseur
- Centre de Ressources Biologiques - Myobank-AFM de l’Institut de Myologie, Hôpital de la Pitié-Salpêtrière F - 75013 Paris, France
| | - Kamel Mamchaoui
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| | - Piera Smeriglio
- Sorbonne Université, INSERM, Institut de Myologie, Centre de recherche en Myologie F-75013 Paris, France
| |
Collapse
|
6
|
Huang Y, Chen T, Hu Y, Li Z. Muscular MRI and magnetic resonance neurography in spinal muscular atrophy. Clin Radiol 2024; 79:673-680. [PMID: 38945793 DOI: 10.1016/j.crad.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease caused by the degeneration of the α-motor neurons in the anterior horn of the spinal cord. SMA is clinically characterized by progressive and symmetrical muscle weakness and muscle atrophy and ends up with systemic multisystem abnormalities. Quantitative MRI (qMRI) has the advantages of non-invasiveness, objective sensitivity, and high reproducibility, and has important clinical value in evaluating the severity of neuromuscular diseases and monitoring the efficacy of treatment. This article summarizes the clinical use of muscular MRI and magnetic resonance neurography in assessing the progress of SMA.
Collapse
Affiliation(s)
- Y Huang
- Department of Radiology, Shenzhen Childrens Hospital, Shantou University Medical College Affiliated Shenzhen Childrens Hospital, Shenzhen, China
| | - T Chen
- Department of Radiology, Shenzhen Childrens Hospital, Shantou University Medical College Affiliated Shenzhen Childrens Hospital, Shenzhen, China; Department of Radiology, Shenzhen Children's Hospital, China Medical University, Shenzhen, China
| | - Y Hu
- Department of Radiology, Shenzhen Childrens Hospital, Shantou University Medical College Affiliated Shenzhen Childrens Hospital, Shenzhen, China; Department of Radiology, Shenzhen Children's Hospital, China Medical University, Shenzhen, China
| | - Z Li
- Department of Radiology, Shenzhen Childrens Hospital, Shantou University Medical College Affiliated Shenzhen Childrens Hospital, Shenzhen, China.
| |
Collapse
|
7
|
Bolado-Carrancio A, Tapia O, Rodríguez-Rey JC. Ubiquitination Insight from Spinal Muscular Atrophy-From Pathogenesis to Therapy: A Muscle Perspective. Int J Mol Sci 2024; 25:8800. [PMID: 39201486 PMCID: PMC11354275 DOI: 10.3390/ijms25168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.
Collapse
Affiliation(s)
- Alfonso Bolado-Carrancio
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Olga Tapia
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas, Universidad de la Laguna, 38200 La Laguna, Spain
| | - José C. Rodríguez-Rey
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| |
Collapse
|
8
|
Hoolachan JM, McCallion E, Sutton ER, Çetin Ö, Pacheco-Torres P, Dimitriadi M, Sari S, Miller GJ, Okoh M, Walter LM, Claus P, Wood MJA, Tonge DP, Bowerman M. A transcriptomics-based drug repositioning approach to identify drugs with similar activities for the treatment of muscle pathologies in spinal muscular atrophy (SMA) models. Hum Mol Genet 2024; 33:400-425. [PMID: 37947217 PMCID: PMC10877467 DOI: 10.1093/hmg/ddad192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/08/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder caused by the reduction of survival of motor neuron (SMN) protein levels. Although three SMN-augmentation therapies are clinically approved that significantly slow down disease progression, they are unfortunately not cures. Thus, complementary SMN-independent therapies that can target key SMA pathologies and that can support the clinically approved SMN-dependent drugs are the forefront of therapeutic development. We have previously demonstrated that prednisolone, a synthetic glucocorticoid (GC) improved muscle health and survival in severe Smn-/-;SMN2 and intermediate Smn2B/- SMA mice. However, long-term administration of prednisolone can promote myopathy. We thus wanted to identify genes and pathways targeted by prednisolone in skeletal muscle to discover clinically approved drugs that are predicted to emulate prednisolone's activities. Using an RNA-sequencing, bioinformatics, and drug repositioning pipeline on skeletal muscle from symptomatic prednisolone-treated and untreated Smn-/-; SMN2 SMA and Smn+/-; SMN2 healthy mice, we identified molecular targets linked to prednisolone's ameliorative effects and a list of 580 drug candidates with similar predicted activities. Two of these candidates, metformin and oxandrolone, were further investigated in SMA cellular and animal models, which highlighted that these compounds do not have the same ameliorative effects on SMA phenotypes as prednisolone; however, a number of other important drug targets remain. Overall, our work further supports the usefulness of prednisolone's potential as a second-generation therapy for SMA, identifies a list of potential SMA drug treatments and highlights improvements for future transcriptomic-based drug repositioning studies in SMA.
Collapse
Affiliation(s)
- Joseph M Hoolachan
- School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Eve McCallion
- School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Emma R Sutton
- School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Özge Çetin
- School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Paloma Pacheco-Torres
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL910 9AB, United Kingdom
| | - Maria Dimitriadi
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL910 9AB, United Kingdom
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Hacettepe University, Ankara, 06100, Turkey
- School of Chemical and Physical Sciences, Lennard-Jones Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Gavin J Miller
- School of Chemical and Physical Sciences, Lennard-Jones Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
- Centre for Glycoscience, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Magnus Okoh
- School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Lisa M Walter
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Feodor-Lynen-Straße 31, 30625, Hannover, Germany
- Centre of Systems Neuroscience (ZSN), Hannover Medical School, Bünteweg 2, 30559, Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Feodor-Lynen-Straße 31, 30625, Hannover, Germany
- Centre of Systems Neuroscience (ZSN), Hannover Medical School, Bünteweg 2, 30559, Hannover, Germany
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Level 2, Children's Hospital, John Radcliffe, Headington Oxford, OX3 9DU, United Kingdom
| | - Daniel P Tonge
- School of Life Sciences, Huxley Building, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - Melissa Bowerman
- School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, United Kingdom
| |
Collapse
|
9
|
Gonsalves SG, Saligan LN, Bergeron CM, Lee PR, Fishbein KW, Spencer RG, Zampino M, Sun X, Sheng JYS, Stearns V, Carducci M, Ferrucci L, Lukkahatai N. Exploring the links of skeletal muscle mitochondrial oxidative capacity, physical functionality, and mental well-being of cancer survivors. Sci Rep 2024; 14:2669. [PMID: 38302539 PMCID: PMC10834492 DOI: 10.1038/s41598-024-52570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024] Open
Abstract
Physical impairments following cancer treatment have been linked with the toxic effects of these treatments on muscle mass and strength, through their deleterious effects on skeletal muscle mitochondrial oxidative capacity. Accordingly, we designed the present study to explore relationships of skeletal muscle mitochondrial oxidative capacity with physical performance and perceived cancer-related psychosocial experiences of cancer survivors. We assessed skeletal muscle mitochondrial oxidative capacity using in vivo phosphorus-31 magnetic resonance spectroscopy (31P MRS), measuring the postexercise phosphocreatine resynthesis time constant, τPCr, in 11 post-chemotherapy participants aged 34-70 years. During the MRS procedure, participants performed rapid ballistic knee extension exercise to deplete phosphocreatine (PCr); hence, measuring the primary study outcome, which was the recovery rate of PCr (τPCr). Patient-reported outcomes of psychosocial symptoms and well-being were assessed using the Patient-Reported Outcomes Measurement Information System and the 36-Item Short Form health survey (SF-36). Rapid bioenergetic recovery, reflected through a smaller value of τPCr was associated with worse depression (rho ρ = - 0.69, p = 0.018, and Cohen's d = - 1.104), anxiety (ρ = - 0.61, p = .046, d = - 0.677), and overall mental health (ρ = 0.74, p = 0.010, d = 2.198) scores, but better resilience (ρ = 0.65, p = 0.029), and coping-self efficacy (ρ = 0.63, p = 0.04) scores. This is the first study to link skeletal muscle mitochondrial oxidative capacity with subjective reports of cancer-related behavioral toxicities. Further investigations are warranted to confirm these findings probing into the role of disease status and personal attributes in these preliminary results.
Collapse
Affiliation(s)
- Stephen G Gonsalves
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leorey N Saligan
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Christopher M Bergeron
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Philip R Lee
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kenneth W Fishbein
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Marta Zampino
- Department of Internal Medicine, University of Maryland, Baltimore, MD, USA
| | - Xinyi Sun
- School of Nursing, Johns Hopkins University, Baltimore, MD, USA
| | | | - Vered Stearns
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Carducci
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Luigi Ferrucci
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nada Lukkahatai
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA
- School of Nursing, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Gushi S, Balis V. Mitochondrial Inherited Disorders and their Correlation with Neurodegenerative Diseases. Endocr Metab Immune Disord Drug Targets 2024; 24:381-393. [PMID: 37937560 DOI: 10.2174/0118715303250271231018103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
Mitochondria are essential organelles for the survival of a cell because they produce energy. The cells that need more mitochondria are neurons because they perform a variety of tasks that are necessary to support brain homeostasis. The build-up of abnormal proteins in neurons, as well as their interactions with mitochondrial proteins, or MAM proteins, cause serious health issues. As a result, mitochondrial functions, such as mitophagy, are impaired, resulting in the disorders described in this review. They are also due to mtDNA mutations, which alter the heritability of diseases. The topic of disease prevention, as well as the diagnosis, requires further explanation and exploration. Finally, there are treatments that are quite promising, but more detailed research is needed.
Collapse
Affiliation(s)
- Sofjana Gushi
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| | - Vasileios Balis
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| |
Collapse
|
11
|
Ratia N, Palu E, Lantto H, Ylikallio E, Luukkonen R, Suomalainen A, Auranen M, Piirilä P. Lowered oxidative capacity in spinal muscular atrophy, Jokela type; comparison with mitochondrial muscle disease. Front Neurol 2023; 14:1277944. [PMID: 38020590 PMCID: PMC10663357 DOI: 10.3389/fneur.2023.1277944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Spinal muscular atrophy, Jokela type (SMAJ) is a rare autosomal dominantly hereditary form of spinal muscular atrophy caused by a point mutation c.197G>T in CHCHD10. CHCHD10 is known to be involved in the regulation of mitochondrial function even though patients with SMAJ do not present with multiorgan symptoms of mitochondrial disease. We aimed to characterize the cardiopulmonary oxidative capacity of subjects with SMAJ compared to healthy controls and patients with mitochondrial myopathy. Methods Eleven patients with genetically verified SMAJ, 26 subjects with mitochondrial myopathy (MM), and 28 healthy volunteers underwent a cardiopulmonary exercise test with lactate and ammonia sampling. The effect of the diagnosis group on the test results was analysed using a linear model. Results Adjusted for sex, age, and BMI, the SMAJ group had lower power output (p < 0.001), maximal oxygen consumption (VO2 max) (p < 0.001), and mechanical efficiency (p < 0.001) compared to the healthy controls but like that in MM. In the SMAJ group and healthy controls, plasma lactate was lower than in MM measured at rest, light exercise, and 30 min after exercise (p ≤ 0.001-0.030) and otherwise lactate in SMAJ was lower than controls and MM, in longitudinal analysis p = 0.018. In MM, the ventilatory equivalent for oxygen was higher (p = 0.040), and the fraction of end-tidal CO2 lower in maximal exercise compared to healthy controls (p = 0.023) and subjects with SMAJ. Conclusion In cardiopulmonary exercise test, subjects with SMAJ showed a similar decrease in power output and oxidative capacity as subjects with mitochondrial myopathy but did not exhibit findings typical of mitochondrial disease.
Collapse
Affiliation(s)
- Nadja Ratia
- Unit of Clinical Physiology, HUS Medical Diagnosis Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Edouard Palu
- Unit of Neurophysiology, HUS Medical Diagnosis Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Lantto
- Unit of Clinical Physiology, HUS Medical Diagnosis Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Emil Ylikallio
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Anu Suomalainen
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLife, University of Helsinki, Helsinki, Finland
| | - Mari Auranen
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Päivi Piirilä
- Unit of Clinical Physiology, HUS Medical Diagnosis Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
Pomp L, Jeneson JAL, van der Pol WL, Bartels B. Electrophysiological and Imaging Biomarkers to Evaluate Exercise Training in Patients with Neuromuscular Disease: A Systematic Review. J Clin Med 2023; 12:6834. [PMID: 37959299 PMCID: PMC10647337 DOI: 10.3390/jcm12216834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Exercise therapy as part of the clinical management of patients with neuromuscular diseases (NMDs) is complicated by the limited insights into its efficacy. There is an urgent need for sensitive and non-invasive quantitative muscle biomarkers to monitor the effects of exercise training. Therefore, the objective of this systematic review was to critically appraise and summarize the current evidence for the sensitivity of quantitative, non-invasive biomarkers, based on imaging and electrophysiological techniques, for measuring the effects of physical exercise training. We identified a wide variety of biomarkers, including imaging techniques, i.e., magnetic resonance imaging (MRI) and ultrasound, surface electromyography (sEMG), magnetic resonance spectroscopy (MRS), and near-infrared spectroscopy (NIRS). Imaging biomarkers, such as muscle maximum area and muscle thickness, and EMG biomarkers, such as compound muscle action potential (CMAP) amplitude, detected significant changes in muscle morphology and neural adaptations following resistance training. MRS and NIRS biomarkers, such as initial phosphocreatine recovery rate (V), mitochondrial capacity (Qmax), adenosine phosphate recovery half-time (ADP t1/2), and micromolar changes in deoxygenated hemoglobin and myoglobin concentrations (Δ[deoxy(Hb + Mb)]), detected significant adaptations in oxidative metabolism after endurance training. We also identified biomarkers whose clinical relevance has not yet been assessed due to lack of sufficient study.
Collapse
Affiliation(s)
- Lisa Pomp
- Child Development and Exercise Center, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jeroen Antonius Lodewijk Jeneson
- Child Development and Exercise Center, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - W. Ludo van der Pol
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Bart Bartels
- Child Development and Exercise Center, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
13
|
Ros LAA, Goedee HS, Franssen H, Asselman FL, Bartels B, Cuppen I, van Eijk RPA, Sleutjes BTHM, van der Pol WL, Wadman RI. Longitudinal prospective cohort study to assess peripheral motor function with extensive electrophysiological techniques in patients with Spinal Muscular Atrophy (SMA): the SMA Motor Map protocol. BMC Neurol 2023; 23:164. [PMID: 37095427 PMCID: PMC10124000 DOI: 10.1186/s12883-023-03207-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Hereditary spinal muscular atrophy (SMA) is a motor neuron disorder with a wide range in severity in children and adults. Two therapies that alter splicing of the Survival Motor Neuron 2 (SMN2) gene, i.e. nusinersen and risdiplam, improve motor function in SMA, but treatment effects vary. Experimental studies indicate that motor unit dysfunction encompasses multiple features, including abnormal function of the motor neuron, axon, neuromuscular junction and muscle fibres. The relative contributions of dysfunction of different parts of the motor unit to the clinical phenotype are unknown. Predictive biomarkers for clinical efficacy are currently lacking. The goals of this project are to study the association of electrophysiological abnormalities of the peripheral motor system in relation to 1) SMA clinical phenotypes and 2) treatment response in patients treated with SMN2-splicing modifiers (nusinersen or risdiplam). METHODS We designed an investigator-initiated, monocentre, longitudinal cohort study using electrophysiological techniques ('the SMA Motor Map') in Dutch children (≥ 12 years) and adults with SMA types 1-4. The protocol includes the compound muscle action potential scan, nerve excitability testing and repetitive nerve stimulation test, executed unilaterally at the median nerve. Part one cross-sectionally assesses the association of electrophysiological abnormalities in relation to SMA clinical phenotypes in treatment-naïve patients. Part two investigates the predictive value of electrophysiological changes at two-months treatment for a positive clinical motor response after one-year treatment with SMN2-splicing modifiers. We will include 100 patients in each part of the study. DISCUSSION This study will provide important information on the pathophysiology of the peripheral motor system of treatment-naïve patients with SMA through electrophysiological techniques. More importantly, the longitudinal analysis in patients on SMN2-splicing modifying therapies (i.e. nusinersen and risdiplam) intents to develop non-invasive electrophysiological biomarkers for treatment response in order to improve (individualized) treatment decisions. TRIAL REGISTRATION NL72562.041.20 (registered at https://www.toetsingonline.nl . 26-03-2020).
Collapse
Affiliation(s)
- Leandra A A Ros
- Department of Neurology & Neurosurgery, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - H Stephan Goedee
- Department of Neurology & Neurosurgery, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Hessel Franssen
- Department of Neurology & Neurosurgery, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Fay-Lynn Asselman
- Department of Neurology & Neurosurgery, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Bart Bartels
- Child Development and Exercise Centre, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inge Cuppen
- Department of Neurology & Neurosurgery, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Ruben P A van Eijk
- Department of Neurology & Neurosurgery, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
- Biostatistics and Research Support, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Boudewijn T H M Sleutjes
- Department of Neurology & Neurosurgery, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - W Ludo van der Pol
- Department of Neurology & Neurosurgery, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - Renske I Wadman
- Department of Neurology & Neurosurgery, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Mikhail AI, Ng SY, Mattina SR, Ljubicic V. AMPK is mitochondrial medicine for neuromuscular disorders. Trends Mol Med 2023:S1471-4914(23)00070-9. [PMID: 37080889 DOI: 10.1016/j.molmed.2023.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1), and spinal muscular atrophy (SMA) are the most prevalent neuromuscular disorders (NMDs) in children and adults. Central to a healthy neuromuscular system are the processes that govern mitochondrial turnover and dynamics, which are regulated by AMP-activated protein kinase (AMPK). Here, we survey mitochondrial stresses that are common between, as well as unique to, DMD, DM1, and SMA, and which may serve as potential therapeutic targets to mitigate neuromuscular disease. We also highlight recent advances that leverage a mutation-agnostic strategy featuring physiological or pharmacological AMPK activation to enhance mitochondrial health in these conditions, as well as identify outstanding questions and opportunities for future pursuit.
Collapse
Affiliation(s)
- Andrew I Mikhail
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Sean Y Ng
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Stephanie R Mattina
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| | - Vladimir Ljubicic
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
15
|
Klawitter F, Ehler J, Bajorat R, Patejdl R. Mitochondrial Dysfunction in Intensive Care Unit-Acquired Weakness and Critical Illness Myopathy: A Narrative Review. Int J Mol Sci 2023; 24:5516. [PMID: 36982590 PMCID: PMC10052131 DOI: 10.3390/ijms24065516] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondria are key structures providing most of the energy needed to maintain homeostasis. They are the main source of adenosine triphosphate (ATP), participate in glucose, lipid and amino acid metabolism, store calcium and are integral components in various intracellular signaling cascades. However, due to their crucial role in cellular integrity, mitochondrial damage and dysregulation in the context of critical illness can severely impair organ function, leading to energetic crisis and organ failure. Skeletal muscle tissue is rich in mitochondria and, therefore, particularly vulnerable to mitochondrial dysfunction. Intensive care unit-acquired weakness (ICUAW) and critical illness myopathy (CIM) are phenomena of generalized weakness and atrophying skeletal muscle wasting, including preferential myosin breakdown in critical illness, which has also been linked to mitochondrial failure. Hence, imbalanced mitochondrial dynamics, dysregulation of the respiratory chain complexes, alterations in gene expression, disturbed signal transduction as well as impaired nutrient utilization have been proposed as underlying mechanisms. This narrative review aims to highlight the current known molecular mechanisms immanent in mitochondrial dysfunction of patients suffering from ICUAW and CIM, as well as to discuss possible implications for muscle phenotype, function and therapeutic approaches.
Collapse
Affiliation(s)
- Felix Klawitter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Rika Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Robert Patejdl
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
16
|
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in SMN1 (encoding survival motor neuron protein (SMN)). Reduced expression of SMN leads to loss of α-motor neurons, severe muscle weakness and often early death. Standard-of-care recommendations for multidisciplinary supportive care of SMA were established in the past few decades. However, improved understanding of the pathogenetic mechanisms of SMA has led to the development of different therapeutic approaches. Three treatments that increase SMN expression by distinct molecular mechanisms, administration routes and tissue biodistributions have received regulatory approval with others in clinical development. The advent of the new therapies is redefining standards of care as in many countries most patients are treated with one of the new therapies, leading to the identification of emerging new phenotypes of SMA and a renewed characterization of demographics owing to improved patient survival.
Collapse
|
17
|
Hooijmans MT, Habets LE, van den Berg‐Faay SAM, Froeling M, Asselman F, Strijkers GJ, Jeneson JAL, Bartels B, Nederveen AJ, van der Pol WL. Multi-parametric quantitative magnetic resonance imaging of the upper arm muscles of patients with spinal muscular atrophy. NMR IN BIOMEDICINE 2022; 35:e4696. [PMID: 35052014 PMCID: PMC9286498 DOI: 10.1002/nbm.4696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 06/09/2023]
Abstract
Quantitative magnetic resonance imaging (qMRI) is frequently used to map the disease state and disease progression in the lower extremity muscles of patients with spinal muscular atrophy (SMA). This is in stark contrast to the almost complete lack of data on the upper extremity muscles, which are essential for carrying out daily activities. The aim of this study was therefore to assess the disease state in the upper arm muscles of patients with SMA in comparison with healthy controls by quantitative assessment of fat fraction, diffusion indices, and water T2 relaxation times, and to relate these measures to muscle force. We evaluated 13 patients with SMA and 15 healthy controls with a 3-T MRI protocol consisting of DIXON, diffusion tensor imaging, and T2 sequences. qMRI measures were compared between groups and related to muscle force measured with quantitative myometry. Fat fraction was significantly increased in all upper arm muscles of the patients with SMA compared with healthy controls and correlated negatively with muscle force. Additionally, fat fraction was heterogeneously distributed within the triceps brachii (TB) and brachialis muscle, but not in the biceps brachii muscle. Diffusion indices and water T2 relaxation times were similar between patients with SMA and healthy controls, but we did find a slightly reduced mean diffusivity (MD), λ1, and λ3 in the TB of patients with SMA. Furthermore, MD was positively correlated with muscle force in the TB of patients with SMA. The variation in fat fraction further substantiates the selective vulnerability of muscles. The reduced diffusion tensor imaging indices, along with the positive correlation of MD with muscle force, point to myofiber atrophy. Our results show the feasibility of qMRI to map the disease state in the upper arm muscles of patients with SMA. Longitudinal data in a larger cohort are needed to further explore qMRI to map disease progression and to capture the possible effects of therapeutic interventions.
Collapse
Affiliation(s)
- Melissa T. Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam Movement SciencesAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Laura E. Habets
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Sandra A. M. van den Berg‐Faay
- Department of Radiology and Nuclear Medicine, Amsterdam Movement SciencesAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Martijn Froeling
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Fay‐Lynn Asselman
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam Movement SciencesAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Jeroen A. L. Jeneson
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Bart Bartels
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam Movement SciencesAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - W. Ludo van der Pol
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
18
|
Habets LE, Bartels B, Asselman FL, Hulzebos EHJ, Stegeman DF, Jeneson JAL, van der Pol WL. Motor Unit and Capillary Recruitment During Fatiguing Arm-Cycling Exercise in Spinal Muscular Atrophy Types 3 and 4. J Neuromuscul Dis 2022; 9:397-409. [PMID: 35466947 DOI: 10.3233/jnd-210765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Exercise intolerance is an important impairment in patients with SMA, but little is known about the mechanisms underlying this symptom. OBJECTIVE To investigate if reduced motor unit- and capillary recruitment capacity in patients with SMA contribute to exercise intolerance. METHODS Adolescent and adult patients with SMA types 3 and 4 (n = 15) and age- and gender matched controls (n = 15) performed a maximal upper body exercise test. We applied respiratory gas analyses, non-invasive surface electromyography (sEMG) and continuous wave near-infrared spectroscopy (CW-NIRS) to study oxygen consumption, arm muscle motor unit- and capillary recruitment, respectively. RESULTS Maximal exercise duration was twofold lower (p < 0.001) and work of breathing and ventilation was 1.6- and 1.8-fold higher (p < 0.05) in patients compared to controls, respectively. Regarding motor unit recruitment, we found higher normalized RMS amplitude onset values of sEMG signals from all muscles and the increase in normalized RMS amplitudes was similar in the m. triceps brachii, m. brachioradialis and m. flexor digitorum in SMA compared to controls. Median frequency, onset values were similar in patients and controls. We found a similar decrease in median frequencies of sEMG recordings from the m. biceps brachii, a diminished decrease from the m. brachioradialis and m. flexor digitorum, but a larger decrease from the m. triceps brachii. With respect to capillary recruitment, CW-NIRS recordings in m. biceps brachii revealed dynamics that were both qualitatively and quantitatively similar in patients and controls. CONCLUSION We found no evidence for the contribution of motor unit- and capillary recruitment capacity of the upper arm muscles in adolescent and adult patients with SMA types 3 and 4 as primary limiting factors to premature fatigue during execution of a maximal arm-cycling task.
Collapse
Affiliation(s)
- Laura E Habets
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - Bart Bartels
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - Fay-Lynn Asselman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht Brain Center, Utrecht University, GA Utrecht, The Netherlands
| | - Erik H J Hulzebos
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - Dick F Stegeman
- Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Jeroen A L Jeneson
- Center for Child Development, Exercise and Physical Literacy, Wilhelmina Children's Hospital, University Medical Center Utrecht, AB Utrecht, The Netherlands
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht Brain Center, Utrecht University, GA Utrecht, The Netherlands
| |
Collapse
|