1
|
Huang J, Cheng R, Liu X, Chen L, Luo T. Association of cortical macrostructural and microstructural changes with cognitive performance and gene expression in subcortical ischemic vascular disease patients with cognitive impairment. Brain Res Bull 2025; 222:111239. [PMID: 39909351 DOI: 10.1016/j.brainresbull.2025.111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
OBJECTIVE Previous researches have demonstrated that patients with subcortical ischemic vascular disease (SIVD) exhibited brain structure abnormalities. However, the cortical macrostructural and microstructural characteristics and their relationship with cognitive scores and gene expression in SIVD patients remain largely unknown. METHODS This study collected 3D-T1 and diffusion tensor imaging data from 30 SIVD patients with cognitive impairment (SIVD-CI) and 32 normal controls. The between-group comparative analyses of cortical thickness, area, volume, local gyrification index (LGI), and mean diffusivity (MD) were conducted with a general linear model. Moreover, the associations between the significant neuroimaging values and the cognitive scores and gene expression values from Allen Human Brain Atlas database were evaluated using partial least squares regression and partial correlation analysis. RESULTS SIVD-CI patients showed significant decreases in cortical thicknesses across 18 regions, cortical volumes across three regions, and cortical LGI across five regions, as well as significant increases in cortical MD across five regions (P < 0.05). The significantly reduced cortical thicknesses of the right insula, left superior temporal gyrus, left central anterior gyrus, and left caudal anterior cingulate cortex, as well as the significantly reduced cortical LGI in left caudal anterior cingulate cortex, were significantly positively correlated with different cognitive scores (P < 0.05). Furthermore, the abnormal cortical structural indicators were found to be significantly related to nine risk genes (VCAN, APOE, EFEMP1, SALL1, BCAN, KCNK2, EPN2, DENND1B and XKR6) (P < 0.05). CONCLUSIONS The specific cortical structural damage may be related to specific cognitive decline and specific risk genes in SIVD-CI patients.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Runtian Cheng
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiaoshuang Liu
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Li Chen
- Department of Radiology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Tianyou Luo
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Debatisse J, Leng F, Ashraf A, Edison P. Cortical Diffusivity, a Biomarker for Early Neuronal Damage, Is Associated with Amyloid-β Deposition: A Pilot Study. Cells 2025; 14:155. [PMID: 39936947 PMCID: PMC11817142 DOI: 10.3390/cells14030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
Pathological alterations in Alzheimer's disease (AD) begin several years prior to symptom onset. Cortical mean diffusivity (cMD) may be used as a measure of early grey matter damage in AD as it reflects the breakdown of microstructural barriers preceding volumetric changes and affecting cognitive function. We investigated cMD changes early in the disease trajectory and evaluated the influence of amyloid-β (Aβ) and tau deposition. In this cross-sectional study, we analysed multimodal PET, DTI, and MRI data of 87 participants, and stratified them into Aβ-negative and -positive, cognitively normal, mildly cognitively impaired, and AD patients. cMD was significantly increased in Aβ-positive MCI and AD compared with CN in the frontal, parietal, temporal cortex, hippocampus, and medial temporal lobe. cMD was significantly correlated with cortical thickness only in patients without Aβ deposition but not in Aβ-positive patients. Our results suggest that cMD is an early marker of neuronal damage since it is observed simultaneously with Aβ deposition and is correlated with cortical thickness only in subjects without Aβ deposition. cMD changes may be driven by Aβ but not tau, suggesting that direct Aβ toxicity or associated inflammation causes damage to neurons. cMD may provide information about early microstructural changes before macrostructural changes.
Collapse
Affiliation(s)
- Justine Debatisse
- Division of Neurology, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; (J.D.); (F.L.); (A.A.)
| | - Fangda Leng
- Division of Neurology, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; (J.D.); (F.L.); (A.A.)
| | - Azhaar Ashraf
- Division of Neurology, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; (J.D.); (F.L.); (A.A.)
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; (J.D.); (F.L.); (A.A.)
- School of Medicine, Cardiff University, Wales CF14 4YS, UK
| |
Collapse
|
3
|
Knopper RW, Skoven CS, Eskildsen SF, Østergaard L, Hansen B. The effects of locus coeruleus ablation on mouse brain volume and microstructure evaluated by high-field MRI. Front Cell Neurosci 2024; 18:1498133. [PMID: 39722677 PMCID: PMC11668759 DOI: 10.3389/fncel.2024.1498133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
The locus coeruleus (LC) produces most of the brain's noradrenaline (NA). Among its many roles, NA is often said to be neuroprotective and important for brain upkeep. For this reason, loss of LC integrity is thought to impact brain volume and microstructure as well as plasticity broadly. LC dysfunction is also a suspected driver in the development of neurodegenerative diseases. Nevertheless, the impact of LC dysfunction on the gross structure and microstructure of normal brains is not well-studied. We employed high-field ex vivo magnetic resonance imaging (MRI) to investigate brain volumetrics and microstructure in control (CON) mice and mice with LC ablation (LCA) at two ages, representing the developing brain and the fully matured brain. These whole-brain methods are known to be capable of detecting subtle morphological changes and brain microstructural remodeling. We found mice behavior consistent with histologically confirmed LC ablation. However, MRI showed no difference between CON and LCA groups with regard to brain size, relative regional volumes, or regional microstructural indices. Our findings suggest that LC-NA is not needed for postnatal brain maturation and growth in mice. Nor is it required for maintenance in the normal adult mouse brain, as no atrophy or microstructural aberration is detected after weeks of LC dysfunction. This adds clarity to the often-encountered notion that LC-NA is important for brain "trophic support" as it shows that such effects are likely most relevant to mechanisms related to brain plasticity and neuroprotection in the (pre)diseased brain.
Collapse
Affiliation(s)
- Rasmus West Knopper
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Christian Stald Skoven
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simon Fristed Eskildsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Westi EW, Molhemi S, Hansen CT, Skoven CS, Knopper RW, Ahmad DA, Rindshøj MB, Ameen AO, Hansen B, Kohlmeier KA, Aldana BI. Comprehensive Analysis of the 5xFAD Mouse Model of Alzheimer's Disease Using dMRI, Immunohistochemistry, and Neuronal and Glial Functional Metabolic Mapping. Biomolecules 2024; 14:1294. [PMID: 39456227 PMCID: PMC11505609 DOI: 10.3390/biom14101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by complex interactions between neuropathological markers, metabolic dysregulation, and structural brain changes. In this study, we utilized a multimodal approach, combining immunohistochemistry, functional metabolic mapping, and microstructure sensitive diffusion MRI (dMRI) to progressively investigate these interactions in the 5xFAD mouse model of AD. Our analysis revealed age-dependent and region-specific accumulation of key AD markers, including amyloid-beta (Aβ), GFAP, and IBA1, with significant differences observed between the hippocampal formation and upper and lower regions of the cortex by 6 months of age. Functional metabolic mapping validated localized disruptions in energy metabolism, with glucose hypometabolism in the hippocampus and impaired astrocytic metabolism in the cortex. Notably, increased cortical glutaminolysis suggested a shift in microglial metabolism, reflecting an adaptive response to neuroinflammatory processes. While dMRI showed no significant microstructural differences between 5xFAD and wild-type controls, the study highlights the importance of metabolic alterations as critical events in AD pathology. These findings emphasize the need for targeted therapeutic strategies addressing specific metabolic disturbances and underscore the potential of integrating advanced imaging with metabolic and molecular analyses to advance our understanding of AD progression.
Collapse
Affiliation(s)
- Emil W. Westi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (E.W.W.); (C.T.H.); (D.A.A.); (M.B.R.); (A.O.A.); (K.A.K.)
| | - Saba Molhemi
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; (S.M.); (C.S.S.); (R.W.K.); (B.H.)
| | - Caroline Termøhlen Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (E.W.W.); (C.T.H.); (D.A.A.); (M.B.R.); (A.O.A.); (K.A.K.)
| | - Christian Stald Skoven
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; (S.M.); (C.S.S.); (R.W.K.); (B.H.)
| | - Rasmus West Knopper
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; (S.M.); (C.S.S.); (R.W.K.); (B.H.)
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100040, China
| | - Dashne Amein Ahmad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (E.W.W.); (C.T.H.); (D.A.A.); (M.B.R.); (A.O.A.); (K.A.K.)
| | - Maja B. Rindshøj
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (E.W.W.); (C.T.H.); (D.A.A.); (M.B.R.); (A.O.A.); (K.A.K.)
| | - Aishat O. Ameen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (E.W.W.); (C.T.H.); (D.A.A.); (M.B.R.); (A.O.A.); (K.A.K.)
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; (S.M.); (C.S.S.); (R.W.K.); (B.H.)
| | - Kristi A. Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (E.W.W.); (C.T.H.); (D.A.A.); (M.B.R.); (A.O.A.); (K.A.K.)
| | - Blanca I. Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (E.W.W.); (C.T.H.); (D.A.A.); (M.B.R.); (A.O.A.); (K.A.K.)
| |
Collapse
|
5
|
Tang R, Franz CE, Hauger RL, Dale AM, Dorros SM, Eyler LT, Fennema-Notestine C, Hagler DJ, Lyons MJ, Panizzon MS, Puckett OK, Williams ME, Elman JA, Kremen WS. Early Cortical Microstructural Changes in Aging Are Linked to Vulnerability to Alzheimer's Disease Pathology. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:975-985. [PMID: 38878863 PMCID: PMC11756816 DOI: 10.1016/j.bpsc.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Early identification of Alzheimer's disease (AD) risk is critical for improving treatment success. Cortical thickness is a macrostructural measure used to assess neurodegeneration in AD. However, cortical microstructural changes appear to precede macrostructural atrophy and may improve early risk identification. Currently, whether cortical microstructural changes in aging are linked to vulnerability to AD pathophysiology remains unclear in nonclinical populations, who are precisely the target for early risk identification. METHODS In 194 adults, we calculated magnetic resonance imaging-derived maps of changes in cortical mean diffusivity (microstructure) and cortical thickness (macrostructure) over 5 to 6 years (mean age: time 1 = 61.82 years; time 2 = 67.48 years). Episodic memory was assessed using 3 well-established tests. We obtained positron emission tomography-derived maps of AD pathology deposition (amyloid-β, tau) and neurotransmitter receptors (cholinergic, glutamatergic) implicated in AD pathophysiology. Spatial correlational analyses were used to compare pattern similarity among maps. RESULTS Spatial patterns of cortical macrostructural changes resembled patterns of cortical organization sensitive to age-related processes (r = -0.31, p < .05), whereas microstructural changes resembled the patterns of tau deposition in AD (r = 0.39, p = .038). Individuals with patterns of microstructural changes that more closely resembled stereotypical tau deposition exhibited greater memory decline (β = 0.22, p = .029). Microstructural changes and AD pathology deposition were enriched in areas with greater densities of cholinergic and glutamatergic receptors (ps < .05). CONCLUSIONS Patterns of cortical microstructural changes were more AD-like than patterns of macrostructural changes, which appeared to reflect more general aging processes. Microstructural changes may better inform early risk prediction efforts as a sensitive measure of vulnerability to pathological processes prior to overt atrophy and cognitive decline.
Collapse
Affiliation(s)
- Rongxiang Tang
- Department of Psychiatry, University of California San Diego, La Jolla, California; Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California.
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, California; Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California
| | - Richard L Hauger
- Department of Psychiatry, University of California San Diego, La Jolla, California; Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California; Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, California; Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Stephen M Dorros
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Lisa T Eyler
- Department of Psychiatry, University of California San Diego, La Jolla, California; Desert Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, California; Department of Radiology, University of California San Diego, La Jolla, California
| | - Donald J Hagler
- Department of Radiology, University of California San Diego, La Jolla, California
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, California; Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California
| | - Olivia K Puckett
- Department of Psychiatry, University of California San Diego, La Jolla, California; Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California
| | - McKenna E Williams
- Department of Psychiatry, University of California San Diego, La Jolla, California; Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California; Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, California
| | - Jeremy A Elman
- Department of Psychiatry, University of California San Diego, La Jolla, California; Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, California; Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, California
| |
Collapse
|
6
|
Sun P, He Z, Li A, Yang J, Zhu Y, Cai Y, Ma T, Ma S, Guo T. Spatial and temporal patterns of cortical mean diffusivity in Alzheimer's disease and suspected non-Alzheimer's disease pathophysiology. Alzheimers Dement 2024; 20:7048-7061. [PMID: 39132849 PMCID: PMC11485315 DOI: 10.1002/alz.14176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION The spatial and temporal patterns of cortical mean diffusivity (cMD), as well as its association with Alzheimer's disease (AD) and suspected non-Alzheimer's pathophysiology (SNAP), are not yet fully understood. METHODS We compared baseline (n = 617) and longitudinal changes (n = 421) of cMD, cortical thickness, and gray matter volume and their relations to vascular risk factors, amyloid beta (Aβ), and tau positron emission tomography (PET), and longitudinal cognitive decline in Aβ PET negative and positive older adults. RESULTS cMD increases were more sensitive to detecting brain structural alterations than cortical thinning and gray matter atrophy. Tau-related cMD increases partially mediated Aβ-related cognitive decline in AD, whereas vascular disease-related increased cMD levels substantially mediated age-related cognitive decline in SNAP. DISCUSSION These findings revealed the dynamic changes of microstructural and macrostructural indicators and their associations with AD and SNAP, providing novel insights into understanding upstream and downstream events of cMD in neurodegenerative disease. HIGHLIGHTS Cortical mean diffusivity (cMD) was more sensitive to detecting structural changes than macrostructural factors. Tau-related cMD increases partially mediated amyloid beta-related cognitive decline in Alzheimer's disease (AD). White matter hyperintensity-related higher cMD mainly explained the age-related cognitive decline in suspected non-Alzheimer's pathophysiology (SNAP). cMD may assist in tracking earlier neurodegenerative signs in AD and SNAP.
Collapse
Affiliation(s)
- Pan Sun
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhenChina
| | - Zhengbo He
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Anqi Li
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Jie Yang
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Yalin Zhu
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Yue Cai
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Ting Ma
- School of Electronic and Information EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenChina
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS)Tsinghua UniversityShenzhenChina
| | - Tengfei Guo
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
- Institute of Biomedical EngineeringPeking University Shenzhen Graduate SchoolShenzhenChina
| | | |
Collapse
|
7
|
Beckers E, Van Egroo M, Ashton NJ, Blennow K, Vandewalle G, Zetterberg H, Poser BA, Jacobs HIL. Microstructural associations between locus coeruleus, cortical, and subcortical regions are modulated by astrocyte reactivity: a 7T MRI adult lifespan study. Cereb Cortex 2024; 34:bhae261. [PMID: 38904081 PMCID: PMC11190376 DOI: 10.1093/cercor/bhae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024] Open
Abstract
The locus coeruleus-norepinephrine system plays a key role in supporting brain health along the lifespan, notably through its modulatory effects on neuroinflammation. Using ultra-high field diffusion magnetic resonance imaging, we examined whether microstructural properties (neurite density index and orientation dispersion index) in the locus coeruleus were related to those in cortical and subcortical regions, and whether this was modulated by plasma glial fibrillary acidic protein levels, as a proxy of astrocyte reactivity. In our cohort of 60 healthy individuals (30 to 85 yr, 50% female), higher glial fibrillary acidic protein correlated with lower neurite density index in frontal cortical regions, the hippocampus, and the amygdala. Furthermore, under higher levels of glial fibrillary acidic protein (above ~ 150 pg/mL for cortical and ~ 145 pg/mL for subcortical regions), lower locus coeruleus orientation dispersion index was associated with lower orientation dispersion index in frontotemporal cortical regions and in subcortical regions. Interestingly, individuals with higher locus coeruleus orientation dispersion index exhibited higher orientation dispersion index in these (sub)cortical regions, despite having higher glial fibrillary acidic protein levels. Together, these results suggest that the interaction between locus coeruleus-norepinephrine cells and astrocytes can signal a detrimental or neuroprotective pathway for brain integrity and support the importance of maintaining locus coeruleus neuronal health in aging and in the prevention of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Elise Beckers
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands
- GIGA-CRC Human Imaging, University of Liège, 4000 Liège, Belgium
| | - Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London SE5 9RT, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London SE5 8AF, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, 75013 Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230036, China
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London W1T 7NF, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Alzheimer Centre Limburg, Maastricht University, 6229 ET Maastricht, The Netherlands
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Rodriguez-Vieitez E, Vannini P, Montal V, Graff C. Cortical microstructural imaging from diffusion MRI: towards sensitive biomarkers for clinical trials. Brain 2024; 147:746-748. [PMID: 38408356 DOI: 10.1093/brain/awae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
This scientific commentary refers to ‘Diffusion MRI tracks cortical microstructural changes during the early stages of Alzheimer’s disease’ by Spotorno et al. (https://doi.org/10.1093/brain/awad428).
Collapse
Affiliation(s)
- Elena Rodriguez-Vieitez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Patrizia Vannini
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Caroline Graff
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|