1
|
Donlon E, O'Keeffe C, Horan J, Ruggieri F, Fitzpatrick J, O'Neill M, Alexander M, Fearon C, Moran C, Walsh RA. Clinical Outcomes with Prospective Brain Sensing Data Following Bilateral Globus Pallidus Deep Brain Stimulation in X-Linked Dystonia Parkinsonism. Mov Disord Clin Pract 2025. [PMID: 40088078 DOI: 10.1002/mdc3.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 01/29/2025] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Affiliation(s)
- Eoghan Donlon
- Dublin Neurological Institute, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Clodagh O'Keeffe
- Dublin Neurological Institute, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Jack Horan
- Dublin Neurological Institute, Mater Misericordiae University Hospital, Dublin, Ireland
- Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - Frederica Ruggieri
- Dublin Neurological Institute, Mater Misericordiae University Hospital, Dublin, Ireland
| | | | | | - Michael Alexander
- Department of Neurophysiology, Tallaght University Hospital, Dublin, Ireland
| | - Conor Fearon
- Dublin Neurological Institute, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Catherine Moran
- Dublin Neurological Institute, Mater Misericordiae University Hospital, Dublin, Ireland
- Department of Neurosurgery, Beaumont Hospital, Dublin, Ireland
| | - Richard A Walsh
- Dublin Neurological Institute, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Haverland B, Timmsen LS, Wolf S, Stagg CJ, Frontzkowski L, Oostenveld R, Schön G, Feldheim J, Higgen FL, Gerloff C, Schulz R, Schneider TR, Schwab BC, Quandt F. Human cortical high-gamma power scales with movement rate in healthy participants and stroke survivors. J Physiol 2025; 603:873-893. [PMID: 39786979 PMCID: PMC11826070 DOI: 10.1113/jp286873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Motor cortical high-gamma oscillations (60-90 Hz) occur at movement onset and are spatially focused over the contralateral primary motor cortex. Although high-gamma oscillations are widely recognized for their significance in human motor control, their precise function on a cortical level remains elusive. Importantly, their relevance in human stroke pathophysiology is unknown. Because motor deficits are fundamental determinants of symptom burden after stroke, understanding the neurophysiological processes of motor coding could be an important step in improving stroke rehabilitation. We recorded magnetoencephalography data during a thumb movement rate task in 14 chronic stroke survivors, 15 age-matched control participants and 29 healthy young participants. Motor cortical high-gamma oscillations showed a strong relation with movement rate as trials with higher movement rate were associated with greater high-gamma power. Although stroke survivors showed reduced cortical high-gamma power, this reduction primarily reflected the scaling of high-gamma power with movement rate, yet after matching movement rate in stroke survivors and age-matched controls, the reduction of high-gamma power exceeded the effect of their decreased movement rate alone. Even though motor skill acquisition was evident in all three groups, it was not linked to high-gamma power. Our study quantifies high-gamma oscillations after stroke, revealing a reduction in movement-related high-gamma power. Moreover, we provide strong evidence for a pivotal role of motor cortical high-gamma oscillations in encoding movement rate. KEY POINTS: Neural oscillations in the high-gamma frequency range (60-90 Hz) emerge in the human motor cortex during movement. The precise function of these oscillations in motor control remains unclear, and they have never been characterized in stroke survivors. In a magnetoencephalography study, we demonstrate that high-gamma oscillations in motor cortical areas scale with movement rate, and we further explore their temporal and spatial characteristics. Stroke survivors exhibit lower high-gamma power during movement than age-matched control participants, even after matching for movement rate. The results contribute to the understanding of the role of high-gamma oscillations in motor control and have important implications for neuromodulation in stroke rehabilitation.
Collapse
Affiliation(s)
- Benjamin Haverland
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of Neurophysiology and PathophysiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Lena S. Timmsen
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of Neurophysiology and PathophysiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Silke Wolf
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Charlotte J. Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Lukas Frontzkowski
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Robert Oostenveld
- Radboud University, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- NatMEG, Karolinska InstitutetStockholmSweden
| | - Gerhard Schön
- Institute of Medical Biometry and EpidemiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jan Feldheim
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Focko L. Higgen
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christian Gerloff
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Robert Schulz
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Till R. Schneider
- Department of Neurophysiology and PathophysiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bettina C. Schwab
- Department of Neurophysiology and PathophysiologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Biomedical Signals and Systems, Technical Medical CentreUniversity of TwenteEnschedeThe Netherlands
| | - Fanny Quandt
- Department of NeurologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
3
|
Cai N, Shi W, Chen R, Chen B, Li Y, Wang N. Cerebral-Cerebellar Cortical Activity and Connectivity Underlying Sensory Trick in Cervical Dystonia. Ann Clin Transl Neurol 2024; 11:2633-2644. [PMID: 39152615 PMCID: PMC11514925 DOI: 10.1002/acn3.52177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the activity and connectivity of cerebral and cerebellar cortices underlying the sensory trick (ST) effects in patients with cervical dystonia (CD), using electroencephalography (EEG). METHODS We recruited 15 CD patients who exhibited clinically effective ST and 15 healthy controls (HCs) who mimicked the ST maneuver. EEG signals and multiple-channel electromyography (EMG) were recorded simultaneously during resting and acting stages. EEG source analysis and functional connectivity were performed. To account for the effects of sensory processing, we calculated relative power changes as the difference in power spectral density between resting and the maneuver execution. RESULTS ST induced a decrease in low gamma (30-50 Hz) spectral power in the primary sensory and cerebellar cortices, which remained lower than in HCs during the maintenance period. Compared with HCs, patients exhibited consistently strengthened connectivity within the sensorimotor network during the maintenance period, particularly in the primary sensory-sensorimotor cerebellum connection. INTERPRETATION The application of ST resulted in altered cortical excitability and functional connectivity regulated by gamma oscillation in CD patients, suggesting that this effect cannot be solely attributed to motor components. The cerebellum may play important roles in mediating the ST effects.
Collapse
Affiliation(s)
- Nai‐Qing Cai
- Department of Neurology, the First Affiliated HospitalFujian Medical UniversityFuzhou350005FujianChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhou350212FujianChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| | - Wu‐Xiang Shi
- Department of Fujian Provincial Key Lab. of Medical Instrument and Pharmaceutical TechnologyFuzhou UniversityFuzhou350108FujianChina
- College of Electrical Engineering and AutomationFuzhou UniversityFuzhou350108FujianChina
| | - Ru‐Kai Chen
- Department of Neurology, the First Affiliated HospitalFujian Medical UniversityFuzhou350005FujianChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhou350212FujianChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| | - Bo‐Li Chen
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| | - Yu‐Rong Li
- Department of Fujian Provincial Key Lab. of Medical Instrument and Pharmaceutical TechnologyFuzhou UniversityFuzhou350108FujianChina
- College of Electrical Engineering and AutomationFuzhou UniversityFuzhou350108FujianChina
| | - Ning Wang
- Department of Neurology, the First Affiliated HospitalFujian Medical UniversityFuzhou350005FujianChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhou350212FujianChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| |
Collapse
|
4
|
Ebden M, Elkaim LM, Breitbart S, Yan H, Warsi N, Huynh M, Mithani K, Venetucci Gouveia F, Fasano A, Ibrahim GM, Gorodetsky C. Chronic Pallidal Local Field Potentials Are Associated With Dystonic Symptoms in Children. Neuromodulation 2024; 27:551-556. [PMID: 37768258 DOI: 10.1016/j.neurom.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Novel deep brain stimulation devices can record local field potentials (LFPs), which represent the synchronous synaptic activity of neuronal populations. The clinical relevance of LFPs in patients with dystonia remains unclear. OBJECTIVES We sought to determine whether chronic LFPs recorded from the globus pallidus internus (GPi) were associated with symptoms of dystonia in children. MATERIALS AND METHODS Ten patients with heterogeneous forms of dystonia (genetic and acquired) were implanted with neurostimulators that recorded LFP spectral snapshots. Spectra were compared across parent-reported asymptomatic and symptomatic periods, with daily narrowband data superimposed in 24 one-hour bins. RESULTS Spectral power increased during periods of registered dystonic symptoms: mean increase = 102%, CI: (76.7, 132). Circadian rhythms within the LFP narrowband time series correlated with dystonic symptoms: for delta/theta-waves, correlation = 0.33, CI: (0.18, 0.47) and for alpha waves, correlation = 0.27, CI: (0.14, 0.40). CONCLUSIONS LFP spectra recorded in the GPi indicate a circadian pattern and are associated with the manifestation of dystonic symptoms.
Collapse
Affiliation(s)
- Mark Ebden
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lior M Elkaim
- Division of Neurology and Neurosurgery, McGill University, McGill University Health Centre, Montreal, Quebec, Canada
| | - Sara Breitbart
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Han Yan
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nebras Warsi
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - MyLoi Huynh
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karim Mithani
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Flavia Venetucci Gouveia
- Neurosciences and Mental Health Program, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada; CenteR for Advancing Neurotechnological Innovation to Application, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, the Hospital for Sick Children, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Carolina Gorodetsky
- Division of Neurology, the Hospital for Sick Children, Toronto, Ontario, Canada; Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
He J, Xiong B, Ran Q, Zhang T, Wang W, Zhang W, Jiang N. Variation Minimization Based Electrocardiogram Artifacts Removal for Local Field Potentials From Neurostimulator. IEEE Trans Neural Syst Rehabil Eng 2024; 32:94-101. [PMID: 38064322 DOI: 10.1109/tnsre.2023.3341160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Local field potential (LFP) recorded by sensing-enabled neurostimulators provided chronic observation of deep brain activities for the research of brain disorders. However, the contamination from the electrocardiogram (ECG) deteriorated the extraction of effective information from LFP. This study proposed a novel algorithm based on minimizing the variance combining template subtraction to improve the performance of ECG artifact removal for LFP. Four patients with implanted electrodes were recruited, and eight real LFP records were collected from their left and right hemispheres, respectively. The results showed that the proposed method improved the accuracy of artifact peak detection in LFP, and the subsequent signal quality after template subtraction compared to the traditional Pan-Tompkins (PT) method. The outcome of this study benefited the LFP-based brain research, promoting the application of sensing-enabled neurostimulators in more areas.
Collapse
|
6
|
Terao Y, Fukuda H, Hikosaka O, Yugeta A, Matsuda SI, Fisicaro F, Ugawa Y, Hoshino K, Nomura Y. Age- and sex-related oculomotor manifestation of dopamine deficiency in Segawa disease. Clin Neurophysiol 2024; 157:73-87. [PMID: 38064930 DOI: 10.1016/j.clinph.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 10/28/2023] [Accepted: 11/11/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To investigate the oculomotor manifestations of Segawa disease (SD), considered to represent mild dopamine deficiency and discuss their pathophysiological basis. METHODS We recorded visually- (VGS) and memory-guided saccade (MGS) tasks in 31 SD patients and 153 age-matched control subjects to study how basal ganglia (BG) dysfunction in SD evolves with age for male and female subjects. RESULTS SD patients were impaired in initiating MGS, showing longer latencies with occasional failure. Patients showed impaired ability to suppress reflexive saccades; saccades to cues presented in MGS were more frequent and showed a shorter latency than in control subjects. These findings were more prominent in male patients, particularly between 13 and 25 years. Additionally, male patients showed larger delay in MGS latency in trials preceded by saccades to cue than those unpreceded. CONCLUSIONS The findings can be explained by a dysfunction of the BG-direct pathway impinging on superior colliculus (SC) due to dopamine deficiency. The disturbed inhibitory control of saccades may be explained by increased SC responsivity to visual stimuli. SIGNIFICANCE Oculomotor abnormalities in SD can be explained by dysfunction of the BG inhibitory pathways reaching SC, with a delayed maturation in male SD patients, consistent with previous pathological/physiological studies.
Collapse
Affiliation(s)
- Yasuo Terao
- Department of Neurology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Medical Physiology, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan.
| | - Hideki Fukuda
- Segawa Memorial Neurological Clinic for Children, 2-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Okihide Hikosaka
- Section of Neuronal Networks, Laboratory of Sensorimotor Research, National Eye Institute, 49 Convent Drive, Bethesda 20892-4435, MD, USA
| | - Akihiro Yugeta
- Department of Neurology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shun-Ichi Matsuda
- Department of Neurology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Piazza Università, 2, 95131 Catalina, Italy
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Kyoko Hoshino
- Segawa Memorial Neurological Clinic for Children, 2-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yoshiko Nomura
- Yoshiko Nomura Neurological Clinic for Children, Tokyo 113-0034, Japan
| |
Collapse
|
7
|
Averna A, Arlotti M, Rosa M, Chabardès S, Seigneuret E, Priori A, Moro E, Meoni S. Pallidal and Cortical Oscillations in Freely Moving Patients With Dystonia. Neuromodulation 2023; 26:1661-1667. [PMID: 34328685 DOI: 10.1111/ner.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To evaluate the correlation between the pallidal local field potentials (LFPs) activity and the cortical oscillations (at rest and during several motor tasks) in two freely moving patients with generalized dystonia and pallidal deep brain stimulation (DBS). MATERIALS AND METHODS Two women with isolated generalized dystonia were selected for bilateral globus pallidus internus (GPi) DBS. After the electrodes' implantation, cortical activity was recorded by a portable electroencephalography (EEG) system simultaneously with GPi LFPs activity, during several motor tasks, gait, and rest condition. Recordings were not performed during stimulation. EEG and LFPs signals relative to each specific movement were coupled together and grouped in neck/upper limbs movements and gait. Power spectral density (PSD), EEG-LFP coherence (through envelope of imaginary coherence operator), and 1/f exponent of LFP-PSD background were calculated. RESULTS In both patients, the pallidal LFPs PSD at rest was characterized by prominent 4-12 Hz activity. Voluntary movements increased activity in the theta (θ) band (4-7 Hz) compared to rest, in both LFPs and EEG signals. Gait induced a drastic raise of θ activity in both patients' pallidal activity, less marked for the EEG signal. A coherence peak within the 8-13 Hz range was found between pallidal LFPs and EEG recorded at rest. CONCLUSIONS Neck/upper limbs voluntary movements and gait suppressed the GPi-LFPs-cortical-EEG coherence and differently impacted both EEG and LFPs low frequency activity. These findings suggest a selective modulation of the cortico-basal ganglia network activity in dystonia.
Collapse
Affiliation(s)
- Alberto Averna
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy
| | - Mattia Arlotti
- Clinical Center for Neurotechnologies, Neuromodulation, and Movement Disorders, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Rosa
- Clinical Center for Neurotechnologies, Neuromodulation, and Movement Disorders, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stéphan Chabardès
- Université Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France; Division of Neurosurgery, Grenoble Alpes University Hospital Center, Grenoble, France
| | - Eric Seigneuret
- Université Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France; Division of Neurosurgery, Grenoble Alpes University Hospital Center, Grenoble, France
| | - Alberto Priori
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy; Neurology, Department of Health Sciences, San Paolo University Hospital, Azienda Socio Sanitaria Territoriale Santi Paolo e Carlo, University of Milan Medical School, Milan, Italy
| | - Elena Moro
- Université Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France; Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France
| | - Sara Meoni
- "Aldo Ravelli" Center for Nanotechnology and Neurostimulation, University of Milan, Milan, Italy; Université Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France; Movement Disorders Unit, Division of Neurology, CHU Grenoble Alpes, Grenoble, France.
| |
Collapse
|
8
|
Sedov A, Joshi P, Semenova U, Usova S, Asriyants S, Gamaleya A, Tomskiy A, Jinnah HA, Shaikh AG. Proprioceptive Modulation of Pallidal Physiology in Cervical Dystonia. Mov Disord 2023; 38:2094-2102. [PMID: 37702261 DOI: 10.1002/mds.29603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND There is a growing body of evidence suggesting that botulinum toxin can alter proprioceptive feedback and modulate the muscle-spindle output for the treatment of dystonia. However, the mechanism for this modulation remains unclear. METHODS We conducted a study involving 17 patients with cervical dystonia (CD), seven of whom had prominent CD and 10 with generalized dystonia (GD) along with CD. We investigated the effects of neck vibration, a form of proprioceptive modulation, on spontaneous single-neuron responses and local field potentials (LFPs) recorded from the globus pallidum externus (GPe) and internus (GPi). RESULTS Our findings demonstrated that neck vibration notably increased the regularity of neck-sensitive GPi neurons in focal CD patients. Additionally, in patients with GD and CD, the vibration enhanced the firing regularity of non-neck-sensitive neurons. These effects on single-unit activity were also mirrored in ensemble responses measured through LFPs. Notably, the LFP modulation was particularly pronounced in areas populated with burst neurons compared to pause or tonic cells. CONCLUSION The results from our study emphasize the significance of burst neurons in the pathogenesis of dystonia and in the efficacy of proprioceptive modulation for its treatment. Moreover, we observed that the effects of vibration on focal CD were prominent in the α band LFP, indicating modulation of pallido-cerebellar connectivity. Moreover, the pallidal effects of vibration in GD with CD involved modulation of cerebro-pallidal θ band connectivity. Our analysis provides insight into how vibration-induced changes in pallidal activity are integrated into the downstream motor circuit. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexey Sedov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - Prajakta Joshi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ulia Semenova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana Usova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana Asriyants
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Anna Gamaleya
- Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Alexey Tomskiy
- Burdenko National Scientific and Practical Center for Neurosurgery, Moscow, Russia
| | - Hyder A Jinnah
- Department of Neurology, Pediatrics, and Genetics, Emory University, Atlanta, Georgia, USA
| | - Aasef G Shaikh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio, USA
- Neurological Institute, University Hospitals, Cleveland, Ohio, USA
- Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Zhang R, Nie Y, Dai W, Wang S, Geng X. Balance between pallidal neural oscillations correlated with dystonic activity and severity. Neurobiol Dis 2023:106178. [PMID: 37268239 DOI: 10.1016/j.nbd.2023.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/14/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The balance between neural oscillations provides valuable insights into the organisation of neural oscillations related to brain states, which may play important roles in dystonia. We aim to investigate the relationship of the balance in the globus pallidus internus (GPi) with the dystonic severity under different muscular contraction conditions. METHODS Twenty-one patients with dystonia were recruited. All of them underwent bilateral GPi implantation, and local field potentials (LFPs) from the GPi were recorded via simultaneous surface electromyography. The power spectral ratio between neural oscillations was computed as the measure of neural balance. This ratio was calculated under high and low dystonic muscular contraction conditions, and its correlation with the dystonic severity was assessed using clinical scores. RESULTS The power spectral of the pallidal LFPs peaked in the theta and alpha bands. Within participant comparison showed that the power spectral of the theta oscillations significantly increased during high muscle contraction compared with that during low contraction. The power spectral ratios between the theta and alpha, theta and low beta, and theta and high gamma oscillations were significantly higher during high contraction than during low contraction. The total score and motor score were associated with the power spectral ratio between the low and high beta oscillations, which was correlated with the dystonic severity both during high and low contractions. The power spectral ratios between the low beta and low gamma and between the low beta and high gamma oscillations showed a significantly positive correlation with the total score during both high and low contractions; a correlation with the motor scale score was found only during high contraction. Meanwhile, the power spectral ratio between the theta and alpha oscillations during low contraction showed a significantly negative correlation with the total score. The power spectral ratios between the alpha and high beta, alpha and low gamma, and alpha and high gamma oscillations were significantly correlated with the dystonic severity only during low contraction. CONCLUSION The balance between neural oscillations, as quantified by the power ratio between specific frequency bands, differed between the high and low muscular contraction conditions and was correlated with the dystonic severity. The balance between the low and high beta oscillations was correlated with the dystonic severity during both conditions, making this parameter a new possible biomarker for closed-loop deep brain stimulation in patients with dystonia.
Collapse
Affiliation(s)
- Ruili Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wen Dai
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China; Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, China; Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China.
| |
Collapse
|
10
|
Fischer P, Piña-Fuentes D, Kassavetis P, Sadnicka A. Physiology of dystonia: Human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:137-162. [PMID: 37482391 DOI: 10.1016/bs.irn.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In this chapter, we discuss neurophysiological techniques that have been used in the study of dystonia. We examine traditional disease models such as inhibition and excessive plasticity and review the evidence that these play a causal role in pathophysiology. We then review the evidence for sensory and peripheral influences within pathophysiology and look at an emergent literature that tries to probe how oscillatory brain activity may be linked to dystonia pathophysiology.
Collapse
Affiliation(s)
- Petra Fischer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Dan Piña-Fuentes
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands; Department of Neurology, OLVG, Amsterdam, The Netherlands
| | | | - Anna Sadnicka
- Motor Control and Movement Disorders Group, St George's University of London, London, United Kingdom; Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
11
|
Lenka A, Pandey S. Dystonia and tremor: Do they have a shared biology? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:413-439. [PMID: 37482399 DOI: 10.1016/bs.irn.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia and tremor are the two most commonly encountered hyperkinetic movement disorders encountered in clinical practice. While there has been substantial progress in the research on these two disorders, there also exists a lot of gray areas. Entities such as dystonic tremor and tremor associated with dystonia occupy a major portion of the "gray zone". In addition, there is a marked clinical heterogeneity and overlap of several clinical and epidemiological features among dystonia and tremor. These facts raise the possibility that dystonia and tremor could be having shared biology. In this chapter, we revisit critical aspects of this possibility that may have important clinical and research implications in the future. We comprehensively review the points in favor and against the theory that dystonia and tremor have shared biology from clinical, epidemiological, genetic and neuroimaging studies.
Collapse
Affiliation(s)
- Abhishek Lenka
- Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, TX, United States
| | - Sanjay Pandey
- Department of Neurology, Amrita Hospital, Faridabad, Delhi National Capital Region, India.
| |
Collapse
|
12
|
Wiest C, Morgante F, Torrecillos F, Pogosyan A, He S, Baig F, Bertaina I, Hart MG, Edwards MJ, Pereira EA, Tan H. Subthalamic Nucleus Stimulation-Induced Local Field Potential Changes in Dystonia. Mov Disord 2023; 38:423-434. [PMID: 36562479 PMCID: PMC7614354 DOI: 10.1002/mds.29302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Subthalamic nucleus (STN) stimulation is an effective treatment for Parkinson's disease and induced local field potential (LFP) changes that have been linked with clinical improvement. STN stimulation has also been used in dystonia although the internal globus pallidus is the standard target where theta power has been suggested as a physiomarker for adaptive stimulation. OBJECTIVE We aimed to explore if enhanced theta power was also present in STN and if stimulation-induced spectral changes that were previously reported for Parkinson's disease would occur in dystonia. METHODS We recorded LFPs from 7 patients (12 hemispheres) with isolated craniocervical dystonia whose electrodes were placed such that inferior, middle, and superior contacts covered STN, zona incerta, and thalamus. RESULTS We did not observe prominent theta power in STN at rest. STN stimulation induced similar spectral changes in dystonia as in Parkinson's disease, such as broadband power suppression, evoked resonant neural activity (ERNA), finely-tuned gamma oscillations, and an increase in aperiodic exponents in STN-LFPs. Both power suppression and ERNA localize to STN. Based on this, single-pulse STN stimulation elicits evoked neural activities with largest amplitudes in STN, which are relayed to the zona incerta and thalamus with changing characteristics as the distance from STN increases. CONCLUSIONS Our results show that STN stimulation-induced spectral changes are a nondisease-specific response to high-frequency stimulation, which can serve as placement markers for STN. This broadens the scope of STN stimulation and makes it an option for other disorders with excessive oscillatory peaks in STN. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Christoph Wiest
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Francesca Morgante
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Flavie Torrecillos
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Alek Pogosyan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Shenghong He
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Fahd Baig
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Ilaria Bertaina
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Michael G. Hart
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Mark J. Edwards
- Institute of Psychiatry, Psychology and NeurosciencesKing's College LondonLondonUnited Kingdom
| | - Erlick A. Pereira
- Neurosciences Research CentreMolecular and Clinical Sciences Institute, St. George's, University of LondonLondonUnited Kingdom
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
13
|
Deep brain stimulation in animal models of dystonia. Neurobiol Dis 2022; 175:105912. [DOI: 10.1016/j.nbd.2022.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
|
14
|
Olson JW, Nakhmani A, Irwin ZT, Edwards LJ, Gonzalez CL, Wade MH, Black SD, Awad MZ, Kuhman DJ, Hurt CP, Guthrie BL, Walker HC. Cortical and Subthalamic Nucleus Spectral Changes During Limb Movements in Parkinson's Disease Patients with and Without Dystonia. Mov Disord 2022; 37:1683-1692. [PMID: 35702056 PMCID: PMC9541849 DOI: 10.1002/mds.29057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Dystonia is an understudied motor feature of Parkinson's disease (PD). Although considerable efforts have focused on brain oscillations related to the cardinal symptoms of PD, whether dystonia is associated with specific electrophysiological features is unclear. OBJECTIVE The objective of this study was to investigate subcortical and cortical field potentials at rest and during contralateral hand and foot movements in patients with PD with and without dystonia. METHODS We examined the prevalence and distribution of dystonia in patients with PD undergoing deep brain stimulation surgery. During surgery, we recorded intracranial electrophysiology from the motor cortex and directional electrodes in the subthalamic nucleus (STN) both at rest and during self-paced repetitive contralateral hand and foot movements. Wavelet transforms and mixed models characterized changes in spectral content in patients with and without dystonia. RESULTS Dystonia was highly prevalent at enrollment (61%) and occurred most commonly in the foot. Regardless of dystonia status, cortical recordings display beta (13-30 Hz) desynchronization during movements versus rest, while STN signals show increased power in low frequencies (6.0 ± 3.3 and 4.2 ± 2.9 Hz peak frequencies for hand and foot movements, respectively). Patients with PD with dystonia during deep brain stimulation surgery displayed greater M1 beta power at rest and STN low-frequency power during movements versus those without dystonia. CONCLUSIONS Spectral power in motor cortex and STN field potentials differs markedly during repetitive limb movements, with cortical beta desynchronization and subcortical low-frequency synchronization, especially in patients with PD with dystonia. Greater knowledge on field potential dynamics in human motor circuits can inform dystonia pathophysiology in PD and guide novel approaches to therapy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joseph W Olson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arie Nakhmani
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zachary T Irwin
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lloyd J Edwards
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Melissa H Wade
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sarah D Black
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohammad Z Awad
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Daniel J Kuhman
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher P Hurt
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bart L Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
15
|
Rauschenberger L, Güttler C, Volkmann J, Kühn AA, Ip CW, Lofredi R. A translational perspective on pathophysiological changes of oscillatory activity in dystonia and parkinsonism. Exp Neurol 2022; 355:114140. [PMID: 35690132 DOI: 10.1016/j.expneurol.2022.114140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/14/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
Abstract
Intracerebral recordings from movement disorders patients undergoing deep brain stimulation have allowed the identification of pathophysiological patterns in oscillatory activity that correlate with symptom severity. Changes in oscillatory synchrony occur within and across brain areas, matching the classification of movement disorders as network disorders. However, the underlying mechanisms of oscillatory changes are difficult to assess in patients, as experimental interventions are technically limited and ethically problematic. This is why animal models play an important role in neurophysiological research of movement disorders. In this review, we highlight the contributions of translational research to the mechanistic understanding of pathological changes in oscillatory activity, with a focus on parkinsonism and dystonia, while addressing the limitations of current findings and proposing possible future directions.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Christopher Güttler
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany; NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany; DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Roxanne Lofredi
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
16
|
Wiest C, Torrecillos F, Tinkhauser G, Pogosyan A, Morgante F, Pereira EA, Tan H. Finely-tuned gamma oscillations: Spectral characteristics and links to dyskinesia. Exp Neurol 2022; 351:113999. [PMID: 35143832 PMCID: PMC7612436 DOI: 10.1016/j.expneurol.2022.113999] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 01/22/2023]
Abstract
Gamma oscillations comprise a loosely defined, heterogeneous group of functionally different activities between 30 and 100 Hz in the cortical and subcortical local field potential (LFP) of the motor network. Two distinct patterns seem to emerge which are easily conflated: Finely-tuned gamma (FTG) oscillations - a narrowband activity with peaks between 60 and 90 Hz - have been observed in multiple movement disorders and are induced by dopaminergic medication or deep brain stimulation (DBS). FTG has been linked with levodopa or DBS-induced dyskinesias, which makes it a putative biomarker for adaptive DBS. On the other hand, gamma activity can also present as a broad phenomenon (30-100 Hz) in the context of motor activation and dynamic processing. Here, we contrast FTG, either levodopa-induced or DBS-induced, from movement-related broadband gamma synchronisation and further elaborate on the functional role of FTG and its potential implications for adaptive DBS. Given the unclear distinction of FTG and broad gamma in literature, we appeal for more careful separation of the two. To better characterise cortical and subcortical FTG as biomarkers for dyskinesia, their sensitivity and specificity need to be investigated in a large clinical trial.
Collapse
Affiliation(s)
- C Wiest
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - F Torrecillos
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - G Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - A Pogosyan
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - F Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK; Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - E A Pereira
- Neurosciences Research Centre, Molecular and Clinical Sciences Institute, St. George's, University of London, London, UK
| | - H Tan
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Scarduzio M, Hess EJ, Standaert DG, Eskow Jaunarajs KL. Striatal synaptic dysfunction in dystonia and levodopa-induced dyskinesia. Neurobiol Dis 2022; 166:105650. [DOI: 10.1016/j.nbd.2022.105650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
|
18
|
Lofredi R, Kühn AA. Brain oscillatory dysfunctions in dystonia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:249-257. [PMID: 35034739 DOI: 10.1016/b978-0-12-819410-2.00026-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dystonia is a hyperkinetic movement disorder associated with loss of inhibition, abnormal plasticity, dysfunctional sensorimotor integration, and brain oscillatory dysfunctions at cortical and subcortical levels of the central nervous system. Hence, dystonia is considered a network disorder that can, in many cases, be efficiently treated by pallidal deep brain stimulation (DBS). Abnormal oscillatory activity has been identified across the motor circuit of patients with dystonia. Increased low frequency (LF) synchronization in the internal pallidum is the most prominent abnormality. LF oscillations have been associated with the severity of dystonic motor symptoms; they are suppressed by DBS and localized to the clinically most effective stimulation site. Although the origin of these pathologic changes in brain activity needs further clarifications, their characterization will help in adjusting DBS parameters for successful clinical outcome.
Collapse
Affiliation(s)
- Roxanne Lofredi
- Department of Neurology, Movement disorders and Neuromodulation Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Movement disorders and Neuromodulation Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
19
|
Quartarone A, Ghilardi MF. Neuroplasticity in dystonia: Motor symptoms and beyond. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:207-218. [PMID: 35034735 DOI: 10.1016/b978-0-12-819410-2.00031-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This chapter first focuses on the role of altered neuroplasticity mechanisms and their regulation in the genesis of motor symptoms in the various forms of dystonia. In particular, a review of the available literature about focal dystonia suggests that use-dependent plasticity may become detrimental and produce dystonia when practice and repetition are excessive and predisposing conditions are present. Interestingly, recent evidence also shows that functional or psychogenic dystonia, despite the normal plasticity in the sensorimotor system, is characterized by plasticity-related dysfunction within limbic regions. Finally, this chapter reviews the non-motor symptoms that often accompany the motor features of dystonia, including depression and anxiety as well as obsessive-compulsive disorders, pain, and cognitive dysfunctions. Based on the current understanding of these symptoms, we discuss the evidence of their possible relationship to maladaptive plasticity in non-motor basal ganglia circuits involved in their genesis.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| | - Maria Felice Ghilardi
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine and Neuroscience Program, Graduate Center of the City University of New York, New York, NY, United States
| |
Collapse
|
20
|
Giorni A, Coyne T, Silburn PA, Mellick GD, Sah P, Windels F. Changes in pallidal neural activity following long-term symptom improvement from botulinum toxin treatment in DYT6 dystonia: a case report. J Med Case Rep 2022; 16:15. [PMID: 34998426 PMCID: PMC8742936 DOI: 10.1186/s13256-021-03215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background The globus pallidus internus is the main target for the treatment of dystonia by deep brain stimulation. Unfortunately, for some genetic etiologies, the therapeutic outcome of dystonia is less predictable. In particular, therapeutic outcomes for deep brain stimulation in craniocervical and orolaryngeal dystonia in DYT6-positive patients are poor. Little is known about the neurophysiology of the globus pallidus internus in DYT6-positive dystonia, and how symptomatic treatment affects the neural activity of this region. Case presentation We present here the case of a 55-year-old Caucasian female DYT6-dystonic patient with blepharospasm, spasmodic dysphonia, and oromandibular dystonia where single-unit and local field potential activity was recorded from the globus pallidus internus during two deep brain stimulation revision surgeries 4 years apart with no symptomatic improvement. Botulinum toxin injections consistently improved dysphonia, while some of the other symptoms were only inconsistently or marginally improved. Neural activity in the globus pallidus internus during both revision surgeries were compared with previously published results from an idiopathic dystonic cohort. Single-cell firing characteristics and local field potential from the first revision surgery showed no differences with our control group. However, during the second revision surgery, the mean firing rate of single units and local field potential power in the gamma range were lower than those present during the first revision surgery or the control group. Conclusions Symptoms related to facial movements were greatly improved by botulinum toxin treatment between revision surgeries, which coincided with lower discharge rate and changes in gamma local field oscillations.
Collapse
Affiliation(s)
- Andrea Giorni
- Synaptic Plasticity Laboratory, The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, 4072, Australia.,Asia Pacific Center for Neuromodulation, St Andrews War Memorial Hospital, Brisbane, QLD, Australia
| | - Terry Coyne
- Synaptic Plasticity Laboratory, The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, 4072, Australia.,Asia Pacific Center for Neuromodulation, St Andrews War Memorial Hospital, Brisbane, QLD, Australia
| | - Peter A Silburn
- Synaptic Plasticity Laboratory, The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, 4072, Australia.,Asia Pacific Center for Neuromodulation, St Andrews War Memorial Hospital, Brisbane, QLD, Australia
| | - George D Mellick
- Griffith Institute of Drug Discovery (GRIDD), Griffith University, Brisbane, Australia
| | - Pankaj Sah
- Synaptic Plasticity Laboratory, The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, 4072, Australia.,Brain Research Centre and Department of Biology, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong Province, People's Republic of China
| | - François Windels
- Synaptic Plasticity Laboratory, The Queensland Brain Institute, The University of Queensland, Saint Lucia, QLD, 4072, Australia.
| |
Collapse
|
21
|
Exploring the connections between basal ganglia and cortex revealed by transcranial magnetic stimulation, evoked potential and deep brain stimulation in dystonia. Eur J Paediatr Neurol 2022; 36:69-77. [PMID: 34922163 DOI: 10.1016/j.ejpn.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/30/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
We review the findings for motor cortical excitability, plasticity and evoked potentials in dystonia. Plasticity can be induced and assessed in cortical areas by non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and the invasive technique of deep brain stimulation (DBS), which allows access to deep brain structures. Single-pulse TMS measures have been widely studied in dystonia and consistently showed reduced silent period duration. Paired pulse TMS measures showed reduced short and long interval intracortical inhibition, interhemispheric inhibition, long-latency afferent inhibition and increased intracortical facilitation in dystonia. Repetitive transcranial magnetic stimulation (rTMS) of the premotor cortex improved handwriting with prolongation of the silent period in focal hand dystonia patients. Continuous theta-burst stimulation (cTBS) of the cerebellum or cTBS of the dorsal premotor cortex improved dystonia in some studies. Plasticity induction protocols in dystonia demonstrated excessive motor cortical plasticity with the reduction in cortico-motor topographic specificity. Bilateral DBS of the globus pallidus internus (GPi) improves dystonia, associated pain and functional disability. Local field potentials recordings in dystonia patients suggested that there is increased power in the low-frequency band (4-12 Hz) in the GPi. Cortical evoked potentials at peak latencies of 10 and 25 ms can be recorded with GPi stimulation in dystonia. Plasticity induction protocols based on the principles of spike timing dependent plasticity that involved repeated pairing of GPi-DBS and motor cortical TMS at latencies of cortical evoked potentials induced motor cortical plasticity. These studies expanded our knowledge of the pathophysiology of dystonia and how cortical excitability and plasticity are altered with different treatments such as DBS.
Collapse
|
22
|
Nie Y, Guo X, Li X, Geng X, Li Y, Quan Z, Zhu G, Yin Z, Zhang J, Wang S. Real-time removal of stimulation artifacts in closed-loop deep brain stimulation. J Neural Eng 2021; 18. [PMID: 34818629 DOI: 10.1088/1741-2552/ac3cc5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/24/2021] [Indexed: 01/12/2023]
Abstract
Objective.Closed-loop deep brain stimulation (DBS) with neural feedback has shown great potential in improving the therapeutic effect and reducing side effects. However, the amplitude of stimulation artifacts is much larger than the local field potentials, which remains a bottleneck in developing a closed-loop stimulation strategy with varied parameters.Approach.We proposed an irregular sampling method for the real-time removal of stimulation artifacts. The artifact peaks were detected by applying a threshold to the raw recordings, and the samples within the contaminated period of the stimulation pulses were excluded and replaced with the interpolation of the samples prior to and after the stimulation artifact duration. This method was evaluated with both simulation signals andin vivoclosed-loop DBS applications in Parkinsonian animal models.Main results. The irregular sampling method was able to remove the stimulation artifacts effectively with the simulation signals. The relative errors between the power spectral density of the recovered and true signals within a wide frequency band (2-150 Hz) were 2.14%, 3.93%, 7.22%, 7.97% and 6.25% for stimulation at 20 Hz, 60 Hz, 130 Hz, 180 Hz, and stimulation with variable low and high frequencies, respectively. This stimulation artifact removal method was verified in real-time closed-loop DBS applicationsin vivo, and the artifacts were effectively removed during stimulation with frequency continuously changing from 130 Hz to 1 Hz and stimulation adaptive to beta oscillations.Significance.The proposed method provides an approach for real-time removal in closed-loop DBS applications, which is effective in stimulation with low frequency, high frequency, and variable frequency. This method can facilitate the development of more advanced closed-loop DBS strategies.
Collapse
Affiliation(s)
- Yingnan Nie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Xuanjun Guo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Xiao Li
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Yan Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China
| | - Zhaoyu Quan
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zixiao Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai, People's Republic of China.,Zhangjiang Fudan International Innovation Center, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of AI & Robotics, Fudan University, Shanghai, People's Republic of China.,Engineering Research Center of AI & Robotics, Ministry of Education, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
23
|
da Silva Lapa JD, Godinho FLF, Teixeira MJ, Listik C, Iglesio RF, Duarte KP, Cury RG. Should the Globus Pallidus Targeting Be Refined in Dystonia? J Neurol Surg A Cent Eur Neurosurg 2021; 83:361-367. [PMID: 34808675 DOI: 10.1055/s-0041-1735856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND STUDY AIMS Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is a highly effective therapy for primary generalized and focal dystonias, but therapeutic success is compromised by a nonresponder rate of up to 20%. Variability in electrode placement and in tissue stimulated inside the GPi may explain in part different outcomes among patients. Refinement of the target within the pallidal area could be helpful for surgery planning and clinical outcomes. The objective of this study was to discuss current and potential methodological (somatotopy, neuroimaging, and neurophysiology) aspects that might assist neurosurgical targeting of the GPi, aiming to treat generalized or focal dystonia. METHODS We selected published studies by searching electronic databases and scanning the reference lists for articles that examined the anatomical and electrophysiologic aspects of the GPi in patients with idiopathic/inherited dystonia who underwent functional neurosurgical procedures. RESULTS The sensorimotor sector of the GPi was the best target to treat dystonic symptoms, and was localized at its lateral posteroventral portion. The effective volume of tissue activated (VTA) to treat dystonia had a mean volume of 153 mm3 in the posterior GPi area. Initial tractography studies evaluated the close relation between the electrode localization and pallidothalamic tract to control dystonic symptoms.Regarding the somatotopy, the more ventral, lateral, and posterior areas of the GPi are associated with orofacial and cervical representation. In contrast, the more dorsal, medial, and anterior areas are associated with the lower limbs; between those areas, there is the representation of the upper limb. Excessive pallidal synchronization has a peak at the theta band of 3 to 8 Hz, which might be responsible for generating dystonic symptoms. CONCLUSIONS Somatotopy assessment of posteroventral GPi contributes to target-specific GPi sectors related to segmental body symptoms. Tractography delineates GPi output pathways that might guide electrode implants, and electrophysiology might assist in pointing out areas of excessive theta synchronization. Finally, the identification of oscillatory electrophysiologic features that correlate with symptoms might enable closed-loop approaches in the future.
Collapse
Affiliation(s)
- Jorge Dornellys da Silva Lapa
- Neurosurgery Unit, Fundação de Beneficiência Hospital de Cirurgia, Cirurgia, Aracaju, Sergipe, Brazil.,Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | - Fábio Luiz Franceschi Godinho
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | | | - Clarice Listik
- Movement Disorders Center, Department of Neurology, School of Medicine, University of Sao Paulo, Sao Paulo, São Paulo, Brazil
| | - Ricardo Ferrareto Iglesio
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | - Kleber Paiva Duarte
- Division of Functional Neurosurgery, Department of Neurology, University of São Paulo, School of Medicine, Sao Paulo, São Paulo, Brazil
| | - Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of Sao Paulo, Sao Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Sirica D, Hewitt AL, Tarolli CG, Weber MT, Zimmerman C, Santiago A, Wensel A, Mink JW, Lizárraga KJ. Neurophysiological biomarkers to optimize deep brain stimulation in movement disorders. Neurodegener Dis Manag 2021; 11:315-328. [PMID: 34261338 PMCID: PMC8977945 DOI: 10.2217/nmt-2021-0002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/05/2021] [Indexed: 12/28/2022] Open
Abstract
Intraoperative neurophysiological information could increase accuracy of surgical deep brain stimulation (DBS) lead placement. Subsequently, DBS therapy could be optimized by specifically targeting pathological activity. In Parkinson's disease, local field potentials (LFPs) excessively synchronized in the beta band (13-35 Hz) correlate with akinetic-rigid symptoms and their response to DBS therapy, particularly low beta band suppression (13-20 Hz) and high frequency gamma facilitation (35-250 Hz). In dystonia, LFPs abnormally synchronize in the theta/alpha (4-13 Hz), beta and gamma (60-90 Hz) bands. Phasic dystonic symptoms and their response to DBS correlate with changes in theta/alpha synchronization. In essential tremor, LFPs excessively synchronize in the theta/alpha and beta bands. Adaptive DBS systems will individualize pathological characteristics of neurophysiological signals to automatically deliver therapeutic DBS pulses of specific spatial and temporal parameters.
Collapse
Affiliation(s)
- Daniel Sirica
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Angela L Hewitt
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Division of Child Neurology, Department of Neurology, University of Rochester, Rochester, NY 14623, USA
| | - Christopher G Tarolli
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Center for Health & Technology (CHeT), University of Rochester, Rochester, NY 14642, USA
| | - Miriam T Weber
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Carol Zimmerman
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Aida Santiago
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
| | - Andrew Wensel
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Department of Neurosurgery, University of Rochester, Rochester, NY 14618, USA
| | - Jonathan W Mink
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Division of Child Neurology, Department of Neurology, University of Rochester, Rochester, NY 14623, USA
| | - Karlo J Lizárraga
- Motor Physiology & Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester, Rochester, NY 14618, USA
- Center for Health & Technology (CHeT), University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
25
|
Morigaki R, Miyamoto R, Matsuda T, Miyake K, Yamamoto N, Takagi Y. Dystonia and Cerebellum: From Bench to Bedside. Life (Basel) 2021; 11:776. [PMID: 34440520 PMCID: PMC8401781 DOI: 10.3390/life11080776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Dystonia pathogenesis remains unclear; however, findings from basic and clinical research suggest the importance of the interaction between the basal ganglia and cerebellum. After the discovery of disynaptic pathways between the two, much attention has been paid to the cerebellum. Basic research using various dystonia rodent models and clinical studies in dystonia patients continues to provide new pieces of knowledge regarding the role of the cerebellum in dystonia genesis. Herein, we review basic and clinical articles related to dystonia focusing on the cerebellum, and clarify the current understanding of the role of the cerebellum in dystonia pathogenesis. Given the recent evidence providing new hypotheses regarding dystonia pathogenesis, we discuss how the current evidence answers the unsolved clinical questions.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Ryosuke Miyamoto
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Taku Matsuda
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Kazuhisa Miyake
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| |
Collapse
|
26
|
Fischer P. Mechanisms of Network Interactions for Flexible Cortico-Basal Ganglia-Mediated Action Control. eNeuro 2021; 8:ENEURO.0009-21.2021. [PMID: 33883192 PMCID: PMC8205496 DOI: 10.1523/eneuro.0009-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/28/2023] Open
Abstract
In humans, finely tuned γ synchronization (60-90 Hz) rapidly appears at movement onset in a motor control network involving primary motor cortex, the basal ganglia and motor thalamus. Yet the functional consequences of brief movement-related synchronization are still unclear. Distinct synchronization phenomena have also been linked to different forms of motor inhibition, including relaxing antagonist muscles, rapid movement interruption and stabilizing network dynamics for sustained contractions. Here, I will introduce detailed hypotheses about how intrasite and intersite synchronization could interact with firing rate changes in different parts of the network to enable flexible action control. The here proposed cause-and-effect relationships shine a spotlight on potential key mechanisms of cortico-basal ganglia-thalamo-cortical (CBGTC) communication. Confirming or revising these hypotheses will be critical in understanding the neuronal basis of flexible movement initiation, invigoration and inhibition. Ultimately, the study of more complex cognitive phenomena will also become more tractable once we understand the neuronal mechanisms underlying behavioral readouts.
Collapse
Affiliation(s)
- Petra Fischer
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, OX3 9DU Oxford, United Kingdom
| |
Collapse
|
27
|
Knorr S, Rauschenberger L, Pasos UR, Friedrich MU, Peach RL, Grundmann-Hauser K, Ott T, O'Leary A, Reif A, Tovote P, Volkmann J, Ip CW. The evolution of dystonia-like movements in TOR1A rats after transient nerve injury is accompanied by dopaminergic dysregulation and abnormal oscillatory activity of a central motor network. Neurobiol Dis 2021; 154:105337. [PMID: 33753289 DOI: 10.1016/j.nbd.2021.105337] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
TOR1A is the most common inherited form of dystonia with still unclear pathophysiology and reduced penetrance of 30-40%. ∆ETorA rats mimic the TOR1A disease by expression of the human TOR1A mutation without presenting a dystonic phenotype. We aimed to induce dystonia-like symptoms in male ∆ETorA rats by peripheral nerve injury and to identify central mechanism of dystonia development. Dystonia-like movements (DLM) were assessed using the tail suspension test and implementing a pipeline of deep learning applications. Neuron numbers of striatal parvalbumin+, nNOS+, calretinin+, ChAT+ interneurons and Nissl+ cells were estimated by unbiased stereology. Striatal dopaminergic metabolism was analyzed via in vivo microdialysis, qPCR and western blot. Local field potentials (LFP) were recorded from the central motor network. Deep brain stimulation (DBS) of the entopeduncular nucleus (EP) was performed. Nerve-injured ∆ETorA rats developed long-lasting DLM over 12 weeks. No changes in striatal structure were observed. Dystonic-like ∆ETorA rats presented a higher striatal dopaminergic turnover and stimulus-induced elevation of dopamine efflux compared to the control groups. Higher LFP theta power in the EP of dystonic-like ∆ETorA compared to wt rats was recorded. Chronic EP-DBS over 3 weeks led to improvement of DLM. Our data emphasizes the role of environmental factors in TOR1A symptomatogenesis. LFP analyses indicate that the pathologically enhanced theta power is a physiomarker of DLM. This TOR1A model replicates key features of the human TOR1A pathology on multiple biological levels and is therefore suited for further analysis of dystonia pathomechanism.
Collapse
Affiliation(s)
- Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, 97080, Germany
| | | | - Uri Ramirez Pasos
- Department of Neurology, University Hospital of Würzburg, 97080, Germany
| | | | - Robert L Peach
- Department of Neurology, University Hospital of Würzburg, 97080, Germany
| | - Kathrin Grundmann-Hauser
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72076, Germany; Centre for Rare Diseases, University of Tübingen, 72076, Germany
| | - Thomas Ott
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, 72076, Germany; Core Facility Transgenic Animals, University Hospital of Tübingen, 72076, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, 60528, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, 60528, Germany
| | - Philip Tovote
- Systems Neurobiology, Institute of Clinical Neurobiology, University Hospital of Würzburg, Versbacher Straße 5, 97080, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, 97080, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, 97080, Germany.
| |
Collapse
|
28
|
Ferrazzoli D, Ortelli P, Volpe D, Cucca A, Versace V, Nardone R, Saltuari L, Sebastianelli L. The Ties That Bind: Aberrant Plasticity and Networks Dysfunction in Movement Disorders-Implications for Rehabilitation. Brain Connect 2021; 11:278-296. [PMID: 33403893 DOI: 10.1089/brain.2020.0971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Movement disorders encompass various conditions affecting the nervous system. The pathological processes underlying movement disorders lead to aberrant synaptic plastic changes, which in turn alter the functioning of large-scale brain networks. Therefore, clinical phenomenology does not only entail motor symptoms but also cognitive and motivational disturbances. The result is the disruption of motor learning and motor behavior. Due to this complexity, the responsiveness to standard therapies could be disappointing. Specific forms of rehabilitation entailing goal-based practice, aerobic training, and the use of noninvasive brain stimulation techniques could "restore" neuroplasticity at motor-cognitive circuitries, leading to clinical gains. This is probably associated with modulations occurring at both molecular (synaptic) and circuitry levels (networks). Several gaps remain in our understanding of the relationships among plasticity and neural networks and how neurorehabilitation could promote clinical gains is still unclear. Purposes: In this review, we outline first the networks involved in motor learning and behavior and analyze which mechanisms link the pathological synaptic plastic changes with these networks' disruption in movement disorders. Therefore, we provide theoretical and practical bases to be applied for treatment in rehabilitation.
Collapse
Affiliation(s)
- Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Daniele Volpe
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, Vicenza, Italy
| | - Alberto Cucca
- Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, Vicenza, Italy.,Department of Neurology, The Marlene & Paolo Fresco Institute for Parkinson's & Movement Disorders, NYU School of Medicine, New York, New York, USA.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital (SABES-ASDAA), Merano-Meran, Italy.,Department of Neurology, Christian Doppler Medical Center, Paracelsus University Salzburg, Salzburg, Austria
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| |
Collapse
|
29
|
Sakellariou DF, Dall'Orso S, Burdet E, Lin JP, Richardson MP, McClelland VM. Abnormal microscale neuronal connectivity triggered by a proprioceptive stimulus in dystonia. Sci Rep 2020; 10:20758. [PMID: 33247213 PMCID: PMC7695825 DOI: 10.1038/s41598-020-77533-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
We investigated modulation of functional neuronal connectivity by a proprioceptive stimulus in sixteen young people with dystonia and eight controls. A robotic wrist interface delivered controlled passive wrist extension movements, the onset of which was synchronised with scalp EEG recordings. Data were segmented into epochs around the stimulus and up to 160 epochs per subject were averaged to produce a Stretch Evoked Potential (StretchEP). Event-related network dynamics were estimated using a methodology that features Wavelet Transform Coherency (WTC). Global Microscale Nodal Strength (GMNS) was introduced to estimate overall engagement of areas into short-lived networks related to the StretchEP, and Global Connectedness (GC) estimated the spatial extent of the StretchEP networks. Dynamic Connectivity Maps showed a striking difference between dystonia and controls, with particularly strong theta band event-related connectivity in dystonia. GC also showed a trend towards higher values in dystonia than controls. In summary, we demonstrate the feasibility of this method to investigate event-related neuronal connectivity in relation to a proprioceptive stimulus in a paediatric patient population. Young people with dystonia show an exaggerated network response to a proprioceptive stimulus, displaying both excessive theta-band synchronisation across the sensorimotor network and widespread engagement of cortical regions in the activated network.
Collapse
Affiliation(s)
- Dimitris F Sakellariou
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK.,Machine Learning & Artificial Intelligence Solutions Global Unit, Real World Solutions, IQVIA, London, N1 9JY, UK
| | - Sofia Dall'Orso
- Department of Biomedical Engineering and Human Robotics, Imperial College London, London, SW7 2AZ, UK
| | - Etienne Burdet
- Department of Biomedical Engineering and Human Robotics, Imperial College London, London, SW7 2AZ, UK
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK. .,Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK.
| |
Collapse
|
30
|
Paap M, Perl S, Lüttig A, Plocksties F, Niemann C, Timmermann D, Bahls C, van Rienen U, Franz D, Zwar M, Rohde M, Köhling R, Richter A. Deep brain stimulation by optimized stimulators in a phenotypic model of dystonia: Effects of different frequencies. Neurobiol Dis 2020; 147:105163. [PMID: 33166698 DOI: 10.1016/j.nbd.2020.105163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/02/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Deep brain stimulation (DBS) of the globus pallidus internus (GPi, entopeduncular nucleus, EPN, in rodents) has become important for the treatment of generalized dystonia, a severe and often intractable movement disorder. It is unclear if lower frequencies of GPi-DBS or stimulations of the subthalamic nucleus (STN) are of advantage. In the present study, the main objective was to examined the effects of bilateral EPN-DBS at different frequencies (130 Hz, 40 Hz, 15 Hz) on the severity of dystonia in the dtsz mutant hamster. In addition, STN stimulations were done at a frequency, proven to be effective by the present EPN-DBS in dystonic hamsters. In order to obtain precise bilateral electrical stimuli with magnitude of 50 μA, a pulse width of 60 μs and defined frequencies, it was necessary to develop a new optimized stimulator prior to the experiments. Since the individual highest severity of dystonic episodes is known to be reached within three hours after induction in dtsz hamsters, the duration of DBS was 180 min. During DBS with 130 Hz the severity of dystonia was significantly lower within the third hour than without DBS in the same animals (p < 0.05). DBS with 40 Hz tended to exert antidystonic effects after three hours, while 15 Hz stimulations of the EPN and 130 Hz stimulations of the STN failed to show any effects on the severity. DBS of the EPN at 130 Hz was most effective against generalized dystonia in the dtsz mutant. The response to EPN-DBS confirms that the dtsz mutant is suitable to further investigate the effects of long-term DBS on severity of dystonia and neuronal network activities, important to give insights into the mechanisms of DBS.
Collapse
Affiliation(s)
- Maria Paap
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Stefanie Perl
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Anika Lüttig
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Germany
| | - Christoph Niemann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Germany
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, Germany
| | - Christian Bahls
- Institute of General Electrical Engineering, Faculty of Computer Sci. and Electrical Engineering, University of Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Sci. and Electrical Engineering, University of Rostock, Germany
| | - Denise Franz
- Oscar Langendorff Institute of Physiology, University Rostock, Germany
| | - Monique Zwar
- Oscar Langendorff Institute of Physiology, University Rostock, Germany
| | - Marco Rohde
- Oscar Langendorff Institute of Physiology, University Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany.
| |
Collapse
|
31
|
Wang DD, Choi JT. Brain Network Oscillations During Gait in Parkinson's Disease. Front Hum Neurosci 2020; 14:568703. [PMID: 33192399 PMCID: PMC7645204 DOI: 10.3389/fnhum.2020.568703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/29/2020] [Indexed: 11/15/2022] Open
Abstract
Human bipedal walking is a complex motor task that requires supraspinal control for balance and flexible coordination of timing and scaling of many muscles in different environment. Gait impairments are a hallmark of Parkinson’s disease (PD), reflecting dysfunction of cortico-basal ganglia-brainstem circuits. Recent studies using implanted electrodes and surface electroencephalography have demonstrated gait-related brain oscillations in the basal ganglia and cerebral cortex. Here, we review the physiological and pathophysiological roles of (1) basal ganglia oscillations, (2) cortical oscillations, and (3) basal ganglia-cortical interactions during walking. These studies extend a novel framework for movement of disorders where specific patterns of abnormal oscillatory synchronization in the basal ganglia thalamocortical network are associated with specific signs and symptoms. Therefore, we propose that many gait dysfunctions in PD arise from derangements in brain network, and discuss potential therapies aimed at restoring gait impairments through modulation of brain network in PD.
Collapse
Affiliation(s)
- Doris D Wang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Julia T Choi
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
32
|
Mure H, Toyoda N, Morigaki R, Fujita K, Takagi Y. Clinical Outcome and Intraoperative Neurophysiology of the Lance-Adams Syndrome Treated with Bilateral Deep Brain Stimulation of the Globus Pallidus Internus: A Case Report and Review of the Literature. Stereotact Funct Neurosurg 2020; 98:399-403. [PMID: 32894852 DOI: 10.1159/000509318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The Lance-Adams syndrome (LAS) is a myoclonus syndrome caused by hypoxic-ischemic encephalopathy. LAS cases could be refractory to first-line medications, and the neuronal mechanism underlying LAS pathology remains unknown. OBJECTIVES To describe a patient with LAS who underwent bilateral globus pallidus internus (GPi) stimulation and discuss the pathophysiology of LAS with intraoperative electrophysiological findings. PATIENTS A 79-year-old woman presented with a history of cardiopulmonary arrest due to internal carotid artery rupture following carotid endarterectomy after successful cardiopulmonary resuscitation. However, within 1 month, the patient developed sensory stimulation-induced myoclonus in her face and extremities. Because her myoclonic symptoms were refractory to pharmacotherapy, deep brain stimulation of the GPi was performed 1 year after the hypoxic attack. RESULTS Continuous bilateral GPi stimulation with optimal parameter settings remarkably improved the patient's myoclonic symptoms. At the 2-year follow-up, her Unified Myoclonus Rating Scale score decreased from 90 to 24. In addition, we observed burst firing and interburst pause patterns on intraoperative microelectrode recordings of the bilateral GPi and stimulated this area as the therapeutic target. CONCLUSION Our results show that impairment in the basal ganglion circuitry might be involved in the pathogenesis of myoclonus in patients with LAS.
Collapse
Affiliation(s)
- Hideo Mure
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan, .,Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima, Japan,
| | - Naoto Toyoda
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Ryoma Morigaki
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima, Japan.,Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Koji Fujita
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima, Japan.,Department of Clinical Neuroscience, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
33
|
Neurophysiological insights in dystonia and its response to deep brain stimulation treatment. Exp Brain Res 2020; 238:1645-1657. [PMID: 32638036 PMCID: PMC7413898 DOI: 10.1007/s00221-020-05833-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 01/29/2023]
Abstract
Dystonia is a movement disorder characterised by involuntary muscle contractions resulting in abnormal movements, postures and tremor. The pathophysiology of dystonia is not fully understood but loss of neuronal inhibition, excessive sensorimotor plasticity and defective sensory processing are thought to contribute to network dysfunction underlying the disorder. Neurophysiology studies have been important in furthering our understanding of dystonia and have provided insights into the mechanism of effective dystonia treatment with pallidal deep brain stimulation. In this article we review neurophysiology studies in dystonia and its treatment with Deep Brain Stimulation, including Transcranial magnetic stimulation studies, studies of reflexes and sensory processing, and oscillatory activity recordings including local field potentials, micro-recordings, EEG and evoked potentials.
Collapse
|
34
|
Zhu GY, Zhang RL, Chen YC, Liu YY, Liu DF, Wang SY, Jiang Y, Zhang JG. Characteristics of globus pallidus internus local field potentials in generalized dystonia patients with TWNK mutation. Clin Neurophysiol 2020; 131:1453-1461. [PMID: 32387964 DOI: 10.1016/j.clinph.2020.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/11/2019] [Accepted: 03/07/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE We focused on a rare gene mutation causing dystonia in two siblings who received globus pallidus internus deep brain stimulation (GPi-DBS). The aim was to characterize the relationship between neuronal activity patterns and clinical syndromes. METHODS Whole exome sequencing was applied to identify the TWNK (previous symbol C10orf2) mutation; Two siblings with TWNK mutation presented as generalized dystonia with rigidity and bradykinesia; four other sporadic generalized dystonia patients underwent GPi-DBS and local field potentials (LFPs) were recorded. Oscillatory activities were illustrated with power spectra and temporal dynamics measured by the Lempel-Ziv complexity (LZC). RESULTS Normalized power spectra of GPi LFPs differed between patients with TWNK mutation and dystonia over the low beta bands. Patients with TWNK mutation had higher low beta power (15-27 Hz, unpaired t-test, corrected P < 0.0022) and lower LZC (15-27 Hz, unpaired t-test, P < 0.01) than other patients with generalized dystonia. On the other hand, the TWNK mutation patients showed decreased low frequency and beta oscillation in the GPi after DBS, as well as improved movement performance. CONCLUSION The LFPs were different in TWNK mutation dystonia siblings than other patients with generalized dystonia, which indicate the abnormal LFPs were related to symptoms rather than specific disease. In addition, the inhibited effect on oscillations also provided a potential evidence for DBS treatment on rare movement disorders. SIGNIFICANCE This study could potentially aid in the future development of adaptive DBS via rare disease LFPs comparison.
Collapse
Affiliation(s)
- Guan-Yu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui-Li Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Ying-Chuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu-Ye Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - De-Feng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
35
|
Fischer P, Lipski WJ, Neumann WJ, Turner RS, Fries P, Brown P, Richardson RM. Movement-related coupling of human subthalamic nucleus spikes to cortical gamma. eLife 2020; 9:51956. [PMID: 32159515 PMCID: PMC7096181 DOI: 10.7554/elife.51956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cortico-basal ganglia interactions continuously shape the way we move. Ideas about how this circuit works are based largely on models those consider only firing rate as the mechanism of information transfer. A distinct feature of neural activity accompanying movement, however, is increased motor cortical and basal ganglia gamma synchrony. To investigate the relationship between neuronal firing in the basal ganglia and cortical gamma activity during movement, we analysed human ECoG and subthalamic nucleus (STN) unit activity during hand gripping. We found that fast reaction times were preceded by enhanced STN spike-to-cortical gamma phase coupling, indicating a role in motor preparation. Importantly, increased gamma phase coupling occurred independent of changes in mean STN firing rates, and the relative timing of STN spikes was offset by half a gamma cycle for ipsilateral vs. contralateral movements, indicating that relative spike timing is as relevant as firing rate for understanding cortico-basal ganglia information transfer.
Collapse
Affiliation(s)
- Petra Fischer
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Witold J Lipski
- Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Wolf-Julian Neumann
- Department of Neurology, Campus Mitte, Charite - Universitaetsmedizin Berlin, Berlin, Germany
| | - Robert S Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, United States
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| |
Collapse
|
36
|
Parkinsonian Beta Dynamics during Rest and Movement in the Dorsal Pallidum and Subthalamic Nucleus. J Neurosci 2020; 40:2859-2867. [PMID: 32107277 DOI: 10.1523/jneurosci.2113-19.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 11/21/2022] Open
Abstract
In Parkinson's disease (PD), pathologically high levels of beta activity (12-30 Hz) reflect specific symptomatology and normalize with pharmacological or surgical intervention. Although beta characterization in the subthalamic nucleus (STN) of PD patients undergoing deep brain stimulation (DBS) has now been translated into adaptive DBS paradigms, a limited number of studies have characterized beta power in the globus pallidus internus (GPi), an equally effective DBS target. Our objective was to compare beta power in the STN and GPi during rest and movement in people with PD undergoing DBS. Thirty-seven human female and male participants completed a simple behavioral experiment consisting of periods of rest and button presses, leading to local field potential recordings from 19 (15 participants) STN and 26 (22 participants) GPi nuclei. We examined overall beta power as well as beta time-domain dynamics (i.e., beta bursts). We found higher beta power during rest and movement in the GPi, which also had more beta desynchronization during movement. Beta power was positively associated with bradykinesia and rigidity severity; however, these clinical associations were present only in the GPi cohort. With regards to beta dynamics, bursts were similar in duration and frequency in the GPi and STN, but GPi bursts were stronger and correlated to bradykinesia-rigidity severity. Beta dynamics therefore differ across basal ganglia nuclei. Relative to the STN, beta power in the GPi may be readily detected, modulates more with movement, and relates more to clinical impairment. Together, this could point to the GPi as a potentially effective target for beta-based adaptive DBS.SIGNIFICANCE STATEMENT It is known that subthalamic nucleus (STN) beta activity is linked to symptom severity in Parkinson's disease (PD), but few studies have characterized beta activity in the globus pallidus internus (GPi), another effective target for deep brain stimulation (DBS). We compared beta power in the STN and GPi during rest and movement in 37 people with PD undergoing DBS. We found that beta dynamics differed across basal ganglia nuclei. Our results show that, relative to the STN, beta power in the GPi may be readily detected, modulates more with movement, and relates more to clinical impairment. Together, this could point to the GPi as a potentially effective target for beta-based adaptive DBS.
Collapse
|
37
|
Conte A, Defazio G, Mascia M, Belvisi D, Pantano P, Berardelli A. Advances in the pathophysiology of adult-onset focal dystonias: recent neurophysiological and neuroimaging evidence. F1000Res 2020; 9. [PMID: 32047617 PMCID: PMC6993830 DOI: 10.12688/f1000research.21029.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
Focal dystonia is a movement disorder characterized by involuntary muscle contractions that determine abnormal postures. The traditional hypothesis that the pathophysiology of focal dystonia entails a single structural dysfunction (i.e. basal ganglia) has recently come under scrutiny. The proposed network disorder model implies that focal dystonias arise from aberrant communication between various brain areas. Based on findings from animal studies, the role of the cerebellum has attracted increased interest in the last few years. Moreover, it has been increasingly reported that focal dystonias also include nonmotor disturbances, including sensory processing abnormalities, which have begun to attract attention. Current evidence from neurophysiological and neuroimaging investigations suggests that cerebellar involvement in the network and mechanisms underlying sensory abnormalities may have a role in determining the clinical heterogeneity of focal dystonias.
Collapse
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Marcello Mascia
- Department of Medical Sciences and Public Health, Neurology Unit, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | | | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
38
|
Tsuboi T, Wong JK, Almeida L, Hess CW, Wagle Shukla A, Foote KD, Okun MS, Ramirez-Zamora A. A pooled meta-analysis of GPi and STN deep brain stimulation outcomes for cervical dystonia. J Neurol 2020; 267:1278-1290. [DOI: 10.1007/s00415-020-09703-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022]
|
39
|
Local Field Potentials and ECoG. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Range of voluntary neck motility predicts outcome of pallidal DBS for cervical dystonia. Acta Neurochir (Wien) 2019; 161:2491-2498. [PMID: 31659440 DOI: 10.1007/s00701-019-04076-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/13/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND The effectiveness of pallidal deep brain stimulation (GPi DBS) for cervical dystonia has been extensively described, but controversies exist about which prognostic factor is clinically useful. We previously reported that classification of tonic- or phasic-type cervical dystonia is useful for predicting clinical prognosis; however, the approach used by physicians to distinguish between the two types remains subjective. OBJECTIVE The aim of this study was to develop a prognostic factor of GPi DBS for cervical dystonia. METHODS By identifying distributions of range of motion scores between phasic- and tonic-type cervical dystonia, a new prognostic factor group was developed based on whether the patients could voluntarily move their head to the opposite side against dystonic motions. The prognosis for GPi DBS in the two groups was analyzed according to the time sequence. RESULTS Patients who were able to move their head past the midline had a better long-term prognosis after GPi DBS than did those who could not. In the early post-operative phase, there were no significant differences in the clinical outcomes between the two groups. CONCLUSION A range of voluntary neck motility with respect to the midline is an objective factor that is useful in predicting the prognosis of patients with cervical dystonia. This result renders needs for future study addressing neuroplastic changes in the brain network caused by GPi DBS.
Collapse
|
41
|
Khosravani S, Mahnan A, Yeh IL, Aman JE, Watson PJ, Zhang Y, Goding G, Konczak J. Laryngeal vibration as a non-invasive neuromodulation therapy for spasmodic dysphonia. Sci Rep 2019; 9:17955. [PMID: 31784618 PMCID: PMC6884515 DOI: 10.1038/s41598-019-54396-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/09/2019] [Indexed: 02/02/2023] Open
Abstract
Spasmodic dysphonia (SD) is an incurable focal dystonia of the larynx that impairs speech and communication. Vibro-tactile stimulation (VTS) alters afferent proprioceptive input to sensorimotor cortex that controls speech. This proof-of-concept study examined the effect of laryngeal VTS on speech quality and cortical activity in 13 SD participants who vocalized the vowel /a/ while receiving VTS for 29 minutes. In response to VTS, 9 participants (69%) exhibited a reduction of voice breaks and/or a meaningful increase in smoothed cepstral peak prominence, an acoustic measure of voice/speech quality. Symptom improvements persisted for 20 minutes past VTS. Application of VTS induced a significant suppression of theta band power over the left somatosensory-motor cortex and a significant rise of gamma rhythm over right somatosensory-motor cortex. Such suppression of theta oscillations is observed in patients with cervical dystonia who apply effective sensory tricks, suggesting that VTS in SD may activate a similar neurophysiological mechanism. Results of this feasibility study indicate that laryngeal VTS modulates neuronal synchronization over sensorimotor cortex, which can induce short-term improvements in voice quality. The effects of long-term VTS and its optimal dosage for treating voice symptoms in SD are still unknown and require further systematic study.
Collapse
Affiliation(s)
- Sanaz Khosravani
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, Minnesota, USA
| | - Arash Mahnan
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, Minnesota, USA
| | - I-Ling Yeh
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, Minnesota, USA.,Department of Occupational Therapy, Singapore Institute of Technology, Singapore, Singapore
| | - Joshua E Aman
- Department of Neurology, University of Minnesota, Minnesota, USA
| | - Peter J Watson
- Department of Speech, Language, and Hearing Sciences, University of Minnesota, Minnesota, USA
| | - Yang Zhang
- Department of Speech, Language, and Hearing Sciences, University of Minnesota, Minnesota, USA
| | - George Goding
- Department of Otolaryngology, University of Minnesota, Minnesota, USA
| | - Jürgen Konczak
- Human Sensorimotor Control Laboratory, School of Kinesiology, University of Minnesota, Minnesota, USA.
| |
Collapse
|
42
|
Piña-Fuentes D, Beudel M, Little S, van Zijl J, Elting JW, Oterdoom DLM, van Egmond ME, van Dijk JMC, Tijssen MAJ. Toward adaptive deep brain stimulation for dystonia. Neurosurg Focus 2019; 45:E3. [PMID: 30064317 DOI: 10.3171/2018.5.focus18155] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence of abnormal neural oscillations within the cortico-basal ganglia-thalamo-cortical (CBGTC) network has emerged as one of the current principal theories to explain the pathophysiology of movement disorders. In theory, these oscillations can be used as biomarkers and thereby serve as a feedback signal to control the delivery of deep brain stimulation (DBS). This new form of DBS, dependent on different characteristics of pathological oscillations, is called adaptive DBS (aDBS), and it has already been applied in patients with Parkinson's disease. In this review, the authors summarize the scientific research to date on pathological oscillations in dystonia and address potential biomarkers that might be used as a feedback signal for controlling aDBS in patients with dystonia.
Collapse
Affiliation(s)
- Dan Piña-Fuentes
- Departments of1Neurosurgery and.,2Neurology, University Medical Center Groningen, University of Groningen
| | - Martijn Beudel
- 2Neurology, University Medical Center Groningen, University of Groningen.,3Department of Neurology, Isala Klinieken, Zwolle, The Netherlands; and
| | - Simon Little
- 4Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Jonathan van Zijl
- 2Neurology, University Medical Center Groningen, University of Groningen
| | - Jan Willem Elting
- 2Neurology, University Medical Center Groningen, University of Groningen
| | | | | | | | - Marina A J Tijssen
- 2Neurology, University Medical Center Groningen, University of Groningen
| |
Collapse
|
43
|
Scheller U, Lofredi R, Wijk BC, Saryyeva A, Krauss JK, Schneider G, Kroneberg D, Krause P, Neumann W, Kühn AA. Pallidal low‐frequency activity in dystonia after cessation of long‐term deep brain stimulation. Mov Disord 2019; 34:1734-1739. [DOI: 10.1002/mds.27838] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Ute Scheller
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Roxanne Lofredi
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Bernadette C.M. Wijk
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
- Integrative Model‐Based Cognitive Neuroscience Research Unit, Department of Psychology University of Amsterdam Amsterdam the Netherlands
- Wellcome Centre for Human Neuroimaging University College London Institute of Neurology London UK
| | - Assel Saryyeva
- Medizinische Hochschule Hannover Department of Neurosurgery Hannover Germany
| | - Joachim K. Krauss
- Medizinische Hochschule Hannover Department of Neurosurgery Hannover Germany
| | - Gerd‐Helge Schneider
- Charité, Universitätsmedizin Berlin Campus Mitte, Department of Neurosurgery Berlin Germany
| | - Daniel Kroneberg
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Patricia Krause
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Wolf‐Julian Neumann
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
| | - Andrea A. Kühn
- Charité, Universitätsmedizin Berlin Campus Mitte, Movement Disorders and Neuromodulation Unit, Department of Neurology Berlin Germany
- NeuroCure Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
44
|
Doldersum E, van Zijl JC, Beudel M, Eggink H, Brandsma R, Piña-Fuentes D, van Egmond ME, Oterdoom DLM, van Dijk JMC, Elting JWJ, Tijssen MAJ. Intermuscular coherence as biomarker for pallidal deep brain stimulation efficacy in dystonia. Clin Neurophysiol 2019; 130:1351-1357. [PMID: 31207566 DOI: 10.1016/j.clinph.2019.04.717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/17/2019] [Accepted: 04/10/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Finding a non-invasive biomarker for Globus Pallidus interna Deep Brain Stimulation (GPi-DBS) efficacy. Dystonia heterogeneity leads to a wide variety of clinical response to GPi-DBS, making it hard to predict GPi-DBS efficacy for individual patients. METHODS EEG-EMG recordings of twelve dystonia patients who received bilateral GPi-DBS took place pre- and 1 year post-surgery ON and OFF stimulation, during a rest, pinch, and flexion task. Dystonia severity was assessed using the BFMDRS and TWSTRS (pre- and post-surgery ON stimulation). Intermuscular coherence (IMC) and motorcortex corticomuscular coherence (CMC) were calculated. Low frequency (4-12 Hz) and beta band (13-30 Hz) peak coherences were studied. RESULTS Dystonia severity improved after 1 year GPi-DBS therapy (BFMDRS: 30%, median 7.8 (IQR 3-10), TWSTRS: 22%, median 6.8 (IQR 4-9)). 86% of IMC were above the 95% confidence limit. The highest IMC peak decreased significantly with GPi-DBS in the low frequency and beta band. Low frequency and beta band IMC correlated partly with dystonia severity and severity improvement. CMC generally were below the 95% confidence limit. CONCLUSIONS Peak low frequency IMC functioned as biomarker for GPi-DBS efficacy, and partly correlated with dystonia severity. SIGNIFICANCE IMC can function as biomarker. Confirmation in a larger study is needed for use in clinical practice.
Collapse
Affiliation(s)
- E Doldersum
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - J C van Zijl
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - M Beudel
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Department of Neurology, Amsterdam Neuroscience Institute, Amsterdam University Medical Center, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - H Eggink
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - R Brandsma
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - D Piña-Fuentes
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Department of Neurosurgery, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - M E van Egmond
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - D L M Oterdoom
- Department of Neurosurgery, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - J M C van Dijk
- Department of Neurosurgery, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - J W J Elting
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands; Department of Clinical Neurophysiology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - M A J Tijssen
- Department of Neurology, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands.
| |
Collapse
|
45
|
The role of pallidum in the neural integrator model of cervical dystonia. Neurobiol Dis 2019; 125:45-54. [PMID: 30677494 DOI: 10.1016/j.nbd.2019.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 01/17/2023] Open
Abstract
Dystonia is the third most common movement disorder affecting three million people worldwide. Cervical dystonia is the most common form of dystonia. Despite common prevalence the pathophysiology of cervical dystonia is unclear. Traditional view is that basal ganglia is involved in pathophysiology of cervical dystonia, while contemporary theories suggested the role of cerebellum and proprioception in the pathophysiology of cervical dystonia. It was recently proposed that the cervical dystonia is due to malfunctioning of the head neural integrator - the neuron network that normally converts head velocity to position. Most importantly the neural integrator model was inclusive of traditional proposal emphasizing the role of basal ganglia while also accommodating the contemporary view suggesting the involvement of cerebellum and proprioception. It was hypothesized that the head neural integrator malfunction is the result of impairment in cerebellar, basal ganglia, or proprioceptive feedback that converge onto the integrator. The concept of converging input from the basal ganglia, cerebellum, and proprioception to the network participating in head neural integrator explains that abnormality originating anywhere in the network can lead to the identical motor deficits - drifts followed by rapid corrective movements - a signature of neural integrator dysfunction. We tested this hypothesis in an experiment examining simultaneously recorded globus pallidal single-unit activity, synchronized neural activity (local field potential), and electromyography (EMG) measured from the neck muscles during the standard-of-care deep brain stimulation surgery in 12 cervical dystonia patients (24 hemispheres). Physiological data were collected spontaneously or during voluntary shoulder shrug activating the contralateral trapezius muscle. The activity of pallidal neurons during shoulder shrug exponentially decayed with time constants that were comparable to one measured from the pretectal neural integrator and the trapezius electromyography. These results show that evidence of abnormal neural integration is also seen in globus pallidum, and that latter is connected with the neural integrator. Pretectal single neuron responses consistently preceded the muscle activity; while the globus pallidum internus response always lagged behind the muscle activity. Globus pallidum externa had equal proportion of lag and lead neurons. These results suggest globus pallidum receive feedback from the muscles or the efference copy from the integrator or the other source of the feedback. There was bi-hemispheric asymmetry in the pallidal single-unit activity and local field potentials. The asymmetry correlated with degree of lateral head turning in cervical dystonia patients. These results suggest that bihemispheric asymmetry in the feedback leads to asymmetric dysfunction in the neural integrator causing head turning.
Collapse
|
46
|
Eisinger RS, Cernera S, Gittis A, Gunduz A, Okun MS. A review of basal ganglia circuits and physiology: Application to deep brain stimulation. Parkinsonism Relat Disord 2019; 59:9-20. [PMID: 30658883 DOI: 10.1016/j.parkreldis.2019.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Drawing on the seminal work of DeLong, Albin, and Young, we have now entered an era of basal ganglia neuromodulation. Understanding, re-evaluating, and leveraging the lessons learned from neuromodulation will be crucial to facilitate an increased and improved application of neuromodulation in human disease. METHODS We will focus on deep brain stimulation (DBS) - the most common form of basal ganglia neuromodulation - however, similar principles can apply to other neuromodulation modalities. We start with a brief review of DBS for Parkinson's disease, essential tremor, dystonia, and Tourette syndrome. We then review hallmark studies on basal ganglia circuits and electrophysiology resulting from decades of experience in neuromodulation. The organization and content of this paper follow Dr. Okun's Lecture from the 2018 Parkinsonism and Related Disorders World Congress. RESULTS Information gained from neuromodulation has led to an expansion of the basal ganglia rate model, an enhanced understanding of nuclei dynamics, an emerging focus on pathological oscillations, a revision of the tripartite division of the basal ganglia, and a redirected focus toward individualized symptom-specific stimulation. Though there have been many limitations of the basal ganglia "box model," the construct provided the necessary foundation to advance the field. We now understand that information in the basal ganglia is encoded through complex neural responses that can be reliably measured and used to infer disease states for clinical translation. CONCLUSIONS Our deepened understanding of basal ganglia physiology will drive new neuromodulation strategies such as adaptive DBS or cell-specific neuromodulation through the use of optogenetics.
Collapse
Affiliation(s)
- Robert S Eisinger
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Stephanie Cernera
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| | - Aryn Gittis
- Biological Sciences and Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aysegul Gunduz
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Neurology, Fixel Center for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
47
|
Neumann WJ, Turner RS, Blankertz B, Mitchell T, Kühn AA, Richardson RM. Toward Electrophysiology-Based Intelligent Adaptive Deep Brain Stimulation for Movement Disorders. Neurotherapeutics 2019; 16:105-118. [PMID: 30607748 PMCID: PMC6361070 DOI: 10.1007/s13311-018-00705-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) represents one of the major clinical breakthroughs in the age of translational neuroscience. In 1987, Benabid and colleagues demonstrated that high-frequency stimulation can mimic the effects of ablative neurosurgery in Parkinson's disease (PD), while offering two key advantages to previous procedures: adjustability and reversibility. Deep brain stimulation is now an established therapeutic approach that robustly alleviates symptoms in patients with movement disorders, such as Parkinson's disease, essential tremor, and dystonia, who present with inadequate or adverse responses to medication. Currently, stimulation electrodes are implanted in specific target regions of the basal ganglia-thalamic circuit and stimulation pulses are delivered chronically. To achieve optimal therapeutic effect, stimulation frequency, amplitude, and pulse width must be adjusted on a patient-specific basis by a movement disorders specialist. The finding that pathological neural activity can be sampled directly from the target region using the DBS electrode has inspired a novel DBS paradigm: closed-loop adaptive DBS (aDBS). The goal of this strategy is to identify pathological and physiologically normal patterns of neuronal activity that can be used to adapt stimulation parameters to the concurrent therapeutic demand. This review will give detailed insight into potential biomarkers and discuss next-generation strategies, implementing advances in artificial intelligence, to further elevate the therapeutic potential of DBS by capitalizing on its modifiable nature. Development of intelligent aDBS, with an ability to deliver highly personalized treatment regimens and to create symptom-specific therapeutic strategies in real-time, could allow for significant further improvements in the quality of life for movement disorders patients with DBS that ultimately could outperform traditional drug treatment.
Collapse
Affiliation(s)
- Wolf-Julian Neumann
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117, Berlin, Germany.
| | - Robert S Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Blankertz
- Department of Computer Science, Technische Universität Berlin, Berlin, Germany
| | - Tom Mitchell
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Andrea A Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Campus Charite Mitte, Chariteplatz 1, 10117, Berlin, Germany
- Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Neurocure, Centre of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - R Mark Richardson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Abstract
We review the motor cortical and basal ganglia involvement in two important movement disorders: Parkinson's disease (PD) and dystonia. Single and paired pulse transcranial magnetic stimulation studies showed altered excitability and cortical circuits in PD with decreased silent period, short interval intracortical inhibition, intracortical facilitation, long afferent inhibition, interhemispheric inhibition, and cerebellar inhibition, and increased long interval intracortical inhibition and short interval intracortical facilitation. In dystonia, there is decreased silent period, short interval intracortical inhibition, long afferent inhibition, interhemispheric inhibition, and increased intracortical facilitation. Plasticity induction protocols revealed deficient plasticity in PD and normal and exaggerated plasticity in dystonia. In the basal ganglia, there is increased β (14-30Hz) rhythm in PD and characteristic 5-18Hz band synchronization in dystonia. These motor cortical circuits, cortical plasticity, and oscillation profiles of the basal ganglia are altered with medications and deep brain stimulation treatment. There is considerable variability in these measures related to interindividual variations, different disease characteristics, and methodological considerations. Nevertheless, these pathophysiologic studies have expanded our knowledge of cortical excitability, plasticity, and oscillations in PD and dystonia, improved our understanding of disease pathophysiology, and helped to develop new treatments for these conditions.
Collapse
Affiliation(s)
- Kaviraja Udupa
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
49
|
Georgescu EL, Georgescu IA, Zahiu CDM, Şteopoaie AR, Morozan VP, Pană AŞ, Zăgrean AM, Popa D. Oscillatory Cortical Activity in an Animal Model of Dystonia Caused by Cerebellar Dysfunction. Front Cell Neurosci 2018; 12:390. [PMID: 30459559 PMCID: PMC6232371 DOI: 10.3389/fncel.2018.00390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
The synchronization of neuronal activity in the sensorimotor cortices is crucial for motor control and learning. This synchrony can be modulated by upstream activity in the cerebello-cortical network. However, many questions remain over the details of how the cerebral cortex and the cerebellum communicate. Therefore, our aim is to study the contribution of the cerebellum to oscillatory brain activity, in particular in the case of dystonia, a severely disabling motor disease associated with altered sensorimotor coupling. We used a kainic-induced dystonia model to evaluate cerebral cortical oscillatory activity and connectivity during dystonic episodes. We performed microinjections of low doses of kainic acid into the cerebellar vermis in mice and examined activities in somatosensory, motor and parietal cortices. We showed that repeated applications of kainic acid into the cerebellar vermis, for five consecutive days, generate reproducible dystonic motor behavior. No epileptiform activity was recorded on electrocorticogram (ECoG) during the dystonic postures or movements. We investigated the ECoG power spectral density and coherence between motor cortex, somatosensory and parietal cortices before and during dystonic attacks. During the baseline condition, we found a phenomenon of permanent adaptation with a change of baseline locomotor activity coupled to an ECoG gamma band increase in all cortices. In addition, after kainate administration, we observed an increase in muscular activity, but less signs of dystonia together with modulations of the ECoG power spectra with an increase in gamma band in motor, parietal and somatosensory cortices. Moreover, we found reduced coherence in all measured frequency bands between the motor cortex and somatosensory or parietal cortices compared to baseline. In conclusion, examination of cortical oscillatory activities in this animal model of chronic dystonia caused by cerebellar dysfunction reveals a disruption in the coordination of neuronal activity across the cortical sensorimotor/parietal network, which may underlie motor skill deficits.
Collapse
Affiliation(s)
- Elena Laura Georgescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Ioana Antoaneta Georgescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Carmen Denise Mihaela Zahiu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Alexandru Răzvan Şteopoaie
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Vlad Petru Morozan
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Adrian Ştefan Pană
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zăgrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Daniela Popa
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
50
|
Zhu G, Geng X, Tan Z, Chen Y, Zhang R, Wang X, Aziz T, Wang S, Zhang J. Characteristics of Globus Pallidus Internus Local Field Potentials in Hyperkinetic Disease. Front Neurol 2018; 9:934. [PMID: 30455666 PMCID: PMC6230660 DOI: 10.3389/fneur.2018.00934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/15/2018] [Indexed: 01/26/2023] Open
Abstract
Background: Dystonia and Huntington's disease (HD) are both hyperkinetic movement disorders but exhibit distinct clinical characteristics. Aberrant output from the globus pallidus internus (GPi) is involved in the pathophysiology of both HD and dystonia, and deep brain stimulation (DBS) of the GPi shows good clinical efficacy in both disorders. The electrode externalized period provides an opportunity to record local field potentials (LFPs) from the GPi to examine if activity patterns differ between hyperkinetic disorders and are associated with specific clinical characteristics. Methods: LFPs were recorded from 7 chorea-dominant HD and nine cervical dystonia patients. Differences in oscillatory activities were compared by power spectrum and Lempel-Ziv complexity (LZC). The discrepancy band power ratio was used to control for the influence of absolute power differences between groups. We further identified discrepant frequency bands and frequency band ratios for each subject and examined the correlations with clinical scores. Results: Dystonia patients exhibited greater low frequency power (6–14 Hz) while HD patients demonstrated greater high-beta and low-gamma power (26–43 Hz) (p < 0.0298, corrected). United Huntington Disease Rating Scale chorea sub-score was positively correlated with 26–43 Hz frequency band power and negatively correlated with the 6–14 Hz/26–43 Hz band power ratio. Conclusion: Dystonia and HD are characterized by distinct oscillatory activity patterns, which may relate to distinct clinical characteristics. Specifically, chorea may be related to elevated high-beta and low-gamma band power, while dystonia may be related to elevated low frequency band power. These LFPs may be useful biomarkers for adaptive DBS to treat hyperkinetic diseases.
Collapse
Affiliation(s)
- Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyi Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zheng Tan
- Department of Psychology, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yingchuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruili Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tipu Aziz
- Medical Sciences Division, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|