1
|
Cerfontaine MN, Gravesteijn G, Hack RJ, Dijkstra KL, Rodríguez-Girondo M, Gesierich B, Witjes-Ané MNW, van Doorn R, Duering M, Rutten JW, Lesnik Oberstein SAJ. Association Between Vascular NOTCH3 Aggregation and Disease Severity in a CADASIL Cohort - Implications for NOTCH3 Variant-Specific Disease Prediction. Ann Neurol 2025. [PMID: 40265482 DOI: 10.1002/ana.27240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
OBJECTIVE Vascular NOTCH3 protein ectodomain aggregation is a pathological hallmark of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a monogenic small vessel disease typically caused by cysteine-altering variants in NOTCH3. Given their high population frequency, these NOTCH3 variants are an important genetic contributor to stroke and vascular dementia worldwide. Disease severity in CADASIL is highly variable and is mainly determined by the position of the pathogenic NOTCH3 variant in the NOTCH3 ectodomain. Here, we aimed to investigate the association between NOTCH3 aggregation load in skin vessels, cysteine-altering NOTCH3 variants, and disease severity in a prospective cohort study of 212 patients with CADASIL with 39 distinct cysteine-altering NOTCH3 variants. METHODS NOTCH3 aggregation load in skin vessels was determined by calculating the NOTCH3 score; the fraction of skin vessel wall area positive for NOTCH3 staining. Variant-specific NOTCH3 scores were calculated for variants present in 10 or more participants, by averaging the NOTCH3 scores of individuals with that distinct variant. The associations between the NOTCH3 score, NOTCH3 variants, and neuroimaging and clinical outcomes were investigated using multivariable linear mixed models, Cox regression, and mediation analyses. RESULTS The NOTCH3 score was significantly associated with lifetime stroke probability and small vessel disease neuroimaging outcomes, but not with age. Variant-specific NOTCH3 scores reflected differences in disease severity associated with distinct NOTCH3 variants. INTERPRETATION These findings suggest that differences in NOTCH3 aggregation propensity underlie the differences in disease severity associated with NOTCH3 cysteine-altering variants, and show that NOTCH3-variant specific NOTCH3 scores can contribute to improved individualized disease prediction in CADASIL. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Minne N Cerfontaine
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gido Gravesteijn
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco J Hack
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kyra L Dijkstra
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mar Rodríguez-Girondo
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Benno Gesierich
- Medical Image Analysis Centre (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Marie-Noëlle W Witjes-Ané
- Department of Geriatrics and Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco Duering
- Medical Image Analysis Centre (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
2
|
Tábuas-Pereira M, Brás J, Taipa R, Del Tredici K, Paquette K, Chaudhry S, DenHaan K, Durães J, Lima M, Bernardes C, Carmona S, Baldeiras I, Almeida R, Santana I, Guerreiro R. Exome sequencing of a Portuguese cohort of early-onset Alzheimer's disease implicates the X-linked lysosomal gene GLA. Sci Rep 2025; 15:11653. [PMID: 40185916 PMCID: PMC11971426 DOI: 10.1038/s41598-025-95183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
Cerebrovascular disease is a common comorbidity in patients with Alzheimer's disease (AD) and other dementias. Accumulating evidence suggests that dysfunction of the cerebral vasculature and AD neuropathology interact in multiple ways. Additionally, common variants in COL4A1 and rare variants in HTRA1, NOTCH3, COL4A1, and CST3 have been associated with AD pathogenesis. We aimed to search for rare genetic variants in genes associated with monogenic small vessel disease in a cohort of Portuguese early-onset AD patients. We performed whole-exome sequencing in 104 thoroughly studied patients with early-onset AD who lacked known pathogenic variants in the genes associated with AD or frontotemporal dementia. We searched for rare (minor allele frequency < 0.001) non-synonymous variants in genes associated with small vessel disease: NOTCH3, HTRA1, COL4A1, COL4A2, CSTA, GLA, and TREX1. We identified 12 rare variants in 18 patients (17.3% of the cohort). Three male AD patients carried a pathogenic GLA variant (p.Arg118Cys). One of these patients had a definite neuropathological study, confirming the diagnosis of AD and showing concomitant Fabry pathology in CA1-CA4 and the subiculum. We also found several rare variants in other genes associated with cSVD (NOTCH3, COL4A2 and HTRA1), corroborating previous studies and providing further support for the possibility that cSVD genes may play a role in AD pathogenesis. The presence of the same GLA variant in 3 early-onset AD patients, with no other genetic cause for the disease, together with the colocalization of Fabry disease pathology in areas relevant for AD pathogenesis, suggest GLA may have a role in its pathophysiology, possibly parallel to that of GBA in Parkinson's disease, meriting further studies.
Collapse
Affiliation(s)
- Miguel Tábuas-Pereira
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal.
| | - José Brás
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Ricardo Taipa
- Portuguese Brain Bank, Department of Neuropathology, Department of Neurosciences, Centro Hospitalar Universitário do Porto, Largo Prof. Abel Salazar, Porto, 4099-001, Portugal
- Unit for Multidisciplinary Research in Biomedicine, ICBAS, School of Medicine and Biomedical Sciences, UMIB, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health, ITR, Porto, Portugal
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, University of Ulm, 89081, Ulm, Germany
| | - Kimberly Paquette
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Sophia Chaudhry
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Kaitlyn DenHaan
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - João Durães
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| | - Marisa Lima
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | | | - Susana Carmona
- Dementia Research Institute, UCL, London, United Kingdom
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| | - Rosário Almeida
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
3
|
Bugallo-Casal A, Muiño E, Bravo SB, Hervella P, Arias-Rivas S, Rodríguez-Yáñez M, Vara-León E, Quintas-Rey R, Pérez-Gayol L, Maisterra-Santos O, Pizarro-Gonzálvez J, Martorell-Riera MR, Vives-Bauzá C, Fernández-Cadenas I, Castillo J, Campos F. NOTCH3 Variant Position Affects the Phenotype at the Pluripotent Stem Cell Level in CADASIL. Neuromolecular Med 2025; 27:18. [PMID: 40016442 PMCID: PMC11868349 DOI: 10.1007/s12017-025-08840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common genetic form of stroke. It is caused by a cysteine-altering variant in one of the 34 epidermal growth factor-like repeat (EGFr) domains of Notch3. NOTCH3 pathogenic variants in EGFr 1-6 are associated with high disease severity, whereas those in EGFr 7-34 are associated with late stroke onset and increased survival. However, whether and how the position of the NOTCH3 variant directly affects the disease severity remains unclear. In this study, we aimed to generate human-induced pluripotent stem cells (hiPSCs) from patients with CADASIL with EGFr 1-6 and 7-34 pathogenic variants to evaluate whether the NOTCH3 position affects the cell phenotype and protein profile of the generated hiPSCs lines. Six hiPSCs lines were generated: two from patients with CADASIL with EGFr 1-6 pathogenic variants, two from patients with EGFr 7-34 variants, and two from controls. Notch3 aggregation and protein profiles were tested in the established six hiPSCs lines. Cell analysis revealed that the NOTCH3 variants did not limit the cell reprogramming efficiency. However, EGFr 1-6 variant position was associated with increased accumulation of Notch3 protein in pluripotent stem cells and proteomic changes related with cytoplasmic reorganization mechanisms. In conclusion, our analysis of hiPSCs derived from patients with CADASIL support the clinical association between the NOTCH3 variant position and severity of CADASIL.
Collapse
Affiliation(s)
- Ana Bugallo-Casal
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
- University of Santiago de Compostela (USC), 15705, Santiago de Compostela, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics, Sant Pau Institute of Research (IR Sant Pau), 08041, Barcelona, Spain
- Epilepsy Unit, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory Group (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Susana Arias-Rivas
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706, Santiago de Compostela, Spain
| | - Enrique Vara-León
- Galician Public Foundation of Genomic Medicine, Genomics Medicine Group, 15706, Santiago de Compostela, Spain
| | - Rita Quintas-Rey
- Galician Public Foundation of Genomic Medicine, Genomics Medicine Group, Genetic Group, Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Lara Pérez-Gayol
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Olga Maisterra-Santos
- Unidad de Memoria y Demencias, Hospital Universitario Vall d'Hebron/Vall d'Hebron Institut de Reçerca, 08035, Barcelona, Spain
| | - Jesús Pizarro-Gonzálvez
- Unidad de Memoria y Demencias, Hospital Universitario Vall d'Hebron/Vall d'Hebron Institut de Reçerca, 08035, Barcelona, Spain
| | - María Rosa Martorell-Riera
- Unidad de Diagnóstico Molecular y Genética Clínica, Hospital Universitari Son Espases, 07120, Palma, Spain
| | - Cristòfol Vives-Bauzá
- Research Unit, Hospital Universitari Son Espases, IdISBa, Department of Biology, University of Balearic Islands (UIB), IUNICS, 07120, Palma, Spain
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics, Sant Pau Institute of Research (IR Sant Pau), 08041, Barcelona, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory Group (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Suzuki S, Itoh M. Synergistic effects of mutation and glycosylation on disease progression. Front Mol Biosci 2025; 12:1550815. [PMID: 39967653 PMCID: PMC11832388 DOI: 10.3389/fmolb.2025.1550815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Glycosylation, a post-translational modification, plays a crucial role in proper localization and function of proteins. It is regulated by multiple glycosyltransferases and can be influenced by various factors. Inherited missense mutations in glycosylated proteins such as NOTCH3, Low-density lipoprotein receptor (LDLR), and Amyloid precursor protein (APP) could affect their glycosylation states, leading to cerebral small vessel disease, hypercholesterolemia, and Alzheimer's disease, respectively. Additionally, physiological states and aging-related conditions can affect the expression levels of glycosyltransferases. However, the interplay between mutations in glycosylated proteins and changes in their glycosylation levels remains poorly understood. This mini-review summarizes the effects of glycosylation on transmembrane proteins with pathogenic mutations, including NOTCH3, LDLR, and APP. We highlight the synergistic contributions of missense amino acids in the mutant proteins and alterations in their glycosylation states to their molecular pathogenesis.
Collapse
Affiliation(s)
- Shodai Suzuki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Motoyuki Itoh
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Health and Disease Omics Center, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Rifino N, Baratta S, Zacarias E, Canavero I, Storti B, Stanziano M, Maderna E, Marucci G, Taroni F, Bersano A. Novel NOTCH3 mutation c.1564 T > A (p.Cys522Ser) presenting with early-onset Parkinsonism and white matter lesions. Clin Park Relat Disord 2025; 12:100297. [PMID: 39877521 PMCID: PMC11773460 DOI: 10.1016/j.prdoa.2025.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/31/2025] Open
Abstract
CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) is a hereditary small vessel disease caused by mutations in the NOTCH3 gene, characterized by recurrent strokes, cognitive decline, and psychiatric symptoms. This report presents a novel NOTCH3 c.1564 T > A (p.Cys522Ser) mutation associated with early-onset parkinsonism and significant white matter lesions. We describe a patient who presented with early-onset parkinsonism, characterized by bradykinesia and rigidity, alongside extensive white matter lesions observed through neuroimaging. Genetic testing revealed a novel c.1564 T > A (p.Cys522Ser) mutation in the NOTCH3 gene, contributing to the clinical diagnosis of CADASIL. This case underscores the phenotypic variability of CADASIL and the potential for atypical presentations, including parkinsonism. Early identification of genetic mutations can facilitate appropriate management and counseling for affected individuals and their families. Further research is warranted to explore the mechanisms underlying the association between NOTCH3 mutations and parkinsonism. Our findings contribute to the understanding of CADASIL, suggesting that clinicians should consider CADASIL in differential diagnoses of early-onset parkinsonism, especially in patients with concurrent white matter lesions.
Collapse
Affiliation(s)
- Nicola Rifino
- Cerebrovascular Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Silvia Baratta
- Unit of Medical Genetics and Neurogenetics Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Esteban Zacarias
- Cerebrovascular Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Isabella Canavero
- Cerebrovascular Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Benedetta Storti
- Cerebrovascular Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Mario Stanziano
- Neuroradiology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Emanuela Maderna
- Neuropathology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Gianluca Marucci
- Neuropathology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Anna Bersano
- Cerebrovascular Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| |
Collapse
|
6
|
Guo J, Liu L, Yan M. A Chinese CADASIL family with a rare heterozygous mutation in exon 2 of NOTCH3: A case report. Medicine (Baltimore) 2024; 103:e40107. [PMID: 39465783 PMCID: PMC11479457 DOI: 10.1097/md.0000000000040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
RATIONALE Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited cerebrovascular disease caused by the neurogenic locus notch homolog protein 3 (NOTCH3) gene mutation. In recent years, most of the newly reported mutations of CADASIL patients mainly occur in exon 3 to 24, while the cases related to exon 2 mutation are rare, and clinical research data are relatively insufficient. In this study, we have reported a case of a rare heterozygous mutation c.128G>A (p.Cys43Tyr) in exon 2 of NOTCH3 in a 41-year-old Chinese man in the light of relevant literatures. PATIENT CONCERNS A 41-year-old man who suffered slurred speech for 5 days and right lower limb weakness for 4 days was admitted to our hospital. DIAGNOSES Magnetic resonance imaging of the head revealed diffuse white matter lesions involving the outer capsular area and bilateral temporal poles. The rare heterozygous mutation c.128G>A (p.Cys43Tyr) in exon 2 of NOTCH3 was identified through molecular genetic testing. The proband was diagnosed as having CADASIL. Meanwhile, the same mutation was detected in 2 other family members III5 and IV9. INTERVENTIONS Atorvastatin calcium tablet (20 mg qd) and aspirin enteric-coated tablet (100 mg qd). OUTCOMES The patient was hospitalized for 3 weeks and discharged after his symptoms improved. LESSONS The heterozygous Cys43Tyr mutation in exon 2 of NOTCH3 is rare. Thus, our case report complements the rare mutation of exon 2 and offers additional clinical data for CADASIL patients.
Collapse
Affiliation(s)
- Jingrong Guo
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- School of the First Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lulu Liu
- Department of Neurology, The Third People’s Hospital of Luoyang, Luoyang, China
| | - Minli Yan
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
7
|
Suzuki S, Mashiko T, Tsukamoto Y, Oya M, Kotani Y, Okawara S, Matsumoto T, Mizue Y, Takeuchi H, Okajima T, Itoh M. The N-acetylglucosaminyltransferase Radical fringe contributes to defects in JAG1-dependent turnover and signaling of NOTCH3 CADASIL mutants. J Biol Chem 2024; 300:107787. [PMID: 39303912 PMCID: PMC11525139 DOI: 10.1016/j.jbc.2024.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a genetic vascular dementia characterized by age-related degeneration of vascular mural cells and accumulation of a NOTCH3 mutant protein. NOTCH3 functions as a signaling receptor, activating downstream gene expression in response to ligands like JAG1 and DLL4, which regulate the development and survival of mural cells. This signal transduction process is thought to be connected with NOTCH3 endocytic degradation. However, the specific cellular circumstances that modulate turnover and signaling efficacy of NOTCH3 mutant protein remain largely unknown. Here, we found elevated NOTCH3 and Radical fringe (RFNG) expression in senescent human pericyte cells. We then investigated impacts of RFNG on glycosylation, degradation, and signal activity of three NOTCH3 CADASIL mutants (R90C, R141C, and C185R) in EGF-like repeat-2, 3, and 4, respectively. Liquid chromatography with tandem mass spectrometry analysis showed that RFNG modified NOTCH3 WT and C185R to different degrees. Additionally, coculture experiments demonstrated that RFNG significantly promoted JAG1-dependent degradation of NOTCH3 WT but not that of R141C and C185R mutants. Furthermore, RFNG exhibited a greater inhibitory effect on JAG1-mediated activity of NOTCH3 R141C and C185R compared to that of NOTCH3 WT and R90C. In summary, our findings suggest that NOTCH3 R141C and C185R mutant proteins are relatively susceptible to accumulation and signaling impairment under cellular conditions of RFNG and JAG1 coexistence.
Collapse
Affiliation(s)
- Shodai Suzuki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Taiki Mashiko
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yohei Tsukamoto
- Department of Molecular Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Miyu Oya
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yuki Kotani
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Saki Okawara
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Takemi Matsumoto
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Yuki Mizue
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Hideyuki Takeuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Shizuoka, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan; Institute for Glyco-core Research (iGCORE), Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Motoyuki Itoh
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan; Research Institute of Disaster Medicine, Chiba University, Chiba, Chiba, Japan; Health and Disease Omics Center, Chiba University, Chiba, Chiba, Japan.
| |
Collapse
|
8
|
Boston G, Jobson D, Mizuno T, Ihara M, Kalaria RN. Most common NOTCH3 mutations causing CADASIL or CADASIL-like cerebral small vessel disease: A systematic review. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100227. [PMID: 38966425 PMCID: PMC11223087 DOI: 10.1016/j.cccb.2024.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a monogenic disorder caused by mutations in the NOTCH3 gene. The main aim of our survey was to determine if there is an association between phenotypes and genotypes across the most common NOTCH3 mutations found in CADASIL patients. We systematically searched clinical studies and genomic databases from 1996 to 2023 to first identify the most common mutations responsible for CADASIL. We found the six most common NOTCH3 missense mutations globally were the p.R75P, p.R133C, p.R141C, p.R169C, p.R182C, and p.R544C, of which p.R133C was described to occur most often. Focusing on studies with comprehensive clinical records, our analysis further suggested that the p.R75P, p.R141C, p.R182C and p.R544C genotypes were highly congruent with the presence of white matter hyperintensities on magnetic resonance imaging (MRI), which was the most common phenotypic characteristic across all four mutations. We found the p.R141C mutation was associated with increased severity of disease. We also found the average age of onset in p.R544C carriers was more than a decade later compared to the p.R141C carriers. However, statistical analysis showed there were no overall differences between the phenotypic characteristics of the two common mutations, p.R141C and p.R544C. Geographically, China and Japan were the only two countries to report all the four common mutations vis a vis p.R75P, p.R141C, p.R182C and p.R544C. There is a possibility that this is due to a combination of a founder effect, but there also could be sampling biases.
Collapse
Affiliation(s)
- Georgina Boston
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dan Jobson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Centre, Osaka, Japan
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Ishiyama H, Kim H, Saito S, Takeda S, Takegami M, Yamamoto Y, Abe S, Nakazawa S, Tanaka T, Washida K, Morita Y, Oh ST, Jung HJ, Choi JC, Nakaoku Y, Nakahara J, Koga M, Toyoda K, Amemiya K, Ikeda Y, Hatakeyama K, Mizuta I, Mizuno T, Kim KK, Ihara M. Pro-Hemorrhagic Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy Associated with NOTCH3 p.R75P Mutation with Low Vascular NOTCH3 Aggregation Property. Ann Neurol 2024; 95:1040-1054. [PMID: 38520151 DOI: 10.1002/ana.26916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVES Intracerebral hemorrhage (ICH) and cerebral microbleeds (CMB) in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy are more common in East Asian populations than in people of white European ancestry. We hypothesized that the ethnic difference is explained by the East Asian-specific NOTCH3 p.R75P mutation. METHODS This retrospective observational study included 118 patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy in Japanese and Korean cohorts. We investigated whether the p.R75P mutation is associated with symptomatic ICH and multiple CMB (>5) using quasi-Poisson regression models. We predicted the NOTCH3 extracellular domain protein structures in silico and graded NOTCH3 extracellular domain immunostaining in skin vessels of some patients, with subsequent comparisons between p.R75P and other conventional mutations. RESULTS Among 63 Japanese patients (median age 55 years; 56% men), 15 had a p.R75P mutation, significantly associated with symptomatic ICH (adjusted relative risk 9.56, 95% CI 2.45-37.31), multiple CMB (3.00, 1.34-6.71), and absence of temporopolar lesions (4.91, 2.29-10.52) after adjustment for age, sex, hypertension, and antithrombotics. In the Korean cohort (n = 55; median age 55 years; 51% men), the p.R75P mutation (n = 13) was also associated with symptomatic ICH (8.11, 1.83-35.89), multiple CMB (1.90, 1.01-3.56), and absence of temporopolar lesions (2.32, 1.08-4.97). Structural analysis revealed solvent-exposed free cysteine thiols in conventional mutations, directly causing aggregation, whereas a stereochemically incompatible proline residue structure in p.R75P lowers correct disulfide bond formation probability, indirectly causing aggregation. Pathologically, the p.R75P mutation resulted in less vascular NOTCH3 extracellular domain accumulation than the other conventional mutations. INTERPRETATION NOTCH3 p.R75P mutation is associated with hemorrhagic presentations, milder temporopolar lesions, and distinct mutant protein structure properties. ANN NEUROL 2024;95:1040-1054.
Collapse
Affiliation(s)
- Hiroyuki Ishiyama
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Soichi Takeda
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Misa Takegami
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yumi Yamamoto
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Soichiro Abe
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shinsaku Nakazawa
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Tomotaka Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazuo Washida
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoshiaki Morita
- Department of Radiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Seung-Taek Oh
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hee-Jae Jung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jay Chol Choi
- Department of Neurology, School of Medicine, Jeju National University, Jeju City, South Korea
| | - Yuriko Nakaoku
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Koga
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kazunori Toyoda
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kisaki Amemiya
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoshihiko Ikeda
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kwang-Kuk Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
10
|
Şanli ZS, Anlaş Ö. Detecting a Novel NOTCH3 Variant in Patients with Suspected CADASIL: A Single Center Study. Mol Syndromol 2024; 15:89-95. [PMID: 38585552 PMCID: PMC10996340 DOI: 10.1159/000534243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/19/2023] [Indexed: 04/09/2024] Open
Abstract
Introduction Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common form of familial cerebral small vessel disease in adults and is caused by NOTCH3 variants. Clinical manifestations of CADASIL include recurrent ischemic strokes, dementia, migraine or migraineous headaches, epileptic seizures, and psychiatric disorders. The clinical-radiological phenotype of the disease is also highly variable. In this study, we investigated the variability of clinical, radiological, and genetic data in patients analyzed for NOTCH3 variant in our clinic. Methods We performed clinical and neuropsychological examination, cerebral magnetic resonance imaging (MRI) and Doppler sonography of cerebral arteries in all patients. Next-generation sequencing test was used for detect variants in NOTCH3 gene from all CADASIL patients. Results By using the next-generation sequencing method, heterozygous c.380C>T pathogenic variant was detected in the 4th exon of the NOTCH3 gene in 3 patients. This is a previously unreported novel variant and resulted in the replacement of the amino acid Proline at 127th position with Leucine. Discussion and Conclusion The discovery of this novel pathogenic variant region may contribute to the expansion of the clinical and genetic spectrum of diseases associated with NOTCH3, leading to further research and treatment options for this disease in the future.
Collapse
Affiliation(s)
- Zeynep Selcan Şanli
- Department of Neurology, Adana City Training and Research Hospital, University of Health Sciences, Adana, Turkey
| | - Özlem Anlaş
- Department of Medical Genetics, Çiğli Training and Research Hospital, Bakırçay University, Izmir, Turkey
| |
Collapse
|
11
|
Gutierrez Gomez C, Lopez Gonzalez MDA, Vazquez Tobias AN, Rivera Chávez JG. Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy (CADASIL) Syndrome: A Case Report and Review of Literature. Cureus 2024; 16:e53469. [PMID: 38435179 PMCID: PMC10909453 DOI: 10.7759/cureus.53469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an autosomal dominant genetic disorder of the small arteries that causes ischemic vascular events, subcortical dementia, behavioral changes, and migraine-like headaches. It is caused by a mutation in the NOTCH3 gene; this disease was first described in 1955 by van Bogaert. We present a 29-year-old woman who presented to the neurology department. She has no history of chronic degenerative diseases. She has been complaining of migraine-like headaches for the past six months. She has cognitive impairment with arithmetic and executive function deficits on neurological examination. Blood biometry and blood chemistry are within normal parameters in her laboratory studies. A viral panel and immunological profile were also performed and were not reactive. A lumbar puncture was performed, and the composition of the cerebrospinal fluid was within normal limits. An MRI was performed, which showed bilateral and symmetric white matter hyperintensities consistent with CADASIL syndrome. There is no specific treatment. Management of these patients is based on symptom control. Neurological sequelae have an important impact on the quality of life and mortality of these patients. For this reason, pharmacological preventive therapies have been sought with controversial evidence.
Collapse
|
12
|
Mizuta I, Nakao-Azuma Y, Yoshida H, Yamaguchi M, Mizuno T. Progress to Clarify How NOTCH3 Mutations Lead to CADASIL, a Hereditary Cerebral Small Vessel Disease. Biomolecules 2024; 14:127. [PMID: 38254727 PMCID: PMC10813265 DOI: 10.3390/biom14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Notch signaling is conserved in C. elegans, Drosophila, and mammals. Among the four NOTCH genes in humans, NOTCH1, NOTCH2, and NOTCH3 are known to cause monogenic hereditary disorders. Most NOTCH-related disorders are congenital and caused by a gain or loss of Notch signaling activity. In contrast, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) caused by NOTCH3 is adult-onset and considered to be caused by accumulation of the mutant NOTCH3 extracellular domain (N3ECD) and, possibly, by an impairment in Notch signaling. Pathophysiological processes following mutant N3ECD accumulation have been intensively investigated; however, the process leading to N3ECD accumulation and its association with canonical NOTCH3 signaling remain unknown. We reviewed the progress in clarifying the pathophysiological process involving mutant NOTCH3.
Collapse
Affiliation(s)
- Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
| | - Yumiko Nakao-Azuma
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
- Department of Rehabilitation Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co., Ltd., 3-6-2 Hikaridai, Seika-cho, Kyoto 619-0237, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (I.M.)
| |
Collapse
|
13
|
Guey S, Chabriat H. Monogenic causes of cerebral small vessel disease and stroke. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:273-287. [PMID: 39322384 DOI: 10.1016/b978-0-323-99209-1.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Cerebral small vessel disease (cSVDs) account for 25% of stroke and are a frequent cause of cognitive or motor disability in adults. In a small number of patients, cSVDs result from monogenic diseases, the most frequent being cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). An early disease onset, a suggestive family history, and a low vascular risk profile contrasting with a high load of cSVD imaging markers represent red flags that must trigger molecular screening. To date, a dozen of genes is involved in Mendelian cSVDs, most of them are responsible for autosomal dominant conditions of variable penetrance. Some of these mendelian cSVDs (CADASIL, HTRA1-related cSVD, pontine autosomal dominant microangiopathy and leukoencephalopathy (PADMAL), cathepsin-A related arteriopathy with strokes and leukoencephalopathy (CARASAL), and cSVD related to LAMB1 mutations) are causing ischemic stroke. Others (COL4A1/COL4A2-related angiopathy and hereditary cerebral amyloid angiopathy) preferentially lead to intracerebral hemorrhages. The clinical features of different Mendelian cSVDs can overlap. Therefore, the current approach is based on simultaneous screening of all genes involved in these conditions through a panel-targeted sequencing gene or exome sequencing. Nevertheless, a pathogenic variant is identified in less than 15% of patients with a suspected genetic cerebrovascular disease, suggesting that many additional genes remain to be identified.
Collapse
Affiliation(s)
- Stéphanie Guey
- Translational Centre for Neurovascular Disorders, Hôpital Lariboisière AP-HP, Paris, France; Paris-Cité University, Inserm U1141 NeuroDiderot, Paris, France.
| | - Hugues Chabriat
- Translational Centre for Neurovascular Disorders, Hôpital Lariboisière AP-HP, Paris, France; Paris-Cité University, Inserm U1141 NeuroDiderot, Paris, France
| |
Collapse
|
14
|
Hsu SL, Liao YC, Wu CH, Chang FC, Chen YL, Lai KL, Chung CP, Chen SP, Lee YC. Impaired cerebral interstitial fluid dynamics in cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy. Brain Commun 2023; 6:fcad349. [PMID: 38162905 PMCID: PMC10757449 DOI: 10.1093/braincomms/fcad349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy, caused by cysteine-altering variants in NOTCH3, is the most prevalent inherited cerebral small vessel disease. Impaired cerebral interstitial fluid dynamics has been proposed as one of the potential culprits of neurodegeneration and may play a critical role in the initiation and progression of cerebral small vessel disease. In the present study, we aimed to explore the cerebral interstitial fluid dynamics in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy and to evaluate its association with clinical features, imaging biomarkers and disease severity of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy. Eighty-one participants carrying a cysteine-altering variant in NOTCH3, including 44 symptomatic cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy patients and 37 preclinical carriers, and 21 age- and sex-matched healthy control individuals were recruited. All participants underwent brain MRI studies and neuropsychological evaluations. Cerebral interstitial fluid dynamics was investigated by using the non-invasive diffusion tensor image analysis along the perivascular space method. We found that cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy patients exhibited significantly lower values of diffusion tensor image analysis along the perivascular space index comparing to preclinical carriers and healthy controls. For the 81 subjects carrying NOTCH3 variants, older age and presence of hypertension were independently associated with decreased diffusion tensor image analysis along the perivascular space index. The degree of cerebral interstitial fluid dynamics was strongly related to the severity of cerebral small vessel disease imaging markers, with a positive correlation between diffusion tensor image analysis along the perivascular space index and brain parenchymal fraction and negative correlations between diffusion tensor image analysis along the perivascular space index and total volume of white matter hyperintensity, peak width of skeletonized mean diffusivity, lacune numbers and cerebral microbleed counts. In addition, diffusion tensor image analysis along the perivascular space index was a significant risk factor associated with the development of clinical symptoms of stroke or cognitive dysfunction in individuals carrying NOTCH3 variants. In cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy patients, diffusion tensor image analysis along the perivascular space index was significantly associated with Mini-Mental State Examination scores. Mediation analysis showed that compromised cerebral interstitial fluid dynamics was not only directly associated with cognitive dysfunction but also had an indirect effect on cognition by influencing brain atrophy, white matter disruption, lacunar lesions and cerebral microbleeds. In conclusion, cerebral interstitial fluid dynamics is impaired in cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy and its disruption may play an important role in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy. Diffusion tensor image analysis along the perivascular space index may serve as a biomarker of disease severity for cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy.
Collapse
Affiliation(s)
- Shao-Lun Hsu
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei 11221, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei 11221, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chia-Hung Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Feng-Chi Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yung-Lin Chen
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Kuan-Lin Lai
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei 11221, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Ping Chung
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei 11221, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shih-Pin Chen
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei 11221, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Division of Translational Research, Department of Medical, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Neurology, National Yang Ming Chiao Tung University School of Medicine, Taipei 11221, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
15
|
Wu R, Liu H, Li H, Chen L, Wei L, Huang X, Liu X, Men X, Li X, Han L, Lu Z, Qin B. Deep learning based on susceptibility-weighted MR sequence for detecting cerebral microbleeds and classifying cerebral small vessel disease. Biomed Eng Online 2023; 22:99. [PMID: 37848906 PMCID: PMC10580591 DOI: 10.1186/s12938-023-01164-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Cerebral microbleeds (CMBs) serve as neuroimaging biomarkers to assess risk of intracerebral hemorrhage and diagnose cerebral small vessel disease (CSVD). Therefore, detecting CMBs can evaluate the risk of intracerebral hemorrhage and use its presence to support CSVD classification, both are conducive to optimizing CSVD management. This study aimed to develop and test a deep learning (DL) model based on susceptibility-weighted MR sequence (SWS) to detect CMBs and classify CSVD to assist neurologists in optimizing CSVD management. Patients with arteriolosclerosis (aSVD), cerebral amyloid angiopathy (CAA), and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) treated at three centers were enrolled between January 2017 and May 2022 in this retrospective study. The SWSs of patients from two centers were used as the development set, and the SWSs of patients from the remaining center were used as the external test set. The DL model contains a Mask R-CNN for detecting CMBs and a multi-instance learning (MIL) network for classifying CSVD. The metrics for model performance included intersection over union (IoU), Dice score, recall, confusion matrices, receiver operating characteristic curve (ROC) analysis, accuracy, precision, and F1-score. RESULTS A total of 364 SWS were recruited, including 336 in the development set and 28 in the external test set. IoU for the model was 0.523 ± 0.319, Dice score 0.627 ± 0.296, and recall 0.706 ± 0.365 for CMBs detection in the external test set. For CSVD classification, the model achieved a weighted-average AUC of 0.908 (95% CI 0.895-0.921), accuracy of 0.819 (95% CI 0.768-0.870), weighted-average precision of 0.864 (95% CI 0.831-0.897), and weighted-average F1-score of 0.829 (95% CI 0.782-0.876) in the external set, outperforming the performance of the neurologist group. CONCLUSION The DL model based on SWS can detect CMBs and classify CSVD, thereby assisting neurologists in optimizing CSVD management.
Collapse
Affiliation(s)
- Ruizhen Wu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Huaqing Liu
- Center for Artificial Intelligence in Medicine, Research Institute of Tsinghua, Pearl River Delta, Tsinghua University, No. 98 Xiangxue 8Th Road, Guangzhou, 510700, People's Republic of China
| | - Hao Li
- Department of Neurology, Maoming People's Hospital, No.101 Weimin Road, Maoming, 525000, People's Republic of China
| | - Lifen Chen
- Department of Neurology, the First Affiliated Hospital of SHANTOU University Medical College, Shantou University, No. 57 of Changping Road, Shantou, 515041, People's Republic of China
| | - Lei Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Xuehong Huang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Xu Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Xuejiao Men
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Xidan Li
- Center for Artificial Intelligence in Medicine, Research Institute of Tsinghua, Pearl River Delta, Tsinghua University, No. 98 Xiangxue 8Th Road, Guangzhou, 510700, People's Republic of China
| | - Lanqing Han
- Center for Artificial Intelligence in Medicine, Research Institute of Tsinghua, Pearl River Delta, Tsinghua University, No. 98 Xiangxue 8Th Road, Guangzhou, 510700, People's Republic of China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, People's Republic of China
| | - Bing Qin
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|
16
|
Bostanova F, Tsygankova P, Nagornov I, Dadali E, Bessonova L, Kulesh A, Drobakha V, Danchenko I, Kanivets I, Zakharova E. Four Novel Disease-Causing Variants in the NOTCH3 Gene in Russian Patients with CADASIL. Genes (Basel) 2023; 14:1715. [PMID: 37761855 PMCID: PMC10531103 DOI: 10.3390/genes14091715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited disease with unknown mechanisms and a broad phenotypic spectrum. It is caused by pathogenic variants in the NOTCH3 gene. The symptoms of the disease mainly include recurrent strokes with vascular risk factors, migraine with aura, dementia, and mood disturbances. CASE PRESENTATION Peripheral blood samples were collected from five patients from four unrelated families to extract genomic DNA. In four patients, analysis of exons 2, 3, 4, 5, 6 and adjacent intronic regions of the NOTCH3 gene was made via Sanger sequencing. Two previously undescribed nucleotide variants were identified in two patients: missense variant c.208G>T, (p.Gly70Cys) in exon 1 and splice-site variant c.341-1G>C in intron 3. Further DNA of two other patients were analyzed using a next-generation sequencing-based custom AmpliSeq™ panel for 59 genes associated with leukodystrophies. Two novel missense variants in the NOTCH3 gene were identified, c.1136G>A, (p.Cys379Tyr) in exon 7 and c.1547G>A, (p.Cys516Tyr) in exon 10. The pathogenic variant c.1547G>A, (p.Cys516Tyr) was confirmed in the fifth patient (family case) by Sanger sequencing. All patients had a history of headaches, transient ischemic attacks, memory impairment, and characteristics of MRI results. Three patients had strokes and two patients had psychiatric symptoms. CONCLUSION We found four previously undescribed pathogenic variants in the NOTCH3 gene in five patients with CADASIL and described their clinical and genetic characteristics. These results expand the mutational spectrum of CADASIL.
Collapse
Affiliation(s)
- Fatima Bostanova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (P.T.); (I.N.); (E.D.); (L.B.); (E.Z.)
| | - Polina Tsygankova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (P.T.); (I.N.); (E.D.); (L.B.); (E.Z.)
| | - Ilya Nagornov
- Research Centre for Medical Genetics, Moscow 115522, Russia; (P.T.); (I.N.); (E.D.); (L.B.); (E.Z.)
| | - Elena Dadali
- Research Centre for Medical Genetics, Moscow 115522, Russia; (P.T.); (I.N.); (E.D.); (L.B.); (E.Z.)
| | - Lyudmila Bessonova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (P.T.); (I.N.); (E.D.); (L.B.); (E.Z.)
| | - Aleksey Kulesh
- Department of Neurology and Medical Genetics, Vagner Perm State Medical University, Perm 614990, Russia; (A.K.); (V.D.)
| | - Viktor Drobakha
- Department of Neurology and Medical Genetics, Vagner Perm State Medical University, Perm 614990, Russia; (A.K.); (V.D.)
| | - Irina Danchenko
- Perm Regional Clinical Hospital Perm Multiple Sclerosis Center, Perm 614015, Russia;
| | | | - Ekaterina Zakharova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (P.T.); (I.N.); (E.D.); (L.B.); (E.Z.)
| |
Collapse
|
17
|
Zafar M, Gajre M, Balagopal A, Naqvi SA, Khalesi DS, Premathilaka R, Islam A, Berliti S, Hovagim G, Hacikurt K. Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy Presenting During the Postpartum Period as Postpartum Depression and Postpartum Psychosis. Cureus 2023; 15:e39099. [PMID: 37205173 PMCID: PMC10187981 DOI: 10.7759/cureus.39099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare inherited disease that presents with neurologic manifestations such as stroke, psychiatric disturbances, migraine, and cognitive decline. We report a case of a previously well 27-year-old lady presenting with new onset confusion four weeks postpartum. On examination, there was right-sided weakness and tremors. A thorough history revealed existing diagnoses of CADASIL in 1st and 2nd-degree relatives. The diagnosis in this patient was confirmed by MRI of the brain and genetic testing for NOTCH 3 mutation. The patient was admitted to the stroke ward, treated with a single antiplatelet agent for stroke, and supported by speech and language therapy. There was a significant symptomatic improvement in her speech at the time of discharge. The mainstay of treatment for CADASIL remains symptomatic at this stage. This case report shows that the first presentation of CADASIL can mimic postpartum psychiatric disorders in a puerperal woman.
Collapse
Affiliation(s)
- Mansoor Zafar
- Gastroenterology/General Internal Medicine, Royal Sussex County Hospital, University Hospitals Sussex National Health Service (NHS) Foundation Trust, Brighton, GBR
| | - Meera Gajre
- General Internal Medicine, Conquest Hospital, St. Leonards-on-Sea, GBR
| | | | | | | | | | - Ariful Islam
- Acute Medicine, Conquest Hospital, St. Leonards-on-Sea, GBR
| | | | | | | |
Collapse
|
18
|
Qi Y, Li H, Yu L. Case report: Mild leukoencephalopathy caused by a new mutation of NOTCH3 gene. Medicine (Baltimore) 2023; 102:e33289. [PMID: 36961171 PMCID: PMC10035987 DOI: 10.1097/md.0000000000033289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Cerebral autosomal dominant arteriosis with subcortical infarction and leukoencephalopathy (CADASIL) is a single-gene small-vessel disease of the brain characterized by migraine, recurrent ischemic stroke, psychiatric disorders, progressive cognitive decline, and occasional intracerebral hemorrhage.[1]NOTCH3 was identified as a pathogenic gene for CADASIL.[2] The NOTCH3 gene encodes a membrane-bound receptor protein, and to date, several different NOTCH3 gene mutations have been identified.[3] Here, we report a case of CADASIL with a heterozygous mutation c.931T > G (thymine > guanine) on the exon region of the NOTCH3 gene, resulting in an amino acid change p.C311G (cysteine > glycine). CASE REPORT We report a case of a female patient with CADASIL whose genetic sequencing revealed a mutation in the NOTCH3 gene. However, this patient did not exhibit any of the typical clinical findings of CADASIL but the patient's cerebral magnetic resonance imaging was consistent with the characteristic findings of CADASIL. CONCLUSIONS This case reminds us that mutations caused by different mutation sites present different clinical symptoms.
Collapse
Affiliation(s)
- Yuxiang Qi
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Hairong Li
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Ling Yu
- Department of Neurology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| |
Collapse
|
19
|
Schänzer A, Dittmayer C, Weis J, Stenzel W, Goebel HH. [Neuropathology II: diseases of the central and peripheral nervous systems : Outlook on new techniques in electron microscopy]. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:113-120. [PMID: 36715732 PMCID: PMC9886214 DOI: 10.1007/s00292-022-01178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
In the diagnosis of diseases of the central and peripheral nervous systems, the use of electron microscopic analyses has become rare these days. However, there are questions in which the method is helpful in confirming the etiopathogenesis of the disease. Hereditary neurodegenerative and metabolic diseases, such as the lysosomal storage disease neuronal ceroid lipofuscinosis, are associated with pathognomonic storage products not only in the central nervous system (CNS) but also in extracerebral tissues such as sweat glands and lymphocytes. These tissues are easily accessible and thus function as "windows to the CNS". In addition, there are new methods that overcome limitations of conventional electron microscopy and may improve ultrastructural diagnostics. This is particularly important for the correct classification of viral particles such as SARS-CoV‑2, leading to a better understanding of COVID19-associated diseases in the CNS and peripheral nervous system.
Collapse
Affiliation(s)
- Anne Schänzer
- Institut für Neuropathologie, Justus-Liebig-Universität Gießen, Arndtstr. 16, 35392, Gießen, Deutschland.
| | - Carsten Dittmayer
- Institut für Neuropathologie, Charité - Universitätsmedizin Berlin, Corporate Member der Freien Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Joachim Weis
- Institut für Neuropathologie, Universitätsklinikum der RWTH Aachen, Aachen, Deutschland
| | - Werner Stenzel
- Institut für Neuropathologie, Charité - Universitätsmedizin Berlin, Corporate Member der Freien Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Hans-Hilmar Goebel
- Institut für Neuropathologie, Charité - Universitätsmedizin Berlin, Corporate Member der Freien Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
- Abteilung für Neuropathologie, Universitätsmedizin der JGU Mainz, Mainz, Deutschland
| |
Collapse
|
20
|
Yamamoto Y, Liao YC, Lee YC, Ihara M, Choi JC. Update on the Epidemiology, Pathogenesis, and Biomarkers of Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. J Clin Neurol 2023; 19:12-27. [PMID: 36606642 PMCID: PMC9833879 DOI: 10.3988/jcn.2023.19.1.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 01/04/2023] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic disorder of the cerebral small blood vessels. It is caused by mutations in the NOTCH3 gene on chromosome 19, and more than 280 distinct pathogenic mutations have been reported to date. CADASIL was once considered a very rare disease with an estimated prevalence of 1.3-4.1 per 100,000 adults. However, recent large-scale genomic studies have revealed a high prevalence of pathogenic NOTCH3 variants among the general population, with the highest risk being among Asians. The disease severity and age at onset vary significantly even among individuals who carry the same NOTCH3 mutations. It is still unclear whether a significant genotype-phenotype correlation is present in CADASIL. The accumulation of granular osmiophilic material in the vasculature is a characteristic feature of CADASIL. However, the exact pathogenesis of CADASIL remains largely unclear despite various laboratory and clinical observations being made. Major hypotheses proposed so far have included aberrant NOTCH3 signaling, toxic aggregation, and abnormal matrisomes. Several characteristic features have been observed in the brain magnetic resonance images of patients with CADASIL, including subcortical lacunar lesions and white matter hyperintensities in the anterior temporal lobe or external capsule, which were useful in differentiating CADASIL from sporadic stroke in patients. The number of lacunes and the degree of brain atrophy were useful in predicting the clinical outcomes of patients with CADASIL. Several promising blood biomarkers have also recently been discovered for CADASIL, which require further research for validation.
Collapse
Affiliation(s)
- Yumi Yamamoto
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jay Chol Choi
- Department of Neurology, Jeju National University, Jeju, Korea.,Institute for Medical Science, Jeju National University, Jeju, Korea
| |
Collapse
|
21
|
Ashraf S, Allena N, Shrestha E, Dhallu M, Khaja M. Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy (CADASIL): A Rare Cause of Transient Ischemic Attack. Cureus 2022; 14:e30940. [DOI: 10.7759/cureus.30940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
|
22
|
Cheng YW, Chao CC, Chen CH, Yeh TY, Jeng JS, Tang SC, Hsieh ST. Small Fiber Pathology in CADASIL: Clinical Correlation With Cognitive Impairment. Neurology 2022; 99:e583-e593. [PMID: 35584924 PMCID: PMC9442619 DOI: 10.1212/wnl.0000000000200672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/16/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES This study investigated the cutaneous small fiber pathology of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and its clinical significance, that is, the NOTCH3 deposition in cutaneous vasculatures and CNS neurodegeneration focusing on cognitive impairment. METHODS Thirty-seven patients with CADASIL and 59 age-matched healthy controls were enrolled to evaluate cutaneous small fiber pathology by quantitative measures of intraepidermal nerve fiber density (IENFD), sweat gland innervation, and vascular innervation. Cognitive performance of patients with CADASIL was evaluated by a comprehensive neuropsychological assessment, and its association with small fiber pathology was tested using multivariable linear regression analysis adjusted for age and diabetes mellitus. We further assessed the relationships of IENFD with cutaneous vascular NOTCH3 ectodomain (NOTCH3ECD) deposition and biomarkers of neurodegeneration including structural brain MRI measures, serum neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), tau, and ubiquitin carboxy-terminal hydrolase L1. RESULTS Patients with CADASIL showed reduced IENFD (5.22 ± 2.42 vs 7.88 ± 2.89 fibers/mm, p = 0.0001) and reduced sweat gland (p < 0.0001) and vascular (p < 0.0001) innervations compared with age-matched controls. Reduced IENFD was associated with impaired global cognition measured by Mini-Mental State Examination (B = 1.062, 95% CI = 0.370-1.753, p = 0.004), and this association remained after adjustment for age and diabetes mellitus (p = 0.043). In addition, IENFD in patients with CADASIL was associated with mean cortical thickness (Pearson r = 0.565, p = 0.0023) but not white matter hyperintensity volume, total lacune count, or total microbleed count. Reduced IENFD was associated with cutaneous vascular NOTCH3ECD deposition amount among patients harboring pathogenic variants in exon 11 (mainly p.R544C) (B = -0.092, 95% CI = -0.175 to -0.009, p = 0.031). Compared with those with normal cognition, patients with CADASIL with cognitive impairment had an elevated plasma NfL level regardless of concurrent small fiber denervation, whereas only patients with both cognitive impairment and small fiber denervation showed an elevated plasma GFAP level. DISCUSSION Cutaneous small fiber pathology correlates with cognitive impairment and CNS neurodegeneration in patients with CADASIL, indicating a peripheral neurodegenerative process related to NOTCH3ECD aggregation.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- From the Department of Neurology (Y.-W.C.), National Taiwan University Hospital, Hsin-Chu Branch; Graduate Institute of Clinical Medicine (Y.-W.C.), College of Medicine, National Taiwan University; Department of Neurology (C.-C.C., C.-H.C., J.-S.J., S.-C.T., S.-T.H.), National Taiwan University Hospital; Department of Anatomy and Cell Biology (T.-Y.Y., S.-T.H.), College of Medicine, National Taiwan University; Graduate Institute of Brain and Mind Sciences (S.-T.H.), College of Medicine, National Taiwan University; and Center of Precision Medicine (S.-T.H.), National Taiwan University College of Medicine, Taipei
| | - Chi-Chao Chao
- From the Department of Neurology (Y.-W.C.), National Taiwan University Hospital, Hsin-Chu Branch; Graduate Institute of Clinical Medicine (Y.-W.C.), College of Medicine, National Taiwan University; Department of Neurology (C.-C.C., C.-H.C., J.-S.J., S.-C.T., S.-T.H.), National Taiwan University Hospital; Department of Anatomy and Cell Biology (T.-Y.Y., S.-T.H.), College of Medicine, National Taiwan University; Graduate Institute of Brain and Mind Sciences (S.-T.H.), College of Medicine, National Taiwan University; and Center of Precision Medicine (S.-T.H.), National Taiwan University College of Medicine, Taipei
| | - Chih-Hao Chen
- From the Department of Neurology (Y.-W.C.), National Taiwan University Hospital, Hsin-Chu Branch; Graduate Institute of Clinical Medicine (Y.-W.C.), College of Medicine, National Taiwan University; Department of Neurology (C.-C.C., C.-H.C., J.-S.J., S.-C.T., S.-T.H.), National Taiwan University Hospital; Department of Anatomy and Cell Biology (T.-Y.Y., S.-T.H.), College of Medicine, National Taiwan University; Graduate Institute of Brain and Mind Sciences (S.-T.H.), College of Medicine, National Taiwan University; and Center of Precision Medicine (S.-T.H.), National Taiwan University College of Medicine, Taipei
| | - Ti-Yen Yeh
- From the Department of Neurology (Y.-W.C.), National Taiwan University Hospital, Hsin-Chu Branch; Graduate Institute of Clinical Medicine (Y.-W.C.), College of Medicine, National Taiwan University; Department of Neurology (C.-C.C., C.-H.C., J.-S.J., S.-C.T., S.-T.H.), National Taiwan University Hospital; Department of Anatomy and Cell Biology (T.-Y.Y., S.-T.H.), College of Medicine, National Taiwan University; Graduate Institute of Brain and Mind Sciences (S.-T.H.), College of Medicine, National Taiwan University; and Center of Precision Medicine (S.-T.H.), National Taiwan University College of Medicine, Taipei
| | - Jiann-Shing Jeng
- From the Department of Neurology (Y.-W.C.), National Taiwan University Hospital, Hsin-Chu Branch; Graduate Institute of Clinical Medicine (Y.-W.C.), College of Medicine, National Taiwan University; Department of Neurology (C.-C.C., C.-H.C., J.-S.J., S.-C.T., S.-T.H.), National Taiwan University Hospital; Department of Anatomy and Cell Biology (T.-Y.Y., S.-T.H.), College of Medicine, National Taiwan University; Graduate Institute of Brain and Mind Sciences (S.-T.H.), College of Medicine, National Taiwan University; and Center of Precision Medicine (S.-T.H.), National Taiwan University College of Medicine, Taipei
| | - Sung-Chun Tang
- From the Department of Neurology (Y.-W.C.), National Taiwan University Hospital, Hsin-Chu Branch; Graduate Institute of Clinical Medicine (Y.-W.C.), College of Medicine, National Taiwan University; Department of Neurology (C.-C.C., C.-H.C., J.-S.J., S.-C.T., S.-T.H.), National Taiwan University Hospital; Department of Anatomy and Cell Biology (T.-Y.Y., S.-T.H.), College of Medicine, National Taiwan University; Graduate Institute of Brain and Mind Sciences (S.-T.H.), College of Medicine, National Taiwan University; and Center of Precision Medicine (S.-T.H.), National Taiwan University College of Medicine, Taipei
| | - Sung-Tsang Hsieh
- From the Department of Neurology (Y.-W.C.), National Taiwan University Hospital, Hsin-Chu Branch; Graduate Institute of Clinical Medicine (Y.-W.C.), College of Medicine, National Taiwan University; Department of Neurology (C.-C.C., C.-H.C., J.-S.J., S.-C.T., S.-T.H.), National Taiwan University Hospital; Department of Anatomy and Cell Biology (T.-Y.Y., S.-T.H.), College of Medicine, National Taiwan University; Graduate Institute of Brain and Mind Sciences (S.-T.H.), College of Medicine, National Taiwan University; and Center of Precision Medicine (S.-T.H.), National Taiwan University College of Medicine, Taipei.
| |
Collapse
|
23
|
Ueda A, Nakajima M, Misumi Y, Nakahara K, Shinriki S, Tasaki M, Matsui H, Ueda M. Detection of Vascular Notch3 Deposits in Unfixed Frozen Skin Biopsy Sample in CADASIL. Front Neurol 2022; 13:881528. [PMID: 35775048 PMCID: PMC9239429 DOI: 10.3389/fneur.2022.881528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate the utility of immunohistochemical staining of vascular Notch3 deposits in biopsied unfixed frozen skin samples from patients with suspected cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We analyzed vascular Notch3 deposits in unfixed frozen skin biopsy samples obtained from 43 patients with suspected CADASIL by immunohistochemistry using antibodies against the extracellular domain (ECD) of Notch3. We also sequenced the NOTCH3 gene in all patients, as well as evaluated their symptoms and neuroimages. We found granular Notch3 ECD deposits in the vessel walls of unfixed frozen skin biopsy samples in 10 of the 43 suspected patients with CADASIL. All 10 cases with skin Notch3 ECD deposits also carried reported pathogenic variants in the NOTCH3 gene associated with CADASIL. NOTCH3 variants of unknown significance were found in the other four patients without vascular Notch3 ECD or granular osmiophilic material deposits in biopsied skin samples. The remaining 29 cases without vascular Notch3 ECD deposits did not have variants in the NOTCH3 gene. Immunohistochemical evaluation of vascular Notch3 ECD deposits in unfixed frozen biopsied skin samples may be useful for detecting Notch3 deposits in CADASIL.
Collapse
Affiliation(s)
- Akihiko Ueda
- Department of Neurology, Kumamoto University, Kumamoto, Japan
- *Correspondence: Akihiko Ueda
| | - Makoto Nakajima
- Department of Neurology, Kumamoto University, Kumamoto, Japan
| | - Yohei Misumi
- Department of Neurology, Kumamoto University, Kumamoto, Japan
| | | | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayoshi Tasaki
- Department of Neurology, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
24
|
Hack RJ, Gravesteijn G, Cerfontaine MN, Hegeman IM, Mulder AA, Lesnik Oberstein SA, Rutten JW. Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy Family Members With a Pathogenic NOTCH3 Variant Can Have a Normal Brain Magnetic Resonance Imaging and Skin Biopsy Beyond Age 50 Years. Stroke 2022; 53:1964-1974. [PMID: 35300531 PMCID: PMC9126263 DOI: 10.1161/strokeaha.121.036307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND To determine whether extremely mild small vessel disease (SVD) phenotypes can occur in NOTCH3 variant carriers from Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) pedigrees using clinical, genetic, neuroimaging, and skin biopsy findings. METHODS Individuals from CADASIL pedigrees fulfilling criteria for extremely mild NOTCH3-associated SVD (mSVDNOTCH3) were selected from the cross-sectional Dutch CADASIL cohort (n=200), enrolled between 2017 and 2020. Brain magnetic resonance imaging were quantitatively assessed for SVD imaging markers. Immunohistochemistry and electron microscopy was used to quantitatively assess and compare NOTCH3 ectodomain (NOTCH3ECD) aggregation and granular osmiophilic material deposits in the skin vasculature of mSVDNOTCH3 cases and symptomatic CADASIL patients. RESULTS Seven cases were identified that fulfilled the mSVDNOTCH3 criteria, with a mean age of 56.6 years (range, 50-72). All of these individuals harbored a NOTCH3 variant located in one of EGFr domains 7-34 and had a normal brain magnetic resonance imaging, except the oldest individual, aged 72, who had beginning confluence of WMH (Fazekas score 2) and 1 cerebral microbleed. mSVDNOTCH3 cases had very low levels of NOTCH3ECD aggregation in skin vasculature, which was significantly less than in symptomatic EGFr 7-34 CADASIL patients (P=0.01). Six mSVDNOTCH3 cases had absence of granular osmiophilic material deposits. CONCLUSIONS Our findings demonstrate that extremely mild SVD phenotypes can occur in individuals from CADASIL pedigrees harboring NOTCH3 EGFr 7-34 variants with normal brain magnetic resonance imaging up to age 58 years. Our study has important implications for CADASIL diagnosis, disease prediction, and the counseling of individuals from EGFr 7-34 CADASIL pedigrees.
Collapse
Affiliation(s)
- Remco J. Hack
- Department of Clinical Genetics (R.J.H., G.G., M.N.C., S.A.J.L.O., J.W.R.), Leiden University Medical Center, the Netherlands
| | - Gido Gravesteijn
- Department of Clinical Genetics (R.J.H., G.G., M.N.C., S.A.J.L.O., J.W.R.), Leiden University Medical Center, the Netherlands
| | - Minne N. Cerfontaine
- Department of Clinical Genetics (R.J.H., G.G., M.N.C., S.A.J.L.O., J.W.R.), Leiden University Medical Center, the Netherlands
| | - Ingrid M. Hegeman
- Department of Pathology (I.M.H.), Leiden University Medical Center, the Netherlands
| | - Aat A. Mulder
- Department of Cell and Chemical Biology (A.A.M.), Leiden University Medical Center, the Netherlands
| | - Saskia A.J. Lesnik Oberstein
- Department of Clinical Genetics (R.J.H., G.G., M.N.C., S.A.J.L.O., J.W.R.), Leiden University Medical Center, the Netherlands
| | - Julie W. Rutten
- Department of Clinical Genetics (R.J.H., G.G., M.N.C., S.A.J.L.O., J.W.R.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
25
|
Costei C, Barbarosie M, Bernard G, Brais B, La Piana R. Adult Hereditary White Matter Diseases With Psychiatric Presentation: Clinical Pointers and MRI Algorithm to Guide the Diagnostic Process. J Neuropsychiatry Clin Neurosci 2022; 33:180-193. [PMID: 33951919 DOI: 10.1176/appi.neuropsych.20110294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The investigators aimed to provide clinical and MRI guidelines for determining when genetic workup should be considered in order to exclude hereditary leukoencephalopathies in affected patients with a psychiatric presentation. METHODS A systematic literature review was conducted, and clinical cases are provided. Given the central role of MRI pattern recognition in the diagnosis of white matter disorders, the investigators adapted an MRI algorithm that guides the interpretation of MRI findings and thus directs further investigations, such as genetic testing. RESULTS Twelve genetic leukoencephalopathies that can present with psychiatric symptoms were identified. As examples of presentations that can occur in clinical practice, five clinical vignettes from patients assessed at a referral center for adult genetic leukoencephalopathies are provided. CONCLUSIONS Features such as drug-resistant symptoms, presence of long-standing somatic features, trigger events, consanguinity, and positive family history should orient the clinician toward diagnostic workup to exclude the presence of a genetic white matter disorder. The identification of MRI white matter abnormalities, especially when presenting a specific pattern of involvement, should prompt genetic testing for known forms of genetic leukoencephalopathies.
Collapse
Affiliation(s)
- Catalina Costei
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Michaela Barbarosie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal (Costei, Brais, La Piana); Department of Psychiatry, McGill University (Barbarosie); Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University (Bernard); Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal (Bernard); Child Health and Human Development Program, Research Institute of the McGill University Health Center (Bernard); and Department of Diagnostic Radiology, McGill University (La Piana)
| |
Collapse
|
26
|
Ruchoux MM, Kalaria RN, Román GC. The pericyte: A critical cell in the pathogenesis of CADASIL. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100031. [PMID: 34950895 PMCID: PMC8661128 DOI: 10.1016/j.cccb.2021.100031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022]
Abstract
CADASIL is the most common hereditary small vessel disease presenting with strokes and subcortical vascular dementia caused by mutations in the NOTCH3 gene. CADASIL is a vasculopathy primarily involving vascular smooth-muscle cells. Arteriolar and capillary pericyte damage or deficiency is a key feature in disease pathogenesis. Pericyte-mediated cerebral venous insufficiency may explain white matter lesions and increased perivascular spaces. Central role of the pericyte offers novel approaches to the treatment of CADASIL.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary small vessel disease presenting with migraine, mood and cognitive disorders, focal neurological deficits, recurrent ischemic attacks, lacunar infarcts and brain white matter changes. As they age, CADASIL patients invariably develop cognitive impairment and subcortical dementia. CADASIL is caused by missense mutations in the NOTCH3 gene resulting in a profound cerebral vasculopathy affecting primarily arterial vascular smooth muscle cells, which target the microcirculation and perfusion. Based on a thorough review of morphological lesions in arteries, veins, and capillaries in CADASIL, we surmise that arteriolar and capillary pericyte damage or deficiency appears a key feature in the pathogenesis of the disease. This may affect critical pericyte-endothelial interactions causing stroke injury and vasomotor disturbances. Changes in microvascular permeability due to perhaps localized blood-brain barrier alterations and pericyte secretory dysfunction likely contribute to delayed neuronal as well as glial cell death. Moreover, pericyte-mediated cerebral venous insufficiency may explain white matter lesions and the dilatation of Virchow-Robin perivascular spaces typical of CADASIL. The postulated central role of the pericyte offers some novel approaches to the study and treatment of CADASIL and enable elucidation of other forms of cerebral small vessel diseases and subcortical vascular dementia.
Collapse
Affiliation(s)
- Marie-Magdeleine Ruchoux
- Former researcher, Université d'Artois, Blood-Brain-Barrier Laboratory Lens France, Former advisor, Alzheimer's Clinic Methodist Neurological Institute, Houston TX, USA
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Gustavo C Román
- Methodist Neurological Institute, Department of Neurology, Houston Methodist Hospital Houston TX 77030, USA, Weill Cornell Medical College, New York NY, USA and Texas A&M Medical School, Bryan TX, USA
| |
Collapse
|
27
|
NOTCH3 mutations in a cohort of Portuguese patients within CADASIL spectrum phenotype. Neurogenetics 2021; 23:1-9. [PMID: 34851492 DOI: 10.1007/s10048-021-00679-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common inherited cerebral small vessel disease. It is caused by mutations in the NOTCH3 gene, which encodes a membranebound receptor protein with three main distinct functional domains. Thus far, several different NOTCH3 mutations, most of them cysteine altering variants, have been described and although they tend to cluster in certain exons, their distribution varies in different geographically populations. Therefore, in this study, we describe the mutation analysis of NOTCH3 gene in 24 Portuguese families with small vessel disease suspected to have CADASIL from the central region of Portugal. The genetic analysis revealed 15 different heterozygous variants, eight pathogenic cysteine altering variants, six cysteine sparing variants and one nonsense variant, located mainly in the exons 4, 8 and 11. Thus, in our population, the genetic testing should initially be focused on these exons. In addition, the genetic findings broaden the mutational and clinical spectrum of CADASIL related phenotype and provide additional evidences for genetic counseling and clinical management.
Collapse
|
28
|
Schoemaker D, Arboleda-Velasquez JF. Notch3 Signaling and Aggregation as Targets for the Treatment of CADASIL and Other NOTCH3-Associated Small-Vessel Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1856-1870. [PMID: 33895122 PMCID: PMC8647433 DOI: 10.1016/j.ajpath.2021.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Mutations in the NOTCH3 gene can lead to small-vessel disease in humans, including the well-characterized cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a condition caused by NOTCH3 mutations altering the number of cysteine residues in the extracellular domain of Notch3. Growing evidence indicates that other types of mutations in NOTCH3, including cysteine-sparing missense mutations or frameshift and premature stop codons, can lead to small-vessel disease phenotypes of variable severity or penetrance. There are currently no disease-modifying therapies for small-vessel disease, including those associated with NOTCH3 mutations. A deeper understanding of underlying molecular mechanisms and clearly defined targets are needed to promote the development of therapies. This review discusses two key pathophysiological mechanisms believed to contribute to the emergence and progression of small-vessel disease associated with NOTCH3 mutations: abnormal Notch3 aggregation and aberrant Notch3 signaling. This review offers a summary of the literature supporting and challenging the relevance of these mechanisms, together with an overview of available preclinical experiments derived from these mechanisms. It highlights knowledge gaps and future research directions. In view of recent evidence demonstrating the relatively high frequency of NOTCH3 mutations in the population, and their potential role in promoting small-vessel disease, progress in the development of therapies for NOTCH3-associated small-vessel disease is urgently needed.
Collapse
Affiliation(s)
- Dorothee Schoemaker
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Schepens Eye Research Institute of the Mass Eye and Ear and Department of Ophthalmology of Harvard Medical School, Boston, Massachusetts.
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of the Mass Eye and Ear and Department of Ophthalmology of Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
29
|
Kano Y, Mizuta I, Ueda A, Nozaki H, Sakurai K, Onodera O, Ando Y, Yamada K, Yuasa H, Mizuno T. Heterozygous Cysteine-sparing NOTCH3 Variant p.Val237Met in a Japanese Patient with Suspected Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. Intern Med 2021; 60:2479-2482. [PMID: 33678736 PMCID: PMC8381162 DOI: 10.2169/internalmedicine.6096-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A 64-year-old Japanese man with recurrent cerebral ischemic events and cognitive impairment was suspected of having cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) because of a family history and brain magnetic resonance imaging findings of cerebral white matter hyperintensities. The cysteine-sparing variation p.Val237Met was identified in NOTCH3. An intensive skin biopsy showed negative results (no granular osmiophilic material or positive NOTCH3 immunostaining), suggesting that the patient's definite diagnosis and pathogenicity of p.Val237Met were uncertain. We additionally reviewed previous reports of two Japanese families with p.Val237Met.
Collapse
Affiliation(s)
- Yuya Kano
- Department of Neurology, Tosei General Hospital, Japan
- Department of Neurology, Nagoya City East Medical Center, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Akihiko Ueda
- Department of Neurology, Graduate School of Medical Science, Kumamoto University, Japan
| | - Hiroaki Nozaki
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Science, Kumamoto University, Japan
- Department of Amyloidosis Research, Nagasaki International University, Japan
| | - Kentaro Yamada
- Department of Neurology, Nagoya City East Medical Center, Japan
| | | | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| |
Collapse
|
30
|
Gravesteijn G, Hack RJ, Mulder AA, Cerfontaine MN, van Doorn R, Hegeman IM, Jost CR, Rutten JW, Lesnik Oberstein SAJ. NOTCH3 variant position is associated with NOTCH3 aggregation load in CADASIL vasculature. Neuropathol Appl Neurobiol 2021; 48:e12751. [PMID: 34297860 PMCID: PMC9291091 DOI: 10.1111/nan.12751] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/02/2022]
Abstract
Aims CADASIL, the most prevalent hereditary cerebral small vessel disease, is caused by cysteine‐altering NOTCH3 variants (NOTCH3cys) leading to vascular NOTCH3 protein aggregation. It has recently been shown that variants located in one of NOTCH3 protein epidermal growth‐factor like repeat (EGFr) domains 1–6, are associated with a more severe phenotype than variants located in one of the EGFr domains 7–34. The underlying mechanism for this genotype–phenotype correlation is unknown. The aim of this study was to analyse whether NOTCH3cys variant position is associated with NOTCH3 protein aggregation load. Methods We quantified vascular NOTCH3 aggregation in skin biopsies (n = 25) and brain tissue (n = 7) of CADASIL patients with a NOTCH3cys EGFr 1–6 variant or a EGFr 7–34 variant, using NOTCH3 immunohistochemistry (NOTCH3 score) and ultrastructural analysis of granular osmiophilic material (GOM count). Disease severity was assessed by neuroimaging (lacune count and white matter hyperintensity volume) and disability (modified Rankin scale). Results Patients with NOTCH3cys EGFr 7–34 variants had lower NOTCH3 scores (P = 1.3·10−5) and lower GOM counts (P = 8.2·10−5) than patients with NOTCH3cys EGFr 1–6 variants in skin vessels. A similar trend was observed in brain vasculature. In the EGFr 7–34 group, NOTCH3 aggregation levels were associated with lacune count (P = 0.03) and white matter hyperintensity volume (P = 0.02), but not with disability. Conclusions CADASIL patients with an EGFr 7–34 variant have significantly less vascular NOTCH3 aggregation than patients with an EGFr 1–6 variant. This may be one of the factors underlying the difference in disease severity between NOTCH3cys EGFr 7–34 and EGFr 1–6 variants.
Collapse
Affiliation(s)
- Gido Gravesteijn
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco J Hack
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Aat A Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Minne N Cerfontaine
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid M Hegeman
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolina R Jost
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
31
|
Zampatti S, Ragazzo M, Peconi C, Luciano S, Gambardella S, Caputo V, Strafella C, Cascella R, Caltagirone C, Giardina E. Genetic Counselling Improves the Molecular Characterisation of Dementing Disorders. J Pers Med 2021; 11:474. [PMID: 34073306 PMCID: PMC8227097 DOI: 10.3390/jpm11060474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
Dementing disorders are a complex group of neurodegenerative diseases characterised by different, but often overlapping, pathological pathways. Genetics have been largely associated with the development or the risk to develop dementing diseases. Recent advances in molecular technologies permit analyzing of several genes in a small time, but the interpretation analysis is complicated by several factors: the clinical complexity of neurodegenerative disorders, the frequency of co-morbidities, and the high phenotypic heterogeneity of genetic diseases. Genetic counselling supports the diagnostic path, providing an accurate familial and phenotypic characterisation of patients. In this review, we summarise neurodegenerative dementing disorders and their genetic determinants. Genetic variants and associated phenotypes will be divided into high and low impact, in order to reflect the pathologic continuum between multifactorial and mendelian genetic factors. Moreover, we report a molecular characterisation of genes associated with neurodegenerative disorders with cognitive impairment. In particular, the high frequency of rare coding genetic variants in dementing genes strongly supports the role of geneticists in both, clinical phenotype characterisation and interpretation of genotypic data. The smart application of exome analysis to dementia patients, with a pre-analytical selection on familial, clinical, and instrumental features, improves the diagnostic yield of genetic test, reduces time for diagnosis, and allows a rapid and personalised management of disease.
Collapse
Affiliation(s)
- Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Michele Ragazzo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Cristina Peconi
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Serena Luciano
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Stefano Gambardella
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.P.); (S.L.); (C.S.); (R.C.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| |
Collapse
|
32
|
Nizari S, Wells JA, Carare RO, Romero IA, Hawkes CA. Loss of cholinergic innervation differentially affects eNOS-mediated blood flow, drainage of Aβ and cerebral amyloid angiopathy in the cortex and hippocampus of adult mice. Acta Neuropathol Commun 2021; 9:12. [PMID: 33413694 PMCID: PMC7791879 DOI: 10.1186/s40478-020-01108-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
Vascular dysregulation and cholinergic basal forebrain degeneration are both early pathological events in the development of Alzheimer’s disease (AD). Acetylcholine contributes to localised arterial dilatation and increased cerebral blood flow (CBF) during neurovascular coupling via activation of endothelial nitric oxide synthase (eNOS). Decreased vascular reactivity is suggested to contribute to impaired clearance of β-amyloid (Aβ) along intramural periarterial drainage (IPAD) pathways of the brain, leading to the development of cerebral amyloid angiopathy (CAA). However, the possible relationship between loss of cholinergic innervation, impaired vasoreactivity and reduced clearance of Aβ from the brain has not been previously investigated. In the present study, intracerebroventricular administration of mu-saporin resulted in significant death of cholinergic neurons and fibres in the medial septum, cortex and hippocampus of C57BL/6 mice. Arterial spin labelling MRI revealed a loss of CBF response to stimulation of eNOS by the Rho-kinase inhibitor fasudil hydrochloride in the cortex of denervated mice. By contrast, the hippocampus remained responsive to drug treatment, in association with altered eNOS expression. Fasudil hydrochloride significantly increased IPAD in the hippocampus of both control and saporin-treated mice, while increased clearance from the cortex was only observed in control animals. Administration of mu-saporin in the TetOAPPSweInd mouse model of AD was associated with a significant and selective increase in Aβ40-positive CAA. These findings support the importance of the interrelationship between cholinergic innervation and vascular function in the aetiology and/or progression of CAA and suggest that combined eNOS/cholinergic therapies may improve the efficiency of Aβ removal from the brain and reduce its deposition as CAA.
Collapse
|
33
|
Almeida MR, Silva AR, Elias I, Fernandes C, Machado R, Galego O, Santo GC. SQSTM1 gene as a potential genetic modifier of CADASIL phenotype. J Neurol 2020; 268:1453-1460. [PMID: 33216222 DOI: 10.1007/s00415-020-10308-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 10/23/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common inherited cerebral small vessel disease and is caused by mutations in the NOTCH3 gene. Interestingly, CADASIL patients present a large phenotypic variability even harboring the same pathogenic variant. We describe two CADASIL siblings with a particularly aggressive clinical phenotype characterized by early-onset stroke, gait disturbances and/or dementia, severe emotional dysregulation, and dysexecutive syndrome together with a severe white matter burden on MRI. The genetic analysis revealed the co-occurrence of NOTCH3 (p.Gly420Cys) and SQSTM1 (p.Ser275Phefs*17) pathogenic variants which might worsen the aggressiveness of disease progression in both siblings. Interestingly, to the best of our knowledge, mutations in SQSTM1 gene have never been described in CADASIL patients before. Curiously, both Notch3 and p62 encoded proteins have a key role in the autophagy-lysosomal pathway which is impaired in CADASIL patients. Thus, the contribution of SQSTM1 gene to the clinical heterogeneity of CADASIL patients, in particular for those who develop cognitive impairment or dementia at an early age, is certainly overlooked. Therefore, we advocate expanding the genetic analysis to other genes associated with the phenotype spectrum of CADASIL patients using NGS-customized gene panel.
Collapse
Affiliation(s)
- Maria Rosário Almeida
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marques de Pombal, 3004-517, Coimbra, Portugal.
| | - Ana Rita Silva
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marques de Pombal, 3004-517, Coimbra, Portugal
| | - Inês Elias
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marques de Pombal, 3004-517, Coimbra, Portugal
| | | | - Rita Machado
- Neurology Department, Coimbra University Hospital, Coimbra, Portugal
| | - Orlando Galego
- Neuroradiology Department, Coimbra University Hospital, Coimbra, Portugal
| | - Gustavo Cordeiro Santo
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marques de Pombal, 3004-517, Coimbra, Portugal.,Neurology Department, Coimbra University Hospital, Coimbra, Portugal
| |
Collapse
|
34
|
Ritz MF, Jenoe P, Bonati L, Engelter S, Lyrer P, Peters N. Combined Transcriptomic and Proteomic Analyses of Cerebral Frontal Lobe Tissue Identified RNA Metabolism Dysregulation as One Potential Pathogenic Mechanism in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). Curr Neurovasc Res 2020; 16:481-493. [PMID: 31657685 DOI: 10.2174/1567202616666191023111059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cerebral small vessel disease (SVD) is an important cause of stroke and vascular cognitive impairment (VCI), leading to subcortical ischemic vascular dementia. As a hereditary form of SVD with early onset, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) represents a pure form of SVD and may thus serve as a model disease for SVD. To date, underlying molecular mechanisms linking vascular pathology and subsequent neuronal damage in SVD are incompletely understood. OBJECTIVE We performed comparative transcriptional profiling microarray and proteomic analyses on post-mortem frontal lobe specimen from 2 CADASIL patients and 5 non neurologically diseased controls in order to identify dysregulated pathways potentially involved in the development of tissue damage in CADASIL. METHODS Transcriptional microarray analysis of material extracted from frontal grey and white matter (WM) identified subsets of up- or down-regulated genes enriched into biological pathways mostly in WM areas. Proteomic analysis of these regions also highlighted cellular processes identified by dysregulated proteins. RESULTS Discrepancies between proteomic and transcriptomic data were observed, but a number of pathways were commonly associated with genes and corresponding proteins, such as: "ribosome" identified by upregulated genes and proteins in frontal cortex or "spliceosome" associated with down-regulated genes and proteins in frontal WM. CONCLUSION This latter finding suggests that defective expression of spliceosomal components may alter widespread splicing profile, potentially inducing expression abnormalities that could contribute to cerebral WM damage in CADASIL.
Collapse
Affiliation(s)
- Marie-Françoise Ritz
- Department of Biomedicine, Brain Tumor Biology Laboratory, University of Basel, and University Hospital of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Paul Jenoe
- Proteomics Core Facility, Biocenter, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Leo Bonati
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Stefan Engelter
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland.,Neurorehabilitation Unit, University of Basel and University Center for Medicine of Aging, Felix Platter Hospital, Burgfelderstrasse 101, 4055 Basel, Switzerland
| | - Philippe Lyrer
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Nils Peters
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland.,Neurorehabilitation Unit, University of Basel and University Center for Medicine of Aging, Felix Platter Hospital, Burgfelderstrasse 101, 4055 Basel, Switzerland
| |
Collapse
|
35
|
Tsokolas G, Tsaousis KT, Diakonis VF, Matsou A, Tyradellis S. Optical Coherence Tomography Angiography in Neurodegenerative Diseases: A Review. Eye Brain 2020; 12:73-87. [PMID: 32765149 PMCID: PMC7368556 DOI: 10.2147/eb.s193026] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Optical coherence tomography angiography (OCT-A) has emerged as a novel, fast, safe and non-invasive imaging technique of analyzing the retinal and choroidal microvasculature in vivo. OCT-A captures multiple sequential B-scans performed repeatedly over a specific retinal area at high speed, thus enabling the composition of a vascular map with areas of contrast change (high flow zones) and areas of steady contrast (slow or no flow zones). It therefore provides unique insight into the exact retinal or choroidal layer and location at which abnormal blood flow develops. OCTA has evolved into a useful tool for understanding a number of retinal pathologies such as diabetic retinopathy, age-related macular degeneration, central serous chorioretinopathy, vascular occlusions, macular telangiectasia and choroidal neovascular membranes of other causes. OCT-A technology is also increasingly being used in the evaluation of optic disc perfusion and has been suggested as a valuable tool in the early detection of glaucomatous damage and monitoring progression. Objective To review the existing literature on the applications of optical coherence tomography angiography in neurodegenerative diseases. Summary A meticulous literature was performed until the present day. Google Scholar, PubMed, Mendeley search engines were used for this purpose. We used 123 published manuscripts as our references. OCT-A has been utilized so far to describe abnormalities in multiple sclerosis (MS), Alzheimer’s disease, arteritic and non-arteritic optic neuropathy (AION and NAION), Leber’s hereditary optic neuropathy (LHON) papilloedema, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis (ALS), Wolfram syndrome, migraines, lesions of the visual pathway and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). It appears that OCT-A findings correlate quite well with the severity of the aforementioned diseases. However, OCT-A has its own limitations, namely its lack of wide-field view of the peripheral retina and the inaccurate interpretation due to motion artifacts in uncooperative groups of patients (e.g. children). Larger prospective longitudinal studies will need to be conducted in order to eliminate the aforementioned limitations.
Collapse
Affiliation(s)
- Georgios Tsokolas
- Ophthalmology Department, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
| | - Konstantinos T Tsaousis
- Ophthalmology Department, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
| | | | - Artemis Matsou
- Ophthalmology Department, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
| | - Straton Tyradellis
- Ophthalmology Department, Leicester Royal Infirmary, University Hospitals of Leicester, Leicester, UK
| |
Collapse
|
36
|
Mellinger S, Romero D, Visich A, Chanampa S, Ivetich G, Burgos M, Orzuza G. Not Described Variant of Notch3 Gen for Cadasil Disease. J Stroke Cerebrovasc Dis 2020; 29:104803. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.104803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/09/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022] Open
|
37
|
Xiromerisiou G, Marogianni C, Dadouli K, Zompola C, Georgouli D, Provatas A, Theodorou A, Zervas P, Nikolaidou C, Stergiou S, Ntellas P, Sokratous M, Stathis P, Paraskevas GP, Bonakis A, Voumvourakis K, Hadjichristodoulou C, Hadjigeorgiou GM, Tsivgoulis G. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy revisited: Genotype-phenotype correlations of all published cases. NEUROLOGY-GENETICS 2020; 6:e434. [PMID: 32582863 PMCID: PMC7238894 DOI: 10.1212/nxg.0000000000000434] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/02/2020] [Indexed: 01/18/2023]
Abstract
Objective The aim of this study was to evaluate the correlation between the various NOTCH3 mutations and their clinical and genetic profile, along with the presentation of a novel mutation in a patient. Methods Here, we describe the phenotype of a patient with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) harboring a novel mutation. We also performed an extensive literature research for NOTCH3 mutations published since the identification of the gene and performed a systematic review of all published cases with NOTCH3 mutations. We evaluated the mutation pathogenicity in a great number of patients with detailed clinical and genetic evaluation and investigated the possible phenotype-genotype correlations. Results Our patient harbored a novel mutation in the NOTCH3 gene, the c.3084 G > C, corresponding to the aminoacidic substitution p.Trp1028Cys, presenting with seizures as the first neurologic manifestation. We managed to find a correlation between the pathogenicity of mutations, severity of the phenotype, and age at onset of CADASIL. Significant differences were also identified between men and women regarding the phenotype severity. Conclusions The collection and analysis of these scarce data published since the identification of NOTCH3 qualitatively by means of a systematic review and quantitatively regarding genetic profile and pathogenicity scores, highlight the significance of the ongoing trend of investigating phenotypic genotypic correlations.
Collapse
Affiliation(s)
- Georgia Xiromerisiou
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Chrysoula Marogianni
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Katerina Dadouli
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Christina Zompola
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Despoina Georgouli
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Antonios Provatas
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Aikaterini Theodorou
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Paschalis Zervas
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Christina Nikolaidou
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Stergios Stergiou
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Panagiotis Ntellas
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Maria Sokratous
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Pantelis Stathis
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Georgios P Paraskevas
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Anastasios Bonakis
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Konstantinos Voumvourakis
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Christos Hadjichristodoulou
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| | - Georgios Tsivgoulis
- Department of Neurology (G.X., C.M., D.G., A.P., M.S., G.M.H.), University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Second Department of Neurology (C.Z., A.T., P.Z., A.B., K.V., G.T.), "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; Department of Neurology (G.M.H.), Medical School, University of Cyprus, Nicosia, Cyprus; Department of Hygiene and Epidemiology (K.D., C.H.), Faculty of Medicine, University of Thessaly, Larissa, Greece; Department of Medical Oncology (P.N.), University Hospital of Ioannina, Ioannina, Greece; Department of Neurology (P.S.), Mediterraneo Hospital, Glyfada, Athens, Greece; Histopathological Department (C.N., S.S.), Hippokration General Hospital Thessaloniki; and Department of Neurology (G.P.P.), School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
| |
Collapse
|
38
|
Mizuno T, Mizuta I, Watanabe-Hosomi A, Mukai M, Koizumi T. Clinical and Genetic Aspects of CADASIL. Front Aging Neurosci 2020; 12:91. [PMID: 32457593 PMCID: PMC7224236 DOI: 10.3389/fnagi.2020.00091] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebral small vessel disease caused by mutations in NOTCH3, is characterized by recurrent stroke without vascular risk factors, mood disturbances, and dementia. MRI imaging shows cerebral white matter (WM) hyperintensity, particularly in the external capsule and temporal pole. Missense mutations related to a cysteine residue in the 34 EGFr on the NOTCH3 extracellular domain (N3ECD) are a typical mutation of CADASIL. On the other hand, atypical mutations including cysteine sparing mutation, null mutation, homozygous mutation, and other associate genes are also reported. From the viewpoint of gain of function apart from Notch signaling or loss of function of Notch signaling, we review the research article about CADASIL and summarized the pathogenesis of small vessel, stroke, and dementia in this disease.
Collapse
Affiliation(s)
- Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Watanabe-Hosomi
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mao Mukai
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Koizumi
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
39
|
Ungaro C, Sprovieri T. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). Rare Dis 2020. [DOI: 10.5772/intechopen.87248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
40
|
Mizutani K, Sakurai K, Mizuta I, Mizuno T, Yuasa H. Multiple Border-Zone Infarcts Triggered by Influenza A Virus Infection in a Patient With Cerebral Autosomal Dominant Arteriopathy Presenting With Subcortical Infarcts and Leukoencephalopathy. J Stroke Cerebrovasc Dis 2020; 29:104701. [PMID: 32102741 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/25/2020] [Indexed: 10/24/2022] Open
Abstract
Patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) can develop multiple border-zone infarcts due to hypotension, hypovolemia, or surgery. We report the case of a 41-year-old woman with CADASIL who developed multiple border-zone infarcts due to influenza A virus infection. The patient had no apparent history or episode of stroke or altered consciousness following the onset of respiratory symptoms, which were due to the influenza A infection. Diffusion-weighted magnetic resonance images of the brain showed multiple acute-phase infarcts in border-zone areas of both cerebral hemispheres and the corpus callosum; fluid-attenuated inversion-recovery magnetic resonance images showed increased signal in the subcortical areas of both temporal poles. Gene analysis identified a heterozygous mutation c.160C>T in exon 2 of the NOTCH3 gene (p.Arg54Cys). A diagnosis of CADASIL was established. Our case demonstrates that infectious conditions such as influenza A can trigger multiple border-zone infarctions in patients with CADASIL.
Collapse
Affiliation(s)
- Keisuke Mizutani
- Department of Neurology, Tosei General Hospital, Seto, Aichi, Japan.
| | - Keita Sakurai
- Department of Radiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyuki Yuasa
- Department of Neurology, Tosei General Hospital, Seto, Aichi, Japan
| |
Collapse
|
41
|
Orme T, Hernandez D, Ross OA, Kun-Rodrigues C, Darwent L, Shepherd CE, Parkkinen L, Ansorge O, Clark L, Honig LS, Marder K, Lemstra A, Rogaeva E, St. George-Hyslop P, Londos E, Zetterberg H, Morgan K, Troakes C, Al-Sarraj S, Lashley T, Holton J, Compta Y, Van Deerlin V, Trojanowski JQ, Serrano GE, Beach TG, Lesage S, Galasko D, Masliah E, Santana I, Pastor P, Tienari PJ, Myllykangas L, Oinas M, Revesz T, Lees A, Boeve BF, Petersen RC, Ferman TJ, Escott-Price V, Graff-Radford N, Cairns NJ, Morris JC, Pickering-Brown S, Mann D, Halliday G, Stone DJ, Dickson DW, Hardy J, Singleton A, Guerreiro R, Bras J. Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathol Commun 2020; 8:5. [PMID: 31996268 PMCID: PMC6990558 DOI: 10.1186/s40478-020-0879-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is a clinically heterogeneous disorder with a substantial burden on healthcare. Despite this, the genetic basis of the disorder is not well defined and its boundaries with other neurodegenerative diseases are unclear. Here, we performed whole exome sequencing of a cohort of 1118 Caucasian DLB patients, and focused on genes causative of monogenic neurodegenerative diseases. We analyzed variants in 60 genes implicated in DLB, Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, and atypical parkinsonian or dementia disorders, in order to determine their frequency in DLB. We focused on variants that have previously been reported as pathogenic, and also describe variants reported as pathogenic which remain of unknown clinical significance, as well as variants associated with strong risk. Rare missense variants of unknown significance were found in APP, CHCHD2, DCTN1, GRN, MAPT, NOTCH3, SQSTM1, TBK1 and TIA1. Additionally, we identified a pathogenic GRN p.Arg493* mutation, potentially adding to the diversity of phenotypes associated with this mutation. The rarity of previously reported pathogenic mutations in this cohort suggests that the genetic overlap of other neurodegenerative diseases with DLB is not substantial. Since it is now clear that genetics plays a role in DLB, these data suggest that other genetic loci play a role in this disease.
Collapse
|
42
|
Dunn PJ, Maksemous N, Smith RA, Sutherland HG, Haupt LM, Griffiths LR. Investigating diagnostic sequencing techniques for CADASIL diagnosis. Hum Genomics 2020; 14:2. [PMID: 31915071 PMCID: PMC6950909 DOI: 10.1186/s40246-019-0255-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/30/2019] [Indexed: 11/18/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease caused by mutations in the NOTCH3 gene. Our laboratory has been undertaking genetic diagnostic testing for CADASIL since 1997. Work originally utilised Sanger sequencing methods targeting specific NOTCH3 exons. More recently, next-generation sequencing (NGS)-based technologies such as a targeted gene panel and whole exome sequencing (WES) have been used for improved genetic diagnostic testing. In this study, data from 680 patient samples was analysed for 764 tests utilising 3 different sequencing technologies. Sanger sequencing was performed for 407 tests, a targeted NGS gene panel which includes NOTCH3 exonic regions accounted for 354 tests, and WES with targeted analysis was performed for 3 tests. In total, 14.7% of patient samples (n = 100/680) were determined to have a mutation. Testing efficacy varied by method, with 10.8% (n = 44/407) of tests using Sanger sequencing able to identify mutations, with 15.8% (n = 56/354) of tests performed using the NGS custom panel successfully identifying mutations and a likely non-NOTCH3 pathogenic variant (n = 1/3) identified through WES. Further analysis was then performed through stratification of the number of mutations detected at our facility based on the number of exons, level of pathogenicity and the classification of mutations as known or novel. A systematic review of NOTCH3 mutation testing data from 1997 to 2017 determined the diagnostic rate of pathogenic findings and found the NGS-customised panel increases our ability to identify disease-causing mutations in NOTCH3.
Collapse
Affiliation(s)
- P J Dunn
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - N Maksemous
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - R A Smith
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - H G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - L M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| | - L R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
43
|
Gravesteijn G, Munting LP, Overzier M, Mulder AA, Hegeman I, Derieppe M, Koster AJ, van Duinen SG, Meijer OC, Aartsma-Rus A, van der Weerd L, Jost CR, van den Maagdenberg AMJM, Rutten JW, Lesnik Oberstein SAJ. Progression and Classification of Granular Osmiophilic Material (GOM) Deposits in Functionally Characterized Human NOTCH3 Transgenic Mice. Transl Stroke Res 2019; 11:517-527. [PMID: 31667734 PMCID: PMC7235067 DOI: 10.1007/s12975-019-00742-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/12/2019] [Accepted: 09/23/2019] [Indexed: 11/26/2022]
Abstract
CADASIL is a NOTCH3-associated cerebral small vessel disease. A pathological ultrastructural disease hallmark is the presence of NOTCH3-protein containing deposits called granular osmiophilic material (GOM), in small arteries. How these GOM deposits develop over time and what their role is in disease progression is largely unknown. Here, we studied the progression of GOM deposits in humanized transgenic NOTCH3Arg182Cys mice, compared them to GOM deposits in patient material, and determined whether GOM deposits in mice are associated with a functional CADASIL phenotype. We found that GOM deposits are not static, but rather progress in ageing mice, both in terms of size and aspect. We devised a GOM classification system, reflecting size, morphology and electron density. Six-month-old mice showed mostly early stage GOM, whereas older mice and patient vessels showed predominantly advanced stage GOM, but also early stage GOM. Mutant mice did not develop the most severe GOM stage seen in patient material. This absence of end-stage GOM in mice was associated with an overall lack of histological vascular pathology, which may explain why the mice did not reveal functional deficits in cerebral blood flow, cognition and motor function. Taken together, our data indicate that GOM progress over time, and that new GOM deposits are continuously being formed. The GOM staging system we introduce here allows for uniform GOM deposit classification in future mouse and human studies, which may lead to more insight into a potential association between GOM stage and CADASIL disease severity, and the role of GOM in disease progression.
Collapse
Affiliation(s)
- Gido Gravesteijn
- Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Leon P Munting
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Maurice Overzier
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Aat A Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Ingrid Hegeman
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Marc Derieppe
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
- Department of Pediatric Neuro-Oncology, Prinses Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Onno C Meijer
- Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Carolina R Jost
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Saskia A J Lesnik Oberstein
- Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
44
|
Qin W, Ren Z, Xia M, Yang M, Shi Y, Huang Y, Guo X, Zhang J. Clinical Features of 4 Novel NOTCH3 Mutations of Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy in China. Med Sci Monit Basic Res 2019; 25:199-209. [PMID: 31554780 PMCID: PMC6778411 DOI: 10.12659/msmbr.918830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background This study aimed to identify NOTCH3 mutations and describe the genetic and clinical features and magnetic resonance imaging results in 11 unrelated patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) from Henan province in China. Material/Methods NOTCH3 was directly sequenced in 11 unrelated patients of Chinese descent. The clinical presentations and magnetic resonance imaging features were retrospectively analyzed in the 11 index patients with a definite diagnosis. Results Seven different mutations were identified in 11 unrelated patients, including 4 novel mutations (p.P167S, p.P652S, p.C709R, and p.R1100H) in China and 3 reported mutations (p.C117R, p.R578C, and p.R607C). Four novel mutations (p.P167S, p.P652S, p.C709R, and p.R1100H) were predicted to be probably pathogenic using an online pathogenicity prediction program through comprehensive analysis. Clinical presentations in symptomatic patients included stroke, cognitive decline, psychiatric disturbances, and migraine. Multiple lacunars infarcts and leukoaraiosis were detected on MRI in most symptomatic patients, while white-matter lesions were identified in the temporal pole or the external capsule in all affected patients. Conclusions The mutation spectrum of CADASIL patients from Henan province in China displayed some differences from that of those reported previously. DNA sequencing was used to diagnose all 11 patients as having CADASIL, and we found 4 novel mutations. The present results further contribute to the enrichment of NOTCH3 mutation databases.
Collapse
Affiliation(s)
- Weiwei Qin
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China (mainland)
| | - Zhixia Ren
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China (mainland)
| | - Mingrong Xia
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China (mainland)
| | - Miaomiao Yang
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China (mainland).,Xinxiang Medical University, Xinxiang, Henan, China (mainland)
| | - Yingying Shi
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China (mainland)
| | - Yue Huang
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China (mainland)
| | - Xiangqian Guo
- Department of Biochemistry and Molecular Biology, Medical School of Henan University, Kaifeng, Henan, China (mainland)
| | - Jiewen Zhang
- Department of Neurology, State Key Clinical Specialty of the Ministry of Health for Neurology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
45
|
Giau VV, Bagyinszky E, Youn YC, An SSA, Kim SY. Genetic Factors of Cerebral Small Vessel Disease and Their Potential Clinical Outcome. Int J Mol Sci 2019; 20:ijms20174298. [PMID: 31484286 PMCID: PMC6747336 DOI: 10.3390/ijms20174298] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/27/2019] [Accepted: 09/01/2019] [Indexed: 12/23/2022] Open
Abstract
Cerebral small vessel diseases (SVD) have been causally correlated with ischemic strokes, leading to cognitive decline and vascular dementia. Neuroimaging and molecular genetic tests could improve diagnostic accuracy in patients with potential SVD. Several types of monogenic, hereditary cerebral SVD have been identified: cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), cathepsin A-related arteriopathy with strokes and leukoencephalopathy (CARASAL), hereditary diffuse leukoencephalopathy with spheroids (HDLS), COL4A1/2-related disorders, and Fabry disease. These disorders can be distinguished based on their genetics, pathological and imaging findings, clinical manifestation, and diagnosis. Genetic studies of sporadic cerebral SVD have demonstrated a high degree of heritability, particularly among patients with young-onset stroke. Common genetic variants in monogenic disease may contribute to pathological progress in several cerebral SVD subtypes, revealing distinct genetic mechanisms in different subtype of SVD. Hence, genetic molecular analysis should be used as the final gold standard of diagnosis. The purpose of this review was to summarize the recent discoveries made surrounding the genetics of cerebral SVD and their clinical significance, to provide new insights into the pathogenesis of cerebral SVD, and to highlight the possible convergence of disease mechanisms in monogenic and sporadic cerebral SVD.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology & Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 461-701, Korea
| | - Eva Bagyinszky
- Department of Bionano Technology & Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 461-701, Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul 06973, Korea.
| | - Seong Soo A An
- Department of Bionano Technology & Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 461-701, Korea.
| | - Sang Yun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seoul 06973, Korea
| |
Collapse
|
46
|
Ling C, Fang X, Kong Q, Sun Y, Wang B, Zhuo Y, An J, Zhang W, Wang Z, Zhang Z, Yuan Y. Lenticulostriate Arteries and Basal Ganglia Changes in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy, a High-Field MRI Study. Front Neurol 2019; 10:870. [PMID: 31447773 PMCID: PMC6696621 DOI: 10.3389/fneur.2019.00870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/26/2019] [Indexed: 01/18/2023] Open
Abstract
Background and Purpose: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) mainly affects the cerebral small arteries. We aimed to analyze changes in the lenticulostriate arteries (LSAs) and the basal ganglia in patients with CADASIL using high-field magnetic resonance imaging (7.0-T MRI). Methods: We examined 46 patients with CADASIL and 46 sex- and age-matched healthy individuals using 7.0-T MRI. The number and length of the LSAs, and the proportion of discontinuous LSAs were compared between the two groups. The Mini-Mental State Examination score, the modified Rankin Scale, the Barthel Index, and the MRI lesion load of the basal ganglia were also examined in patients with CADASIL. We analyzed the association between LSA measurements and the basal ganglia lesion load, as well as the association between LSA measurements and clinical phenotypes in this patient group. Results: We observed a decrease in the number of LSA branches (t = −2.591, P = 0.011), and an increase in the proportion of discontinuous LSAs (z = −1.991, P = 0.047) in patients with CADASIL when compared with healthy controls. However, there was no significant difference in the total length of LSAs between CADASIL patients and healthy individuals (t = −0.412, P = 0.682). There was a positive association between the number of LSA branches and the Mini-Mental State Examination scores of CADASIL patients after adjusting for age and educational level (β = 0.438; 95% CI: 0.093, 0.782; P = 0.014). However, there was no association between LSA measurements and the basal ganglia lesion load among CADASIL patients. Conclusions: 7.0-T MRI provides a promising and non-invasive method for the study of small artery damage in CADASIL. The abnormalities of small arteries may be related to some clinical symptoms of CADASIL patients such as cognitive impairment. The lack of association between LSA measurements and the basal ganglia lesion load among the patients suggests that changes in the basal ganglia due to CADASIL are caused by mechanisms other than anatomic narrowing of the vessel lumen.
Collapse
Affiliation(s)
- Chen Ling
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xiaojing Fang
- Department of Neurology, Peking University First Hospital, Beijing, China.,Department of Neurology, Peking University International Hospital, Beijing, China
| | - Qingle Kong
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunchuang Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Bo Wang
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zihao Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
47
|
Dunphy L, Rani A, Duodu Y, Behnam Y. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) presenting with stroke in a young man. BMJ Case Rep 2019; 12:e229609. [PMID: 31324668 PMCID: PMC6663233 DOI: 10.1136/bcr-2019-229609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2019] [Indexed: 11/04/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) is caused by mutations in the NOTCH3 gene which maps to the short arm of chromosome 19 and encodes the NOTCH3 receptor protein, predominantly expressed in adults by vascular smooth muscle cells and pericytes. The receptor has a large extracellular domain with 34 epidermal growth factor-like repeats encoded by exons 2-24, the site at which CADASIL mutations are most commonly found. Migraine with aura is often the earliest feature of the disease, with an increased susceptibility to cortical spreading depression suggested as a possible aetiological mechanism. Stroke, acute encephalopathy and cognitive impairment can also occur. Hypertension and smoking are associated with early age of onset of stroke. It diffusely affects white matter, with distinct findings on T2- weighted MRI, involving the external capsule, anterior poles of the temporal lobe and superior frontal gyri, displaying a characteristic pattern of leucoencephalopathy. Affected individuals have a reduced life expectancy. An effective treatment for CADASIL is not available. The authors describe a 35-year-old manwith an unremarkable medical history, presenting to the emergency department with slurred speech and increased confusion 3 days following a fall. He was a smoker and consumed 16 units of alcohol weekly. He was hypertensive and tachycardic. Physical examination confirmed increased tone in his lower limbs and dysarthria. His CT head showed severe cerebral atrophy, multiple small old infarcts and moderate background microvascular disease. Further investigation with an MRI head confirmed multiple white matter abnormalities with microhaemorrhages. The possibility of a hereditary vasculopathy was rendered as the appearances were thought consistent with a diagnosis of CADASIL. Genetic testing identified the NOTCH3 gene thus confirming the diagnosis. This paper provides an overview of the aetiology, clinical presentation, pathogenesis, investigations and management of CADASIL.
Collapse
Affiliation(s)
- Louise Dunphy
- Surgery, Milton Keynes University Hospital, Milton Keynes, UK
| | - Amir Rani
- Stroke Medicine, Milton Keynes University Hospital, Milton Keynes, UK
| | - Yaw Duodu
- Stroke Medicine, Milton Keynes University Hospital, Milton Keynes, UK
| | - Yousef Behnam
- Stroke Medicine, Milton Keynes University Hospital, Milton Keynes, UK
| |
Collapse
|
48
|
Chen X, Deng S, Xu H, Hou D, Hu P, Yang Y, Wen J, Deng H, Yuan L. Novel and Recurring NOTCH3 Mutations in Two Chinese Patients with CADASIL. NEURODEGENER DIS 2019; 19:35-42. [PMID: 31212292 DOI: 10.1159/000500166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/05/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an autosomal-dominant, inherited, systemic, vascular disorder primarily involving the small arteries. It is characterized by migraine, recurrent ischemic strokes, cognitive decline, and dementia. Mutations in the Notch receptor 3 gene (NOTCH3) and the HtrA serine peptidase 1 gene (HTRA1) are 2 genetic causes for CADASIL. The NOTCH3 gene, located on chromosome 19p13.12, is the most common disease-causing gene in CADASIL. OBJECTIVE To investigate genetic causes in 2 unrelated Han-Chinese patients with presentations strongly suggestive of CADASIL. METHODS Exome sequencing was performed on both patients and potential pathogenic mutations were validated by Sanger sequencing. RESULTS This study reports on 2 unrelated Han-Chinese patients with presentations strongly suggestive of CADASIL, identifying that NOTCH3 mutations were the genetic cause. A common mutation, c.268C>T (p.Arg90Cys), and a novel mutation, c.331G>T (p.Gly111Cys) in the NOTCH3 gene, were detected and confirmed in the patients, respectively, and were predicted to be deleterious based on bioinformation analyses. CONCLUSIONS We identified 2 NOTCH3 mutations as likely genetic causes for CADASIL in these 2 patients. Our findings broaden the mutational spectrum of the NOTCH3 gene accountable for CADASIL. Clinical manifestations supplemented with molecular genetic analyses are critical for accurate diagnosis, the provision of genetic counseling, and the development of therapies for CADASIL.
Collapse
Affiliation(s)
- Xiangyu Chen
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Xu
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Deren Hou
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Pengzhi Hu
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wen
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China,
| |
Collapse
|
49
|
Papakonstantinou E, Bacopoulou F, Brouzas D, Megalooikonomou V, D'Elia D, Bongcam-Rudloff E, Vlachakis D. NOTCH3 and CADASIL syndrome: a genetic and structural overview. EMBNET.JOURNAL 2019; 24:e921. [PMID: 31218211 PMCID: PMC6583802 DOI: 10.14806/ej.24.0.921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
CADASIL syndrome is a rare disease that belongs to a group of disorders called leukodystrophies. It is well established that NOTCH3 gene on chromosome 19 is primarily responsible for the development of the CADASIL syndrome. Herein, an attempt is made to shed light on the actual molecular mechanism underlying CADASIL syndrome, through insights extracted from comprehensive evolutionary studies and in silico modelling on Notch 3 protein. In particular, we suggest the use of optical coherence tomography angiography for the detection of early signs of small vessel diseases, which are the major precursors to a repertoire of neurodegenerative conditions, including CADASIL.
Collapse
Affiliation(s)
- Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
- Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - Dimitrios Brouzas
- 1st Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasileios Megalooikonomou
- Computer Engineering and Informatics Department, School of Engineering, University of Patras, Patras, Greece
| | | | - Erik Bongcam-Rudloff
- SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics Science, University of Agricultural Sciences, Uppsala, Sweden
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
- Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
50
|
Ling C, Liu Z, Song M, Zhang W, Wang S, Liu X, Ma S, Sun S, Fu L, Chu Q, Belmonte JCI, Wang Z, Qu J, Yuan Y, Liu GH. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein Cell 2019; 10:249-271. [PMID: 30778920 PMCID: PMC6418078 DOI: 10.1007/s13238-019-0608-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.
Collapse
Affiliation(s)
- Chen Ling
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Weiqi Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Shuhui Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Fu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|