1
|
Zhang X, He Z, Wang S, Zhang S, Song D. A pure near-infrared platform with dual-readout capability employing upconversion fluorescence and colorimetry for biosensing of uric acid. Talanta 2025; 291:127900. [PMID: 40056650 DOI: 10.1016/j.talanta.2025.127900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
Exploring an accurate uric acid (UA) detection method is of paramount importance for early disease diagnosis. In this study, we have developed a novel near-infrared (NIR) probe that integrates upconversion nanoparticles (UCNPs) with polymetallic oxomolybdate (POM) clusters to achieve precise UA quantification. The strong absorption of POM peaking at 825 nm effectively quenched the fluorescence emission of UCNPs at 806 nm under 980 nm laser excitation through the resonance energy transfer effect. Upon introducing UA along with uricase, hydrogen peroxide generated from the catalytic reaction significantly diminished POM absorption, thereby restoring UCNP fluorescence by up to 19.5-fold. By leveraging the distinctive features of NIR dual-readout and NIR excitation, the interference from biological samples can be significantly mitigated. Consequently, the probe demonstrated excellent selectivity and sensitivity towards UA. For the colorimetric assay, the linear range for UA detection was 5-100 μM with a low detection limit of 0.283 μM, while the fluorescence method demonstrated a linear range of 1-60 μM with a detection limit as low as 11.74 nM. We successfully and accurately quantified UA in human serum, highlighting its great potential for biochemical and clinical applications.
Collapse
Affiliation(s)
- Xinglong Zhang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, PR China
| | - Zuming He
- College of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, PR China
| | - Shuyan Wang
- College of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, PR China
| | - Shuai Zhang
- Xingyuan Hospital of Yulin, Yulin, 719000, PR China
| | - Dan Song
- College of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, PR China.
| |
Collapse
|
2
|
Stiburkova B, Ichida K. Genetic background of selected hyperuricemia causing gout with pediatric onset. Joint Bone Spine 2025; 92:105884. [PMID: 40090614 DOI: 10.1016/j.jbspin.2025.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
Elevated serum uric acid levels are the essential pathophysiology of gout. Although gout rarely develops in childhood, chronic persistent hyperuricemia can induce precipitation and deposition of sodium urate crystals, leading to the development of gout. Hyperuricemia is caused by increased uric acid production and/or decreased uric acid excretion capacity of the kidneys and/or intestinal tract. Increased production of uric acid, the final metabolite of purine, is associated with an increase of phosphoribosyl pyrophosphate, the key compound in the purine synthesis pathways, as observed in hypoxanthine-guanine phosphoribosyltransferase deficiency. Another mechanism for increased uric acid production is increased adenosine triphosphate consumption that is found in glycogen storage disease type I. On the other hand, in uromodulin-associated kidney disease, the accumulation of abnormal uromodulin in the kidneys leads to tubulointerstitial damage and fibrosis, and the ability to excrete uric acid is compromised, with reduced secretion and increased reabsorption in the proximal tubules. Decreased uric acid excretion from the kidneys or intestinal tract is also mediated by decreased function of the ATP-binding cassette subfamily G member 2, a urate transporter that acts in the urate secretion. This review summarizes the selected pathophysiological mechanisms underlying the genetic basis of hyperuricemia and gout in children, both in terms of purine metabolism and uric acid excretion.
Collapse
Affiliation(s)
- Blanka Stiburkova
- Institute of Rheumatology, Prague, Czechia; Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czechia; Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia.
| | - Kimiyoshi Ichida
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; Chiba Health Promotion Center, East Japan Railway Company, Chiba, Japan
| |
Collapse
|
3
|
Fang HH, Lee CL, Chen HJ, Chuang CK, Chiu HC, Chang YH, Tu YR, Lo YT, Lin HY, Lin SP. Whole Exome Sequencing Facilitates Early Diagnosis of Lesch-Nyhan Syndrome: A Case Series. Diagnostics (Basel) 2024; 14:2809. [PMID: 39767170 PMCID: PMC11675658 DOI: 10.3390/diagnostics14242809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Lesch-Nyhan syndrome (LNS) is a rare X-linked recessive metabolic disorder caused by mutations in the HPRT1 gene, resulting in hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency. Early diagnosis is critical for optimizing management and improving outcomes. This study presents a case series of three Taiwanese patients diagnosed at a single medical center. METHODS Exome sequencing and biochemical testing were used to confirm the diagnoses. Early clinical manifestations, including hyperuricemia, hypotonia, and developmental delay, were documented during the initial stages of the disease. RESULTS All three patients had hyperuricemia, hypotonia, spasticity, and motor developmental delay. Pathogenic variants in the HPRT1 gene were identified in two patients, while the third was confirmed by biochemical testing. Two patients had orange-colored crystalline deposits in their diapers, indicative of hyperuricosuria. Self-injurious behavior had not yet developed in two patients due to their young age. CONCLUSIONS Early clinical features such as hyperuricemia, hypotonia, and motor delay may suggest LNS in infancy. Molecular genetic testing, particularly whole exome sequencing, can facilitate an early diagnosis before specific manifestations occur, enabling timely interventions and improving patient outcomes.
Collapse
Grants
- MMH-MM-113-13, MMH E-113-13, MMH-MM-112-14, MMH-E-112-13, and MMH-E-111-13 MacKay Memorial Hospital
- NSTC-113-2314-B-195-003, NSTC-113-2314-B-195-004, NSTC-113-2314-B-715-002, NSTC-113-2314-B-195-021, NSTC-113-2811-B-195-001, NSTC-112-2314-B-195-014-MY3, NSTC-112-2811-B-195-001, NSTC-112-2314-B-195-003, NSTC-111-2314-B-195-017, NSTC-111-2811-B-195-002, N Ministry of Science and Technology, Executive Yuan, Taiwan
Collapse
Affiliation(s)
- Hung-Hsiang Fang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 104217, Taiwan; (H.-H.F.); (C.-L.L.); (H.-J.C.); (H.-C.C.); (Y.-H.C.)
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 104217, Taiwan; (H.-H.F.); (C.-L.L.); (H.-J.C.); (H.-C.C.); (Y.-H.C.)
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei 112304, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 104217, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 252005, Taiwan
- Department of Childhood Care and Education, Mackay Junior College of Medicine, Nursing and Management, Taipei 112021, Taiwan
| | - Hui-Ju Chen
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 104217, Taiwan; (H.-H.F.); (C.-L.L.); (H.-J.C.); (H.-C.C.); (Y.-H.C.)
- Department of Medicine, Mackay Medical College, New Taipei City 252005, Taiwan
| | - Chih-Kuang Chuang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-K.C.); (Y.-R.T.)
- College of Medicine, Fu-Jen Catholic University, Taipei 24205, Taiwan
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 104217, Taiwan; (H.-H.F.); (C.-L.L.); (H.-J.C.); (H.-C.C.); (Y.-H.C.)
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 104217, Taiwan; (H.-H.F.); (C.-L.L.); (H.-J.C.); (H.-C.C.); (Y.-H.C.)
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 104217, Taiwan;
| | - Yuan-Rong Tu
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-K.C.); (Y.-R.T.)
| | - Yun-Ting Lo
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 104217, Taiwan;
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 104217, Taiwan; (H.-H.F.); (C.-L.L.); (H.-J.C.); (H.-C.C.); (Y.-H.C.)
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 104217, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 252005, Taiwan
- Department of Childhood Care and Education, Mackay Junior College of Medicine, Nursing and Management, Taipei 112021, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-K.C.); (Y.-R.T.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404328, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 104217, Taiwan; (H.-H.F.); (C.-L.L.); (H.-J.C.); (H.-C.C.); (Y.-H.C.)
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 104217, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 252005, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104217, Taiwan; (C.-K.C.); (Y.-R.T.)
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
| |
Collapse
|
4
|
Petitgas C, Seugnet L, Dulac A, Matassi G, Mteyrek A, Fima R, Strehaiano M, Dagorret J, Chérif-Zahar B, Marie S, Ceballos-Picot I, Birman S. Metabolic and neurobehavioral disturbances induced by purine recycling deficiency in Drosophila. eLife 2024; 12:RP88510. [PMID: 38700995 PMCID: PMC11068357 DOI: 10.7554/elife.88510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch-Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.
Collapse
Affiliation(s)
- Céline Petitgas
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
- Metabolomic and Proteomic Biochemistry Laboratory, Necker-Enfants Malades Hospital and Paris Cité UniversityParisFrance
| | - Laurent Seugnet
- Integrated Physiology of the Brain Arousal Systems (WAKING), Lyon Neuroscience Research Centre, INSERM/CNRS/UCBL1BronFrance
| | - Amina Dulac
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Giorgio Matassi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of UdineUdineItaly
- UMR “Ecology and Dynamics of Anthropogenic Systems” (EDYSAN), CNRS, Université de Picardie Jules VerneAmiensFrance
| | - Ali Mteyrek
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Rebecca Fima
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Marion Strehaiano
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Joana Dagorret
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Baya Chérif-Zahar
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Sandrine Marie
- Laboratory of Metabolic Diseases, Cliniques Universitaires Saint-Luc, Université catholique de LouvainBrusselsBelgium
| | - Irène Ceballos-Picot
- Metabolomic and Proteomic Biochemistry Laboratory, Necker-Enfants Malades Hospital and Paris Cité UniversityParisFrance
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| |
Collapse
|
5
|
Baglioni V, Bozza F, Lentini G, Beatrice A, Cameli N, Colacino Cinnante EM, Terrinoni A, Nardecchia F, Pisani F. Psychiatric Manifestations in Children and Adolescents with Inherited Metabolic Diseases. J Clin Med 2024; 13:2190. [PMID: 38673463 PMCID: PMC11051134 DOI: 10.3390/jcm13082190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Inherited metabolic disorders (IEMs) can be represented in children and adolescents by psychiatric disorders. The early diagnosis of IEMs is crucial for clinical outcome and treatment. The aim of this review is to analyze the most recurrent and specific psychiatric features related to IEMs in pediatrics, based on the onset type and psychiatric phenotypes. Methods: Following the PRISMA Statement, a systematic literature review was performed using a predefined algorithm to find suitable publications in scientific databases of interest. After removing duplicates and screening titles and abstracts, suitable papers were analyzed and screened for inclusion and exclusion criteria. Finally, the data of interest were retrieved from the remaining articles. Results: The results of this study are reported by type of symptoms onset (acute and chronic) and by possible psychiatric features related to IEMs. Psychiatric phenomenology has been grouped into five main clinical manifestations: mood and anxiety disorders; schizophrenia-spectrum disorders; catatonia; eating disorders; and self-injurious behaviors. Conclusions: The inclusion of a variety of psychiatric manifestations in children and adolescents with different IEMs is a key strength of this study, which allowed us to explore the facets of seemingly different disorders in depth, avoiding possible misdiagnoses, with the related delay of early and appropriate treatments.
Collapse
Affiliation(s)
| | - Fabiola Bozza
- Child Neurology and Psychiatry Unit, Department of Human Neuroscience, Sapienza University, Via dei Sabelli 108, 00185 Rome, Italy; (V.B.); (G.L.); (A.B.); (N.C.); (E.M.C.C.); (A.T.); (F.N.); (F.P.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Escudero-Ferruz P, Ontiveros N, Cano-Estrada C, Sutcliffe DJ, Jinnah HA, Torres RJ, López JM. A new physiological medium uncovers biochemical and cellular alterations in Lesch-Nyhan disease fibroblasts. Mol Med 2024; 30:3. [PMID: 38172668 PMCID: PMC10765874 DOI: 10.1186/s10020-023-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Lesch-Nyhan disease (LND) is a severe neurological disorder caused by the genetic deficiency of hypoxanthine-guanine phosphoribosyltransferase (HGprt), an enzyme involved in the salvage synthesis of purines. To compensate this deficiency, there is an acceleration of the de novo purine biosynthetic pathway. Most studies have failed to find any consistent abnormalities of purine nucleotides in cultured cells obtained from the patients. Recently, it has been shown that 5-aminoimidazole-4-carboxamide riboside 5'-monophosphate (ZMP), an intermediate of the de novo pathway, accumulates in LND fibroblasts maintained with RPMI containing physiological levels (25 nM) of folic acid (FA), which strongly differs from FA levels of regular cell culture media (2200 nM). However, RPMI and other standard media contain non-physiological levels of many nutrients, having a great impact in cell metabolism that does not precisely recapitulate the in vivo behavior of cells. METHODS We prepared a new culture medium containing physiological levels of all nutrients, including vitamins (Plasmax-PV), to study the potential alterations of LND fibroblasts that may have been masked by the usage of non-physiological media. We quantified ZMP accumulation under different culture conditions and evaluated the activity of two known ZMP-target proteins (AMPK and ADSL), the mRNA expression of the folate carrier SLC19A1, possible mitochondrial alterations and functional consequences in LND fibroblasts. RESULTS LND fibroblasts maintained with Plasmax-PV show metabolic adaptations such a higher glycolytic capacity, increased expression of the folate carrier SCL19A1, and functional alterations such a decreased mitochondrial potential and reduced cell migration compared to controls. These alterations can be reverted with high levels of folic acid, suggesting that folic acid supplements might be a potential treatment for LND. CONCLUSIONS A complete physiological cell culture medium reveals new alterations in Lesch-Nyhan disease. This work emphasizes the importance of using physiological cell culture conditions when studying a metabolic disorder.
Collapse
Affiliation(s)
- Paula Escudero-Ferruz
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Neus Ontiveros
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Claudia Cano-Estrada
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Diane J Sutcliffe
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School Medicine, Atlanta, GA, 30322, USA
| | - Rosa J Torres
- Center for Biomedical Network Research on Rare Diseases, Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
- Department of Biochemistry, La Paz University Hospital Health Research Institute, IdiPaz, 28046, Madrid, Spain
| | - José M López
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
7
|
Nassogne MC, Marie S, Dewulf JP. Neurological presentations of inborn errors of purine and pyrimidine metabolism. Eur J Paediatr Neurol 2024; 48:69-77. [PMID: 38056117 DOI: 10.1016/j.ejpn.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Purines and pyrimidines are essential components as they are the building blocks of vital molecules, such as nucleic acids, coenzymes, signalling molecules, as well as energy transfer molecules. Purine and pyrimidine metabolism defects are characterised by abnormal concentrations of purines, pyrimidines and/or their metabolites in cells or body fluids. This phenomenon is due to a decreased or an increased activity of enzymes involved in this metabolism and has been reported in humans for over 60 years. This review provides an overview of neurological presentations of inborn errors of purine and pyrimidine metabolism. These conditions can lead to psychomotor retardation, epilepsy, hypotonia, or microcephaly; sensory involvement, such as deafness and visual disturbances; multiple malformations, as well as muscular symptoms. Clinical signs are often nonspecific and thus overlooked, but some diseases are treatable and early diagnosis may improve the child's future. Although these metabolic hereditary diseases are rare, they are most probably under-diagnosed. When confronted with suggestive clinical or laboratory signs, clinicians should prescribe genetic testing in association with a biochemical screening including thorough purine and pyrimidine metabolites analysis and/or specific enzyme evaluation. This is most likely going to increase the number of confirmed patients.
Collapse
Affiliation(s)
- Marie-Cécile Nassogne
- Service de Neurologie Pédiatrique, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium; Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium.
| | - Sandrine Marie
- Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium.
| | - Joseph P Dewulf
- Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium; Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200, Brussels, Belgium.
| |
Collapse
|
8
|
Baird-Daniel E, Glaser A, Boop S, Durfy S, Hauptman JS. Single-Electrode Deep Brain Stimulation of Bilateral Posterolateral Globus Pallidus Internus in Patients With Medically Resistant Lesch-Nyhan Syndrome. Cureus 2023; 15:e37070. [PMID: 37153246 PMCID: PMC10155820 DOI: 10.7759/cureus.37070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
Deep brain stimulation (DBS) targeting various locations within the globus pallidus internus (GPi) is emerging as a therapeutic option for patients with medically resistant Lesch-Nyhan syndrome. We report our institutional experience with single-electrode DBS in the bilateral posterolateral GPi as an effective method for reduction of both dystonia and self-injurious behavior. Two pediatric patients aged six and 14 years underwent implantation of bilateral singular DBS leads in the posterolateral GPi and were followed postoperatively through the programming process and symptomatic improvements. Caregivers reported that after DBS in the posterolateral GPi, these patients experienced decreased self-mutilation behavior and decreased dystonia.
Collapse
|
9
|
Deng H, Xiong BT, Wu Y, Wang W. Deep brain stimulation in Lesch-Nyhan syndrome: a systematic review. Neurosurg Rev 2023; 46:40. [PMID: 36694014 DOI: 10.1007/s10143-023-01950-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Given the good results of deep brain stimulation (DBS) in the treatment of movement disorders, DBS was initially tried to treat Lesch-Nyhan syndrome (LNS) with the aim to alleviate LNS-related dystonia. Some cases have reported clinical results of DBS in LNS thus far. This systematic review was conducted to comprehensively summarize cases of LNS treated with DBS and evaluate the efficacy and safety of DBS in LNS. Eight publications covering 12 LNS patients were included in this review. DBS improved dystonia of the LNS to varying degrees. All the included cases achieved partial or complete control of self-injurious behavior (SIB). Overall, DBS is a promising treatment for both motor and behavior disorders of LNS patients, but the results reported thus far have varied widely, especially for motor outcomes. The ultimate clinical benefits in LNS patients were still unpredictable. DBS-related complications were rather common, which raised questions about the safety of the procedure in LNS. More research is needed to further clarify the safety and effectiveness of this treatment.
Collapse
Affiliation(s)
- Hao Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Bo-Tao Xiong
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan Province, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
10
|
Di Fonzo A, Albanese A, Jinnah HH. The apparent paradox of phenotypic diversity and shared mechanisms across dystonia syndromes. Curr Opin Neurol 2022; 35:502-509. [PMID: 35856917 PMCID: PMC9309988 DOI: 10.1097/wco.0000000000001076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We describe here how such mechanisms shared by different genetic forms can give rise to motor performance dysfunctions with a clinical aspect of dystonia. RECENT FINDINGS The continuing discoveries of genetic causes for dystonia syndromes are transforming our view of these disorders. They share unexpectedly common underlying mechanisms, including dysregulation in neurotransmitter signaling, gene transcription, and quality control machinery. The field has further expanded to include forms recently associated with endolysosomal dysfunction. SUMMARY The discovery of biological pathways shared between different monogenic dystonias is an important conceptual advance in the understanding of the underlying mechanisms, with a significant impact on the pathophysiological understanding of clinical phenomenology. The functional relationship between dystonia genes could revolutionize current dystonia classification systems, classifying patients with different monogenic forms based on common pathways. The most promising effect of these advances is on future mechanism-based therapeutic approaches.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neurology Unit, Milan, Italy
| | - Alberto Albanese
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Hyder H. Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Emory University School of Medicine, Atlanta GA, 30322, USA
| |
Collapse
|
11
|
Eita AAB. Congenital anomalies-associated Riga-Fede disease as an early manifestation of Lesch-Nyhan syndrome: rare entities in the same pediatric patient-a case report. BMC Oral Health 2022; 22:26. [PMID: 35109856 PMCID: PMC8808768 DOI: 10.1186/s12903-022-02060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background Riga–Fede disease is a rare begnin disorder of the oral tissues, it can be associated with congenital anomalies and neurological disturbances. Lesch–Nyhan syndrome is a rare X-linked recessive disorder characterized by neurological and behavioral manifestations. A patient can rarely be diagnosed with both diseases in a lifetime. Therefore, reporting manifestations from such disorders is important to avoid misdiagnosis and help in timely intervention. Case presentation This case report presents an 8-months-old male infant with traumatic oral ulcers from deciduous teeth. A diagnosis of Riga–Fede disease was made. Teeth grinding was performed and the oral lesions were healed. At the age of 2.5 years, the patient presented with neurological manifestations as well as facial tissue and premature teeth loss from self mutilation. Genetic sequencing revealed a variant of uncertain significance in the Hypoxanthine Phosphoribosyltransferase 1 gene. He was diagnosed with Lesch–Nyhan syndrome. Cleft palate, ventricular septal defect, congenitally undescended testis and ectopic left iliac kidney were also reported. The patient was scheduled on psychiatric treatment and after about six months of follow-up, both the behavioral and neurological symptoms were improved. Conclusions Riga–Fede disease can be an early manifestation of Lesch–Nyhan syndrome. To the best of our knowledge, this is the first reported case with the incidence of all the mentioned entities in one pediatric patient.
Collapse
Affiliation(s)
- Aliaa Abdelmoniem Bedeir Eita
- Faculty of Dentistry, Oral Medicine, Periodontology, Diagnosis and Radiology Department, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
12
|
Krishnan S, Saraf U, Chandarana M, Divya KP. Oromandibular dystonia – A systematic review. Ann Indian Acad Neurol 2022; 25:26-34. [PMID: 35342238 PMCID: PMC8954320 DOI: 10.4103/aian.aian_242_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/10/2021] [Accepted: 09/04/2021] [Indexed: 11/04/2022] Open
Abstract
Oromandibular dystonia (OMD) is a clinical problem which is commonly encountered in the practice of movement disorders. OMD results from a variety of genetic and acquired etiologies and can occur as an isolated manifestation, or as part of an isolated generalized or a combined dystonia syndrome. There are only very few systematic reviews on this condition which often causes significant disability. We review here the etiology, clinical features, diagnostic approach and management of OMD.
Collapse
|
13
|
Del Bene VA, Crawford JL, Gómez-Gastiasoro A, Vannorsdall TD, Buchholz A, Ojeda N, Harris JC, Jinnah HA, Schretlen DJ. Microstructural white matter abnormalities in Lesch-Nyhan disease. Eur J Neurosci 2022; 55:264-276. [PMID: 34738666 PMCID: PMC9100837 DOI: 10.1111/ejn.15512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023]
Abstract
Lesch-Nyhan disease is a rare, sex-linked, genetic neurodevelopmental disorder that is characterized by hyperuricemia, dystonia, cognitive impairment and recurrent self-injury. We previously found reduced brain white matter volume in patients with Lesch-Nyhan disease compared with healthy adults using voxel-based morphometry. Here, we address the structural integrity of white matter via diffusion tensor imaging. We hypothesized that white matter integrity would be decreased in men with Lesch-Nyhan disease and to a lesser extent in men with a milder variant of the disease (Lesch-Nyhan variant) relative to healthy men. After acquiring diffusion-weighted brain images from Lesch-Nyhan disease (n = 5), Lesch-Nyhan variant (n = 6) and healthy participants (n = 10), we used both tract-based spatial statistics and a regions of interest approach to analyse between-group fractional anisotropy differences. We first replicated earlier findings of reduced intracranial, grey matter and white matter volumes in patients. We then discovered marked reductions of fractional anisotropy relative to the healthy control group. The Lesch-Nyhan disease group showed more pronounced reductions in white matter integrity than the Lesch-Nyhan variant group. In addition to whole brain fractional anisotropy group differences, reductions in white matter integrity were observed in the corpus callosum, corona radiata, cingulum, internal capsule and superior longitudinal fasciculus. Moreover, the variant group had attenuated dystonia severity symptoms and cognitive deficits. These findings highlight the need to better understand the role of white matter in Lesch-Nyhan disease.
Collapse
Affiliation(s)
- Victor A. Del Bene
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey L. Crawford
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Tracy D. Vannorsdall
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alison Buchholz
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natalia Ojeda
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James C. Harris
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hyder A. Jinnah
- Departments of Neurology and Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David J. Schretlen
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Russell M. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
A patient with Lesch-Nyhan Syndrome presenting with anesthetic challenges: Not an exception, but the rule. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Visser JE, Cotton AC, Schretlen DJ, Bloch J, Tedroff K, Schechtmann G, Radu Djurfeldt D, Gonzalez V, Cif L, Jinnah HA. Deep brain stimulation in Lesch-Nyhan disease: outcomes from the patient's perspective. Dev Med Child Neurol 2021; 63:963-968. [PMID: 33689173 PMCID: PMC8350791 DOI: 10.1111/dmcn.14852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 11/29/2022]
Abstract
AIM To provide insight into outcome and long-term safety and efficacy of deep brain stimulation (DBS), from the perspective of individuals with Lesch-Nyhan disease (LND) and their families. METHOD We used patient-centered outcome measures to assess long-term outcomes of DBS for 14 individuals (mean [SD] age 10y 10mo [5y 6mo], range 5-23y, all males) with LND, after an average duration of 5y 6mo (range 11mo-10y 5mo) after surgery. We compared these results with a comprehensive review of previously published cases. RESULTS Patients and their families reported that DBS of the globus pallidus can be effective both for motor and behavioral disturbances in LND. However, outcome measures were often not significantly changed owing to substantial variability among individuals, and were overall less positive than in previous reports based on clinician assessments. In addition, there was an unexpectedly high rate of adverse events, tempering overall enthusiasm for the procedure. INTERPRETATION Although DBS might be an effective treatment for LND, more research is needed to understand the reasons for response variability and the unusually high rates of adverse events before DBS can be recommended for these patients. What this paper adds Individuals with Lesch-Nyhan disease and their families report variable efficacy of deep brain stimulation. Long-term outcomes are associated with a high adverse event rate.
Collapse
Affiliation(s)
- Jasper E Visser
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegen,Department of NeurologyAmphia HospitalBredathe Netherlands
| | - Adam C Cotton
- Departments of Neurology and Human GeneticsEmory University School of MedicineAtlanta
| | - David J Schretlen
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreUSA
| | - Jocelyne Bloch
- Department of NeurosurgeryLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Kristina Tedroff
- Neuropediatric UnitDepartment of Women's and Children's Health, Karolinska Institutet and Karolinska University HospitalStockholm
| | - Gastón Schechtmann
- Department of NeurosurgeryKarolinska Institutet and University HospitalStockholm
| | | | - Victoria Gonzalez
- Department of NeurologyCHU Montpellier and INSERM U661Montpellier,Department of NeurosurgeryCHU MontpellierMontpellierFrance
| | - Laura Cif
- Department of NeurosurgeryCHU MontpellierMontpellierFrance
| | - Hyder A Jinnah
- Departments of Neurology and Human GeneticsEmory University School of MedicineAtlanta
| |
Collapse
|
16
|
Bell S, McCarty V, Peng H, Jefri M, Hettige N, Antonyan L, Crapper L, O'Leary LA, Zhang X, Zhang Y, Wu H, Sutcliffe D, Kolobova I, Rosenberger TA, Moquin L, Gratton A, Popic J, Gantois I, Stumpf PS, Schuppert AA, Mechawar N, Sonenberg N, Tremblay ML, Jinnah HA, Ernst C. Lesch-Nyhan disease causes impaired energy metabolism and reduced developmental potential in midbrain dopaminergic cells. Stem Cell Reports 2021; 16:1749-1762. [PMID: 34214487 PMCID: PMC8282463 DOI: 10.1016/j.stemcr.2021.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 10/30/2022] Open
Abstract
Mutations in HPRT1, a gene encoding a rate-limiting enzyme for purine salvage, cause Lesch-Nyhan disease which is characterized by self-injury and motor impairments. We leveraged stem cell and genetic engineering technologies to model the disease in isogenic and patient-derived forebrain and midbrain cell types. Dopaminergic progenitor cells deficient in HPRT showed decreased intensity of all developmental cell-fate markers measured. Metabolic analyses revealed significant loss of all purine derivatives, except hypoxanthine, and impaired glycolysis and oxidative phosphorylation. real-time glucose tracing demonstrated increased shunting to the pentose phosphate pathway for de novo purine synthesis at the expense of ATP production. Purine depletion in dopaminergic progenitor cells resulted in loss of RHEB, impairing mTORC1 activation. These data demonstrate dopaminergic-specific effects of purine salvage deficiency and unexpectedly reveal that dopaminergic progenitor cells are programmed to a high-energy state prior to higher energy demands of terminally differentiated cells.
Collapse
Affiliation(s)
- Scott Bell
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Vincent McCarty
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Huashan Peng
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Malvin Jefri
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Nuwan Hettige
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Lilit Antonyan
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Liam Crapper
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Liam A O'Leary
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Ying Zhang
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Hanrong Wu
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Diane Sutcliffe
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Human Genetics, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Ilaria Kolobova
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Thad A Rosenberger
- Department of Pharmacology, Physiology, and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Luc Moquin
- Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Alain Gratton
- Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Jelena Popic
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Ilse Gantois
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Andreas A Schuppert
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Naguib Mechawar
- Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Michel L Tremblay
- Department of Biochemistry, McGill University, Montreal, QC, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Hyder A Jinnah
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Human Genetics, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Carl Ernst
- Psychiatric Genetics Group, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University and Douglas Hospital Research Institute, 6875 LaSalle Boulevard, Frank Common Building, Room 2101.2, Montreal, QC H4H 1R3, Canada.
| |
Collapse
|
17
|
Hamroun A, Lenain R, Maanaoui M, Provôt F, Ceballos-Picot I, Douillard C, Lionet A. The Case | A man with acute bilateral urolithiasis. Kidney Int 2021; 99:1029-1030. [PMID: 33745538 DOI: 10.1016/j.kint.2020.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 10/21/2022]
Affiliation(s)
- Aghilès Hamroun
- Lille University, Lille University Hospital Center of Lille, Nephrology Department, F-59037, Lille, France; Center for Research in Epidemiology and Population Health (CESP), Clinical Epidemiology Team, National Institute of Health and Medical Research (INSERM), Villejuif, France.
| | - Rémi Lenain
- Lille University, Lille University Hospital Center of Lille, Nephrology Department, F-59037, Lille, France
| | - Mehdi Maanaoui
- Lille University, Lille University Hospital Center of Lille, Nephrology Department, F-59037, Lille, France; INSERM U1190, Translational Research for Diabetes, Lille, France
| | - François Provôt
- Lille University, Lille University Hospital Center of Lille, Nephrology Department, F-59037, Lille, France
| | - Irène Ceballos-Picot
- Metabolic Biochemistry Laboratory, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Claire Douillard
- Medical Reference Center for Inherited Metabolic Diseases, CHU Lille, France
| | - Arnaud Lionet
- Lille University, Lille University Hospital Center of Lille, Nephrology Department, F-59037, Lille, France
| |
Collapse
|
18
|
Marchetti M, Faggiano S, Mozzarelli A. Enzyme Replacement Therapy for Genetic Disorders Associated with Enzyme Deficiency. Curr Med Chem 2021; 29:489-525. [PMID: 34042028 DOI: 10.2174/0929867328666210526144654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Mutations in human genes might lead to loss of functional proteins, causing diseases. Among these genetic disorders, a large class is associated with the deficiency in metabolic enzymes, resulting in both an increase in the concentration of substrates and a loss in the metabolites produced by the catalyzed reactions. The identification of therapeutic actions based on small molecules represents a challenge to medicinal chemists because the target is missing. Alternative approaches are biology-based, ranging from gene and stem cell therapy, CRISPR/Cas9 technology, distinct types of RNAs, and enzyme replacement therapy (ERT). This review will focus on the latter approach that since the 1990s has been successfully applied to cure many rare diseases, most of them being lysosomal storage diseases or metabolic diseases. So far, a dozen enzymes have been approved by FDA/EMA for lysosome storage disorders and only a few for metabolic diseases. Enzymes for replacement therapy are mainly produced in mammalian cells and some in plant cells and yeasts and are further processed to obtain active, highly bioavailable, less degradable products. Issues still under investigation for the increase in ERT efficacy are the optimization of enzymes interaction with cell membrane and internalization, the reduction in immunogenicity, and the overcoming of blood-brain barrier limitations when neuronal cells need to be targeted. Overall, ERT has demonstrated its efficacy and safety in the treatment of many genetic rare diseases, both saving newborn lives and improving patients' life quality, and represents a very successful example of targeted biologics.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Biopharmanet-TEC Interdepartmental Center, University of Parma, Parco Area delle Scienze, Bldg 33., 43124, Parma, Italy
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Andrea Mozzarelli
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
19
|
Laróvere LE, Fairbanks LD, Jinnah HA, Guelbert NB, Escuredo E, Becerra A, Kremer RDD. Lesch-Nyhan Disease and Its Variants: Phenotypic and Mutation Spectrum of Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency in Argentine Patients. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2020-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Laura E. Laróvere
- Universidad Nacional de Córdoba, Argentina; Consejo de Investigaciones Científicas y Tecnológicas, Argentina
| | | | | | | | | | | | | |
Collapse
|
20
|
Bhowmick SS, Lang AE. Movement Disorders and Renal Diseases. Mov Disord Clin Pract 2020; 7:763-779. [PMID: 33043074 DOI: 10.1002/mdc3.13005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Movement disorders often emerge from the interplay of complex pathophysiological processes involving the kidneys and the nervous system. Tremor, myoclonus, ataxia, chorea, and parkinsonism can occur in the context of renal dysfunction (azotemia and electrolyte abnormalities) or they can be part of complications of its management (dialysis and renal transplantation). On the other hand, myoglobinuria from rhabdomyolysis in status dystonicus and certain drugs used in the management of movement disorders can cause nephrotoxicity. Distinct from these well-recognized associations, it is important to appreciate that there are several inherited and acquired disorders in which movement abnormalities do not occur as a consequence of renal dysfunction or vice versa but are manifestations of common pathophysiological processes affecting the nervous system and the kidneys. These disorders are the emphasis of this review. Increasing awareness of these conditions among neurologists may help them to identify renal involvement earlier, take timely intervention by anticipating complications and focus on therapies targeting common mechanisms in addition to symptomatic management of movement disorders. Recognition of renal impairment in a patient with complex neurological presentation may narrow down the differentials and aid in reaching a definite diagnosis.
Collapse
Affiliation(s)
- Suvorit S Bhowmick
- Division of Neurology, Department of Medicine, Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital University Health Network Toronto Ontario Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital University Health Network Toronto Ontario Canada
| |
Collapse
|
21
|
Baizabal-Carvallo JF, Cardoso F. Chorea in children: etiology, diagnostic approach and management. J Neural Transm (Vienna) 2020; 127:1323-1342. [DOI: 10.1007/s00702-020-02238-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/01/2020] [Indexed: 01/07/2023]
|
22
|
Tambirajoo K, Furlanetti L, Hasegawa H, Raslan A, Gimeno H, Lin JP, Selway R, Ashkan K. Deep Brain Stimulation of the Internal Pallidum in Lesch-Nyhan Syndrome: Clinical Outcomes and Connectivity Analysis. Neuromodulation 2020; 24:380-391. [PMID: 32573906 DOI: 10.1111/ner.13217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Lesch-Nyhan syndrome (LNS) is a rare genetic disorder characterized by a deficiency of hypoxanthine-guanine phosphoribosyltransferase enzyme. It manifests during infancy with compulsive self-mutilation behavior associated with disabling generalized dystonia and dyskinesia. Clinical management of these patients poses an enormous challenge for medical teams and carers. OBJECTIVES We report our experience with bilateral deep brain stimulation (DBS) of the globus pallidus internus (GPi) in the management of this complex disorder. MATERIALS AND METHODS Preoperative and postoperative functional assessment data prospectively collected by a multidisciplinary pediatric complex motor disorders team, including imaging, neuropsychology, and neurophysiology evaluations were analyzed with regards to motor and behavioral control, goal achievement, and patient and caregivers' expectations. RESULTS Four male patients (mean age 13 years) underwent DBS implantation between 2011 and 2018. Three patients received double bilateral DBS electrodes within the posteroventral GPi and the anteromedial GPi, whereas one patient had bilateral electrodes placed in the posteroventral GPi only. Median follow-up was 47.5 months (range 22-98 months). Functional improvement was observed in all patients and discussed in relation to previous reports. Analysis of structural connectivity revealed significant correlation between the involvement of specific cortical regions and clinical outcome. CONCLUSION Combined bilateral stimulation of the anteromedial and posteroventral GPi may be considered as an option for managing refractory dystonia and self-harm behavior in LNS patients. A multidisciplinary team-based approach is essential for patient selection and management, to support children and families, to achieve functional improvement and alleviate the overall disease burden for patients and caregivers.
Collapse
Affiliation(s)
- Kantharuby Tambirajoo
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Luciano Furlanetti
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Harutomo Hasegawa
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Ahmed Raslan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Hortensia Gimeno
- King's Health Partners Academic Health Sciences Centre, London, UK.,Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jean-Pierre Lin
- King's Health Partners Academic Health Sciences Centre, London, UK.,Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Richard Selway
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK.,King's Health Partners Academic Health Sciences Centre, London, UK
| |
Collapse
|
23
|
Physiological levels of folic acid reveal purine alterations in Lesch-Nyhan disease. Proc Natl Acad Sci U S A 2020; 117:12071-12079. [PMID: 32430324 DOI: 10.1073/pnas.2003475117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lesch-Nyhan disease (LND), caused by a deficient salvage purine pathway, is characterized by severe neurological manifestations and uric acid overproduction. However, uric acid is not responsible for brain dysfunction, and it has been suggested that purine nucleotide depletion, or accumulation of other toxic purine intermediates, could be more relevant. Here we show that purine alterations in LND fibroblasts depend on the level of folic acid in the culture media. Thus, physiological levels of folic acid induce accumulation of 5-aminoimidazole-4-carboxamide riboside 5'-monophosphate (ZMP), an intermediary of de novo purine biosynthetic pathway, and depletion of ATP. Additionally, Z-nucleotide derivatives (AICAr, AICA) are detected at high levels in the urine of patients with LND and its variants (hypoxanthine-guanine phosphoribosyltransferase [HGprt]-related neurological dysfunction and HGprt-related hyperuricemia), and the ratio of AICAr/AICA is significantly increased in patients with neurological problems (LND and HGprt-related neurological dysfunction). Moreover, AICAr is present in the cerebrospinal fluid of patients with LND, but not in control individuals. We hypothesize that purine alterations detected in LND fibroblasts may also occur in the brain of patients with LND.
Collapse
|
24
|
Mishima E, Mori T, Nakajima Y, Toyohara T, Kikuchi K, Oikawa Y, Matsuhashi T, Maeda Y, Suzuki T, Kudo M, Ito S, Sohara E, Uchida S, Abe T. HPRT-related hyperuricemia with a novel p.V35M mutation in HPRT1 presenting familial juvenile gout. CEN Case Rep 2020; 9:210-214. [PMID: 32128695 DOI: 10.1007/s13730-020-00459-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/20/2020] [Indexed: 11/30/2022] Open
Abstract
Unlike complete deficiency of hypoxanthine phosphoribosyltransferase (HPRT) (i.e., Lesch-Nyhan syndrome), partial HPRT deficiency causes HPRT-related hyperuricemia without neurological symptoms. Herein, we describe a 22-year-old man without neurological symptoms that presented gout, hyperuricemia (serum urate level, 12.2 mg/dL), multiple renal microcalculi, and a family history of juvenile gout that was exhibited by his brother and grandfather. Genetic testing revealed a novel missense mutation, c.103G>A (p.V35M), in the HPRT1 gene, and biochemical testing (conducted using the patient's erythrocytes) showed that the patient retained only 12.4% HPRT enzymatic activity compared to that exhibited by a healthy control subject. We thus diagnosed the patient with HPRT-related hyperuricemia caused by partial HPRT deficiency. After his serum urate level was controlled via treatment with febuxostat, his gout did not recur. Thus, this study emphasizes that HPRT deficiency should be considered as a potential cause of familial juvenile gout, even in the absence of neurological symptoms.
Collapse
Affiliation(s)
- Eikan Mishima
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Nakajima
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takafumi Toyohara
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koichi Kikuchi
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitsugu Oikawa
- Division of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuro Matsuhashi
- Division of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Maeda
- Center for Joint Research Facilities Support, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takehiro Suzuki
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Sadayoshi Ito
- Department of Medicine, Katta General Public Hospital, Shiroishi, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan. .,Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW This article provides a summary of the state of the art in the diagnosis, classification, etiologies, and treatment of dystonia. RECENT FINDINGS Although many different clinical manifestations of dystonia have been recognized for decades, it is only in the past 5 years that a broadly accepted approach has emerged for classifying them into specific subgroups. The new classification system aids clinical recognition and diagnosis by focusing on key clinical features that help distinguish the many subtypes. In the past few years, major advances have been made in the discovery of new genes as well as advances in our understanding of the biological processes involved. These advances have led to major changes in strategies for diagnosis of the inherited dystonias. An emerging trend is to move away from heavy reliance on the phenotype to target diagnostic testing toward a broader approach that involves large gene panels or whole exome sequencing. SUMMARY The dystonias are a large family of phenotypically and etiologically diverse disorders. The diagnosis of these disorders depends on clinical recognition of characteristic clinical features. Symptomatic treatments are useful for all forms of dystonia and include oral medications, botulinum toxins, and surgical procedures. Determination of etiology is becoming increasingly important because the number of disorders is growing and more specific and sometimes disease-modifying therapies now exist.
Collapse
|
26
|
Cho JH, Choi JH, Heo SH, Kim GH, Yum MS, Lee BH, Yoo HW. Phenotypic and molecular spectrum of Korean patients with Lesch-Nyhan syndrome and attenuated clinical variants. Metab Brain Dis 2019; 34:1335-1340. [PMID: 31129767 DOI: 10.1007/s11011-019-00441-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
Lesch-Nyhan syndrome (LNS) is an X-linked recessive disorder caused by mutations in the HPRT1 gene. The clinical features and mutation spectrum of 26 Korean LNS patients from 23 unrelated families were retrospectively reviewed. The HPRT1 gene was analyzed by direct sequencing of genomic DNA. The median age at diagnosis was 2.3 years (range, 4 months-22.6 years) and the initial presenting features included developmental delay, orange colored urine, and self-injurious behaviors. Most patients were wheelchair-bound and suffered from urinary complications and neurologic problems such as self-mutilation and developmental delay. Twenty different mutations in HPRT1 were identified among 23 independent pedigrees, including six novel mutations. The most common mutation type was truncating mutations including nonsense and frameshift mutations (45%). Large deletions in the HPRT1 gene were identified in exon 1, exons 5-6, exons 1-9, and at chr X:134,459,540-134,467,241 (7702 bp) including the 5'-untranslated region, exon 1, and a portion of intron 1. In conclusion, this study describes the phenotypic spectrum of LNS and has identified 20 mutations from 23 Korean families, including six novel mutations in Korean patients with LNS.
Collapse
Affiliation(s)
- Ja Hyang Cho
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Sun Hee Heo
- Genome Research Center for Birth Defects and Genetic Diseases, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, Seoul, South Korea
| | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, South Korea.
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| |
Collapse
|
27
|
Mencacci NE, Jinnah HA. Naming Genes for Dystonia: DYT-z or Ditzy? TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 9:tre-09-710. [PMID: 31523486 PMCID: PMC6714488 DOI: 10.7916/tohm.v0.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/01/2022]
Abstract
Dystonias are a clinically and etiologically diverse group of disorders. Numerous genes have now been associated with different dystonia syndromes, and multiple strategies have been proposed for how these genes should be lumped and split into meaningful categories. The traditional approach has been based on the Human Genome Organization’s plan for naming genetic loci for all disorders. For dystonia this involves a DYT prefix followed by a number (e.g., DYT1, DYT2, DYT3, etc.). A more recently proposed approach involves assigning multiple prefixes according to the main elements of the phenotype (e.g., DYT, PARK, CHOR, TREM, etc.) followed by the name of the responsible gene. This article describes these nomenclature systems and summarizes some of their limitations. We focus on dystonia as an example, although the concepts may be applied to all movement disorders.
Collapse
Affiliation(s)
- Niccolo E Mencacci
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - H A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
28
|
Jinnah H, Sun YV. Dystonia genes and their biological pathways. Neurobiol Dis 2019; 129:159-168. [DOI: 10.1016/j.nbd.2019.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/05/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
|
29
|
Torres RJ. Current understanding of Lesch-Nyhan disease and potential therapeutic targets. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1652597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rosa J. Torres
- Department of Biochemistry, La Paz University Hospital, IdiPaz, Madrid, Spain and Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
30
|
Madeo A, Di Rocco M, Brassier A, Bahi-Buisson N, De Lonlay P, Ceballos-Picot I. Clinical, biochemical and genetic characteristics of a cohort of 101 French and Italian patients with HPRT deficiency. Mol Genet Metab 2019; 127:147-157. [PMID: 31182398 DOI: 10.1016/j.ymgme.2019.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND HPRT deficiency is a rare disorder of purine metabolism whose natural history is not fully understood. No optimal management recommendations exist. The objective of the present study is to characterize a large cohort of patients with HPRT deficiency, comparing Lesch-Nyhan Disease (LND) and its attenuated variants, with the purpose of helping clinicians in disease management and prognostic definition. METHODS Genetic and clinical features of French and Italian patients with a confirmed diagnosis of HPRT deficiency were collected. RESULTS A hundred and one patients were studied, including 66 LND, 22 HND (HPRT-related Neurological Dysfunction) and 13 HRH (HPRT-Related Hyperuricemia) patients. The clinical manifestations at onset were not specific, but associated with an orange coloration of diapers in 22% of patients. The overall neurological involvement was more severe in LND than in HND patients. Behavioural disturbances were not limited to self-injuries and were not exclusive of LND. Median age of involuntary movements and self-injuries appearance in LND was 1.0 and 3 years, respectively. Renal manifestations (66.3% of patients) occurred at any age with a median onset age of 1.1 years, while gout (25.7% of patients) appeared later in disease course (median onset age 18 years) and was more frequent in attenuated variants than in LND. HPRT activity and genotype showed a significant correlation with the severity of the neurological disease. On the contrary, there were no significant differences in the development of nephropathy or gout. For the treatment of neurological aspects, botulinum toxin injections, oral or intrathecal baclofen and gabapentin were partially efficacious and well tolerated, while deep brain stimulation was associated to a worsening of patients' condition. CONCLUSIONS The present study improves the knowledge of the natural history of HPRT deficiency and could represent a starting point for the development of future management guidelines.
Collapse
Affiliation(s)
- Annalisa Madeo
- Department of Pediatrics, Unit of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Maja Di Rocco
- Department of Pediatrics, Unit of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Anaïs Brassier
- Reference Centre of Inherited Metabolic Diseases, Hospital Necker Enfants Malades, APHP, Imagine, University Paris Descartes, INEM, INSERM 1151, Filière G2M, MetabERN, Paris, France
| | - Nadia Bahi-Buisson
- Pediatric Neurology, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Pascale De Lonlay
- Reference Centre of Inherited Metabolic Diseases, Hospital Necker Enfants Malades, APHP, Imagine, University Paris Descartes, INEM, INSERM 1151, Filière G2M, MetabERN, Paris, France
| | - Irène Ceballos-Picot
- Metabolic Biochemistry Laboratory, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| |
Collapse
|
31
|
Agrahari AK, Krishna Priya M, Praveen Kumar M, Tayubi IA, Siva R, Prabhu Christopher B, George Priya Doss C, Zayed H. Understanding the structure-function relationship of HPRT1 missense mutations in association with Lesch-Nyhan disease and HPRT1-related gout by in silico mutational analysis. Comput Biol Med 2019; 107:161-171. [PMID: 30831305 DOI: 10.1016/j.compbiomed.2019.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
The nucleotide salvage pathway is used to recycle degraded nucleotides (purines and pyrimidines); one of the enzymes that helps to recycle purines is hypoxanthine guanine phosphoribosyl transferase 1 (HGPRT1). Therefore, defects in this enzyme lead to the accumulation of DNA and nucleotide lesions and hence replication errors and genetic disorders. Missense mutations in hypoxanthine phosphoribosyl transferase 1 (HPRT1) are associated with deficiencies such as Lesch-Nyhan disease and chronic gout, which have manifestations such as arthritis, neurodegeneration, and cognitive disorders. In the present study, we collected 88 non-synonymous single nucleotide polymorphisms (nsSNPs) from the UniProt, dbSNP, ExAC, and ClinVar databases. We used a series of sequence-based and structure-based in silico tools to prioritize and characterize the most pathogenic and stabilizing or destabilizing nsSNPs. Moreover, to obtain the structural impact of the pathogenic mutations, we mapped the mutations to the crystal structure of the HPRT protein. We further subjected these mutant proteins to a 50 ns molecular dynamics simulation (MDS). The MDS trajectory showed that all mutant proteins altered the structural conformation and dynamic behavior of the HPRT protein and corroborated its association with LND and gout. This study provides essential information regarding the use of HPRT protein mutants as potential targets for therapeutic development.
Collapse
Affiliation(s)
- Ashish Kumar Agrahari
- Department of Integrative Biology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - M Krishna Priya
- Department of Integrative Biology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - Medapalli Praveen Kumar
- Department of Integrative Biology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | - Iftikhar Aslam Tayubi
- Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - R Siva
- Department of Integrative Biology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India
| | | | - C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu 632014, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
32
|
Jacomelli G, Baldini E, Mugnaini C, Micheli V, Bernardini G, Santucci A. Inhibiting PNP for the therapy of hyperuricemia in Lesch-Nyhan disease: Preliminary in vitro studies with analogues of immucillin-G. J Inherit Metab Dis 2019; 42:178-185. [PMID: 30740729 DOI: 10.1002/jimd.12039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lesch-Nyhan disease (LND) is a rare X-linked genetic disorder, with complete hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency, uric acid (UA), hypoxanthine and xanthine accumulation, and a devastating neurologic syndrome. UA excess, causing renal failure, is commonly decreased by xanthine oxidoreductase (XOR) inhibitors, such as allopurinol, yielding a xanthine and hypoxanthine increase. Xanthine accumulation may result in renal stones, while hypoxanthine excess seems involved in the neurological disorder. Inhibition of purine nucleoside phosphorylase (PNP) represents a different strategy for lowering urate. PNP catalyzes the cleavage of purine ribo- and d-ribo-nucleosides into ribose/deoxyribose phosphate and free bases, starting catabolism to uric acid. Clinical trials demonstrated that PNP inhibitors, initially developed as anticancer drugs, lowered UA in some gouty patients, in association or not with allopurinol. The present study tested the reliability of an analogue of immucillin-G (C1a), a PNP inhibitor, as a therapy for urate, hypoxanthine, and xanthine excess in LND patients by blocking hypoxanthine production upstream. The therapeutic aim is to limit the administration of XOR inhibitors to LND patients by supplying the PNP inhibitor in low doses, avoiding d-nucleoside toxicity. We report studies conducted in primary cultures of skin fibroblasts from controls and LND patients grown in the presence of the PNP inhibitor. Cell viability, oxypurine release in culture medium, and endocellular nucleotide pattern have been monitored in different growth conditions (inhibitor concentration, time, added inosine). Our results demonstrate effective PNP inhibition by low inhibitor concentration, with reduced hypoxanthine release, and no appreciable toxicity in control or patient cells, suggesting a new therapeutic strategy for LND hyperuricemia.
Collapse
Affiliation(s)
- Gabriella Jacomelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Eva Baldini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Claudia Mugnaini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
33
|
Torres RJ, Puig JG. GLUT9 influences uric acid concentration in patients with Lesch-Nyhan disease. Int J Rheum Dis 2018; 21:1270-1276. [DOI: 10.1111/1756-185x.13323] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Rosa J. Torres
- La Paz University Hospital Health Research Institute (FIBHULP), IdiPaz; Madrid Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER); ISCIII; Spain
| | - Juan G. Puig
- Department of Internal Medicine; Metabolic-Vascular Unit; La Paz University Hospital; IdiPaz; Madrid Spain
| |
Collapse
|
34
|
Cakmakli HF, Torres RJ, Menendez A, Yalcin-Cakmakli G, Porter CC, Puig JG, Jinnah HA. Macrocytic anemia in Lesch-Nyhan disease and its variants. Genet Med 2018; 21:353-360. [PMID: 29875418 PMCID: PMC6281870 DOI: 10.1038/s41436-018-0053-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Purpose Lesch-Nyhan disease (LND) is an inherited metabolic disorder characterized by overproduction of uric acid and neurobehavioral abnormalities. The purpose of this study is to describe macrocytic erythrocytes as another common aspect of the phenotype. Methods Results of 257 complete blood counts (CBC) from a total of 65 patients over a 23-year period were collected from two reference centers where many patients are seen regularly. Results Macrocytic erythrocytes occurred in 81–92% of subjects with LND or its neurological variants. After excluding cases with iron deficiency because it might pseudo-normalize erythrocyte volumes, macrocytosis occurred in 97% of subjects. Macrocytic erythrocytes were sometimes accompanied by mild anemia, and rarely by severe anemia. Conclusions These results establish macrocytic erythrocytes as very common aspect of the clinical phenotype of LND and its neurological variants. Macrocytosis is so characteristic that its absence should prompt suspicion for some secondary process, such as iron deficiency. Because macrocytosis is uncommon in normal children, it can also be used as a clue for early diagnosis in children with neurodevelopmental delay. Better recognition of this characteristic feature of the disorder will also help to prevent unnecessary diagnostic testing and unnecessary attempts to treat it with folate or B12 supplements.
Collapse
Affiliation(s)
- Hasan F Cakmakli
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Rosa J Torres
- Foundation for Biomedical Research, La Paz University Hospital-IdiPAZ, Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases-ISCIII, Madrid, Spain
| | - Araceli Menendez
- Department of Internal Medicine, Metabolic-Vascular Unit, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - Gul Yalcin-Cakmakli
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Christopher C Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan Garcia Puig
- Department of Internal Medicine, Metabolic-Vascular Unit, La Paz University Hospital-IdiPAZ, Madrid, Spain
| | - H A Jinnah
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA. .,Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA. .,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Lesch-Nyhan Syndrome (LNS) is a metabolic disorder involving mutations in the HGPRT1 gene that result in hyperuricemia, intellectual disability, a dystonic movement disorder, and compulsive self-injury with self-mutilation. The aim of this review is to summarize recent research that documents the extended behavioral, neurologic, and neurocognitive phenotype in classic LNS, to describe milder variants of HGprt deficiency that do not self-injure and have less severe neurological and cognitive deficits, and to provide an update on treatment for associated psychiatric and behavioral disorders. RECENT FINDINGS Psychiatric management utilizes combined behavioral and pharmacological treatment in conjunction with protective equipment and dental management to avert self-injury. Pharmacological management focuses on stabilization of mood and anxiety management. S-adenosylmethionine (SAMe), a physiological intermediate in methylation and transsulfuration, has shown beneficial effects in carefully selected patients who can tolerate the drug. Deep brain stimulation is shown in several case reports and series to reduce or eliminate self-injury and aggression, and in some cases, modify dystonia. SUMMARY This review highlights progress in our understanding of the behavioral and neurocognitive phenotype of Lesch-Nyhan syndrome (HGprt deficiency) and its variants, describes psychiatric and behavioral management, and discusses prospects for new therapies.
Collapse
|
36
|
Coenen MA, Eggink H, Tijssen MA, Spikman JM. Cognition in childhood dystonia: a systematic review. Dev Med Child Neurol 2018; 60:244-255. [PMID: 29238959 DOI: 10.1111/dmcn.13632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2017] [Indexed: 11/29/2022]
Abstract
AIM Cognitive impairments have been established as part of the non-motor phenomenology of adult dystonia. In childhood dystonia, the extent of cognitive impairments is less clear. This systematic review aims to present an overview of the existing literature to elucidate the cognitive profile of primary and secondary childhood dystonia. METHOD Studies focusing on cognition in childhood dystonia were searched in MEDLINE and PsychInfo up to October 2017. We included studies on idiopathic and genetic forms of dystonia as well as dystonia secondary to cerebral palsy and inborn errors of metabolism. RESULTS Thirty-four studies of the initial 527 were included. Studies for primary dystonia showed intact cognition and IQ, but mild working memory and processing speed deficits. Studies on secondary dystonia showed more pronounced cognitive deficits and lower IQ scores with frequent intellectual disability. Data are missing for attention, language, and executive functioning. INTERPRETATION This systematic review shows possible cognitive impairments in childhood dystonia. The severity of cognitive impairment seems to intensify with increasing neurological abnormalities. However, the available data on cognition in childhood dystonia are very limited and not all domains have been investigated yet. This underlines the need for future research using standardized neuropsychological procedures in this group. WHAT THIS PAPER ADDS There is limited data on cognition in childhood dystonia. Primary dystonia showed intact cognition and IQ, but mild working memory and processing speed deficits. Secondary dystonia showed more pronounced deficits and lower IQ, with frequent intellectual disability. There is a strong need for case-control studies assessing cognition using standardized neuropsychological tests.
Collapse
Affiliation(s)
- Maraike A Coenen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hendriekje Eggink
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marina A Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jacoba M Spikman
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
37
|
Torres RJ, Puig JG. Skewed X inactivation in Lesch–Nyhan disease carrier females. J Hum Genet 2017; 62:1079-1083. [DOI: 10.1038/jhg.2017.88] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/26/2017] [Accepted: 08/02/2017] [Indexed: 11/09/2022]
|
38
|
Torres RJ, Puente S, Menendez A, Fernandez-Garcia N. Unapparent hypoxanthine-guanine phosphoribosyltransferase deficiency. Clin Chim Acta 2017; 472:136-138. [PMID: 28782500 DOI: 10.1016/j.cca.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
Complete deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity causes Lesch Nyhan disease (LND), characterized by hyperuricemia, severe action dystonia, choreoathetosis, ballismus, cognitive and attention deficit and self-injurious behavior. Partial HPRT deficiency is present in patients with Lesch-Nyhan variant (LNV), who present with HPRT-related gout and a variable degree of neurological involvement. The diagnosis of HPRT deficiency relies on clinical, biochemical, enzymatic and molecular data. Patients with HPRT deficiency present low or undetectable HPRT activity in hemolysates, with increased adenine phosphoribosyltransferase (APRT) activity. We present a 9-year-old boy who experienced an episode of macroscopic hematuria with dysuria and left flank pain. He presented hyperuricemia and hyperuricosuria. HPRT and APRT activities were both normal in hemolysate; however, HPRT activity assayed in intact erythrocytes was 50% of control levels. A new missense point mutation c.424 A>G (T142A) was found in the HPRT1 gene. The apparent Michaelis constant (Km) for 5-phosphoribosyl-pyrophosphate assayed in patient hemolysate was 20-fold of control levels. In conclusion, we report a patient with HPRT deficiency who presented with both normal HPRT and APRT activity in hemolysate, in which the enzyme activity determined in intact erythrocytes was of diagnostic utility.
Collapse
Affiliation(s)
- R J Torres
- Foundation for Biomedical Research, La Paz University Hospital (FIBHULP), IdiPaz, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Spain.
| | - S Puente
- Department of Pediatrics, University Hospital Rio Hortega, Valladolid, Spain
| | - A Menendez
- Department of Internal Medicine, Metabolic-Vascular Unit, La Paz University Hospital, IdiPaz, Madrid, Spain
| | - N Fernandez-Garcia
- Department of Clinical Biochemistry, University Hospital Rio Hortega, Valladolid, Spain
| |
Collapse
|
39
|
An unusual case of renal failure: Answers. Pediatr Nephrol 2017; 32:79-80. [PMID: 26754040 DOI: 10.1007/s00467-015-3300-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
40
|
Christy A, Nyhan W, Wilson J. Severe Respiratory Acidosis in Status Epilepticus as a Possible Etiology of Sudden Death in Lesch-Nyhan Disease: A Case Report and Review of the Literature. JIMD Rep 2016; 35:23-28. [PMID: 27858372 DOI: 10.1007/8904_2016_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Lesch-Nyhan disease (LND) is an X-linked disorder of purine metabolism, associated with self-mutilation, dystonia, and chorea. Seizures are uncommon in LND. Patients with LND are at risk for sudden and unexpected death. The etiology of this is unknown, but appears to occur from a respiratory process. We propose that respiratory failure secondary to subclinical seizure may lead to sudden death in these patients. CASE We report a case of an 11-year-old boy with LND who had two episodes of nocturnal gasping. The second event was immediately followed by a 10 min generalized seizure. Upon arrival at the hospital, an arterial blood gas test revealed a severe respiratory acidosis. Following aggressive treatment of his seizures, this patient did well, and was discharged home on oxcarbazepine with rectal diazepam. No further seizures have been noted in 1 year of follow-up. CONCLUSIONS In this case report and review, we hypothesize that sudden death from respiratory failure in Lesch-Nyhan disease may in some cases be due to seizure-induced respiratory failure, akin to sudden unexpected death in epilepsy (SUDEP). We suggest screening for paroxysmal respiratory events; consideration of electroencephalography for patients with LND presenting in respiratory distress or failure; and consideration of more aggressive treatment of seizures in these patients. Brief Summary:We present an 11-year-old boy with Lesch-Nyhan disease (LND) who developed respiratory failure and severe respiratory acidosis from his first known seizure, which evolved to subclinical status epilepticus. We propose that patients with LND have a predisposition to respiratory failure and sudden death, which in some cases may be provoked by seizure (sudden unexpected death in epilepsy, or SUDEP).
Collapse
Affiliation(s)
- Alison Christy
- Department of Pediatric Neurology, Oregon Health and Science University, Mail Code CDRC-P, 707 SW Gaines Street, Portland, OR, 97239, USA.
| | - William Nyhan
- Department of Pediatrics, University of California, 9500 Gilman Drive #0830, La Jolla, San Diego, CA, 92093, USA
| | - Jenny Wilson
- Department of Pediatric Neurology, Oregon Health and Science University, Mail Code CDRC-P, 707 SW Gaines Street, Portland, OR, 97239, USA
| |
Collapse
|
41
|
Baba S, Saito T, Yamada Y, Takeshita E, Nomura N, Yamada K, Wakamatsu N, Sasaki M. Novel mutation in HPRT1 causing a splicing error with multiple variations. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 36:1-6. [PMID: 27754763 DOI: 10.1080/15257770.2016.1163381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Lesch-Nyhan disease (LND) is a rare X-linked recessive disorder caused by deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT), encoded by the HPRT1. To date, nearly all types of mutations have been reported in the whole gene; however, duplication mutations are rare. We here report the case of a 9-month-old boy with LND. He showed developmental delay, athetosis, and dystonic posture from early infancy, but no self-injurious behaviors. Hyperuricemia was detected, and his HPRT enzyme activity in erythrocytes was completely deficient. A novel duplication mutation (c.372dupT, c.372_374 TTT > c.372_375 TTTT) was identified in exon 4 of the HPRT1, which causes aberrant splicing. This is the third case of a duplication mutation in the HPRT1 that causes splicing error.
Collapse
Affiliation(s)
- Shimpei Baba
- a Department of Child Neurology , National Center Hospital, National Center of Neurology and Psychiatry (NCNP) , Tokyo , Japan
| | - Takashi Saito
- a Department of Child Neurology , National Center Hospital, National Center of Neurology and Psychiatry (NCNP) , Tokyo , Japan
| | - Yasukazu Yamada
- b Department of Genetics , Institute for Developmental Research, Aichi Human Service Center , Aichi , Japan
| | - Eri Takeshita
- a Department of Child Neurology , National Center Hospital, National Center of Neurology and Psychiatry (NCNP) , Tokyo , Japan
| | - Noriko Nomura
- b Department of Genetics , Institute for Developmental Research, Aichi Human Service Center , Aichi , Japan
| | - Kenichiro Yamada
- b Department of Genetics , Institute for Developmental Research, Aichi Human Service Center , Aichi , Japan
| | - Nobuaki Wakamatsu
- b Department of Genetics , Institute for Developmental Research, Aichi Human Service Center , Aichi , Japan
| | - Masayuki Sasaki
- a Department of Child Neurology , National Center Hospital, National Center of Neurology and Psychiatry (NCNP) , Tokyo , Japan
| |
Collapse
|
42
|
Khasnavis T, Torres RJ, Sommerfeld B, Puig JG, Chipkin R, Jinnah HA. A double-blind, placebo-controlled, crossover trial of the selective dopamine D1 receptor antagonist ecopipam in patients with Lesch-Nyhan disease. Mol Genet Metab 2016; 118:160-166. [PMID: 27179999 DOI: 10.1016/j.ymgme.2016.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 01/04/2023]
Abstract
Lesch-Nyhan disease (LND) is a genetic disorder that has characteristic metabolic, neurologic, and behavioral features. There are multiple behavioral problems including impulsivity, aggressiveness, and severe recurrent self-injurious behavior (SIB). This last behavior varies considerably across subjects and may encompass self-biting, self-hitting, scratching, head banging, and other injurious actions. Current treatments for SIB involve behavioral extinction, sedatives, physical restraints, and removal of teeth. Because these interventions do not reliably control SIB, better treatments are urgently needed. Animal studies have suggested that D1-dopamine receptor antagonists such as ecopipam may suppress SIB. These observations have led to proposals that such drugs might provide effective treatment for in LND. The current study describes the results of a double-blind, three-period, crossover trial of a single dose of ecopipam in subjects with LND. The study was designed for 20 patients, but it was terminated after recruitment of only 10 patients, because interim analysis revealed unanticipated side effects. These side effects were most likely related to starting with a single large dose without any titration phase. Despite the limited data due to early termination, the drug appeared to reduce SIB in most cases. Subjects who completed the trial were eligible to continue the drug in an open-label extension phase lasting a year, and one patient who elected to continue has maintained a striking reduction in SIB for more than a year with no apparent side effects. These results suggest ecopipam could be a useful treatment for SIB in, but further studies are needed to establish an appropriate dosing regimen.
Collapse
Affiliation(s)
- Tanya Khasnavis
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Rosa J Torres
- Department of Clinical Biochemistry, La Paz University Hospital, IdiPaz, Madrid, Spain; Center for Biomedical Network Research on Rare Diseases, ISCIII, Madrid, Spain
| | | | - Juan Garcia Puig
- Department Internal Medicine, La Paz University Hospital, IdiPaz, Madrid, Spain
| | - Richard Chipkin
- Psyadon Pharmaceuticals, 20451 Seneca Meadows Parkway, Germantown, MD, 20876, USA
| | - H A Jinnah
- Department of Neurology, Emory University, Atlanta, GA 30322, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
43
|
Abstract
BACKGROUND Lesch-Nyhan disease (LND) is an X-chromosomal disorder of purine metabolism characterized by hyperuricemia, dystonia, and self-mutilation, leading to an extremely high burden of disease in affected patients and families. Although allopurinol therapy can control hyperuricemia, it has no effect on self-mutilation and neurological symptoms. Single reports describe a beneficial effect of S-adenosylmethionine (SAM) on the neurological symptoms, which motivated us to evaluate this alternative treatment. METHODS We performed a double-blind placebo-controlled trial to analyze the effects of SAM on self-mutilation attempts in a male patient affected by LND. The trial lasted for 282 days and comprised three alternating verum and placebo periods of 50 days each. The mother of the patient recorded attempts of self-mutilation during the entire trial. RESULTS While verum and placebo were both well tolerated, a total of 1,762 events of self-mutilation were recorded, of which 1,281 events were in the placebo period and 481 in the verum period. The daily mean of events was 8.6 with placebo and 4.5 with SAM corresponding to a 50 % decrease in self-mutilation events under SAM treatment (p < 0.05). CONCLUSION The results of this double-blind placebo-controlled single-case trial suggest that SAM can have a beneficial effect on self-mutilation in patients with LND, possibly by replenishing the purine pool in affected brain cells.
Collapse
|
44
|
Khasnavis T, Reiner G, Sommerfeld B, Nyhan WL, Chipkin R, Jinnah HA. A clinical trial of safety and tolerability for the selective dopamine D1 receptor antagonist ecopipam in patients with Lesch-Nyhan disease. Mol Genet Metab 2016; 117:401-6. [PMID: 26922636 DOI: 10.1016/j.ymgme.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
Lesch-Nyhan disease (LND) is an inherited metabolic disorder characterized by the overproduction of uric acid and distinct behavioral, cognitive, and motor abnormalities. The most challenging clinical problem is self-injurious behavior (SIB), which includes self-biting, self-hitting, self-abrasion, and other features. Currently, these behaviors are managed by behavioral extinction, sedatives, physical restraints, and removal of teeth. More effective treatments are needed. Pre-clinical studies have led to the hypothesis that D1-dopamine receptor antagonists may provide useful treatments for SIB in LND. Ecopipam is one such selective D1-dopamine receptor antagonist. This report summarizes results of a dose-escalation study of the safety and tolerability of ecopipam in 5 subjects with LND. The results suggest that ecopipam is well tolerated, with sedation being the most common dose-limiting event. Several exploratory measures also suggest ecopipam might reduce SIB in this population. These results support the hypothesis that D1-dopamine receptor antagonists may be useful for suppressing SIB in LND, and encourage further studies of efficacy.
Collapse
Affiliation(s)
- Tanya Khasnavis
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Gail Reiner
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | - William L Nyhan
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Richard Chipkin
- Psyadon Pharmaceuticals, 20451 Seneca Meadows Parkway, Germantown, MD 20876, USA
| | - H A Jinnah
- Department of Neurology, Emory University, Atlanta, GA 30322, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
45
|
Sampat R, Young S, Rosen A, Bernhard D, Millington D, Factor S, Jinnah HA. Potential mechanisms for low uric acid in Parkinson disease. J Neural Transm (Vienna) 2016; 123:365-70. [PMID: 26747026 PMCID: PMC5912672 DOI: 10.1007/s00702-015-1503-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/27/2015] [Indexed: 12/25/2022]
Abstract
Several epidemiologic studies have described an association between low serum uric acid (UA) and Parkinson disease (PD). Uric acid is a known antioxidant, and one proposed mechanism of neurodegeneration in PD is oxidative damage of dopamine neurons. However, other complex metabolic pathways may contribute. The purpose of this study is to elucidate potential mechanisms of low serum UA in PD. Subjects who met diagnostic criteria for definite or probable PD (n = 20) and controls (n = 20) aged 55-80 years were recruited. Twenty-four hour urine samples were collected from all participants, and both uric acid and allantoin were measured and corrected for body mass index (BMI). Urinary metabolites were compared using a twoway ANOVA with diagnosis and sex as the explanatory variables. There were no significant differences between PD and controls for total UA (p = 0.60), UA corrected for BMI (p = 0.37), or in the interaction of diagnosis and sex on UA (p = 0.24). Similarly, there were no significant differences between PD and controls for allantoin (p = 0.47), allantoin corrected for BMI (p = 0.57), or in the interaction of diagnosis and sex on allantoin (p = 0.78). Allantoin/UA ratios also did not significantly differ by diagnosis (p = 0.99). Our results imply that low serum UA in PD may be due to an intrinsic mechanism that alters the homeostatic set point for serum UA in PD, and may contribute to relatively lower protection against oxidative damage. These findings provide indirect support for neuroprotection trials aimed at raising serum UA.
Collapse
Affiliation(s)
- Radhika Sampat
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA.
| | - Sarah Young
- Department of Biochemistry, Duke University, Durham, NC, 27713, USA
| | - Ami Rosen
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Douglas Bernhard
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - David Millington
- Department of Biochemistry, Duke University, Durham, NC, 27713, USA
| | - Stewart Factor
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - H A Jinnah
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA.
- Department of Human Genetics and Pediatrics, Emory University, Suite 6300 Woodruff Memorial Building, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| |
Collapse
|
46
|
Schretlen DJ, Callon W, Ward RE, Fu R, Ho T, Gordon B, Harris JC, Jinnah HA. Do clinical features of Lesch-Nyhan disease correlate more closely with hypoxanthine or guanine recycling? J Inherit Metab Dis 2016; 39:85-91. [PMID: 26067813 PMCID: PMC5903427 DOI: 10.1007/s10545-015-9869-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 01/16/2023]
Abstract
Lesch-Nyhan disease (LND) is a rare, X-linked recessive neurodevelopmental disorder caused by deficiency of hypoxanthine-guanine phosphoribosyltransferase (HGprt), an enzyme in the purine salvage pathway. HGprt has two functions; it recycles hypoxanthine and guanine. Which of these two functions is more relevant for pathogenesis is unclear because some evidence points to hypoxanthine recycling, but other evidence points to guanine recycling. In this study, we selectively assayed hypoxanthine (Hprt) and guanine (Gprt) recycling in skin fibroblasts from 17 persons with LND, 11 with an attenuated variant of the disease (LNV), and 19 age-, sex-, and race-matched healthy controls (HC). Activity levels of both enzymes differed across groups (p < 0.0001), but only Gprt distinguished patients with LND from those with LNV (p < 0.05). Gprt also showed slightly stronger correlations than Hprt with 13 of 14 measures of the clinical phenotype, including the severity of dystonia, cognitive impairment, and behavioral abnormalities. These findings suggest that loss of guanine recycling might be more closely linked to the LND/LNV phenotype than loss of hypoxanthine recycling.
Collapse
Affiliation(s)
- David J Schretlen
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Meyer 218, Baltimore, MD, 21287-7218, USA.
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Wynne Callon
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Meyer 218, Baltimore, MD, 21287-7218, USA
| | - Rebecca E Ward
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Meyer 218, Baltimore, MD, 21287-7218, USA
| | - Rong Fu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tiffany Ho
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Meyer 218, Baltimore, MD, 21287-7218, USA
| | - Barry Gordon
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, The Johns Hopkins University, Baltimore, MD, USA
| | - James C Harris
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Meyer 218, Baltimore, MD, 21287-7218, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Departments of Genetics and Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
47
|
Babinec M, Cole E, Crane B, Dahling S, Freney D, Jungbluth-Jermyn B, Lange ML, Pau-Lee YY, Olson DN, Pedersen J, Potter C, Savage D, Shea M. The Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Position on the Application of Wheelchairs, Seating Systems, and Secondary Supports for Positioning Versus Restraint. Assist Technol 2015; 27:263-71. [PMID: 26691565 DOI: 10.1080/10400435.2015.1113802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
| | | | - Barbara Crane
- c University of Hartford , West Hartford , Connecticut , USA
| | - Steven Dahling
- d Rusk Institute of Rehab Medicine , New York , New York , USA
| | - Delia Freney
- e Kaiser Permanente, Continuing Care Service Center , Union City , California , USA
| | | | | | | | - Donald N Olson
- i North Dakota Life Skills and Transition Center , Fargo , North Dakota , USA
| | - Jessica Pedersen
- j Rehabilitation Institute of Chicago , Franklin Park , Illinois , USA
| | - Cynthia Potter
- k Healthquest Community Services , Pittsburgh , Pennsylvania , USA
| | - David Savage
- l Community Services Group , Hatboro , Pennsylvania , USA
| | - Mary Shea
- m Kessler Institute for Rehabilitation , West Orange , New Jersey , USA
| |
Collapse
|
48
|
Di Giacopo R, Cianetti L, Caputo V, La Torraca I, Piemonte F, Ciolfi A, Petrucci S, Carta C, Mariotti P, Leuzzi V, Valente EM, D'Amico A, Bentivoglio A, Bertini E, Tartaglia M, Zampino G. Protracted late infantile ceroid lipofuscinosis due to TPP1 mutations: Clinical, molecular and biochemical characterization in three sibs. J Neurol Sci 2015; 356:65-71. [PMID: 26143525 DOI: 10.1016/j.jns.2015.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/22/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This work investigated the molecular cause responsible for a late-onset parkinsonism-dystonia phenotype in three Italian siblings, and clinically characterize this condition. METHODS Extensive neurophysiological and neuroradiological exams were performed on the three sibs. Most frequent late-onset metabolic diseases were ruled out through laboratory and biochemical analyses. A whole exome sequencing (WES) approach was used to identify the molecular cause underlying this condition. RESULTS AND CONCLUSIONS Peculiar neurologic phenotype was characterized by dystonia-parkinsonism, cognitive impairment, gait ataxia and apraxia, pyramidal signs. WES analysis allowed the identification of a compound heterozygosity for two nucleotide substitutions (c.1340G>A, p.R447H; c.790C>T, p.Q264X) affecting the TPP1 gene in the three affected siblings. Biochemical analyses demonstrated abrogated TPP1 catalytic activity in primary skin fibroblasts, but revealed residual activity in leukocytes. Our findings document that late infantile neuronal ceroid lipofuscinosis (CLN2), which is caused by TPP1 gene mutations, should be considered in the differential diagnosis of autosomal recessive dystonia-parkinsonism syndromes. The availability of enzyme replacement therapy and other therapeutic approaches for ceroid lipofuscinoses emphasizes the value of reaching an early diagnosis in patients with atypical and milder presentation of these disorders.
Collapse
Affiliation(s)
- Raffaella Di Giacopo
- Center for Neurocognitive Rehabilitation (CERiN), Mind/Brain Sciences (CIMEC), University of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy; Centro per i Disturbi del Movimento, Università Cattolica del sacro Cuore, Rome, Italy.
| | - Luciano Cianetti
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Viviana Caputo
- Dipartimento di Medicina Sperimentale, Università La Sapienza, Rome, Italy
| | - Ilaria La Torraca
- Istituto di Clinica Pediatrica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fiorella Piemonte
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - Andrea Ciolfi
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Petrucci
- Dipartimento di Medicina Sperimentale, Università La Sapienza, Rome, Italy; Laboratorio Mendel, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Claudio Carta
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Mariotti
- Istituto di Neuropsichiatria Infantile, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Leuzzi
- Dipartimento di Pediatria e Neuropsichiatria Infantile, Università La Sapienza, Rome, Italy
| | - Enza Maria Valente
- Laboratorio Mendel, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; Dipartimento di Medicina e Chirurgia, Università di Salerno, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - Annarita Bentivoglio
- Centro per i Disturbi del Movimento, Università Cattolica del sacro Cuore, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - Marco Tartaglia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Zampino
- Istituto di Clinica Pediatrica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
49
|
Fasullo M, Endres L. Nucleotide salvage deficiencies, DNA damage and neurodegeneration. Int J Mol Sci 2015; 16:9431-49. [PMID: 25923076 PMCID: PMC4463597 DOI: 10.3390/ijms16059431] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/16/2015] [Accepted: 04/03/2015] [Indexed: 12/20/2022] Open
Abstract
Nucleotide balance is critically important not only in replicating cells but also in quiescent cells. This is especially true in the nervous system, where there is a high demand for adenosine triphosphate (ATP) produced from mitochondria. Mitochondria are particularly prone to oxidative stress-associated DNA damage because nucleotide imbalance can lead to mitochondrial depletion due to low replication fidelity. Failure to maintain nucleotide balance due to genetic defects can result in infantile death; however there is great variability in clinical presentation for particular diseases. This review compares genetic diseases that result from defects in specific nucleotide salvage enzymes and a signaling kinase that activates nucleotide salvage after DNA damage exposure. These diseases include Lesch-Nyhan syndrome, mitochondrial depletion syndromes, and ataxia telangiectasia. Although treatment options are available to palliate symptoms of these diseases, there is no cure. The conclusions drawn from this review include the critical role of guanine nucleotides in preventing neurodegeneration, the limitations of animals as disease models, and the need to further understand nucleotide imbalances in treatment regimens. Such knowledge will hopefully guide future studies into clinical therapies for genetic diseases.
Collapse
Affiliation(s)
- Michael Fasullo
- Colleges of Nanoscale Sciences and Engineering, State University of New York Polytechnic University, Albany, NY 12203, USA.
| | - Lauren Endres
- Colleges of Nanoscale Sciences and Engineering, State University of New York Polytechnic University, Albany, NY 12203, USA.
| |
Collapse
|
50
|
Yamada Y, Nomura N, Yamada K, Kimura R, Fukushi D, Wakamatsu N, Matsuda Y, Yamauchi T, Ueda T, Hasegawa H, Nakamura M, Ichida K, Kaneko K, Fujimori S. Hypoxanthine guanine phosphoribosyltransferase (HPRT) deficiencies: HPRT1 mutations in new Japanese families and PRPP concentration. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:218-22. [PMID: 24940672 DOI: 10.1080/15257770.2013.865743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mutation of hypoxanthine guanine phosphoribosyltransferase (HPRT) gives rise to Lesch-Nyhan syndrome, which is characterized by hyperuricemia, severe motor disability, and self-injurious behavior, or HPRT-related gout with hyperuricemia. Four mutations were detected in two Lesch-Nyhan families and two families with partial deficiency since our last report. A new mutation of G to TT (c.456delGinsTT) resulting in a frameshift (p.Q152Hfs*3) in exon 3 has been identified in one Lesch-Nyhan family. In the other Lesch-Nyhan family, a new point mutation in intron 7 (c.532+5G>T) causing splicing error (exon 7 excluded, p.L163Cfs*4) was detected. In the two partial deficiency cases with hyperuricemia, two missense mutations of p.D20V (c.59A>T) and p.H60R (c.179A>G) were found. An increase of erythrocyte PRPP concentration was observed in the respective phenotypes and seems to be correlated with disease severity.
Collapse
Affiliation(s)
- Yasukazu Yamada
- a Department of Genetics, Institute for Developmental Research , Aichi Human Service Center , Aichi , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|