1
|
Rosenthal ZP, Majeski JB, Somarowthu A, Quinn DK, Lindquist BE, Putt ME, Karaj A, Favilla CG, Baker WB, Hosseini G, Rodriguez JP, Cristancho MA, Sheline YI, William Shuttleworth C, Abbott CC, Yodh AG, Goldberg EM. Electroconvulsive therapy generates a postictal wave of spreading depolarization in mice and humans. Nat Commun 2025; 16:4619. [PMID: 40383825 PMCID: PMC12086196 DOI: 10.1038/s41467-025-59900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 05/08/2025] [Indexed: 05/20/2025] Open
Abstract
Electroconvulsive therapy (ECT) is a fast-acting, highly effective, and safe treatment for medication-resistant depression. Historically, the clinical benefits of ECT have been attributed to generating a controlled seizure; however, the underlying neurobiology is understudied and unresolved. Using optical neuroimaging of neural activity and hemodynamics in a mouse model of ECT, we demonstrated that a second brain event follows seizure: cortical spreading depolarization (CSD). We found that ECT pulse parameters and electrode configuration directly shaped the wave dynamics of seizure and subsequent CSD. To translate these findings to human patients, we used non-invasive diffuse optical monitoring of cerebral blood flow and oxygenation during routine ECT treatments. We observed that human brains reliably generate hyperemic waves after ECT seizure which are highly consistent with CSD. These results challenge a long-held assumption that seizure is the primary outcome of ECT and point to new opportunities for optimizing ECT stimulation parameters and treatment outcomes.
Collapse
Affiliation(s)
- Zachary P Rosenthal
- Psychiatry Residency Physician-Scientist Research Track, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Joseph B Majeski
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Davin K Quinn
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Britta E Lindquist
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antoneta Karaj
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chris G Favilla
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wesley B Baker
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Golkoo Hosseini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenny P Rodriguez
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mario A Cristancho
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christopher C Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
McLeod GA, Josephson CB, Engbers JDT, Cooke LJ, Wiebe S. Mapping the migraine: Intracranial recording of cortical spreading depression in migraine with aura. Headache 2025; 65:658-665. [PMID: 40055980 DOI: 10.1111/head.14907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/22/2024] [Accepted: 12/25/2024] [Indexed: 03/29/2025]
Abstract
Migraine with aura is a common neurological disorder. Cortical spreading depression is the hypothetical pathophysiologic correlate, but it has never been directly recorded during migraine in a human. A 32-year-old female with a history of migraine underwent a presurgical workup for comorbid epilepsy. While implanted for stereotactic electroencephalography with 94 electrode contacts across bilateral hemispheres, she experienced a typical migraine with aura. Stereotactic electroencephalography demonstrated low-voltage suppression starting in the left mesial occipital cortex and propagating anteriorly at 3 mm/min, clinically correlating with a contralateral right superior scintillating scotoma and ipsilateral headache. Intracranial stereotactic electroencephalographic recording demonstrated cortical spreading depression during migraine with aura. Our findings add to the body of evidence implicating cortical spreading depression in the pathophysiology of migraine with aura.
Collapse
Affiliation(s)
- Graham A McLeod
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colin B Josephson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- Centre for Health Informatics, University of Calgary, Calgary, Alberta, Canada
| | | | - Lara J Cooke
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- Clinical Research Unit, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Sword JJ, Sparks T, Debs LH, Major S, Sharma SJ, Jensen MA, Moore-Hill DT, Barton K, Shah M, Garcia KA, Switzer JA, Blake DT, Vale FL, Dreier JP, Hartings JA, Kirov SA. Acute-Phase Recording of the Spreading Depolarization Continuum in Aged Nonhuman Primates During Focal Ischemic Stroke. Stroke 2025; 56:974-986. [PMID: 40013372 PMCID: PMC11934194 DOI: 10.1161/strokeaha.124.049417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/13/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Decades of experimental and clinical data revealed that spreading depolarizations (SDs) play a central causal role in the development of cortical lesions after acute brain injury. However, clinical documentation of events at the onset of focal ischemic stroke and during the initial phase of cortical injury development is lacking because electroencephalography monitoring of SD typically starts hours or days later. Here, we used nonhuman primates to map electrophysiological pathology through focal ischemic stroke's onset and acute stage. METHODS Craniotomies were performed over both hemispheres on 4 male and 1 female nemestrina and rhesus macaques aged 23 years to 32 years. Subdural electrode arrays were placed bilaterally over the middle cerebral artery territory, recording from 24 electrodes 1 cm apart on the left cortex and 7 on the right. After 30 minutes of baseline monitoring, the left middle cerebral artery and, in some cases, also the left internal carotid or anterior cerebral arteries were permanently occluded with aneurysmal clips. RESULTS Repetitive SDs occurred during the next 3 hours, followed by terminal SD during euthanasia. No epileptiform activity was observed in any of the 5 animals. Nonspreading electrical silence developed in the ischemic core within seconds of ischemic onset, followed by terminal SD and SD-initiated negative ultraslow potential after several minutes. These events defined the ischemic core and led to histologically confirmed cell damage. Initial and subsequent transient SDs caused spreading depression of spontaneous activity in the normally perfused surrounding cortex without any signs of histological damage. Cardiocirculatory arrest at the end of experiments first induced nonspreading depression of activity followed by SD and, eventually, the SD-initiated negative ultraslow potential, which indicated brain death. CONCLUSIONS Results in gyrencephalic nonhuman primates hold significant implications for understanding the role of SD in acute brain injury development and for the clinical translation and diagnosis of pathologies manifested in the SD continuum.
Collapse
Affiliation(s)
- Jeremy J. Sword
- Dept. of Neuroscience and Regenerative Medicine, Medical
College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tyler Sparks
- Dept. of Neurosurgery, Medical College of Georgia at
Augusta University, Augusta, Georgia, USA
| | - Luca H. Debs
- Dept. of Neurosurgery, Medical College of Georgia at
Augusta University, Augusta, Georgia, USA
| | - Sebastian Major
- Dept. of Neurology, Charité University Medicine,
Berlin, Germany
- Center for Stroke Research Berlin, Charité
University Medicine, Berlin, Germany
- Dept. of Experimental Neurology, Charité University
Medicine, Berlin, Germany
| | - Suash J. Sharma
- Dept. of Pathology, Medical College of Georgia at Augusta
University, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Michael A. Jensen
- Dept. of Medical Illustration, Medical College of Georgia
at Augusta University, Augusta, Georgia, USA
| | - Debra T. Moore-Hill
- Dept. of Neurology, Medical College of Georgia at Augusta
University, Augusta, Georgia, USA
| | - Karen Barton
- Dept. of Neurology, Medical College of Georgia at Augusta
University, Augusta, Georgia, USA
| | - Manan Shah
- Dept. of Neurosurgery, Medical College of Georgia at
Augusta University, Augusta, Georgia, USA
- Dept. of Neurology, Medical College of Georgia at Augusta
University, Augusta, Georgia, USA
| | - Klepper Alfredo Garcia
- Dept. of Neurosurgery, Medical College of Georgia at
Augusta University, Augusta, Georgia, USA
- Dept. of Neurology, Medical College of Georgia at Augusta
University, Augusta, Georgia, USA
| | - Jeffrey A. Switzer
- Dept. of Neurology, Medical College of Georgia at Augusta
University, Augusta, Georgia, USA
| | - David T. Blake
- Dept. of Neuroscience and Regenerative Medicine, Medical
College of Georgia at Augusta University, Augusta, Georgia, USA
- Dept. of Neurosurgery, Medical College of Georgia at
Augusta University, Augusta, Georgia, USA
- Dept. of Neurology, Medical College of Georgia at Augusta
University, Augusta, Georgia, USA
| | - Fernando L. Vale
- Dept. of Neurosurgery, Medical College of Georgia at
Augusta University, Augusta, Georgia, USA
| | - Jens P. Dreier
- Dept. of Neurology, Charité University Medicine,
Berlin, Germany
- Center for Stroke Research Berlin, Charité
University Medicine, Berlin, Germany
- Dept. of Experimental Neurology, Charité University
Medicine, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin,
Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin,
Germany
| | - Jed A. Hartings
- Dept. of Neurosurgery, University of Cincinnati College
of Medicine, Cincinnati, OH, USA
- Mayfield Clinic, Cincinnati, OH, USA
| | - Sergei A. Kirov
- Dept. of Neuroscience and Regenerative Medicine, Medical
College of Georgia at Augusta University, Augusta, Georgia, USA
- Dept. of Neurosurgery, Medical College of Georgia at
Augusta University, Augusta, Georgia, USA
| |
Collapse
|
4
|
Cobler-Lichter MJ, Suchdev K, Tatro H, Cascone A, Yang J, Weinberg J, Abdalkader MK, Dasenbrock HH, Ong CJ, Cervantes-Arslanian A, Greer D, Nguyen TN, Daneshmand A, Chung DY. Safety and Outcomes of Valproic Acid in Subarachnoid Hemorrhage Patients: A Retrospective Study. Clin Neuropharmacol 2025; 48:43-50. [PMID: 40035592 DOI: 10.1097/wnf.0000000000000627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
OBJECTIVES Animal studies have suggested that valproic acid (VPA) is neuroprotective in aneurysmal subarachnoid hemorrhage (SAH). However, the effect of VPA on SAH outcomes in humans has not been investigated. METHODS We conducted a retrospective analysis of 123 patients with nontraumatic SAH. Eighty-seven patients had an aneurysmal source and 36 patients had no culprit lesion identified. We used stepwise logistic regression to determine the association between VPA and delayed cerebral ischemia (DCI), radiographic vasospasm, and discharge modified Rankin Scale (mRS) score >3. RESULTS All 18 patients who received VPA underwent coil embolization of their aneurysm. VPA use did not have a significant association with DCI on adjusted analysis (odds ratio [OR] = 1.07, 95% confidence interval [CI]: 0.20-5.80). The association between VPA use and vasospasm was OR = 0.64 (0.19-1.98) and discharge mRS > 3 was OR = 0.45 (0.10-1.64). Increased age (OR = 1.04, 1.01-1.07) and Hunt and Hess grade >3 (OR = 14.5, 4.31-48.6) were associated with poor discharge outcome (mRS > 3). Younger age (OR = 0.96, 0.93-0.99), modified Fisher Scale (mFS) score = 4 (OR = 4.14, 1.81-9.45), and Hunt and Hess grade >3 (OR = 2.92, 1.11-7.69) were all associated with development of radiographic vasospasm. There were no complications associated with VPA administration. CONCLUSIONS We did not observe an association between VPA and the rate of DCI. We found that VPA use was safe in SAH patients who have undergone endovascular treatment of their aneurysm.
Collapse
Affiliation(s)
| | - Kushak Suchdev
- Division of Neurocritical Care, Department of Neurology, Boston Medical Center and Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Hayley Tatro
- Department of Pharmacy, Boston Medical Center, Boston, MA
| | - Ava Cascone
- Department of Pharmacy, Boston Medical Center, Boston, MA
| | | | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Mohamad K Abdalkader
- Department of Radiology, Boston Medical Center and Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | - Hormuzdiyar H Dasenbrock
- Department of Neurosurgery, Boston Medical Center and Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | | | | | - David Greer
- Division of Neurocritical Care, Department of Neurology, Boston Medical Center and Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | | | - Ali Daneshmand
- Division of Neurocritical Care, Department of Neurology, Boston Medical Center and Boston University Chobanian and Avedisian School of Medicine, Boston, MA
| | | |
Collapse
|
5
|
Rosenthal ZP, Majeski JB, Somarowthu A, Quinn DK, Lindquist BE, Putt ME, Karaj A, Favilla CG, Baker WB, Hosseini G, Rodriguez JP, Cristancho MA, Sheline YI, Shuttleworth CW, Abbott CC, Yodh AG, Goldberg EM. Electroconvulsive therapy generates a postictal wave of spreading depolarization in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.31.621357. [PMID: 39554135 PMCID: PMC11565954 DOI: 10.1101/2024.10.31.621357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Electroconvulsive therapy (ECT) is a fast-acting, highly effective, and safe treatment for medication-resistant depression. Historically, the clinical benefits of ECT have been attributed to generating a controlled seizure; however, the underlying neurobiology is understudied and unresolved. Using optical neuroimaging of neural activity and hemodynamics in a mouse model of ECT, we demonstrated that a second brain event follows seizure: cortical spreading depolarization (CSD). We found that ECT pulse parameters and electrode configuration directly shaped the wave dynamics of seizure and subsequent CSD. To translate these findings to human patients, we used non-invasive diffuse optical monitoring of cerebral blood flow and oxygenation during routine ECT treatments. We observed that human brains reliably generate hyperemic waves after ECT seizure which are highly consistent with CSD. These results challenge a long-held assumption that seizure is the primary outcome of ECT and point to new opportunities for optimizing ECT stimulation parameters and treatment outcomes.
Collapse
Affiliation(s)
- Zachary P Rosenthal
- Psychiatry Residency Physician-Scientist Research Track, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph B. Majeski
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA, USA
| | - Davin K Quinn
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Britta E. Lindquist
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Mary E. Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Antoneta Karaj
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chris G Favilla
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wesley B. Baker
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA, USA
| | - Golkoo Hosseini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenny P Rodriguez
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mario A Cristancho
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette I Sheline
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neuromodulation in Depression and Stress, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christopher C. Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Dreier JP, Joerk A, Uchikawa H, Horst V, Lemale CL, Radbruch H, McBride DW, Vajkoczy P, Schneider UC, Xu R. All Three Supersystems-Nervous, Vascular, and Immune-Contribute to the Cortical Infarcts After Subarachnoid Hemorrhage. Transl Stroke Res 2025; 16:96-118. [PMID: 38689162 PMCID: PMC11772491 DOI: 10.1007/s12975-024-01242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
The recently published DISCHARGE-1 trial supports the observations of earlier autopsy and neuroimaging studies that almost 70% of all focal brain damage after aneurysmal subarachnoid hemorrhage are anemic infarcts of the cortex, often also affecting the white matter immediately below. The infarcts are not limited by the usual vascular territories. About two-fifths of the ischemic damage occurs within ~ 48 h; the remaining three-fifths are delayed (within ~ 3 weeks). Using neuromonitoring technology in combination with longitudinal neuroimaging, the entire sequence of both early and delayed cortical infarct development after subarachnoid hemorrhage has recently been recorded in patients. Characteristically, cortical infarcts are caused by acute severe vasospastic events, so-called spreading ischemia, triggered by spontaneously occurring spreading depolarization. In locations where a spreading depolarization passes through, cerebral blood flow can drastically drop within a few seconds and remain suppressed for minutes or even hours, often followed by high-amplitude, sustained hyperemia. In spreading depolarization, neurons lead the event, and the other cells of the neurovascular unit (endothelium, vascular smooth muscle, pericytes, astrocytes, microglia, oligodendrocytes) follow. However, dysregulation in cells of all three supersystems-nervous, vascular, and immune-is very likely involved in the dysfunction of the neurovascular unit underlying spreading ischemia. It is assumed that subarachnoid blood, which lies directly on the cortex and enters the parenchyma via glymphatic channels, triggers these dysregulations. This review discusses the neuroglial, neurovascular, and neuroimmunological dysregulations in the context of spreading depolarization and spreading ischemia as critical elements in the pathogenesis of cortical infarcts after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| | - Alexander Joerk
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Hiroki Uchikawa
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Viktor Horst
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Cantonal Hospital of Lucerne and University of Lucerne, Lucerne, Switzerland
| | - Ran Xu
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| |
Collapse
|
7
|
Dreier JP, Lemale CL, Horst V, Major S, Kola V, Schoknecht K, Scheel M, Hartings JA, Vajkoczy P, Wolf S, Woitzik J, Hecht N. Similarities in the Electrographic Patterns of Delayed Cerebral Infarction and Brain Death After Aneurysmal and Traumatic Subarachnoid Hemorrhage. Transl Stroke Res 2025; 16:147-168. [PMID: 38396252 PMCID: PMC11772537 DOI: 10.1007/s12975-024-01237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
While subarachnoid hemorrhage is the second most common hemorrhagic stroke in epidemiologic studies, the recent DISCHARGE-1 trial has shown that in reality, three-quarters of focal brain damage after subarachnoid hemorrhage is ischemic. Two-fifths of these ischemic infarctions occur early and three-fifths are delayed. The vast majority are cortical infarcts whose pathomorphology corresponds to anemic infarcts. Therefore, we propose in this review that subarachnoid hemorrhage as an ischemic-hemorrhagic stroke is rather a third, separate entity in addition to purely ischemic or hemorrhagic strokes. Cumulative focal brain damage, determined by neuroimaging after the first 2 weeks, is the strongest known predictor of patient outcome half a year after the initial hemorrhage. Because of the unique ability to implant neuromonitoring probes at the brain surface before stroke onset and to perform longitudinal MRI scans before and after stroke, delayed cerebral ischemia is currently the stroke variant in humans whose pathophysiological details are by far the best characterized. Optoelectrodes located directly over newly developing delayed infarcts have shown that, as mechanistic correlates of infarct development, spreading depolarizations trigger (1) spreading ischemia, (2) severe hypoxia, (3) persistent activity depression, and (4) transition from clustered spreading depolarizations to a negative ultraslow potential. Furthermore, traumatic brain injury and subarachnoid hemorrhage are the second and third most common etiologies of brain death during continued systemic circulation. Here, we use examples to illustrate that although the pathophysiological cascades associated with brain death are global, they closely resemble the local cascades associated with the development of delayed cerebral infarcts.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| | - Coline L Lemale
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viktor Horst
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Karl Schoknecht
- Medical Faculty, Carl Ludwig Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Wolf
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Brown BR, Hund SJ, Easley KA, Singer EL, Shuttleworth CW, Carlson AP, Jones SC. Proof-of-Concept Validation of Noninvasive Detection of Cortical Spreading Depolarization with High Resolution Direct Current-Electroencephalography. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.11.12.24311133. [PMID: 39606369 PMCID: PMC11601781 DOI: 10.1101/2024.11.12.24311133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background/Objective Cortical spreading depolarization (SD) is increasingly recognized as a major contributor to secondary brain injury. Noninvasive SD monitoring would enable the institution of SD-based therapeutics. Our primary objective is to establish proof-of-concept validation that scalp DC-potentials can provide noninvasive SD detection by comparing scalp direct-current (DC)-shifts from a high-density electrode array to SDs detected by gold-standard electrocorticography (ECoG). Our secondary objective is to assess usability and artifact tolerance. Methods An 83×58 mm thermoplastic elastomer array with 29 6-mm diameter Ag/AgCl 1-cm spaced electrodes, the CerebroPatch™ Proof-of-Concept Prototype, was adhesively placed on the forehead with an intervening electrode gel interface to record DC-electroencephalography in normal volunteers and severe acute brain injury patients in the neuro-intensive care unit some with and some without invasive ECoG electrodes. The scalp and ECoG voltages were collected by a Moberg® Advanced ICU Amplifier. Artifacts were visually identified and usability issues were recorded. SD was scored on ECoG based on DC-shifts with associated high-frequency suppression and propagation. A six-parameter Gaussian plus quadratic baseline model was used to estimate ECoG and scalp electrode time-courses and scalp-voltage heat-map movies. The similarity of the noninvasive scalp and invasive ECoG DC-shift time-courses was compared via the Gaussian fit parameters and confirmed if the Coefficient-of-Determination was >0.80. Results Usability and artifact issues obscured most scalp Prototype device data of the 140 ECoG-coded SDs during 11 days in one sub-arachnoid hemorrhage patient. Twenty-six of these DC-shifts were in readable, artifact-free portions of scalp recordings and 24 of these had a >0.80 Coefficient-of-Determination (0.98[0.02], median[IQR]) between invasive ECoG and noninvasive Prototype device DC-shifts. Reconstructed heat-map movies of the scalp DC-potentials showed a 5-cm extent, -460 μV peak region that persisted for ~70 sec. These data suggest that these scalp DC-shifts (peak -457±69 μV [mean±StD], full-width-half maximum 70.9±5.92 sec, area 18.7±2.76 cm2) depicted in the heat-map movies represent noninvasively detected SDs. Conclusions These results using 26 SDs as the observational units suggest that noninvasive SD detection is possible using scalp DC-potential signals with a high spatial resolution EEG array. Although the high artifact burden data and low usability records were limiting, negative results, they serve as an important entrepreneurial recipe for a future, re-designed device that would reduce artifacts and improve usability for DC-EEG SD detection needed to enable multi-modal monitoring for secondary brain injury.
Collapse
Affiliation(s)
- Benjamin R. Brown
- CerebroScope, the dba entity of SciencePlusPlease LLC, 4165 Blair St., Pittsburgh, PA 15207-1508, USA
| | - Samuel J. Hund
- CerebroScope, the dba entity of SciencePlusPlease LLC, 4165 Blair St., Pittsburgh, PA 15207-1508, USA
| | - Kirk A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Eric L. Singer
- CerebroScope, the dba entity of SciencePlusPlease LLC, 4165 Blair St., Pittsburgh, PA 15207-1508, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Andrew P. Carlson
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Stephen C. Jones
- CerebroScope, the dba entity of SciencePlusPlease LLC, 4165 Blair St., Pittsburgh, PA 15207-1508, USA
| |
Collapse
|
9
|
Best FV, Hartings JA, Alfawares Y, Danzer SC, Ngwenya LB. Behavioral and Cognitive Consequences of Spreading Depolarizations: A Translational Scoping Review. J Neurotrauma 2025; 42:1-18. [PMID: 39494515 PMCID: PMC11807897 DOI: 10.1089/neu.2024.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Spreading depolarizations (SDs) are self-propagating waves of mass depolarization that cause silencing of brain activity and have the potential to impact brain function and behavior. In the eight decades following their initial discovery in 1944, numerous publications have studied the cellular and molecular underpinning of SDs, but fewer have focused on the impact of SDs on behavior and cognition. It is now known that SDs occur in more than 60% of patients with moderate-to-severe traumatic brain injury (TBI), and their presence is associated with poor 6-month outcomes. Since cognitive dysfunction is a key component of TBI pathology and recovery, understanding the impact of SDs on behavior and cognition is an important step in developing diagnostic and therapeutic approaches. This study summarizes the known behavioral and cognitive consequences of SDs based on historical studies on awake animals, recent experimental paradigms, and modern clinical examples. This scoping review showcases our current understanding of the impact of SDs on cognition and behavior and highlights the need for continued research on the consequences of SDs.
Collapse
Affiliation(s)
- Faith V. Best
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jed A. Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yara Alfawares
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Steve C. Danzer
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Anesthesia, University of Cincinnati, Cincinnati, Ohio, USA
- Neuroscience Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Laura B. Ngwenya
- Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Wu Y, Jewell S, Xing X, Nan Y, Strong AJ, Yang G, Boutelle MG. Real-Time Non-Invasive Imaging and Detection of Spreading Depolarizations through EEG: An Ultra-Light Explainable Deep Learning Approach. IEEE J Biomed Health Inform 2024; 28:5780-5791. [PMID: 38412076 DOI: 10.1109/jbhi.2024.3370502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A core aim of neurocritical care is to prevent secondary brain injury. Spreading depolarizations (SDs) have been identified as an important independent cause of secondary brain injury. SDs are usually detected using invasive electrocorticography recorded at high sampling frequency. Recent pilot studies suggest a possible utility of scalp electrodes generated electroencephalogram (EEG) for non-invasive SD detection. However, noise and attenuation of EEG signals makes this detection task extremely challenging. Previous methods focus on detecting temporal power change of EEG over a fixed high-density map of scalp electrodes, which is not always clinically feasible. Having a specialized spectrogram as an input to the automatic SD detection model, this study is the first to transform SD identification problem from a detection task on a 1-D time-series wave to a task on a sequential 2-D rendered imaging. This study presented a novel ultra-light-weight multi-modal deep-learning network to fuse EEG spectrogram imaging and temporal power vectors to enhance SD identification accuracy over each single electrode, allowing flexible EEG map and paving the way for SD detection on ultra-low-density EEG with variable electrode positioning. Our proposed model has an ultra-fast processing speed (<0.3 sec). Compared to the conventional methods (2 hours), this is a huge advancement towards early SD detection and to facilitate instant brain injury prognosis. Seeing SDs with a new dimension - frequency on spectrograms, we demonstrated that such additional dimension could improve SD detection accuracy, providing preliminary evidence to support the hypothesis that SDs may show implicit features over the frequency profile.
Collapse
|
11
|
Hosokawa K, Usami K, Tatsuoka Y, Danno D, Takeshima T, Tatsuoka Y, Takahashi R, Ikeda A. Novel and reappraised wide-band EEG findings in migraineurs: Its correlation with several clinical variables. Clin Neurophysiol 2024; 166:166-175. [PMID: 39178551 DOI: 10.1016/j.clinph.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/26/2024]
Abstract
OBJECTIVE Cortical spreading depolarization is one possible pathogenesis of migraine, of which slow neurophysiological change is barely recorded in conventional EEG settings. Using wide-band EEG conditions, we reappraised the features of EEG in migraineurs, including subdelta-band EEG changes. METHODS This retrospective study included 144 patients with migraine. We delineated EEG of focal delta slow (FDS) (1-4 Hz) by time constant (TC) 0.3 s and focal subdelta slow (FSDS) (< 1 Hz) by TC 2 s. Relationships between clinical variables and EEG findings were evaluated. RESULTS Of 144 patients, 39 had aura and 105 did not. FSDS and FDS were observed in 38 and 58 patients, respectively. No EEG was recorded during the aura. In multivariate analysis with the phase of migraine, family history, age, and percentage of sleep during EEG recording, the phase of migraine was related to the occurrence of FSDS (postdrome vs interictal, prodrome, and headache respectively (OR = 49.00 [95% CI = 3.89-616.66], 46.28 [2.99-715.78], 32.79 [2.23-481.96], p = 0.0026, 0.0061, 0.011). FDS was clinically unremarkable for differential evaluation. CONCLUSIONS Wide-band EEG abnormality in migraineurs, i.e., FSDS, can be affected by migraine phase. SIGNIFICANCE Wide-band EEG finding could be a biomarker related to clinical variables in migraines.
Collapse
Affiliation(s)
- Kyoko Hosokawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Kiyohide Usami
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan; Department of Clinical Laboratory, Kyoto University Hospital, Japan
| | - Yuu Tatsuoka
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Daisuke Danno
- Department of Neurology, Headache Center, Social Medical Corporation Kotobukikai Tominaga Hospital, Japan
| | - Takao Takeshima
- Department of Neurology, Headache Center, Social Medical Corporation Kotobukikai Tominaga Hospital, Japan
| | | | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
12
|
Cobler-Lichter M, Suchdev K, Tatro H, Cascone A, Yang J, Weinberg J, Abdalkader MK, Dasenbrock HH, Ong CJ, Cervantes-Arslanian A, Greer D, Nguyen TN, Daneshmand A, Chung DY. Safety and Outcomes of Valproic Acid in Subarachnoid Hemorrhage Patients: A Retrospective Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.09.24313246. [PMID: 39314927 PMCID: PMC11419238 DOI: 10.1101/2024.09.09.24313246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background and Purpose Animal studies have suggested that valproic acid (VPA) is neuroprotective in aneurysmal subarachnoid hemorrhage (SAH). Potential mechanisms include an effect on cortical spreading depolarizations (CSD), apoptosis, blood-brain barrier integrity, and inflammatory pathways. However, the effect of VPA on SAH outcomes in humans has not been investigated. Methods We conducted a retrospective analysis of 123 patients with nontraumatic SAH. Eighty-seven patients had an aneurysmal source and 36 patients did not have a culprit lesion identified. We used stepwise logistic regression to determine the association between VPA and the following: delayed cerebral ischemia (DCI), radiographic vasospasm, and discharge modified Rankin Scale (mRS) score > 3. Results All 18 patients who received VPA underwent coil embolization of their aneurysm. VPA use did not have a significant association with DCI on adjusted analysis (Odds Ratio, OR = 1.07, 95% CI: 0.20 - 5.80). The association between VPA use and vasospasm was OR = 0.64 (0.19 - 1.98) and discharge mRS > 3 was OR = 0.45 (0.10 - 1.64). Increased age (OR = 1.04, 1.01 - 1.07) and Hunt and Hess (HH) grade > 3 (OR = 14.5, 4.31 - 48.6) were associated with an increased likelihood for poor discharge outcome (mRS > 3). Younger age (OR = 0.96, 0.93 - 0.99), mFS score = 4 (OR = 4.14, 1.81 - 9.45), and HH grade > 3 (OR = 2.92, 1.11 - 7.69) were all associated with subsequent development of radiographic vasospasm. There were no complications associated with VPA administration. Conclusion We did not observe an association between VPA and the rate of DCI. There may have been a protective association on discharge outcome and radiographic vasospasm that did not reach statistical significance. We found that VPA use was safe and is plausible to be used in a population of SAH patients who have undergone endovascular treatment of their aneurysm. Larger, prospective studies are needed to determine the effect of VPA on outcome after SAH.
Collapse
|
13
|
Carlson AP, Mayer AR, Cole C, van der Horn HJ, Marquez J, Stevenson TC, Shuttleworth CW. Cerebral autoregulation, spreading depolarization, and implications for targeted therapy in brain injury and ischemia. Rev Neurosci 2024; 35:651-678. [PMID: 38581271 PMCID: PMC11297425 DOI: 10.1515/revneuro-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Cerebral autoregulation is an intrinsic myogenic response of cerebral vasculature that allows for preservation of stable cerebral blood flow levels in response to changing systemic blood pressure. It is effective across a broad range of blood pressure levels through precapillary vasoconstriction and dilation. Autoregulation is difficult to directly measure and methods to indirectly ascertain cerebral autoregulation status inherently require certain assumptions. Patients with impaired cerebral autoregulation may be at risk of brain ischemia. One of the central mechanisms of ischemia in patients with metabolically compromised states is likely the triggering of spreading depolarization (SD) events and ultimately, terminal (or anoxic) depolarization. Cerebral autoregulation and SD are therefore linked when considering the risk of ischemia. In this scoping review, we will discuss the range of methods to measure cerebral autoregulation, their theoretical strengths and weaknesses, and the available clinical evidence to support their utility. We will then discuss the emerging link between impaired cerebral autoregulation and the occurrence of SD events. Such an approach offers the opportunity to better understand an individual patient's physiology and provide targeted treatments.
Collapse
Affiliation(s)
- Andrew P. Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Andrew R. Mayer
- Mind Research Network, 1101 Yale, Blvd, NE, Albuquerque, NM, 87106, USA
| | - Chad Cole
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | | | - Joshua Marquez
- University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Taylor C. Stevenson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| |
Collapse
|
14
|
Bitar R, Khan UM, Rosenthal ES. Utility and rationale for continuous EEG monitoring: a primer for the general intensivist. Crit Care 2024; 28:244. [PMID: 39014421 PMCID: PMC11251356 DOI: 10.1186/s13054-024-04986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 07/18/2024] Open
Abstract
This review offers a comprehensive guide for general intensivists on the utility of continuous EEG (cEEG) monitoring for critically ill patients. Beyond the primary role of EEG in detecting seizures, this review explores its utility in neuroprognostication, monitoring neurological deterioration, assessing treatment responses, and aiding rehabilitation in patients with encephalopathy, coma, or other consciousness disorders. Most seizures and status epilepticus (SE) events in the intensive care unit (ICU) setting are nonconvulsive or subtle, making cEEG essential for identifying these otherwise silent events. Imaging and invasive approaches can add to the diagnosis of seizures for specific populations, given that scalp electrodes may fail to identify seizures that may be detected by depth electrodes or electroradiologic findings. When cEEG identifies SE, the risk of secondary neuronal injury related to the time-intensity "burden" often prompts treatment with anti-seizure medications. Similarly, treatment may be administered for seizure-spectrum activity, such as periodic discharges or lateralized rhythmic delta slowing on the ictal-interictal continuum (IIC), even when frank seizures are not evident on the scalp. In this setting, cEEG is utilized empirically to monitor treatment response. Separately, cEEG has other versatile uses for neurotelemetry, including identifying the level of sedation or consciousness. Specific conditions such as sepsis, traumatic brain injury, subarachnoid hemorrhage, and cardiac arrest may each be associated with a unique application of cEEG; for example, predicting impending events of delayed cerebral ischemia, a feared complication in the first two weeks after subarachnoid hemorrhage. After brief training, non-neurophysiologists can learn to interpret quantitative EEG trends that summarize elements of EEG activity, enhancing clinical responsiveness in collaboration with clinical neurophysiologists. Intensivists and other healthcare professionals also play crucial roles in facilitating timely cEEG setup, preventing electrode-related skin injuries, and maintaining patient mobility during monitoring.
Collapse
Affiliation(s)
- Ribal Bitar
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Usaamah M Khan
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, 55 Fruit St., Lunder 644, Boston, MA, 02114, USA.
| |
Collapse
|
15
|
Lee SY, Lee SJ, Kim SS, Jun HS, Oh C, Lin C, Phi JH. Post-traumatic Transient Neurological Dysfunction: A Proposal for Pathophysiology. J Neurotrauma 2024; 41:e1695-e1707. [PMID: 38687331 DOI: 10.1089/neu.2021.0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Unexplained neurological deterioration is occasionally observed in patients with traumatic brain injuries (TBIs). We aimed to describe the clinical features of post-traumatic transient neurological dysfunction and provide new insight into its pathophysiology. We retrospectively collected data from patients with focal neurological deterioration of unknown origin during hospitalization for acute TBI for 48 consecutive months. Brain imaging, including computed tomography, diffusion-weighted imaging and perfusion-weighted imaging, and electroencephalography were conducted during the episodes. Fourteen (2.0%) patients experienced unexplained focal neurological deterioration among 713 patients who were admitted for traumatic intracranial hemorrhage during the study period. Aphasia was the predominant symptom in all patients, and hemiparesis or hemianopia was accompanied in three patients. These symptoms developed within 14 days after trauma. Structural imaging did not show any significant interval change, and electroencephalography showed persistent arrhythmic slowing in the corresponding hemisphere in most patients. Perfusion imaging revealed increased cerebral blood flow in the symptomatic hemisphere. Surgical intervention and anti-seizure medications were ineffective in abolishing the symptoms. The symptoms disappeared spontaneously after 4 h to 1 month. Transient neurological dysfunction (TND) can occur during the acute phase of TBI. Although TND may last longer than a typical transient ischemic attack or seizure, it eventually resolves regardless of treatment. Based on our observation, we postulate that this is a manifestation of spreading depolarization occurring in the injured brain, which is analogous to migraine aura.
Collapse
Affiliation(s)
- Seo-Young Lee
- Department of Neurology, Kangwon National University College of Medicine, Chuncheon, Korea
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Korea
- Department of Critical Care Medicine, Kangwon National University Hospital, Chuncheon, Korea
| | - Seung Jin Lee
- Department of Neurosurgery, Kangwon National University College of Medicine, Chuncheon, Korea
- Department of Neurosurgery, Kangwon National University Hospital, Chuncheon, Korea
| | - Sam Soo Kim
- Department of Radiology, Kangwon National University College of Medicine, Chuncheon, Korea
| | - Hyo Sub Jun
- Department of Neurosurgery, Kangwon National University College of Medicine, Chuncheon, Korea
- Department of Neurosurgery, Kangwon National University Hospital, Chuncheon, Korea
| | - Chungkun Oh
- Department of Neurology, Kangwon National University Hospital, Chuncheon, Korea
| | - Chen Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan city, Taiwan
| | - Ji Hoon Phi
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Appavu B, Riviello JJ. Multimodal neuromonitoring in the pediatric intensive care unit. Semin Pediatr Neurol 2024; 49:101117. [PMID: 38677796 DOI: 10.1016/j.spen.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 04/29/2024]
Abstract
Neuromonitoring is used to assess the central nervous system in the intensive care unit. The purpose of neuromonitoring is to detect neurologic deterioration and intervene to prevent irreversible nervous system dysfunction. Neuromonitoring starts with the standard neurologic examination, which may lag behind the pathophysiologic changes. Additional modalities including continuous electroencephalography (CEEG), multiple physiologic parameters, and structural neuroimaging may detect changes earlier. Multimodal neuromonitoring now refers to an integrated combination and display of non-invasive and invasive modalities, permitting tailored treatment for the individual patient. This chapter reviews the non-invasive and invasive modalities used in pediatric neurocritical care.
Collapse
Affiliation(s)
- Brian Appavu
- Clinical Assistant Professor of Child Health and Neurology, University of Arizona School of Medicine-Phoenix, Barrow Neurological Institute at Phoenix Children's, 1919 E. Thomas Road, Ambulatory Building B, 3rd Floor, Phoenix, AZ 85016, United States.
| | - James J Riviello
- Associate Division Chief for Epilepsy, Neurophysiology, and Neurocritical Care, Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Professor of Pediatrics and Neurology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, United States
| |
Collapse
|
17
|
Riederer F, Beiersdorf J, Lang C, Pirker-Kees A, Klein A, Scutelnic A, Platho-Elwischger K, Baumgartner C, Dreier JP, Schankin C. Signatures of migraine aura in high-density-EEG. Clin Neurophysiol 2024; 160:113-120. [PMID: 38422969 DOI: 10.1016/j.clinph.2024.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Cortical spreading depolarization is highly conserved among the species. It is easily detectable in direct cortical surface recordings and has been recorded in the cortex of humans with severe neurological disease. It is considered the pathophysiological correlate of human migraine aura, but direct electrophysiological evidence is still missing. As signatures of cortical spreading depolarization have been recognized in scalp EEG, we investigated typical spontaneous migraine aura, using full band high-density EEG (HD-EEG). METHODS In this prospective study, patients with migraine with aura were investigated during spontaneous migraine aura and interictally. Time compressed HD-EEG were analyzed for the presence of cortical spreading depolarization characterized by (a) slow potential changes below 0.05 Hz, (b) suppression of faster activity from 0.5 Hz - 45 Hz (c) spreading of these changes to neighboring regions during the aura phase. Further, topographical changes in alpha-power spectral density (8-14 Hz) during aura were analyzed. RESULTS In total, 26 HD-EEGs were recorded in patients with migraine with aura, thereof 10 HD-EEGs during aura. Eight HD-EEGs were recorded in the same subject. During aura, no slow potentials were recorded, but alpha-power was significantly decreased in parieto-occipito-temporal location on the hemisphere contralateral to visual aura, lasting into the headache phase. Interictal alpha-power in patients with migraine with aura did not differ significantly from age- and sex-matched healthy controls. CONCLUSIONS Unequivocal signatures of spreading depolarization were not recorded with EEG on the intact scalp in migraine. The decrease in alpha-power contralateral to predominant visual symptoms is consistent with focal depression of spontaneous brain activity as a consequence of cortical spreading depolarization but is not specific thereof. SIGNIFICANCE Cortical spreading depolarization is relevant in migraine, other paroxysmal neurological disorders and neurointensive care.
Collapse
Affiliation(s)
- Franz Riederer
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; University of Zurich, Medical Faculty, Zurich, Switzerland.
| | - Johannes Beiersdorf
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology
| | - Clemens Lang
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Agnes Pirker-Kees
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Antonia Klein
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian Scutelnic
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kirsten Platho-Elwischger
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Christoph Baumgartner
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology; Department of Neurology, Clinic Hietzing, Vienna, Austria
| | - Jens P Dreier
- Department of Neurology and Experimental Neurology Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Schankin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Takasugi Y, Hishikawa T, Shimizu T, Murai S, Haruma J, Hiramatsu M, Tokunaga K, Takeda Y, Sugiu K, Morimatsu H, Date I. Power suppression in EEG after the onset of SAH is a significant marker of early brain injury in rat models. Sci Rep 2024; 14:2277. [PMID: 38280926 PMCID: PMC10821948 DOI: 10.1038/s41598-024-52527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024] Open
Abstract
We analyzed the correlation between the duration of electroencephalogram (EEG) recovery and histological outcome in rats in the acute stage of subarachnoid hemorrhage (SAH) to find a new predictor of the subsequent outcome. SAH was induced in eight rats by cisternal blood injection, and the duration of cortical depolarization was measured. EEG power spectrums were given by time frequency analysis, and histology was evaluated. The appropriate frequency band and recovery percentage of EEG (defined as EEG recovery time) to predict the neuronal damage were determined from 25 patterns (5 bands × 5 recovery rates) of receiver operating characteristic (ROC) curves. Probit regression curves were depicted to evaluate the relationships between neuronal injury and duration of depolarization and EEG recovery. The optimal values of the EEG band and the EEG recovery time to predict neuronal damage were 10-15 Hz and 40%, respectively (area under the curve [AUC]: 0.97). There was a close relationship between the percentage of damaged neurons and the duration of depolarization or EEG recovery time. These results suggest that EEG recovery time, under the above frequency band and recovery rate, may be a novel marker to predict the outcome after SAH.
Collapse
Affiliation(s)
- Yuji Takasugi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Neurosurgery, Okayama City Hospital, Okayama, Japan
| | - Tomohito Hishikawa
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomohisa Shimizu
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Murai
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jun Haruma
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masafumi Hiramatsu
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Tokunaga
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Neurosurgery, Okayama City Hospital, Okayama, Japan
| | - Yoshimasa Takeda
- Department of Anesthesiology, Faculty of Medicine, Toho University, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan.
| | - Kenji Sugiu
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
19
|
Medvedeva TM, Smirnova MP, Pavlova IV, Vinogradova LV. Different vulnerability of fast and slow cortical oscillations to suppressive effect of spreading depolarization: state-dependent features potentially relevant to pathogenesis of migraine aura. J Headache Pain 2024; 25:8. [PMID: 38225575 PMCID: PMC10789028 DOI: 10.1186/s10194-023-01706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Spreading depolarization (SD), underlying mechanism of migraine aura and potential activator of pain pathways, is known to elicit transient local silencing cortical activity. Sweeping across the cortex, the electrocorticographic depression is supposed to underlie spreading negative symptoms of migraine aura. Main information about the suppressive effect of SD on cortical oscillations was obtained in anesthetized animals while ictal recordings in conscious patients failed to detect EEG depression during migraine aura. Here, we investigate the suppressive effect of SD on spontaneous cortical activity in awake animals and examine whether the anesthesia modifies the SD effect. METHODS Spectral and spatiotemporal characteristics of spontaneous cortical activity following a single unilateral SD elicited by amygdala pinprick were analyzed in awake freely behaving rats and after induction of urethane anesthesia. RESULTS In wakefulness, SD transiently suppressed cortical oscillations in all frequency bands except delta. Slow delta activity did not decline its power during SD and even increased it afterwards; high-frequency gamma oscillations showed the strongest and longest depression under awake conditions. Unexpectedly, gamma power reduced not only during SD invasion the recording cortical sites but also when SD occupied distant subcortical/cortical areas. Contralateral cortex not invaded by SD also showed transient depression of gamma activity in awake animals. Introduction of general anesthesia modified the pattern of SD-induced depression: SD evoked the strongest cessation of slow delta activity, milder suppression of fast oscillations and no distant changes in gamma activity. CONCLUSION Slow and fast cortical oscillations differ in their vulnerability to SD influence, especially in wakefulness. In the conscious brain, SD produces stronger and spatially broader depression of fast cortical oscillations than slow ones. The frequency-specific effects of SD on cortical activity of awake brain may underlie some previously unexplained clinical features of migraine aura.
Collapse
Affiliation(s)
- Tatiana M Medvedeva
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485, Moscow, Russia
| | - Maria P Smirnova
- Department of Conditioned Reflexes and Physiology of Emotion, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485, Moscow, Russia
| | - Irina V Pavlova
- Department of Conditioned Reflexes and Physiology of Emotion, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485, Moscow, Russia
| | - Lyudmila V Vinogradova
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, 117485, Moscow, Russia.
| |
Collapse
|
20
|
Riederer F, Beiersdorf J, Scutelnic A, Schankin CJ. Migraine Aura-Catch Me If You Can with EEG and MRI-A Narrative Review. Diagnostics (Basel) 2023; 13:2844. [PMID: 37685382 PMCID: PMC10486733 DOI: 10.3390/diagnostics13172844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Roughly one-third of migraine patients suffer from migraine with aura, characterized by transient focal neurological symptoms or signs such as visual disturbance, sensory abnormalities, speech problems, or paresis in association with the headache attack. Migraine with aura is associated with an increased risk for stroke, epilepsy, and with anxiety disorder. Diagnosis of migraine with aura sometimes requires exclusion of secondary causes if neurological deficits present for the first time or are atypical. It was the aim of this review to summarize EEG an MRI findings during migraine aura in the context of pathophysiological concepts. This is a narrative review based on a systematic literature search. During visual auras, EEG showed no consistent abnormalities related to aura, although transient focal slowing in occipital regions has been observed in quantitative studies. In contrast, in familial hemiplegic migraine (FHM) and migraine with brain stem aura, significant EEG abnormalities have been described consistently, including slowing over the affected hemisphere or bilaterally or suppression of EEG activity. Epileptiform potentials in FHM are most likely attributable to associated epilepsy. The initial perfusion change during migraine aura is probably a short lasting hyperperfusion. Subsequently, perfusion MRI has consistently demonstrated cerebral hypoperfusion usually not restricted to one vascular territory, sometimes associated with vasoconstriction of peripheral arteries, particularly in pediatric patients, and rebound hyperperfusion in later phases. An emerging potential MRI signature of migraine aura is the appearance of dilated veins in susceptibility-weighted imaging, which may point towards the cortical regions related to aura symptoms ("index vein"). Conclusions: Cortical spreading depression (CSD) cannot be directly visualized but there are probable consequences thereof that can be captured Non-invasive detection of CSD is probably very challenging in migraine. Future perspectives will be elaborated based on the studies summarized.
Collapse
Affiliation(s)
- Franz Riederer
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, CH 3010 Bern, Switzerland (C.J.S.)
- Department of Neurology, University Hospital Zurich, Medical Faculty, University of Zurich, CH 8091 Zurich, Switzerland
| | - Johannes Beiersdorf
- Karl Landsteiner Institute for Clinical Epilepsy Reserach and Cognitive Neurology, AT 1130 Vienna, Austria;
| | - Adrian Scutelnic
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, CH 3010 Bern, Switzerland (C.J.S.)
| | - Christoph J. Schankin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, CH 3010 Bern, Switzerland (C.J.S.)
| |
Collapse
|
21
|
Chamanzar A, Elmer J, Shutter L, Hartings J, Grover P. Noninvasive and reliable automated detection of spreading depolarization in severe traumatic brain injury using scalp EEG. COMMUNICATIONS MEDICINE 2023; 3:113. [PMID: 37598253 PMCID: PMC10439895 DOI: 10.1038/s43856-023-00344-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/04/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Spreading depolarizations (SDs) are a biomarker and a potentially treatable mechanism of worsening brain injury after traumatic brain injury (TBI). Noninvasive detection of SDs could transform critical care for brain injury patients but has remained elusive. Current methods to detect SDs are based on invasive intracranial recordings with limited spatial coverage. In this study, we establish the feasibility of automated SD detection through noninvasive scalp electroencephalography (EEG) for patients with severe TBI. METHODS Building on our recent WAVEFRONT algorithm, we designed an automated SD detection method. This algorithm, with learnable parameters and improved velocity estimation, extracts and tracks propagating power depressions using low-density EEG. The dataset for testing our algorithm contains 700 total SDs in 12 severe TBI patients who underwent decompressive hemicraniectomy (DHC), labeled using ground-truth intracranial EEG recordings. We utilize simultaneously recorded, continuous, low-density (19 electrodes) scalp EEG signals, to quantify the detection accuracy of WAVEFRONT in terms of true positive rate (TPR), false positive rate (FPR), as well as the accuracy of estimating SD frequency. RESULTS WAVEFRONT achieves the best average validation accuracy using Delta band EEG: 74% TPR with less than 1.5% FPR. Further, preliminary evidence suggests WAVEFRONT can estimate how frequently SDs may occur. CONCLUSIONS We establish the feasibility, and quantify the performance, of noninvasive SD detection after severe TBI using an automated algorithm. The algorithm, WAVEFRONT, can also potentially be used for diagnosis, monitoring, and tailoring treatments for worsening brain injury. Extension of these results to patients with intact skulls requires further study.
Collapse
Grants
- K23 NS097629 NINDS NIH HHS
- National Science Foundation (NSF)
- This work was supported, in part, by grants from the National Science Foundation (NSF), Chuck Noll Foundation for Brain Injury Research, the Office of the Assistant Secretary of Defense for Health Affairs through the Defense Medical Research and Development Program under Award No. W81XWH-16-2-0020, and the Center for Machine Learning and Health at CMU, under Pittsburgh Health Data Alliance. A Chamanzar was also supported by Neil and Jo Bushnell Fellowship in Engineering, Hsu Chang Memorial Fellowship, CMU Swartz Center for Entrepreneurship Innovation Commercialization Fellows program. Dr. Elmer’s research time was supported by the National Institutes of Health (NIH) through grant 5K23NS097629. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense.
Collapse
Affiliation(s)
- Alireza Chamanzar
- Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Jonathan Elmer
- Departments of Emergency Medicine, Critical Care Medicine and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lori Shutter
- Department of Critical Care Medicine, Neurology and Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jed Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Pulkit Grover
- Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Li X, Zeng L, Lu X, Chen K, Yu M, Wang B, Zhao M. Early Brain Injury and Neuroprotective Treatment after Aneurysmal Subarachnoid Hemorrhage: A Literature Review. Brain Sci 2023; 13:1083. [PMID: 37509013 PMCID: PMC10376973 DOI: 10.3390/brainsci13071083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Early brain injury (EBI) subsequent to subarachnoid hemorrhage (SAH) is strongly associated with delayed cerebral ischemia and poor patient prognosis. Based on investigations into the molecular mechanisms underlying EBI, neurovascular dysfunction resulting from SAH can be attributed to a range of pathological processes, such as microvascular alterations in brain tissue, ionic imbalances, blood-brain barrier disruption, immune-inflammatory responses, oxidative stress, and activation of cell death pathways. Research progress presents a variety of promising therapeutic approaches for the preservation of neurological function following SAH, including calcium channel antagonists, endothelin-1 receptor blockers, antiplatelet agents, anti-inflammatory agents, and anti-oxidative stress agents. EBI can be mitigated following SAH through neuroprotective measures. To enhance our comprehension of the relevant molecular pathways involved in brain injury, including brain ischemia-hypoxic injury, neuroimmune inflammation activation, and the activation of various cell-signaling pathways, following SAH, it is essential to investigate the evolution of these multifaceted pathophysiological processes. Facilitating neural repair following a brain injury is critical for improving patient survival rates and quality of life.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lang Zeng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuanzhen Lu
- Department of Neurology, The Third Hospital of Wuhan, Wuhan 430073, China
| | - Kun Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Maling Yu
- Department of Neurology, The Third Hospital of Wuhan, Wuhan 430073, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
23
|
Wang HY, Liu X, Grover P, Chamanzar A. A Spatial-Temporal Graph Attention Network for Automated Detection and Width Estimation of Cortical Spreading Depression Using Scalp EEG. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082965 DOI: 10.1109/embc40787.2023.10340281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
We present an end-to-end Spatial-Temporal Graph Attention Network (STGAT) for non-invasive detection and width estimation of Cortical Spreading Depressions (CSDs) on scalp electroencephalography (EEG). Our algorithm, that we refer to as CSD Spatial-temporal graph attention network or CSD-STGAT, is trained and tested on simulated CSDs with varying width and speed ranges. Using high-density EEG, CSD-STGAT achieves less than 10.96% normalized width estimation error for narrow CSDs, with an average normalized error of 6.35%±3.08% across all widths, enabling non-invasive and automated estimation of the width of CSDs for the first time. In addition, CSD-STGAT learns the temporal and spatial features of CSDs simultaneously, which improves the "spatio-temporal tracking accuracy" (i.e., the defined detection performance metric at each electrode) of the narrow CSDs by up to 14%, compared to the state-of-the-art CSD-SpArC algorithm, with only one-tenth of the network size. CSD-STGAT achieves the best spatio-temporal tracking accuracy of 86.27%±0.53% for wide CSDs using high-density EEG, which is comparable to the performance of CSD-SpArC with less than 0.38% performance reduction. We further stitch the detections across all electrodes and over time to evaluate the "temporal accuracy". Our algorithm achieves less than 0.7% false positive rate in the simulated dataset with inter-CSD intervals ranging from 5 to 60 minutes. The lightweight architecture of CSD-STGAT paves the way towards real-time detection and parameter estimation of these waves in the brain, with significant clinical impact.
Collapse
|
24
|
Bastany ZJR, Askari S, Dumont GA, Kellinghaus C, Askari B, Gharagozli K, Gorji A. Concurrent recordings of slow DC-potentials and epileptiform discharges: novel EEG amplifier and signal processing techniques. J Neurosci Methods 2023:109894. [PMID: 37245651 DOI: 10.1016/j.jneumeth.2023.109894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Ionic currents within the brain generate voltage oscillations consist of slow and rapid fluctuations. These bioelectrical activities include ultra-low frequency electroencephalograms (DC-EEG, frequency less than 0.1Hz) and conventional clinical electroencephalograms (AC-EEG, 0.5 to 70Hz). Although AC-EEG is commonly used for diagnosing epilepsy, recent studies indicate that DC-EEG is an essential frequency component of EEG and can provide valuable information for analyzing epileptiform discharges. During conventional EEG recordings, DC-EEG is censored by applying high-pass filtering to i) obliterate slow-wave artifacts, ii) eliminate the bioelectrodes' half-cell potential asymmetrical changes in ultralow-low frequency, and iii) prevent instrument saturation. Spreading depression (SD), which is the most prolonged fluctuation in DC-EEG, may be associated with epileptiform discharges. However, recording of SD signals from the scalp's surface can be challenging due to the filtering effect and non-neuronal slow shift potentials. In this study, we describe a novel technique to extend the frequency bandwidth of surface EEG to record SD signals. The method includes novel instrumentation, appropriate bioelectrodes, and efficient signal-processing techniques. To evaluate the accuracy of our approach, we performed a simultaneous surface recording of DC- and AC-EEG from epileptic patients during long-term video EEG monitoring, which provide a promising tool for diagnosis of epilepsy. DATA AVAILABILITY STATEMENT: The data presented in this study are available on request.
Collapse
Affiliation(s)
- Zoya J R Bastany
- Electrical and Computer Engineering Department, The University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada
| | - Shahbaz Askari
- Electrical and Computer Engineering Department, The University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada
| | - Guy A Dumont
- Electrical and Computer Engineering Department, The University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada
| | | | - Baran Askari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Kurosh Gharagozli
- Epilepsy Research Center, Loghman hospital, Department of Neurology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ali Gorji
- Electrical and Computer Engineering Department, The University of British Columbia, Vancouver, Canada; Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Germany; Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Germany.
| |
Collapse
|
25
|
Luckl J, Baker W, Boda K, Emri M, Yodh AG, Greenberg JH. Oxyhemoglobin and Cerebral Blood Flow Transients Detect Infarction in Rat Focal Brain Ischemia. Neuroscience 2023; 509:132-144. [PMID: 36460221 PMCID: PMC9852213 DOI: 10.1016/j.neuroscience.2022.11.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Spreading depolarizations (SD) refer to the near-complete depolarization of neurons that is associated with brain injuries such as ischemic stroke. The present gold standard for SD monitoring in humans is invasive electrocorticography (ECoG). A promising non-invasive alternative to ECoG is diffuse optical monitoring of SD-related flow and hemoglobin transients. To investigate the clinical utility of flow and hemoglobin transients, we analyzed their association with infarction in rat focal brain ischemia. Optical images of flow, oxy-hemoglobin, and deoxy-hemoglobin were continuously acquired with Laser Speckle and Optical Intrinsic Signal imaging for 2 h after photochemically induced distal middle cerebral artery occlusion in Sprague-Dawley rats (n = 10). Imaging was performed through a 6 × 6 mm window centered 3 mm posterior and 4 mm lateral to Bregma. Rats were sacrificed after 24 h, and the brain slices were stained for assessment of infarction. We mapped the infarcted area onto the imaging data and used nine circular regions of interest (ROI) to distinguish infarcted from non-infarcted tissue. Transients propagating through each ROI were characterized with six parameters (negative, positive, and total amplitude; negative and positive slope; duration). Transients were also classified into three morphology types (positive monophasic, biphasic, negative monophasic). Flow transient morphology, positive amplitude, positive slope, and total amplitude were all strongly associated with infarction (p < 0.001). Associations with infarction were also observed for oxy-hemoglobin morphology, oxy-hemoglobin positive amplitude and slope, and deoxy-hemoglobin positive slope and duration (all p < 0.01). These results suggest that flow and hemoglobin transients accompanying SD have value for detecting infarction.
Collapse
Affiliation(s)
- Janos Luckl
- Department of Neurology, University of Pennsylvania, Philadelphia, USA; Department of Neurology, University of Szeged, Szeged, Hungary; Department of Medical Physics and Informatics, Szeged, Hungary
| | - Wesley Baker
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, USA; Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| | - Krisztina Boda
- Department of Medical Physics and Informatics, Szeged, Hungary
| | - Miklos Emri
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| | - Joel H Greenberg
- Department of Neurology, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
26
|
Meinert F, Lemâle CL, Major S, Helgers SOA, Dömer P, Mencke R, Bergold MN, Dreier JP, Hecht N, Woitzik J. Less-invasive subdural electrocorticography for investigation of spreading depolarizations in patients with subarachnoid hemorrhage. Front Neurol 2023; 13:1091987. [PMID: 36686541 PMCID: PMC9849676 DOI: 10.3389/fneur.2022.1091987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Wyler-strip electrodes for subdural electrocorticography (ECoG) are the gold standard for continuous bed-side monitoring of pathological cortical network events, such as spreading depolarizations (SD) and electrographic seizures. Recently, SD associated parameters were shown to be (1) a marker of early brain damage after aneurysmal subarachnoid hemorrhage (aSAH), (2) the strongest real-time predictor of delayed cerebral ischemia currently known, and (3) the second strongest predictor of patient outcome at 7 months. The strongest predictor of patient outcome at 7 months was focal brain damage segmented on neuroimaging 2 weeks after the initial hemorrhage, whereas the initial focal brain damage was inferior to the SD variables as a predictor for patient outcome. However, the implantation of Wyler-strip electrodes typically requires either a craniotomy or an enlarged burr hole. Neuromonitoring via an enlarged burr hole has been performed in only about 10% of the total patients monitored. Methods In the present pilot study, we investigated the feasibility of ECoG monitoring via a less invasive burrhole approach using a Spencer-type electrode array, which was implanted subdurally rather than in the depth of the parenchyma. Seven aSAH patients requiring extraventricular drainage (EVD) were included. For electrode placement, the burr hole over which the EVD was simultaneously placed, was used in all cases. After electrode implantation, continuous, direct current (DC)/alternating current (AC)-ECoG monitoring was performed at bedside in our Neurointensive Care unit. ECoGs were analyzed following the recommendations of the Co-Operative Studies on Brain Injury Depolarizations (COSBID). Results Subdural Spencer-type electrode arrays permitted high-quality ECoG recording. During a cumulative monitoring period of 1,194.5 hours and a median monitoring period of 201.3 (interquartile range: 126.1-209.4) hours per patient, 84 SDs were identified. Numbers of SDs, isoelectric SDs and clustered SDs per recording day, and peak total SD-induced depression duration of a recording day were not significantly different from the previously reported results of the prospective, observational, multicenter, cohort, diagnostic phase III trial, DISCHARGE-1. No adverse events related to electrode implantation were noted. Discussion In conclusion, our findings support the safety and feasibility of less-invasive subdural electrode implantation for reliable SD-monitoring.
Collapse
Affiliation(s)
- Franziska Meinert
- Department of Neurosurgery, Carl von Ossietzky University Oldenburg, Oldenburg, Germany,Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Coline L. Lemâle
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Simeon O. A. Helgers
- Department of Neurosurgery, Carl von Ossietzky University Oldenburg, Oldenburg, Germany,Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Patrick Dömer
- Department of Neurosurgery, Carl von Ossietzky University Oldenburg, Oldenburg, Germany,Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Rik Mencke
- Department of Neurosurgery, Carl von Ossietzky University Oldenburg, Oldenburg, Germany,Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Martin N. Bergold
- Department of Anaesthesiology and Intensive Care Medicine, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Nils Hecht
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany,Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Carl von Ossietzky University Oldenburg, Oldenburg, Germany,Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany,*Correspondence: Johannes Woitzik ✉
| |
Collapse
|
27
|
Alkhachroum A, Appavu B, Egawa S, Foreman B, Gaspard N, Gilmore EJ, Hirsch LJ, Kurtz P, Lambrecq V, Kromm J, Vespa P, Zafar SF, Rohaut B, Claassen J. Electroencephalogram in the intensive care unit: a focused look at acute brain injury. Intensive Care Med 2022; 48:1443-1462. [PMID: 35997792 PMCID: PMC10008537 DOI: 10.1007/s00134-022-06854-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/31/2022] [Indexed: 02/04/2023]
Abstract
Over the past decades, electroencephalography (EEG) has become a widely applied and highly sophisticated brain monitoring tool in a variety of intensive care unit (ICU) settings. The most common indication for EEG monitoring currently is the management of refractory status epilepticus. In addition, a number of studies have associated frequent seizures, including nonconvulsive status epilepticus (NCSE), with worsening secondary brain injury and with worse outcomes. With the widespread utilization of EEG (spot and continuous EEG), rhythmic and periodic patterns that do not fulfill strict seizure criteria have been identified, epidemiologically quantified, and linked to pathophysiological events across a wide spectrum of critical and acute illnesses, including acute brain injury. Increasingly, EEG is not just qualitatively described, but also quantitatively analyzed together with other modalities to generate innovative measurements with possible clinical relevance. In this review, we discuss the current knowledge and emerging applications of EEG in the ICU, including seizure detection, ischemia monitoring, detection of cortical spreading depolarizations, assessment of consciousness and prognostication. We also review some technical aspects and challenges of using EEG in the ICU including the logistics of setting up ICU EEG monitoring in resource-limited settings.
Collapse
Affiliation(s)
- Ayham Alkhachroum
- Department of Neurology, University of Miami, Miami, FL, USA
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, USA
| | - Brian Appavu
- Department of Child Health and Neurology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Satoshi Egawa
- Neurointensive Care Unit, Department of Neurosurgery, and Stroke and Epilepsy Center, TMG Asaka Medical Center, Saitama, Japan
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Free University of Brussels, Brussels, Belgium
| | - Emily J Gilmore
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Neurocritical Care and Emergency Neurology, Department of Neurology, Ale University School of Medicine, New Haven, CT, USA
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro Kurtz
- Department of Intensive Care Medicine, D'or Institute for Research and Education, Rio de Janeiro, Brazil
- Neurointensive Care, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Brazil
| | - Virginie Lambrecq
- Department of Clinical Neurophysiology and Epilepsy Unit, AP-HP, Pitié Salpêtrière Hospital, Reference Center for Rare Epilepsies, 75013, Paris, France
| | - Julie Kromm
- Departments of Critical Care Medicine and Clinical Neurosciences, Cumming School of Medicine, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, AB, Canada
| | - Paul Vespa
- Brain Injury Research Center, Department of Neurosurgery, University of California, Los Angeles, USA
| | - Sahar F Zafar
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin Rohaut
- Department of Neurology, Sorbonne Université, Pitié-Salpêtrière-AP-HP and Paris Brain Institute, ICM, Inserm, CNRS, Paris, France
| | - Jan Claassen
- Department of Neurology, Neurological Institute, Columbia University, New York Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA.
| |
Collapse
|
28
|
Vinokurova D, Zakharov A, Chernova K, Burkhanova-Zakirova G, Horst V, Lemale CL, Dreier JP, Khazipov R. Depth-profile of impairments in endothelin-1 - induced focal cortical ischemia. J Cereb Blood Flow Metab 2022; 42:1944-1960. [PMID: 35702017 PMCID: PMC9536115 DOI: 10.1177/0271678x221107422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of ischemic lesions has primarily been studied in horizontal cortical space. However, how ischemic lesions develop through the cortical depth remains largely unknown. We explored this question using direct current coupled recordings at different cortical depths using linear arrays of iridium electrodes in the focal epipial endothelin-1 (ET1) ischemia model in the rat barrel cortex. ET1-induced impairments were characterized by a vertical gradient with (i) rapid suppression of the spontaneous activity in the superficial cortical layers at the onset of ischemia, (ii) compartmentalization of spreading depolarizations (SDs) to the deep layers during progression of ischemia, and (iii) deeper suppression of activity and larger histological lesion size in superficial cortical layers. The level of impairments correlated strongly with the rate of spontaneous activity suppression, the rate of SD onset after ET1 application, and the amplitude of giant negative ultraslow potentials (∼-70 mV), which developed during ET1 application and were similar to the tent-shaped ultraslow potentials observed during focal ischemia in the human cortex. Thus, in the epipial ET1 ischemia model, ischemic lesions develop progressively from the surface to the cortical depth, and early changes in electrical activity at the onset of ET1-induced ischemia reliably predict the severity of ischemic damage.
Collapse
Affiliation(s)
- Daria Vinokurova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED, Aix-Marseille University, Marseille, France
| | - Andrey Zakharov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Department of Physiology, Kazan State Medical University, Kazan, Russia
| | - Kseniya Chernova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | - Viktor Horst
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Charité Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Coline L Lemale
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Charité Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany
| | - Jens P Dreier
- Centre for Stroke Research Berlin, Department of Experimental Neurology and Department of Neurology, Charité Universitätsmedizin Berlin (Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Berlin, Germany.,Bernstein Centre for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Centre for Neurosciences Berlin, Berlin, Germany
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED, Aix-Marseille University, Marseille, France
| |
Collapse
|
29
|
Kelley C, Newton AJH, Hrabetova S, McDougal RA, Lytton WW. Multiscale Computer Modeling of Spreading Depolarization in Brain Slices. eNeuro 2022; 9:ENEURO.0082-22.2022. [PMID: 35927026 PMCID: PMC9410770 DOI: 10.1523/eneuro.0082-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Spreading depolarization (SD) is a slow-moving wave of neuronal depolarization accompanied by a breakdown of ion concentration homeostasis, followed by long periods of neuronal silence (spreading depression), and is associated with several neurologic conditions. We developed multiscale (ions to tissue slice) computer models of SD in brain slices using the NEURON simulator: 36,000 neurons (two voltage-gated ion channels; three leak channels; three ion exchangers/pumps) in the extracellular space (ECS) of a slice (1 mm sides, varying thicknesses) with ion (K+, Cl-, Na+) and O2 diffusion and equilibration with a surrounding bath. Glia and neurons cleared K+ from the ECS via Na+/K+ pumps. SD propagated through the slices at realistic speeds of 2-4 mm/min, which increased by as much as 50% in models incorporating the effects of hypoxia or propionate. In both cases, the speedup was mediated principally by ECS shrinkage. Our model allows us to make testable predictions, including the following: (1) SD can be inhibited by enlarging ECS volume; (2) SD velocity will be greater in areas with greater neuronal density, total neuronal volume, or larger/more dendrites; (3) SD is all-or-none: initiating K+ bolus properties have little impact on SD speed; (4) Slice thickness influences SD because of relative hypoxia in the slice core, exacerbated by SD in a pathologic cycle; and (5) SD and high neuronal spike rates will be observed in the core of the slice. Cells in the periphery of the slice near an oxygenated bath will resist SD.
Collapse
Affiliation(s)
- Craig Kelley
- Program in Biomedical Engineering, SUNY Downstate Health Sciences University & NYU Tandon School of Engineering, Brooklyn, NY, 11203
| | - Adam J H Newton
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203
| | - Sabina Hrabetova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203
- Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, New York 11203
| | - Robert A McDougal
- Department of Biostatistics, Yale University, New Haven, Connecticut 06513
- Yale Center for Medical Informatics, Yale University, New Haven, Connecticut 06513
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06513
| | - William W Lytton
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203
- Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, New York 11203
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York 11203
- Department of Neurology, Kings County Hospital Center, Brooklyn, New York 11203
| |
Collapse
|
30
|
Windmann V, Dreier JP, Major S, Spies C, Lachmann G, Koch S. Increased Direct Current-Electroencephalography Shifts During Induction of Anesthesia in Elderly Patients Developing Postoperative Delirium. Front Aging Neurosci 2022; 14:921139. [PMID: 35837483 PMCID: PMC9274126 DOI: 10.3389/fnagi.2022.921139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background Changes in the direct current (DC) electroencephalography (EEG), so-called DC shifts, are observed during hypoxia, hypo-/hypercapnia, anesthetic administration, epileptic seizures, and spreading depolarizations. They are associated with altered cerebral ion currents across cell membranes and/or the blood–brain barrier (BBB). Here, we measured DC shifts in clinical practice during hyperventilation (HV) and anesthesia induction, and investigated whether such DC shifts correlate with the occurrence of postoperative delirium (POD) in older patients. Methods In this prospective observational study (subproject of the BioCog study, NCT02265263; EA2/092/14), a continuous pre- and perioperative DC-EEG was recorded in patients aged ≥65 years. The preoperative DC-EEG included a 2 min HV with simultaneous measurement of end-tidal CO2. Of the perioperative recordings, DC-EEG segments were chosen from a 30 s period at the start of induction of anesthesia (IOA), loss of consciousness (LOC), and during a stable anesthetic phase 30 min after skin incision (intraOP). The DC shift at Cz was determined in μV/s. All patients were screened twice daily for the first seven postoperative days for the occurrence of POD. DC-EEG shifts were compared in patients with (POD) and without postoperative delirium (noPOD). Results Fifteen patients were included in this subproject of the BioCog study. DC shifts correlated significantly with concurrent HV, with DC shifts increasing the more end-tidal CO2 decreased (P = 0.001, Spearman’s rho 0.862). During the perioperative DC-EEG, the largest DC shift was observed at LOC during IOA. POD patients (n = 8) presented with significantly larger DC shifts at LOC [POD 31.6 (22.7; 38.9) μV/s vs. noPOD 4.7 (2.2; 12.5) μV/s, P = 0.026]. Conclusion DC shifts can be observed during HV and IOA in routine clinical practice. At anesthesia induction, the DC shift was greatest at the time of LOC, with POD patients presenting with significantly stronger DC shifts. This could indicate larger changes in gas tensions, hypotension and impaired cerebral autoregulation or BBB dysfunction in these patients. Clinical Trial Registration www.clinicaltrials.gov, identifier NCT02265263.
Collapse
Affiliation(s)
- Victoria Windmann
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gunnar Lachmann
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susanne Koch
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Susanne Koch,
| |
Collapse
|
31
|
Hund SJ, Brown BR, Lemale CL, Menon PG, Easley KA, Dreier JP, Jones SC. Numerical Simulation of Concussive-Generated Cortical Spreading Depolarization to Optimize DC-EEG Electrode Spacing for Noninvasive Visual Detection. Neurocrit Care 2022; 37:67-82. [PMID: 35233716 PMCID: PMC9262830 DOI: 10.1007/s12028-021-01430-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cortical spreading depolarization (SD) is a propagating depolarization wave of neurons and glial cells in the cerebral gray matter. SD occurs in all forms of severe acute brain injury, as documented by using invasive detection methods. Based on many experimental studies of mechanical brain deformation and concussion, the occurrence of SDs in human concussion has often been hypothesized. However, this hypothesis cannot be confirmed in humans, as SDs can only be detected with invasive detection methods that would require either a craniotomy or a burr hole to be performed on athletes. Typical electroencephalography electrodes, placed on the scalp, can help detect the possible presence of SD but have not been able to accurately and reliably identify SDs. METHODS To explore the possibility of a noninvasive method to resolve this hurdle, we developed a finite element numerical model that simulates scalp voltage changes that are induced by a brain surface SD. We then compared our simulation results with retrospectively evaluated data in patients with aneurysmal subarachnoid hemorrhage from Drenckhahn et al. (Brain 135:853, 2012). RESULTS The ratio of peak scalp to simulated peak cortical voltage, Vscalp/Vcortex, was 0.0735, whereas the ratio from the retrospectively evaluated data was 0.0316 (0.0221, 0.0527) (median [1st quartile, 3rd quartile], n = 161, p < 0.001, one sample Wilcoxon signed-rank test). These differing values provide validation because their differences can be attributed to differences in shape between concussive SDs and aneurysmal subarachnoid hemorrhage SDs, as well as the inherent limitations in human study voltage measurements. This simulated scalp surface potential was used to design a virtual scalp detection array. Error analysis and visual reconstruction showed that 1 cm is the optimal electrode spacing to visually identify the propagating scalp voltage from a cortical SD. Electrode spacings of 2 cm and above produce distorted images and high errors in the reconstructed image. CONCLUSIONS Our analysis suggests that concussive (and other) SDs can be detected from the scalp, which could confirm SD occurrence in human concussion, provide concussion diagnosis on the basis of an underlying physiological mechanism, and lead to noninvasive SD detection in the setting of severe acute brain injury.
Collapse
Affiliation(s)
- Samuel J Hund
- CerebroScope, SciencePlusPlease LLC, Pittsburgh, PA, USA
- SimulationSolutions, Pittsburgh, PA, USA
| | | | - Coline L Lemale
- Center for Stroke Research, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Prahlad G Menon
- CerebroScope, SciencePlusPlease LLC, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kirk A Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jens P Dreier
- Center for Stroke Research, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | | |
Collapse
|
32
|
Cortical Spreading Depolarizations and Clinically Measured Scalp EEG Activity After Aneurysmal Subarachnoid Hemorrhage and Traumatic Brain Injury. Neurocrit Care 2022; 37:49-59. [PMID: 34997536 PMCID: PMC9810077 DOI: 10.1007/s12028-021-01418-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Spreading depolarizations (SDs) are associated with worse outcome following subarachnoid hemorrhage (SAH) and traumatic brain injury (TBI), but gold standard detection requires electrocorticography with a subdural strip electrode. Electroencephalography (EEG) ictal-interictal continuum abnormalities are associated with poor outcomes after TBI and with both delayed cerebral ischemia (DCI) and poor outcomes after SAH. We examined rates of SD detection in patients with SAH and TBI with intraparenchymal and subdural strip electrodes and assessed which continuous EEG (cEEG) measures were associated with intracranially quantified SDs. METHODS In this single-center cohort, we included patients with SAH and TBI undergoing ≥ 24 h of interpretable intracranial monitoring via eight-contact intraparenchymal or six-contact subdural strip platinum electrodes or both. SDs were rated according to established consensus criteria and compared with cEEG findings rated according to the American Clinical Neurophysiology Society critical care EEG monitoring consensus criteria: lateralized rhythmic delta activity, generalized rhythmic delta activity, lateralized periodic discharges, generalized periodic discharges, any ictal-interictal continuum, or a composite scalp EEG tool for seizure risk estimation: the 2HELPS2B score. Among patients with SAH, cEEG was assessed for validated DCI biomarkers: new or worsening epileptiform abnormalities and new background deterioration. RESULTS Over 6 years, SDs were recorded in 5 (18%) of 28 patients recorded with intraparenchymal electrodes and 4 (40%) of 10 patients recorded with subdural strip electrodes. There was no significant association between occurrence of SDs and day 1 cEEG findings (American Clinical Neurophysiology Society main terms lateralized periodic discharges, generalized periodic discharges, lateralized rhythmic delta activity, or seizures, individually or in combination). After SAH, established cEEG DCI predictors were not associated with SDs. CONCLUSIONS Intraparenchymal recordings yielded low rates of SD, and documented SDs were not associated with ictal-interictal continuum abnormalities or other cEEG DCI predictors. Identifying scalp EEG correlates of SD may require training computational EEG analytics and use of gold standard subdural strip electrocorticography recordings.
Collapse
|
33
|
Microglia Modulate Cortical Spreading Depolarizations After Ischemic Stroke: A Narrative Review. Neurocrit Care 2022; 37:133-138. [PMID: 35288861 PMCID: PMC9259539 DOI: 10.1007/s12028-022-01469-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/08/2022] [Indexed: 01/06/2023]
Abstract
Cortical spreading depolarizations (CSDs) are characterized by waves of diminished electroencephalography activity that propagate across the cortex with subsequent loss of ionic homeostasis. CSDs have been found in many pathological conditions, including migraine, traumatic brain injury, and ischemic stroke. Because of CSD-associated ionic and metabolic disturbances at the peri-infarct area after ischemic stroke, it is thought that CSDs exacerbate tissue infarction and worsen clinical outcomes. Microglia, the main innate immune cells in the brain, are among the first responders to brain tissue damage. Recent studies demonstrated that microglia play a critical role in CSD initiation and propagation. In this article, we discuss the significance of CSD in the setting of ischemic stroke and how microglia may modulate peri-infarct CSDs, also known as iso-electric depolarizations. Finally, we discuss the significance of microglial Ca2+ and how it might be used as a potential therapeutic target for patients with ischemic stroke.
Collapse
|
34
|
Baang HY, Chen HY, Herman AL, Gilmore EJ, Hirsch LJ, Sheth KN, Petersen NH, Zafar SF, Rosenthal ES, Westover MB, Kim JA. The Utility of Quantitative EEG in Detecting Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. J Clin Neurophysiol 2022; 39:207-215. [PMID: 34510093 PMCID: PMC8901442 DOI: 10.1097/wnp.0000000000000754] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SUMMARY In this review, we discuss the utility of quantitative EEG parameters for the detection of delayed cerebral ischemia (DCI) after aneurysmal subarachnoid hemorrhage in the context of the complex pathophysiology of DCI and the limitations of current diagnostic methods. Because of the multifactorial pathophysiology of DCI, methodologies solely assessing blood vessel narrowing (vasospasm) are insufficient to detect all DCI. Quantitative EEG has facilitated the exploration of EEG as a diagnostic modality of DCI. Multiple quantitative EEG parameters such as alpha power, relative alpha variability, and alpha/delta ratio show reliable detection of DCI in multiple studies. Recent studies on epileptiform abnormalities suggest that their potential for the detection of DCI. Quantitative EEG is a promising, continuous, noninvasive, monitoring modality of DCI implementable in daily practice. Future work should validate these parameters in larger populations, facilitated by the development of automated detection algorithms and multimodal data integration.
Collapse
Affiliation(s)
| | - Hsin Yi Chen
- Dept of Neurology, Yale University, New Haven, CT USA 06520
| | | | | | | | - Kevin N Sheth
- Dept of Neurology, Yale University, New Haven, CT USA 06520
| | | | - Sahar F Zafar
- Dept of Neurology, Massachussetts General Hospital, Boston, MA USA 02114
| | - Eric S Rosenthal
- Dept of Neurology, Massachussetts General Hospital, Boston, MA USA 02114
| | - M Brandon Westover
- Dept of Neurology, Massachussetts General Hospital, Boston, MA USA 02114
| | - Jennifer A Kim
- Dept of Neurology, Yale University, New Haven, CT USA 06520
| |
Collapse
|
35
|
Foreman B, Lee H, Okonkwo DO, Strong AJ, Pahl C, Shutter LA, Dreier JP, Ngwenya LB, Hartings JA. The Relationship Between Seizures and Spreading Depolarizations in Patients with Severe Traumatic Brain Injury. Neurocrit Care 2022; 37:31-48. [PMID: 35174446 DOI: 10.1007/s12028-022-01441-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Both seizures and spreading depolarizations (SDs) are commonly detected using electrocorticography (ECoG) after severe traumatic brain injury (TBI). A close relationship between seizures and SDs has been described, but the implications of detecting either or both remain unclear. We sought to characterize the relationship between these two phenomena and their clinical significance. METHODS We performed a post hoc analysis of a prospective observational clinical study of patients with severe TBI requiring neurosurgery at five academic neurotrauma centers. A subdural electrode array was placed intraoperatively and ECoG was recorded during intensive care. SDs, seizures, and high-frequency background characteristics were quantified offline using published standards and terminology. The primary outcome was the Glasgow Outcome Scale-Extended score at 6 months post injury. RESULTS There were 138 patients with valid ECoG recordings; the mean age was 47 ± 19 years, and 104 (75%) were men. Overall, 2,219 ECoG-detected seizures occurred in 38 of 138 (28%) patients in a bimodal pattern, with peak incidences at 1.7-1.8 days and 3.8-4.0 days post injury. Seizures detected on scalp electroencephalography (EEG) were diagnosed by standard clinical care in only 18 of 138 (13%). Of 15 patients with ECoG-detected seizures and contemporaneous scalp EEG, seven (47%) had no definite scalp EEG correlate. ECoG-detected seizures were significantly associated with the severity and number of SDs, which occurred in 83 of 138 (60%) of patients. Temporal interactions were observed in 17 of 24 (70.8%) patients with both ECoG-detected seizures and SDs. After controlling for known prognostic covariates and the presence of SDs, seizures detected on either ECoG or scalp EEG did not have an independent association with 6-month functional outcome but portended worse outcome among those with clustered or isoelectric SDs. CONCLUSIONS In patients with severe TBI requiring neurosurgery, seizures were half as common as SDs. Seizures would have gone undetected without ECoG monitoring in 20% of patients. Although seizures alone did not influence 6-month functional outcomes in this cohort, they were independently associated with electrographic worsening and a lack of motor improvement following surgery. Temporal interactions between ECoG-detected seizures and SDs were common and held prognostic implications. Together, seizures and SDs may occur along a dynamic continuum of factors critical to the development of secondary brain injury. ECoG provides information integral to the clinical management of patients with TBI.
Collapse
Affiliation(s)
- Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA. .,Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA.
| | - Hyunjo Lee
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA.,Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Clemens Pahl
- Department of Intensive Care Medicine, King's College Hospital, London, UK
| | - Lori A Shutter
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Critical Care Medicine and Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Laura B Ngwenya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA.,Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA.,Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Jed A Hartings
- Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA.,Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
36
|
Lemale CL, Lückl J, Horst V, Reiffurth C, Major S, Hecht N, Woitzik J, Dreier JP. Migraine Aura, Transient Ischemic Attacks, Stroke, and Dying of the Brain Share the Same Key Pathophysiological Process in Neurons Driven by Gibbs–Donnan Forces, Namely Spreading Depolarization. Front Cell Neurosci 2022; 16:837650. [PMID: 35237133 PMCID: PMC8884062 DOI: 10.3389/fncel.2022.837650] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Neuronal cytotoxic edema is the morphological correlate of the near-complete neuronal battery breakdown called spreading depolarization, or conversely, spreading depolarization is the electrophysiological correlate of the initial, still reversible phase of neuronal cytotoxic edema. Cytotoxic edema and spreading depolarization are thus different modalities of the same process, which represents a metastable universal reference state in the gray matter of the brain close to Gibbs–Donnan equilibrium. Different but merging sections of the spreading-depolarization continuum from short duration waves to intermediate duration waves to terminal waves occur in a plethora of clinical conditions, including migraine aura, ischemic stroke, traumatic brain injury, aneurysmal subarachnoid hemorrhage (aSAH) and delayed cerebral ischemia (DCI), spontaneous intracerebral hemorrhage, subdural hematoma, development of brain death, and the dying process during cardio circulatory arrest. Thus, spreading depolarization represents a prime and simultaneously the most neglected pathophysiological process in acute neurology. Aristides Leão postulated as early as the 1940s that the pathophysiological process in neurons underlying migraine aura is of the same nature as the pathophysiological process in neurons that occurs in response to cerebral circulatory arrest, because he assumed that spreading depolarization occurs in both conditions. With this in mind, it is not surprising that patients with migraine with aura have about a twofold increased risk of stroke, as some spreading depolarizations leading to the patient percept of migraine aura could be caused by cerebral ischemia. However, it is in the nature of spreading depolarization that it can have different etiologies and not all spreading depolarizations arise because of ischemia. Spreading depolarization is observed as a negative direct current (DC) shift and associated with different changes in spontaneous brain activity in the alternating current (AC) band of the electrocorticogram. These are non-spreading depression and spreading activity depression and epileptiform activity. The same spreading depolarization wave may be associated with different activity changes in adjacent brain regions. Here, we review the basal mechanism underlying spreading depolarization and the associated activity changes. Using original recordings in animals and patients, we illustrate that the associated changes in spontaneous activity are by no means trivial, but pose unsolved mechanistic puzzles and require proper scientific analysis.
Collapse
Affiliation(s)
- Coline L. Lemale
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janos Lückl
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Viktor Horst
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Jens P. Dreier
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- *Correspondence: Jens P. Dreier,
| |
Collapse
|
37
|
Berhouma M, Eker OF, Dailler F, Rheims S, Balanca B. Cortical Spreading Depolarizations in Aneurysmal Subarachnoid Hemorrhage: An Overview of Current Knowledge and Future Perspectives. Adv Tech Stand Neurosurg 2022; 45:229-244. [PMID: 35976452 DOI: 10.1007/978-3-030-99166-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite significant advances in the management of aneurysmal subarachnoid hemorrhage (SAH), morbidity and mortality remain devastating particularly for high-grade SAH. Poor functional outcome usually results from delayed cerebral ischemia (DCI). The pathogenesis of DCI during aneurysmal SAH has historically been attributed to cerebral vasospasm, but spreading depolarizations (SDs) are now considered to play a central role in DCI. During SAH, SDs may produce an inverse hemodynamic response leading to spreading ischemia. Several animal models have contributed to a better understanding of the pathogenesis of SDs during aneurysmal SAH and provided new therapeutic approaches including N-methyl-D-aspartate receptor antagonists and phosphodiesterase inhibitors. Herein we review the current knowledge in the field of SDs' pathogenesis and we detail the key experimental and clinical studies that have opened interesting new therapeutic approaches to prevent DCI in aneurysmal SAH.
Collapse
Affiliation(s)
- Moncef Berhouma
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France.
- Creatis Lab, CNRS UMR 5220, INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France.
| | - Omer Faruk Eker
- Creatis Lab, CNRS UMR 5220, INSERM U1206, Lyon 1 University, INSA Lyon, Lyon, France
- Department of Interventional Neuroradiology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France
| | - Frederic Dailler
- Department of Neuro-Anesthesia and Neuro-Critical Care, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France
- Lyon's Neurosciences Research Center, INSERM U1028/CNRS, UMR 5292, University of Lyon, Lyon, France
| | - Baptiste Balanca
- Department of Neuro-Anesthesia and Neuro-Critical Care, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon (Lyon University Hospital), Lyon, France
- Lyon's Neurosciences Research Center, INSERM U1028/CNRS, UMR 5292, University of Lyon, Lyon, France
| |
Collapse
|
38
|
Outcomes of patients with nonepileptic transient neurologic symptoms after subdural hematoma evacuation. Acta Neurochir (Wien) 2021; 163:3267-3277. [PMID: 34668079 DOI: 10.1007/s00701-021-05030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Patients undergoing a subdural hematoma (SDH) evacuation can experience transient neurological symptoms (TNS) postoperatively. Electroencephalography (EEG) is used to rule out seizures. We aim to characterize patients with TNS and negative epileptiform activity on EEG and compare them to those with positive epileptiform EEG findings. METHODS We performed a retrospective study of adult patients who underwent EEG for evaluation of TNS after undergoing SDH evacuation. Patients were stratified based on SDH type (acute and non-acute) and whether or not their EEG demonstrated positive epileptiform activity. A multivariate analysis was performed to identify predictors of negative EEG findings. RESULTS One hundred twenty-nine SDH patients were included (45 (34.9%) acute; 84 (65.1%) non-acute). Overall, 45 (24 acute and 21 non-acute SDH patients) had positive epileptiform EEG findings, and 84 (21 acute and 63 non-acute SDH patients) had a negative EEG. Acute and non-acute SDH patients with positive EEG findings were more likely to suffer from greater than five episodes of TNS, impaired awareness, and motor symptoms, while the negative EEG group was more likely to suffer from negative symptoms. Non-acute SDH patients with positive EEG had longer mean ICU stays (14.6 vs. 7.2; p = 0.005). Both acute and non-acute SDH-positive EEG patients had worse disposition upon discharge (p < 0.05), worse modified Rankin score at discharge (p < 0.05), and 3-month follow-up (p < 0.05) and were more likely to be discharged on more than one antiepileptic drug (p < 0.001). CONCLUSION Postoperative acute and non-acute SDH patients with TNS and negative EEG results are likely to have a favorable clinical picture. This distinction is therapeutically and prognostically important as these patients may not respond to typical antiepileptic drugs and they have better functional outcomes.
Collapse
|
39
|
Madsen FA, Andreasen TH, Lindschou J, Gluud C, Møller K. Ketamine for critically ill patients with severe acute brain injury: Protocol for a systematic review with meta-analysis and Trial Sequential Analysis of randomised clinical trials. PLoS One 2021; 16:e0259899. [PMID: 34780543 PMCID: PMC8592463 DOI: 10.1371/journal.pone.0259899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/28/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Intensive care for patients with severe acute brain injury aims both to treat the immediate consequences of the injury and to prevent and treat secondary brain injury to ensure a good functional outcome. Sedation may be used to facilitate mechanical ventilation, for treating agitation, and for controlling intracranial pressure. Ketamine is an N-methyl-D-aspartate receptor antagonist with sedative, analgesic, and potentially neuroprotective properties. We describe a protocol for a systematic review of randomised clinical trials assessing the beneficial and harmful effects of ketamine for patients with severe acute brain injury. METHODS AND ANALYSIS We will systematically search international databases for randomised clinical trials, including CENTRAL, MEDLINE, Embase, and trial registries. Two authors will independently review and select trials for inclusion, and extract data. We will compare ketamine by any regimen versus placebo, no intervention, or other sedatives or analgesics for patients with severe acute brain injury. The primary outcomes will be functional outcome at maximal follow up, quality of life, and serious adverse events. We will also assess secondary and exploratory outcomes. The extracted data will be analysed using Review Manager and Trials Sequential Analysis. Evidence certainty will be graded using GRADE. ETHICS AND DISSEMINATION The results of the systematic review will be disseminated through peer-reviewed publication. With the review, we hope to inform future randomised clinical trials and improve clinical practice. PROSPERO NO CRD42021210447.
Collapse
Affiliation(s)
- Frederik Andreas Madsen
- Department of Neuroanaesthesiology, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Trine Hjorslev Andreasen
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jane Lindschou
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Kirsten Møller
- Department of Neuroanaesthesiology, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Oxygen-Induced and pH-Induced Direct Current Artifacts on Invasive Platinum/Iridium Electrodes for Electrocorticography. Neurocrit Care 2021; 35:146-159. [PMID: 34622418 PMCID: PMC8496677 DOI: 10.1007/s12028-021-01358-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Spreading depolarization (SD) and the initial, still reversible phase of neuronal cytotoxic edema in the cerebral gray matter are two modalities of the same process. SD may thus serve as a real-time mechanistic biomarker for impending parenchyma damage in patients during neurocritical care. Using subdural platinum/iridium (Pt/Ir) electrodes, SD is observed as a large negative direct current (DC) shift. Besides SD, there are other causes of DC shifts that are not to be confused with SD. Here, we systematically analyzed DC artifacts in ventilated patients by observing changes in the fraction of inspired oxygen. For the same change in blood oxygenation, we found that negative and positive DC shifts can simultaneously occur at adjacent Pt/Ir electrodes. METHODS Nurses and intensivists typically increase blood oxygenation by increasing the fraction of inspired oxygen at the ventilator before performing manipulations on the patient. We retrospectively identified 20 such episodes in six patients via tissue partial pressure of oxygen (ptiO2) measurements with an intracortical O2 sensor and analyzed the associated DC shifts. In vitro, we compared Pt/Ir with silver/silver chloride (Ag/AgCl) to assess DC responses to changes in pO2, pH, or 5-min square voltage pulses and investigated the effect of electrode polarization on pO2-induced DC artifacts. RESULTS Hyperoxygenation episodes started from a ptiO2 of 37 (30-40) mmHg (median and interquartile range) reaching 71 (50-97) mmHg. During a total of 20 episodes on each of six subdural Pt/Ir electrodes in six patients, we observed 95 predominantly negative responses in six patients, 25 predominantly positive responses in four patients, and no brain activity changes. Adjacent electrodes could show positive and negative responses simultaneously. In vitro, Pt/Ir in contrast with Ag/AgCl responded to changes in either pO2 or pH with large DC shifts. In response to square voltage pulses, Pt/Ir falsely showed smaller DC shifts than Ag/AgCl, with the worst performance under anoxia. In response to pO2 increase, Pt/Ir showed DC positivity when positively polarized and DC negativity when negatively polarized. CONCLUSIONS The magnitude of pO2-induced subdural DC shifts by approximately 6 mV was similar to that of SDs, but they did not show a sequential onset at adjacent recording sites, could be either predominantly negative or positive in contrast with the always negative DC shifts of SD, and were not accompanied by brain activity depression. Opposing polarities of pO2-induced DC artifacts may result from differences in baseline electrode polarization or subdural ptiO2 inhomogeneities relative to subdermal ptiO2 at the quasi-reference.
Collapse
|
41
|
Robinson D, Hartings J, Foreman B. First Report of Spreading Depolarization Correlates on Scalp EEG Confirmed with a Depth Electrode. Neurocrit Care 2021; 35:100-104. [PMID: 34617254 DOI: 10.1007/s12028-021-01360-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022]
Affiliation(s)
- David Robinson
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, 234 Goodman Street, Cincinnati, OH, USA.
| | - Jed Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Collaborative for Research On Acute Neurological Injuries, Cincinnati, OH, USA
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, 234 Goodman Street, Cincinnati, OH, USA
- Collaborative for Research On Acute Neurological Injuries, Cincinnati, OH, USA
| |
Collapse
|
42
|
Lissak IA, Locascio JJ, Zafar SF, Schleicher RL, Patel AB, Leslie-Mazwi T, Stapleton CJ, Koch MJ, Kim JA, Anderson K, Rosand J, Westover MB, Kimberly WT, Rosenthal ES. Electroencephalography, Hospital Complications, and Longitudinal Outcomes After Subarachnoid Hemorrhage. Neurocrit Care 2021; 35:397-408. [PMID: 33483913 PMCID: PMC7822587 DOI: 10.1007/s12028-020-01177-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/04/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Following non-traumatic subarachnoid hemorrhage (SAH), in-hospital delayed cerebral ischemia is predicted by two chief events on continuous EEG (cEEG): new or worsening epileptiform abnormalities (EAs) and deterioration of cEEG background frequencies. We evaluated the association between longitudinal outcomes and these cEEG biomarkers. We additionally evaluated the association between longitudinal outcomes and other in-hospital complications. METHODS Patients with nontraumatic SAH undergoing ≥ 3 days of cEEG monitoring were enrolled in a prospective study evaluating longitudinal outcomes. Modified Rankin Scale (mRS) was assessed at discharge, and at 3- and 6-month follow-up time points. Adjusting for baseline severity in a cumulative proportional odds model, we modeled the mRS ordinally and measured the association between mRS and two forms of in-hospital cEEG deterioration: (1) cEEG evidence of new or worsening epileptiform abnormalities and (2) cEEG evidence of new background deterioration. We compared the magnitude of these associations at each time point with the association between mRS and other in-hospital complications: (1) delayed cerebral ischemia (DCI), (2) hospital-acquired infections (HAI), and (3) hydrocephalus. In a secondary analysis, we employed a linear mixed effects model to examine the association of mRS over time (dichotomized as 0-3 vs. 4-6) with both biomarkers of cEEG deterioration and with other in-hospital complications. RESULTS In total, 175 mRS assessments were performed in 59 patients. New or worsening EAs developed in 23 (39%) patients, and new background deterioration developed in 24 (41%). Among cEEG biomarkers, new or worsening EAs were independently associated with mRS at discharge, 3, and 6 months, respectively (adjusted cumulative proportional odds 4.99, 95% CI 1.60-15.6; 3.28, 95% CI 1.14-9.5; and 2.71, 95% CI 0.95-7.76), but cEEG background deterioration lacked an association. Among hospital complications, DCI was associated with discharge, 3-, and 6-month outcomes (adjusted cumulative proportional odds 4.75, 95% CI 1.64-13.8; 3.4; 95% CI 1.24-9.01; and 2.45, 95% CI 0.94-6.6), but HAI and hydrocephalus lacked an association. The mixed effects model demonstrated that these associations were sustained over longitudinal assessments without an interaction with time. CONCLUSION Although new or worsening EAs and cEEG background deterioration have both been shown to predict DCI, only new or worsening EAs are associated with a sustained impairment in functional outcome. This novel finding raises the potential for identifying therapeutic targets that may also influence outcomes.
Collapse
Affiliation(s)
- India A Lissak
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
| | - Joseph J Locascio
- Harvard Catalyst Biostatistics Group, Massachusetts General Hospital, Boston, MA, USA
| | - Sahar F Zafar
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
| | - Riana L Schleicher
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
| | - Aman B Patel
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Thabele Leslie-Mazwi
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Matthew J Koch
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer A Kim
- Department of Neurology, Yale School of Medicine, 333 Cedar St, New Haven, CT, USA
| | - Kasey Anderson
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
| | - Jonathan Rosand
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
| | - W Taylor Kimberly
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street, Lunder 644, Boston, MA, 02114, USA.
| |
Collapse
|
43
|
Jain V, Remley W, Mohan A, Leone EL, Taneja S, Busl K, Almeida L. Nonepileptic, Stereotypical, and Intermittent Symptoms After Subdural Hematoma Evacuation. Cureus 2021; 13:e18361. [PMID: 34725611 PMCID: PMC8555749 DOI: 10.7759/cureus.18361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
Transient neurological deficits can occur in the setting of subdural hemorrhages with subsequent unremarkable electrodiagnostic and radiological evaluation. This scenario is rare and can be difficult for physicians to interpret. These transient neurological deficits are thought to result from relative ischemia, secondary to a lesser-known concept known as cortical spreading depolarization. These transient neurological deficits are thought to result from relative ischemia, secondary to a lesser-known concept known as cortical spreading depolarization, which may present clinically as nonepileptic, stereotypical, and intermittent symptoms (NESIS). In these instances, patients are often misdiagnosed as epileptics and committed to long-term antiseizure drugs. We present a 51-year-old patient developing acute global aphasia following the evacuation of a subdural hematoma, with no significant findings on laboratory, microbiological, electrodiagnostic, or radiological evaluation. The patient experienced spontaneous improvement and returned to baseline in the subsequent weeks. Increased awareness of NESIS as a cortical spreading depolarization phenomenon can improve patient care and prevent both unnecessary, extended medical evaluations and therapeutic trials.
Collapse
Affiliation(s)
- Varun Jain
- Neurology, University of Florida, Gainesville, USA
| | - William Remley
- Neurology, Lake Erie College of Osteopathic Medicine, Jacksonville, USA
| | - Arvind Mohan
- Neurosurgery, University of Florida, Gainesville, USA
| | - Emma L Leone
- Neurology, University of Florida, Gainesville, USA
| | - Srishti Taneja
- Neurology, Avalon University School of Medicine, Youngstown, USA
| | - Katharina Busl
- Neurocritical Care, University of Florida, Gainesville, USA
| | | |
Collapse
|
44
|
Full-Band EEG Recordings Using Hybrid AC/DC-Divider Filters. eNeuro 2021; 8:ENEURO.0246-21.2021. [PMID: 34380654 PMCID: PMC8387152 DOI: 10.1523/eneuro.0246-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Full-band DC recordings enable recording of slow electrical brain signals that are severely compromised during conventional AC recordings. However, full-band DC recordings may be limited by the amplifier's dynamic input range and the loss of small amplitude high-frequency signals. Recently, Neuralynx has proposed full-band recordings with inverse filtering for signal reconstruction based on hybrid AC/DC-divider RRC filters that enable only partial suppression of DC signals. However, the quality of signal reconstruction for biological signals has not yet been assessed. Here, we propose a novel digital inverse filter based on a mathematical model describing RRC filter properties, which provides high computational accuracy and versatility. Second, we propose procedures for the evaluation of the inverse filter coefficients, adapted for each recording channel to minimize the error caused by the deviation of the real values of the RRC filter elements from their nominal values. We demonstrate that this approach enables near 99% reconstruction quality of high-potassium-induced cortical spreading depolarizations (SDs), endothelin-induced ischemic negative ultraslow potentials (NUPs), and whole-cell recordings of membrane potential using RRC filters. The quality of the reconstruction was significantly higher than with the existing inverse filtering procedures. Thus, RRC filters with inverse filtering are optimal for full-band EEG recordings in various applications.
Collapse
|
45
|
Glössmann K, Baumgartner C, Koren JP, Riederer F. Recurrent migraine aura-like symptoms in an elderly woman: symptomatic cortical spreading depression? BMJ Case Rep 2021; 14:e241479. [PMID: 34226251 PMCID: PMC8258541 DOI: 10.1136/bcr-2020-241479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 11/04/2022] Open
Abstract
Cortical spreading depression (CSD) has been directly observed in humans with malignant stroke, traumatic brain injury and subarachnoid haemorrhage and is also considered to be the correlate of migraine aura. We report on a 76-year-old woman with new-onset episodes of headache, paraesthesia, hemiparesis and dysarthria, in whom a small cortical subarachnoid haemorrhage was diagnosed with MRI. Repeated diffusion-weighted MRI scans shortly after transient focal neurological episodes as well as diagnostic workup were normal, which makes recurrent transient ischaemic attacks unlikely. Ictal electroencephalogram recordings showed no epileptic activity. Long-term follow-up revealed a diagnosis of probable cerebral amyloid angiopathy. We propose that CSD could be a pathophysiological correlate of transient focal neurological deficits in patients with cortical bleeding.
Collapse
Affiliation(s)
| | - Christoph Baumgartner
- Department of Neurology, Clinic Hietzing, Wien, Austria
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
- Sigmund Freud Private University, Vienna, Austria
| | - Johannes Peter Koren
- Department of Neurology, Clinic Hietzing, Wien, Austria
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Franz Riederer
- Department of Neurology, Clinic Hietzing, Wien, Austria
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Tang Y, She D, Li P, Pan L, Lu J, Liu P. Cortical spreading depression aggravates early brain injury in a mouse model of subarachnoid hemorrhage. JOURNAL OF BIOPHOTONICS 2021; 14:e202000379. [PMID: 33332747 DOI: 10.1002/jbio.202000379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/17/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Cortical spreading depression (CSD) has been observed during the early phase of subarachnoid hemorrhage (SAH). However, the effect of CSD on the cerebral blood flow (CBF) and cerebral oxyhemoglobin (CHbO) during the early phase of SAH has not yet been assessed directly. We, therefore, used laser speckle imaging and optical intrinsic sinal imaging to record CBF and CHbO during CSD and cerebral cortex perfusion (CCP) at 24 hours after CSD in a mouse model of SAH. SAH was induced by blood injection into the prechiasmatic cistern. When CSD occurred, the change trend of CBF and CHbO in Sham group and SAH group was the same, but ischemia and hypoxia in SAH group was more significant. At 24 hours after SAH, the CCP of CSD group was lower than that of no CSD group, and the neurological function score of CSD group was lower. We conclude that induction of CSD further aggravates cerebral ischemia and worsens neurological dysfunction in the early stage of experimental SAH. Our study underscores the consequence of CSD in the development of early brain injury after SAH.
Collapse
Affiliation(s)
- Yue Tang
- Department of Neurosurgery, The central Hospital of Yongzhou, Yongzhou, China
| | - Deyuan She
- Department of Neurosurgery, PLA Middle Military Command General Hospital, Wuhan, China
| | - Pengcheng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
| | - Li Pan
- Department of Neurosurgery, PLA Middle Military Command General Hospital, Wuhan, China
| | - Jinling Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
| | - Peng Liu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Ding X, Peng D. Transient Global Amnesia: An Electrophysiological Disorder Based on Cortical Spreading Depression-Transient Global Amnesia Model. Front Hum Neurosci 2020; 14:602496. [PMID: 33363460 PMCID: PMC7753037 DOI: 10.3389/fnhum.2020.602496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023] Open
Abstract
Transient global amnesia (TGA) is a benign memory disorder with etiologies that have been debated for a long time. The prevalence of stressful events before a TGA attack makes it hard to overlook these precipitating factors, given that stress has the potential to organically effect the brain. Cortical spreading depression (CSD) was proposed as a possible cause decades ago. Being a regional phenomenon, CSD seems to affect every aspect of the micro-mechanism in maintaining the homeostasis of the central nervous system (CNS). Corresponding evidence regarding hemodynamic and morphological changes from TGA and CSD have been accumulated separately, but the resemblance between the two has not been systematically explored so far, which is surprising especially considering that CSD had been confirmed to cause secondary damage in the human brain. Thus, by deeply delving into the anatomic and electrophysiological properties of the CNS, the CSD-TGA model may render insights into the basic pathophysiology behind the façade of the enigmatic clinical presentation.
Collapse
Affiliation(s)
- Xuejiao Ding
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
48
|
Tsukamoto T, Kajikawa S, Hitomi T, Funaki T, Urushitani M, Takahashi R, Ikeda A. [Scalp-recorded cortical spreading depolarizations (CSDs) of EEG with time constant of 2 seconds in a patient with acute traumatic brain injury]. Rinsho Shinkeigaku 2020; 60:473-478. [PMID: 32536664 DOI: 10.5692/clinicalneurol.60.cn-001421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An 82-year-old female suffered from head trauma, and developed acute consciousness disturbance 6 days after the event. Head CT showed the acute subdural hematoma in the left temporooccipital area and the patient underwent emergency hematoma evacuation and decompression. However, her consciousness disturbance became worse after surgery. Intermittent large negative infraslow shifts (lasting longer than 40 seconds) were recorded in the right posterior quadrant by scalp EEG with TC of 2 sec, that was defined as cortical spreading depolarizations (CSDs). Clinically consciousness disturbance sustained poor until 1 month after surgery in spite of treatment by anti-epileptic drugs. CSDs were observed on the right side where head injury most likely occurred. It may explain the sustained consciousness disturbance associated with significant prolonged ischemia. Once scalp EEG could record CSDs in this particular patient, the degree and its prognosis of traumatic head injury were estimated.
Collapse
Affiliation(s)
- Takahito Tsukamoto
- Department of Neurology, Kyoto University Graduate School of Medicine
- Department of Neurology, Shiga University of Medical Science
| | - Shunsuke Kajikawa
- Department of Neurology, Kyoto University Graduate School of Medicine
| | - Takefumi Hitomi
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine
| | - Takeshi Funaki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | | | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine
| |
Collapse
|
49
|
Abstract
Cortical spreading depolarization (CSD) is recognized as a cause of transient neurological symptoms (TNS) in various clinical entities. Although scientific literature has been flourishing in the field of CSD, it remains an underrecognized pathophysiology in clinical practice. The literature evoking CSD in relation to subdural hematoma (SDH) is particularly scarce. Patients with SDH frequently suffer from TNS, most being attributed to seizures despite an atypical semiology, evolution, and therapeutic response. Recent literature has suggested that a significant proportion of those patients' TNS represent the clinical manifestations of underlying CSD. Recently, the term Non-Epileptical Stereoytpical Intermittent Symptoms (NESIS) has been proposed to describe a subgroup of patients presenting with TNS in the context of SDH. Indirect evidence and recent research suggest that the pathophysiology of NESIS could represent the clinical manifestation of CSD. This review should provide a concise yet thorough review of the current state of literature behind the pathophysiology of CSD with a particular focus on recent research and knowledge regarding the presence of CSD in the context of subdural hematoma. Although many questions remain in the evolution of knowledge in this field would likely have significant diagnostic, therapeutic, and prognostic implications.
Collapse
|
50
|
Abstract
Cortical spreading depolarizations (SD) are strongly associated with worse tissue injury and clinical outcomes in the setting of aneurysmal subarachnoid hemorrhage (SAH). Animal studies have suggested a causal relationship, and new therapies to target SDs are starting to be tested in clinical studies. A recent set of single-center randomized trials assessed the effect of the phosphodiesterase inhibitor cilostazol in patients with SAH. Cilostazol led to improved functional outcomes and SD-related metrics in treated patients through a putative mechanism of improved cerebral blood flow. Another promising therapeutic approach includes attempts to block SDs with, for example, the NMDA receptor antagonist ketamine. SDs have emerged not only as a therapeutic target but also as a potentially useful biomarker for brain injury following SAH. Additional clinical and preclinical experimental work is greatly needed to assess the generalizability of existing therapeutic trials and to better delineate the relationship between SDs, SAH, and functional outcome.
Collapse
Affiliation(s)
- Kazutaka Sugimoto
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, 6403, Charlestown, MA, 02129, USA
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - David Y Chung
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, 6403, Charlestown, MA, 02129, USA.
- Division of Neurocritical Care, Department of Neurology, Boston Medical Center, Boston, MA, USA.
- Division of Neurocritical Care, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|