1
|
Wang Y, Li D, Xu K, Wang G, Zhang F. Copper homeostasis and neurodegenerative diseases. Neural Regen Res 2025; 20:3124-3143. [PMID: 39589160 PMCID: PMC11881714 DOI: 10.4103/nrr.nrr-d-24-00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/27/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
Copper, one of the most prolific transition metals in the body, is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations. Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins, including copper transporters (CTR1 and CTR2), the two copper ion transporters the Cu -transporting ATPase 1 (ATP7A) and Cu-transporting beta (ATP7B), and the three copper chaperones ATOX1, CCS, and COX17. Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue. Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins, including ceruloplasmin and metallothionein, is involved in the pathogenesis of neurodegenerative disorders. However, the exact mechanisms underlying these processes are not known. Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress. Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction. Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation, with elevated levels activating several critical inflammatory pathways. Additionally, copper can bind aberrantly to several neuronal proteins, including alpha-synuclein, tau, superoxide dismutase 1, and huntingtin, thereby inducing neurotoxicity and ultimately cell death. This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases, with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis. By synthesizing the current findings on the functions of copper in oxidative stress, neuroinflammation, mitochondrial dysfunction, and protein misfolding, we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders, such as Wilson's disease, Menkes' disease, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Potential clinically significant therapeutic targets, including superoxide dismutase 1, D-penicillamine, and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline, along with their associated therapeutic agents, are further discussed. Ultimately, we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis.
Collapse
Affiliation(s)
- Yuanyuan Wang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Daidi Li
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Kaifei Xu
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Guoqing Wang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Feng Zhang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
2
|
Lovett A, Chary S, Babu S, Bruneteau G, Glass JD, Karlsborg M, Ladha S, Mayl K, McDermott C, Bucelli RC, Chiò A, Ferguson TA, Cochrane T, Fradette S, Smirnakis K, Inra J, Malek S, Fanning L. Serious Neurologic Adverse Events in Tofersen Clinical Trials for Amyotrophic Lateral Sclerosis. Muscle Nerve 2025; 71:1006-1015. [PMID: 40017137 PMCID: PMC12060635 DOI: 10.1002/mus.28372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
INTRODUCTION/AIMS Tofersen is approved for the treatment of amyotrophic lateral sclerosis (ALS) due to superoxide dismutase 1 mutations (SOD1-ALS). Here we report serious neurologic adverse events (AEs) that occurred in the tofersen clinical trials in people with SOD1-ALS. METHODS Serious neurologic AEs of myelitis, radiculitis, aseptic meningitis, and papilledema reported in the tofersen clinical trials are described. Serious AEs were defined according to International Conference for Harmonization guidelines, and neurologic AEs in clinical trials were diagnosed by investigators based on symptoms, clinical examination findings, and diagnostic workup. RESULTS Ten participants (approximately 7% of tofersen 100-mg-treated trial participants) experienced a total of 12 serious neurologic AEs-4 of myelitis, 2 of radiculitis, 2 of aseptic meningitis, and 4 of intracranial hypertension (ICH) and/or papilledema. All events but one resolved either spontaneously, with dosing interruption/modification, or with concomitant therapies. One event was ongoing but improved as of December 2022. While 3 events led to tofersen treatment discontinuation, all other participants were able to remain on treatment. No event was life-threatening or fatal. DISCUSSION Some antisense oligonucleotides (ASOs) have been described as having pro-inflammatory properties. Aseptic meningitis has been reported with nusinersen; however, myelitis, radiculitis, increased intracranial pressure, and papilledema have not been reported with ASO treatment. These neurologic AEs should be considered when assessing the overall benefit/risk of tofersen treatment for SOD1-ALS. Safety data from the open-label extension and expanded access program will continue to characterize these events and further inform the safety profile of tofersen in SOD1-ALS.
Collapse
Affiliation(s)
| | | | - Suma Babu
- Sean M. Healey & AMG Center for ALS, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Gaëlle Bruneteau
- Paris ALS Expert Center and Neurosciences Clinical Research Center, Paris Brain Institute, Pitié‐Salpêtrière Hospital, Assistance Publique – Hôpitaux de ParisParisFrance
| | | | | | - Shafeeq Ladha
- Gregory W. Fulton ALS CenterBarrow Neurologic InstitutePhoenixArizonaUSA
| | - Keith Mayl
- Maurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
- King's College Hospital NHS Foundation TrustLondonUK
| | - Christopher McDermott
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
- NIHR Sheffield Biomedical Research Centre and Clinical Research FacilityUniversity of SheffieldSheffieldUK
- Sheffield Teaching Hospitals NHS Foundation TrustSheffieldUK
| | | | - Adriano Chiò
- Rita Levi Montalcini Department of NeuroscienceUniversity of TurinTurinItaly
- Azienda Ospedaliero‐Universitaria Città Della Salute e Della Scienza of TurinTurinItaly
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Hirose S, Kobatake Y, Tada N, Kandeel M, Itoh A, Oh-Hashi K. NanoBiT-based Analysis of Canine SOD1 Protein Dynamics: Understanding the Role of CCS and Ebselen Derivatives as Potential Therapeutics for Canine Degenerative Myelopathy. Cell Biochem Biophys 2025:10.1007/s12013-025-01768-5. [PMID: 40355776 DOI: 10.1007/s12013-025-01768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Canine degenerative myelopathy (DM) is a progressive neurodegenerative disorder that shares common pathological features with amyotrophic lateral sclerosis (ALS) in humans. Both diseases are linked to mutations in the superoxide dismutase 1 (SOD1) gene. Understanding the molecular differences between wild-type (WT) and mutant SOD1 proteins is critical for developing therapeutic strategies. In this study, we employed the NanoLuc complementation (NanoBiT) reporter system to investigate the expression and functional differences between WT and E40K mutant canine SOD1 to assess the therapeutic potential of copper chaperone for SOD1 (CCS) and ebselen derivatives. E40K cSOD1 displayed significantly reduced luciferase activity compared to WT cSOD1 in all NanoBiT-tagged combinations, indicating altered homodimerization and protein stability. Co-transfection with CCS increased both WT and mutant cSOD1 protein levels and reporter activities, with a more pronounced effect on the E40K mutant. Ebselen treatment enhanced luciferase activity, particularly in E40K cSOD1-expressing cells. Two compounds (compounds 2 and 5) were stronger than the parent compound in improving mutant cSOD1-derived NanoBiT activities. Additionally, molecular docking simulations revealed stronger binding affinities of ebselen and its derivatives to E40K cSOD1, suggesting potential therapeutic benefits. In conclusion, the NanoLuc reporter system offers a valuable tool for screening potential therapeutics for SOD1-linked neurodegenerative diseases. CCS and ebselen derivatives exhibited promising effects on SOD1 activity, providing a basis for future therapeutic strategies targeting both DM and ALS.
Collapse
Affiliation(s)
- Sakura Hirose
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Yui Kobatake
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Gifu, Japan
| | - Norihiro Tada
- Laboratory of Pharmaceutical Synthetic Chemistry, Faculty of Pharmaceutical Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Akichika Itoh
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Gifu, Japan
- Laboratory of Pharmaceutical Synthetic Chemistry, Faculty of Pharmaceutical Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Kentaro Oh-Hashi
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan.
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Gifu, Japan.
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan.
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
4
|
Wu X, Yang Z, Zou J, Gao H, Shao Z, Li C, Lei P. Protein kinases in neurodegenerative diseases: current understandings and implications for drug discovery. Signal Transduct Target Ther 2025; 10:146. [PMID: 40328798 PMCID: PMC12056177 DOI: 10.1038/s41392-025-02179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025] Open
Abstract
Neurodegenerative diseases (e.g., Alzheimer's, Parkinson's, Huntington's disease, and Amyotrophic Lateral Sclerosis) are major health threats for the aging population and their prevalences continue to rise with the increasing of life expectancy. Although progress has been made, there is still a lack of effective cures to date, and an in-depth understanding of the molecular and cellular mechanisms of these neurodegenerative diseases is imperative for drug development. Protein phosphorylation, regulated by protein kinases and protein phosphatases, participates in most cellular events, whereas aberrant phosphorylation manifests as a main cause of diseases. As evidenced by pharmacological and pathological studies, protein kinases are proven to be promising therapeutic targets for various diseases, such as cancers, central nervous system disorders, and cardiovascular diseases. The mechanisms of protein phosphatases in pathophysiology have been extensively reviewed, but a systematic summary of the role of protein kinases in the nervous system is lacking. Here, we focus on the involvement of protein kinases in neurodegenerative diseases, by summarizing the current knowledge on the major kinases and related regulatory signal transduction pathways implicated in diseases. We further discuss the role and complexity of kinase-kinase networks in the pathogenesis of neurodegenerative diseases, illustrate the advances of clinical applications of protein kinase inhibitors or novel kinase-targeted therapeutic strategies (such as antisense oligonucleotides and gene therapy) for effective prevention and early intervention.
Collapse
Affiliation(s)
- Xiaolei Wu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhangzhong Yang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinjun Zou
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Elsayyid M, Tanis JE, Yu Y. Simple In-Cell Processing Enables Deep Proteome Analysis of Low-Input Caenorhabditis elegans. Anal Chem 2025; 97:9159-9167. [PMID: 40258293 PMCID: PMC12060094 DOI: 10.1021/acs.analchem.4c05003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
Caenorhabditis elegans is a widely used genetic model organism; however, the worm cuticle complicates extraction of intracellular proteins, a prerequisite for typical bottom-up proteomics. Conventional physical disruption procedures are not only time-consuming but can also cause significant sample loss, making it difficult to perform proteomics with low-input samples. Here, for the first time, we present an on-filter in-cell (OFIC) processing approach that can digest C. elegans proteins directly in the cells of the organism after methanol fixation. With OFIC processing and single-shot LC-MS analysis, we identified over 9400 proteins from a sample of only 200 worms, the largest C. elegans proteome reported to date that did not require fractionation or enrichment. We systematically evaluated the performance of the OFIC approach by comparing it to conventional lysis-based methods. Our data suggest superior performance of OFIC processing for C. elegans proteome identification and quantitation. We further evaluated the OFIC approach with even lower-input samples, including single worms. Then, we used this method to determine how the proteome is impacted by loss of superoxide dismutase sod-1, the ortholog of human SOD1, a gene associated with amyotrophic lateral sclerosis. Analysis of 8800 proteins from only 50 worms as the initial input showed that loss of sod-1 affects the abundance of proteins required for stress response, ribosome biogenesis, and metabolism. In conclusion, our streamlined OFIC approach, which can be broadly applied to other systems, minimizes sample loss while offering the simplest workflow reported to date for C. elegans proteomics.
Collapse
Affiliation(s)
- Malek Elsayyid
- Department
of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Jessica E. Tanis
- Department
of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Yanbao Yu
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
6
|
Shiryaeva O, Tolochko C, Alekseeva T, Dyachuk V. Targets and Gene Therapy of ALS (Part 1). Int J Mol Sci 2025; 26:4063. [PMID: 40362304 PMCID: PMC12071412 DOI: 10.3390/ijms26094063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motor neurons, which causes muscle atrophy. Genetic forms of ALS are recorded only in 10% of cases. However, over the past decade, studies in genetics have substantially contributed to our understanding of the molecular mechanisms underlying ALS. The identification of key mutations such as SOD1, C9orf72, FUS, and TARDBP has led to the development of targeted therapy that is gradually being introduced into clinical trials, opening up a broad range of opportunities for correcting these mutations. In this review, we aimed to present an extensive overview of the currently known mechanisms of motor neuron degeneration associated with mutations in these genes and also the gene therapy methods for inhibiting the expression of their mutant proteins. Among these, antisense oligonucleotides, RNA interference (siRNA and miRNA), and gene-editing (CRISPR/Cas9) methods are of particular interest. Each has shown its efficacy in animal models when targeting mutant genes, whereas some of them have proven to be efficient in human clinical trials.
Collapse
Affiliation(s)
| | | | | | - Vyacheslav Dyachuk
- Almazov Federal Medical Research Centre, 197341 Saint Petersburg, Russia; (O.S.); (C.T.); (T.A.)
| |
Collapse
|
7
|
Boutin RCT, Shobeirian F, Adam S, Lehman A, Salvarinova R, Friedman JM. Immune Dysregulation in a Child With SOD1-Related Neurological Disease. Am J Med Genet A 2025; 197:e63949. [PMID: 39629626 DOI: 10.1002/ajmg.a.63949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/15/2024] [Indexed: 03/08/2025]
Abstract
Spastic tetraplegia and axial hypotonia (STAHP) associated with biallelic SOD1 deficiency is a recently described neurological disorder affecting children. Five studies have described a total of nine cases thus far, all characterized by the onset of progressive spastic tetraplegia beginning before 2 years of age. All but two of these cases are associated with homozygosity for the same genetic variant (NM_000454.4:c.335dupG; NP_000445.1:p.Cys112Trpfs*11) that leads to a non-functional enzyme product. More recently, a homozygous 3-base pair in-frame deletion (NM_000454.5: c.357_357+2delGGT) and a truncating frameshift variant (NM_000454.5: c.52_56del5ins154) in SOD1 have been described in similarly affected patients lacking SOD1 activity. Here we expand on the neurological and extra-neuronal phenotypes of STAHP in a patient with a novel homozygous SOD1 variant predicted to result in disrupted calcium- and zinc-binding activity of the encoded enzyme. We describe a 19-year-old male born to consanguineous parents who is homozygous for an NM_000454.4:c.369_371del SOD1 variant. The patient had progressive neuromuscular degeneration with onset before 1 year of age, consistent with a diagnosis of STAHP. Brain MRI at 7 years of age showed cerebellar atrophy, as has previously been described in this condition, as well as small optic nerves and a hypoplastic optic chiasm, which have not been reported previously. Our patient also exhibited clinical features of immune dysregulation with treatment-refractory inflammatory bowel disease, asthma, recurrent infections, and dermatitis. Overall, the early-onset progressive neurological disorder in our patient, found in association with homozygosity for an SOD1 variant that is predicted to result in impaired function of the transcribed protein, is consistent with a diagnosis of STAHP. Our patient also demonstrates optic atrophy and disrupted immune homeostasis, which have not been previously described as part of this condition. Taken together with previous case studies in children carrying loss-of-function variants of SOD1, this case highlights a possible role for antioxidant therapy in slowing disease progression in patients lacking SOD1 activity. These cases also draw attention to the need for careful consideration of possible harmful neuronal and extra-neuronal complications of proposed SOD1 knockdown therapies against ALS.
Collapse
Affiliation(s)
- Rozlyn Claire Thomas Boutin
- Provincial Medical Genetics Program, British Columbia Women's Hospital, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Farzaneh Shobeirian
- Department of Pediatric Radiology, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shelin Adam
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Lehman
- Adult Metabolic Diseases Clinic, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ramona Salvarinova
- Division of Biochemical Genetics, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Jan M Friedman
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Russo A, Putaggio S, Tellone E, Calderaro A, Cirmi S, Laganà G, Ficarra S, Barreca D, Patanè GT. Emerging Ferroptosis Involvement in Amyotrophic Lateral Sclerosis Pathogenesis: Neuroprotective Activity of Polyphenols. Molecules 2025; 30:1211. [PMID: 40141987 PMCID: PMC11944684 DOI: 10.3390/molecules30061211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Neurodegenerative diseases are a group of diseases that share common features, such as the generation of misfolded protein deposits and increased oxidative stress. Among them, amyotrophic lateral sclerosis (ALS), whose pathogenesis is still not entirely clear, is a complex neurodegenerative disease linked both to gene mutations affecting different proteins, such as superoxide dismutase 1, Tar DNA binding protein 43, Chromosome 9 open frame 72, and Fused in Sarcoma, and to altered iron homeostasis, mitochondrial dysfunction, oxidative stress, and impaired glutamate metabolism. The purpose of this review is to highlight the molecular targets common to ALS and ferroptosis. Indeed, many pathways implicated in the disease are hallmarks of ferroptosis, a recently discovered type of iron-dependent programmed cell death characterized by increased reactive oxygen species (ROS) and lipid peroxidation. Iron accumulation results in mitochondrial dysfunction and increased levels of ROS, lipid peroxidation, and ferroptosis triggers; in addition, the inhibition of the Xc- system results in reduced cystine levels and glutamate accumulation, leading to excitotoxicity and the inhibition of GPx4 synthesis. These results highlight the potential involvement of ferroptosis in ALS, providing new molecular and biochemical targets that could be exploited in the treatment of the disease using polyphenols.
Collapse
Affiliation(s)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (A.C.); (S.C.); (G.L.); (S.F.); (D.B.); (G.T.P.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.R.); (A.C.); (S.C.); (G.L.); (S.F.); (D.B.); (G.T.P.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Axakova A, Ding M, Cote AG, Subramaniam R, Senguttuvan V, Zhang H, Weile J, Douville SV, Gebbia M, Al-Chalabi A, Wahl A, Reuter J, Hurt J, Mitchell A, Fradette S, Andersen PM, van Loggerenberg W, Roth FP. Landscapes of missense variant impact for human superoxide dismutase 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640191. [PMID: 40060668 PMCID: PMC11888409 DOI: 10.1101/2025.02.25.640191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease for which important subtypes are caused by variation in the Superoxide Dismutase 1 gene SOD1. Diagnosis based on SOD1 sequencing can not only be definitive but also indicate specific therapies available for SOD1-associated ALS (SOD1-ALS). Unfortunately, SOD1-ALS diagnosis is limited by the fact that a substantial fraction (currently 26%) of ClinVar SOD1 missense variants are classified as "variants of uncertain significance" (VUS). Although functional assays can provide strong evidence for clinical variant interpretation, SOD1 assay validation is challenging, given the current incomplete and controversial understanding of SOD1-ALS disease mechanism. Using saturation mutagenesis and multiplexed cell-based assays, we measured the functional impact of over two thousand SOD1 amino acid substitutions on both enzymatic function and protein abundance. The resulting 'missense variant effect maps' not only reflect prior biochemical knowledge of SOD1 but also provide sequence-structure-function insights. Importantly, our variant abundance assay can discriminate pathogenic missense variation and provides new evidence for 41% of missense variants that had been previously reported as VUS, offering the potential to identify additional patients who would benefit from therapy approved for SOD1-ALS.
Collapse
Affiliation(s)
- Anna Axakova
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Megan Ding
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Atina G Cote
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Radha Subramaniam
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Vignesh Senguttuvan
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Haotian Zhang
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jochen Weile
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Samuel V Douville
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
- Faculty of Health Science, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Marinella Gebbia
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Ammar Al-Chalabi
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, SE5 9RX, UK
| | - Alexander Wahl
- Labcorp Genetics (Formerly Invitae Corp.), CA 94103, USA
| | - Jason Reuter
- Labcorp Genetics (Formerly Invitae Corp.), CA 94103, USA
| | | | | | | | | | - Warren van Loggerenberg
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Frederick P Roth
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3K3, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1X5, Canada
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
10
|
Hosseini Faradonbeh SM, Seyedalipour B, Keivan Behjou N, Rezaei K, Baziyar P, Hosseinkhani S. Structural insights into SOD1: from in silico and molecular dynamics to experimental analyses of ALS-associated E49K and R115G mutants. Front Mol Biosci 2025; 12:1532375. [PMID: 40070688 PMCID: PMC11893412 DOI: 10.3389/fmolb.2025.1532375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/29/2025] [Indexed: 03/14/2025] Open
Abstract
Protein stability is a crucial characteristic that influences both protein activity and structure and plays a significant role in several diseases. Cu/Zn superoxide dismutase 1 (SOD1) mutations serve as a model for elucidating the destabilizing effects on protein folding and misfolding linked to the lethal neurological disease, amyotrophic lateral sclerosis (ALS). In the present study, we have examined the structure and dynamics of the SOD1 protein upon two ALS-associated point mutations at the surface (namely, E49K and R115G), which are located in metal-binding loop IV and Greek key loop VI, respectively. Our analysis was performed through multiple algorithms on the structural characterization of the hSOD1 protein using computational predictions, molecular dynamics (MD) simulations, and experimental studies to understand the effects of amino acid substitutions. Predictive results of computational analysis predicted the deleterious and destabilizing effect of mutants on hSOD1 function and stability. MD outcomes also indicate that the mutations result in structural destabilization by affecting the increased content of β-sheet structures and loss of hydrogen bonds. Moreover, comparative intrinsic and extrinsic fluorescence results of WT-hSOD1 and mutants indicated structural alterations and increased hydrophobic surface pockets, respectively. As well, the existence of β-sheet-dominated structures was observed under amyloidogenic conditions using FTIR spectroscopy. Overall, our findings suggest that mutations in the metal-binding loop IV and Greek key loop VI lead to significant structural and conformational changes that could affect the structure and stability of the hSOD1 molecule, resulting in the formation of toxic intermediate species that cause ALS.
Collapse
Affiliation(s)
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Nasrin Keivan Behjou
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Kimiya Rezaei
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Ando M, Higuchi Y, Yuan JH, Yoshimura A, Yano C, Hobara T, Kojima F, Hiramatsu Y, Nozuma S, Nakamura T, Sakiyama Y, Hashiguchi A, Okamoto Y, Matsushige T, Mitsui J, Tsuji S, Takashima H. SOD1-related inherited peripheral neuropathies in a Japanese cohort: genetic variants and clinical insights. J Neurol 2025; 272:191. [PMID: 39932579 PMCID: PMC11814053 DOI: 10.1007/s00415-025-12925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/11/2025] [Accepted: 01/19/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Inherited peripheral neuropathies (IPNs) encompass a wide range of disorders affecting the peripheral nervous system, often with complex genetic causes and frequent underdiagnosis. The variants in the superoxide dismutase 1 (SOD1) gene, primarily linked to amyotrophic lateral sclerosis (ALS), have also been associated with peripheral neuropathy. The recent approval of Tofersen, targeting SOD1-related ALS, highlights the importance of precise genetic diagnosis. This study explores the clinical and genetic profiles of SOD1-related IPNs (SOD1-IPN) in a nationwide Japanese IPN cohort. METHODS Clinical and genetic data were assessed from 1483 Japanese patients with IPN, with a focus on those harboring SOD1 pathogenic variants. The clinical evaluations included age of onset, gender, muscle weakness patterns, sensory disturbances, reflex responses, and electrophysiological findings. RESULTS Seventeen patients with SOD1 pathogenic variants were identified, reinforcing SOD1's role in IPN. The average onset age was 47, with a slight male predominance. Distal muscle weakness was noted in 9 of 13 patients, and asymmetric muscle weakness and atrophy in 10 of 14 cases. Mild sensory disturbances were observed in eight patients, with some showing hyperreflexia and abnormal reflexes. Electrophysiology predominantly indicated a length-dependent, motor-dominant axonal neuropathy. CONCLUSION This study reveals the clinical variability and likely underdiagnosis of SOD1-IPN, supporting the integration of SOD1 screening in IPN genetic testing, especially for patients with asymmetric, length-dependent axonal neuropathy evident in clinical and electrophysiological assessments.
Collapse
Affiliation(s)
- Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan.
| | - Jun-Hui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Chikashi Yano
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Takahiro Hobara
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Fumikazu Kojima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Tomonori Nakamura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
- Department of Physical Therapy, Kagoshima University of School of Health Sciences, Kagoshima, Japan
| | - Takeshi Matsushige
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Jun Mitsui
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, The University of Tokyo Hospital, Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima, 890-8520, Japan
| |
Collapse
|
12
|
Szablewski L. Associations Between Diabetes Mellitus and Neurodegenerative Diseases. Int J Mol Sci 2025; 26:542. [PMID: 39859258 PMCID: PMC11765393 DOI: 10.3390/ijms26020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetes mellitus (DM) and neurodegenerative diseases/disturbances are worldwide health problems. The most common chronic conditions diagnosed in persons 60 years and older are type 2 diabetes mellitus (T2DM) and cognitive impairment. It was found that diabetes mellitus is a major risk for cognitive decline, dementia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Different mechanisms of associations between these diseases and diabetes mellitus have been suggested. For example, it is postulated that an impaired intracellular insulin signaling pathway, together with hyperglycemia and hyperinsulinemia, may cause pathological changes, such as dysfunction of the mitochondria, oxidative stress inflammatory responses, etc. The association between diabetes mellitus and neurodegenerative diseases, as well as the mechanisms of these associations, needs further investigation. The aim of this review is to describe the associations between diabetes mellitus, especially type 1 (T1DM) and type 2 diabetes mellitus, and selected neurodegenerative diseases, i.e., Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Suggested mechanisms of these associations are also described.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
13
|
Kumari S, Kamiya A, Karnik SS, Rohilla S, Dubey SK, Taliyan R. Novel Gene Therapy Approaches for Targeting Neurodegenerative Disorders: Focusing on Delivering Neurotrophic Genes. Mol Neurobiol 2025; 62:386-411. [PMID: 38856793 DOI: 10.1007/s12035-024-04260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative illnesses (NDDs) like Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, spinal muscular atrophy, and Huntington's disease have demonstrated considerable potential for gene therapy as a viable therapeutic intervention. NDDs are marked by the decline of neurons, resulting in changes in both behavior and pathology within the body. Strikingly, only symptomatic management is available without a cure for the NDDs. There is an unmet need for a permanent therapeutic approach. Many studies have been going on to target the newer therapeutic molecular targets for NDDs including gene-based therapy. Gene therapy has the potential to provide therapeutic benefits to a large number of patients with NDDs by offering mechanisms including neuroprotection, neuro-restoration, and rectification of pathogenic pathways. Gene therapy is a medical approach that aims to modify the biological characteristics of living cells by controlling the expression of specific genes in certain neurological disorders. Despite being the most complex and well-protected organ in the human body, there is clinical evidence to show that it is possible to specifically target the central nervous system (CNS). This provides hope for the prospective application of gene therapy in treating NDDs in the future. There are several advanced techniques available for using viral or non-viral vectors to deliver the therapeutic gene to the afflicted region. Neurotrophic factors (NTF) in the brain are crucial for the development, differentiation, and survival of neurons in the CNS, making them important in the context of various neurological illnesses. Gene delivery of NTF has the potential to be used as a therapeutic approach for the treatment of neurological problems in the brain. This review primarily focuses on the methodologies employed for delivering the genes of different NTFs to treat neurological disorders. These techniques are currently being explored as a viable therapeutic approach for neurodegenerative diseases. The article exclusively addresses gene delivery approaches and does not cover additional therapy strategies for NDDs. Gene therapy offers a promising alternative treatment for NDDs by stimulating neuronal growth instead of solely relying on symptom relief from drugs and their associated adverse effects. It can serve as a long-lasting and advantageous treatment choice for the management of NDDs. The likelihood of developing NDDs increases with age as a result of neuronal degradation in the brain. Gene therapy is an optimal approach for promoting neuronal growth through the introduction of nerve growth factor genes.
Collapse
Affiliation(s)
- Shobha Kumari
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Aayush Kamiya
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Sanika Sanjay Karnik
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Sumedha Rohilla
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India
| | | | - Rajeev Taliyan
- Indian Council of Medical Research-Senior Research Fellow (ICMR-SRF), Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
14
|
Xu F, Byström AS, Johansson MJO. Sod1-deficient cells are impaired in formation of the modified nucleosides mcm 5s 2U and yW in tRNA. RNA (NEW YORK, N.Y.) 2024; 30:1586-1595. [PMID: 39322276 PMCID: PMC11571800 DOI: 10.1261/rna.080181.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Uridine residues present at the wobble position of eukaryotic cytosolic tRNAs often carry a 5-carbamoylmethyl (ncm5), 5-methoxycarbonylmethyl (mcm5), or 5-methoxycarbonylhydroxymethyl (mchm5) side-chain. The presence of these side-chains allows proper pairing with cognate codons, and they are particularly important in tRNA species where the U34 residue is also modified with a 2-thio (s2) group. The first step in the synthesis of the ncm5, mcm5, and mchm5 side-chains is dependent on the six-subunit Elongator complex, whereas the thiolation of the 2-position is catalyzed by the Ncs6/Ncs2 complex. In both yeast and metazoans, allelic variants of Elongator subunit genes show genetic interactions with mutant alleles of SOD1, which encodes the cytosolic Cu, Zn-superoxide dismutase. However, the cause of these genetic interactions remains unclear. Here, we show that yeast sod1 null mutants are impaired in the formation of 2-thio-modified U34 residues. In addition, the lack of Sod1 induces a defect in the biosynthesis of wybutosine, which is a modified nucleoside found at position 37 of tRNAPhe Our results suggest that these tRNA modification defects are caused by superoxide-induced inhibition of the iron-sulfur cluster-containing Ncs6/Ncs2 and Tyw1 enzymes. Since mutations in Elongator subunit genes generate strong negative genetic interactions with mutant ncs6 and ncs2 alleles, our findings at least partially explain why the activity of Elongator can modulate the phenotypic consequences of SOD1/sod1 alleles. Collectively, our results imply that tRNA hypomodification may contribute to impaired proteostasis in Sod1-deficient cells.
Collapse
Affiliation(s)
- Fu Xu
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Anders S Byström
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Marcus J O Johansson
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
15
|
Everett WH, Bucelli RC. Tofersen for SOD1 ALS. Neurodegener Dis Manag 2024; 14:149-160. [PMID: 39330700 PMCID: PMC11524200 DOI: 10.1080/17582024.2024.2402216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative condition affecting the motor system. The heterogenous nature of ALS complicates trial design. Genetic forms of ALS present an opportunity to intervene in a less heterogeneous population. ALS associated with gain of function mutations in SOD1 make 'knock-down' strategies an attractive therapeutic approach. Tofersen, an antisense oligonucleotide that reduces expression of SOD1 via RNAase mediated degradation of SOD1 mRNA, has shown robust effects on ALS biomarkers. While a Phase III trial of tofersen failed to meet its primary end point, open label extension data suggests that tofersen slows progression of SOD1 ALS.
Collapse
Affiliation(s)
- William H Everett
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO63110, USA
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH43210, USA
| | - Robert C Bucelli
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO63110, USA
| |
Collapse
|
16
|
Elsayyid M, Tanis JE, Yu Y. In-cell processing enables rapid and in-depth proteome analysis of low-input Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613705. [PMID: 39345438 PMCID: PMC11429863 DOI: 10.1101/2024.09.18.613705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Caenorhabditis elegans is a widely used genetic model organism, however, the worm cuticle complicates extraction of intracellular proteins, a prerequisite for typical bottom-up proteomics. Conventional physical disruption procedures are not only time-consuming, but can also cause significant sample loss, making it difficult to perform proteomics with low-input samples. Here, for the first time, we present an on-filter in-cell (OFIC) processing approach, which can digest C. elegans proteins directly in the cells of the organism after methanol fixation. With OFIC processing and single-shot LCMS analysis, we identified over 9,400 proteins from a sample of only 200 worms, the largest C. elegans proteome reported to date that did not require fractionation or enrichment. We systematically evaluated the performance of the OFIC approach by comparing it with conventional lysis-based methods. Our data suggest equivalent and unbiased performance of OFIC processing for C. elegans proteome identification and quantitation. We further evaluated the OFIC approach with even lower input samples, then used this method to determine how the proteome is impacted by loss of superoxide dismutase sod-1, the ortholog of human SOD-1, a gene associated with amyotrophic lateral sclerosis (ALS). Analysis of 8,800 proteins from only 50 worms as the initial input showed that loss of sod-1 affects the abundance of proteins required for stress response, ribosome biogenesis, and metabolism. In conclusion, our streamlined OFIC approach, which can be broadly applied to other systems, minimizes sample loss while offering the simplest workflow reported to date for C. elegans proteomics analysis.
Collapse
Affiliation(s)
- Malek Elsayyid
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jessica E. Tanis
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
17
|
Au WH, Miller-Fleming L, Sanchez-Martinez A, Lee JA, Twyning MJ, Prag HA, Raik L, Allen SP, Shaw PJ, Ferraiuolo L, Mortiboys H, Whitworth AJ. Activation of the Keap1/Nrf2 pathway suppresses mitochondrial dysfunction, oxidative stress, and motor phenotypes in C9orf72 ALS/FTD models. Life Sci Alliance 2024; 7:e202402853. [PMID: 38906677 PMCID: PMC11192839 DOI: 10.26508/lsa.202402853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024] Open
Abstract
Mitochondrial dysfunction is a common feature of C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD); however, it remains unclear whether this is a cause or consequence of the pathogenic process. Analysing multiple aspects of mitochondrial biology across several Drosophila models of C9orf72-ALS/FTD, we found morphology, oxidative stress, and mitophagy are commonly affected, which correlated with progressive loss of locomotor performance. Notably, only genetic manipulations that reversed the oxidative stress levels were also able to rescue C9orf72 locomotor deficits, supporting a causative link between mitochondrial dysfunction, oxidative stress, and behavioural phenotypes. Targeting the key antioxidant Keap1/Nrf2 pathway, we found that genetic reduction of Keap1 or pharmacological inhibition by dimethyl fumarate significantly rescued the C9orf72-related oxidative stress and motor deficits. Finally, mitochondrial ROS levels were also elevated in C9orf72 patient-derived iNeurons and were effectively suppressed by dimethyl fumarate treatment. These results indicate that mitochondrial oxidative stress is an important mechanistic contributor to C9orf72 pathogenesis, affecting multiple aspects of mitochondrial function and turnover. Targeting the Keap1/Nrf2 signalling pathway to combat oxidative stress represents a therapeutic strategy for C9orf72-related ALS/FTD.
Collapse
Affiliation(s)
- Wing Hei Au
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | - James Ak Lee
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | | | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Laura Raik
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
18
|
Ren K, Wang Q, Jiang D, Liu E, Alsmaan J, Jiang R, Rutkove SB, Tian F. A comprehensive review of electrophysiological techniques in amyotrophic lateral sclerosis research. Front Cell Neurosci 2024; 18:1435619. [PMID: 39280794 PMCID: PMC11393746 DOI: 10.3389/fncel.2024.1435619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, is characterized by progressive motor neuron degeneration, leading to widespread weakness and respiratory failure. While a variety of mechanisms have been proposed as causes of this disease, a full understanding remains elusive. Electrophysiological alterations, including increased motor axon excitability, likely play an important role in disease progression. There remains a critical need for non-animal disease models that can integrate electrophysiological tools to better understand underlying mechanisms, track disease progression, and evaluate potential therapeutic interventions. This review explores the integration of electrophysiological technologies with ALS disease models. It covers cellular and clinical electrophysiological tools and their applications in ALS research. Additionally, we examine conventional animal models and highlight advancements in humanized models and 3D organoid technologies. By bridging the gap between these models, we aim to enhance our understanding of ALS pathogenesis and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Keyuan Ren
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Qinglong Wang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Douglas Jiang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Scripps Institution of Oceanography, San Diego, CA, United States
| | - Ethan Liu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Julie Alsmaan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Arts and Science, Harvard College, Cambridge, MA, United States
| | - Rui Jiang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Arts and Science, Harvard College, Cambridge, MA, United States
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Feng Tian
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Jacob SM, Lee S, Kim SH, Sharkey KA, Pfeffer G, Nguyen MD. Brain-body mechanisms contribute to sexual dimorphism in amyotrophic lateral sclerosis. Nat Rev Neurol 2024; 20:475-494. [PMID: 38965379 DOI: 10.1038/s41582-024-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common form of human motor neuron disease. It is characterized by the progressive degeneration of upper and lower motor neurons, leading to generalized motor weakness and, ultimately, respiratory paralysis and death within 3-5 years. The disease is shaped by genetics, age, sex and environmental stressors, but no cure or routine biomarkers exist for the disease. Male individuals have a higher propensity to develop ALS, and a different manifestation of the disease phenotype, than female individuals. However, the mechanisms underlying these sex differences remain a mystery. In this Review, we summarize the epidemiology of ALS, examine the sexually dimorphic presentation of the disease and highlight the genetic variants and molecular pathways that might contribute to sex differences in humans and animal models of ALS. We advance the idea that sexual dimorphism in ALS arises from the interactions between the CNS and peripheral organs, involving vascular, metabolic, endocrine, musculoskeletal and immune systems, which are strikingly different between male and female individuals. Finally, we review the response to treatments in ALS and discuss the potential to implement future personalized therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sarah M Jacob
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sukyoung Lee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seung Hyun Kim
- Department of Neurology, Hanyang University Hospital, Seoul, South Korea
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
20
|
Sabatelli M, Cerri F, Zuccarino R, Patanella AK, Bernardo D, Bisogni G, Tanel R, Sansone V, Filosto M, Lattante S, Martello F, Doronzio PN, Stano S, Zanfini BA, Coccia M, Costantini EM, Lizio A, Lucioli G, Padovani A, Merlini GP, Conte A. Long-term treatment of SOD1 ALS with tofersen: a multicentre experience in 17 patients. J Neurol 2024; 271:5177-5186. [PMID: 38829431 DOI: 10.1007/s00415-024-12437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND In Amyotrophic Lateral Sclerosis (ALS) patients with SOD1 mutation the intrathecal administration of tofersen slowed down the progression of disease in a controlled clinical study, but results were not statistically significant. METHODS In this multicentre, observational study, we evaluated a cohort of 27 ALS-SOD1 patients who were treated with tofersen, focussing on 17 patients who were followed for at least 48 weeks (median period of 84 weeks, range 48-108). We compared the clinical slopes, as measured by ALSFRS-R, MRC scale and Forced Vital Capacity, during tofersen treatment with retrospective data at 1 year prior to therapy. Cerebrospinal fluid (CSF) and serum neurofilament light chains (NFL) were measured in all patients. RESULTS Cumulative evaluation of the ALSFRS-R and MRC progression rates showed a statistically significant change during treatment with respect to the period prior to therapy (p = 0.023 and p = 0.007, respectively). The analysis of individual patients showed that nine of the seventeen patients substantially stabilized or slightly improved. Four patients deteriorated during treatment, while in the remaining patients the very slow course did not allow to identify significant changes. CSF and serum NFL concentration markedly decreased in the near totality of patients. Increased levels of white blood cells and proteins in the CSF were found in 60% of patients. Such alterations were clinically asymptomatic in all but two patients who showed an acute pure motor radiculitis, which responded to steroid therapy. CONCLUSIONS Clinical findings and NFL analysis strongly suggest that tofersen may have a disease-modifying effect in a subset of SOD1-ALS patients.
Collapse
Affiliation(s)
- Mario Sabatelli
- NeMO Clinical Center-Rome. Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy.
| | - Federica Cerri
- Neurorehabilitation Unit, The NeMo Clinical Center in Milan, University of Milan, ASST 5. Niguarda, Milan, Italy
| | | | - Agata Katia Patanella
- NeMO Clinical Center-Rome. Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Daniela Bernardo
- NeMO Clinical Center-Rome. Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulia Bisogni
- NeMO Clinical Center-Rome. Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Raffaella Tanel
- NeMO Clinical Center Trento, Villa Rosa Hospital, APSS, Trento, Italy
| | - Valeria Sansone
- Neurorehabilitation Unit, The NeMo Clinical Center in Milan, University of Milan, ASST 5. Niguarda, Milan, Italy
| | - Massimiliano Filosto
- NeMO- Brescia Clinical Center for Neuromuscular Diseases; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Serena Lattante
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Francesco Martello
- Department of Life Sciences and Public Health, Section of Genomic Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Paolo Niccolò Doronzio
- Department of Life Sciences and Public Health, Section of Genomic Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Salvatore Stano
- NeMO Clinical Center Trento, Villa Rosa Hospital, APSS, Trento, Italy
| | - Bruno Antonio Zanfini
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS., Rome, Italy
| | - Michela Coccia
- NeMO Clinical Center Ancona - Azienda Ospedaliero-Universitaria Delle Marche, Ancona, Italy
| | | | - Andrea Lizio
- Neurorehabilitation Unit, The NeMo Clinical Center in Milan, University of Milan, ASST 5. Niguarda, Milan, Italy
| | - Gabriele Lucioli
- NeMO Clinical Center-Rome. Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandro Padovani
- Unit of Neurology, ASST Spedali Civili; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Gian Paolo Merlini
- Amyloidosis Research and Treatment Center. Biotechnology Research Laboratories, Department of Molecular Medicine, University of Pavia Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Amelia Conte
- NeMO Clinical Center-Rome. Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
21
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
22
|
Clayton EL, Huggon L, Cousin MA, Mizielinska S. Synaptopathy: presynaptic convergence in frontotemporal dementia and amyotrophic lateral sclerosis. Brain 2024; 147:2289-2307. [PMID: 38451707 PMCID: PMC11224618 DOI: 10.1093/brain/awae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Frontotemporal dementia and amyotrophic lateral sclerosis are common forms of neurodegenerative disease that share overlapping genetics and pathologies. Crucially, no significantly disease-modifying treatments are available for either disease. Identifying the earliest changes that initiate neuronal dysfunction is important for designing effective intervention therapeutics. The genes mutated in genetic forms of frontotemporal dementia and amyotrophic lateral sclerosis have diverse cellular functions, and multiple disease mechanisms have been proposed for both. Identification of a convergent disease mechanism in frontotemporal dementia and amyotrophic lateral sclerosis would focus research for a targetable pathway, which could potentially effectively treat all forms of frontotemporal dementia and amyotrophic lateral sclerosis (both familial and sporadic). Synaptopathies are diseases resulting from physiological dysfunction of synapses, and define the earliest stages in multiple neuronal diseases, with synapse loss a key feature in dementia. At the presynapse, the process of synaptic vesicle recruitment, fusion and recycling is necessary for activity-dependent neurotransmitter release. The unique distal location of the presynaptic terminal means the tight spatio-temporal control of presynaptic homeostasis is dependent on efficient local protein translation and degradation. Recently, numerous publications have shown that mutations associated with frontotemporal dementia and amyotrophic lateral sclerosis present with synaptopathy characterized by presynaptic dysfunction. This review will describe the complex local signalling and membrane trafficking events that occur at the presynapse to facilitate neurotransmission and will summarize recent publications linking frontotemporal dementia/amyotrophic lateral sclerosis genetic mutations to presynaptic function. This evidence indicates that presynaptic synaptopathy is an early and convergent event in frontotemporal dementia and amyotrophic lateral sclerosis and illustrates the need for further research in this area, to identify potential therapeutic targets with the ability to impact this convergent pathomechanism.
Collapse
Affiliation(s)
- Emma L Clayton
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Laura Huggon
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sarah Mizielinska
- UK Dementia Research Institute at King’s College London, London SE5 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London SE5 9RT, UK
| |
Collapse
|
23
|
Magalhães RSS, Monteiro Neto JR, Ribeiro GD, Paranhos LH, Eleutherio ECA. Trehalose Protects against Superoxide Dismutase 1 Proteinopathy in an Amyotrophic Lateral Sclerosis Model. Antioxidants (Basel) 2024; 13:807. [PMID: 39061876 PMCID: PMC11274086 DOI: 10.3390/antiox13070807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This work aimed to study the effect of trehalose in protecting cells against Sod1 proteinopathy associated with amyotrophic lateral sclerosis (ALS). Humanized yeast cells in which native Sod1 was replaced by wild-type human Sod1 or an ALS mutant (WT-A4V Sod1 heterodimer) were used as the experimental model. Cells were treated with 10% trehalose (p/v) before or after the appearance of hSod1 proteinopathy induced by oxidative stress. In both conditions, trehalose reduced the number of cells with Sod1 inclusions, increased Sod1 activity, and decreased the levels of intracellular oxidation, demonstrating that trehalose avoids Sod1 misfolding and loss of function in response to oxidative stress. The survival rates of ALS Sod1 cells stressed in the presence of trehalose were 60% higher than in their absence. Treatment with trehalose after the appearance of Sod1 inclusions in cells expressing WT Sod1 doubled longevity; after 5 days, non-treated cells did not survive, but 15% of cells treated with sugar were still alive. Altogether, our results emphasize the potential of trehalose as a novel therapy, which might be applied preventively in ALS patients with a family history of the disease or after diagnosis in ALS patients who discover the disease following the first symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Elis C. A. Eleutherio
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (R.S.S.M.); (J.R.M.N.); (G.D.R.); (L.H.P.)
| |
Collapse
|
24
|
Chidambaram SB, Anand N, Varma SR, Ramamurthy S, Vichitra C, Sharma A, Mahalakshmi AM, Essa MM. Superoxide dismutase and neurological disorders. IBRO Neurosci Rep 2024; 16:373-394. [PMID: 39007083 PMCID: PMC11240301 DOI: 10.1016/j.ibneur.2023.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/21/2023] [Indexed: 07/16/2024] Open
Abstract
Superoxide dismutase (SOD) is a common antioxidant enzyme found majorly in living cells. The main physiological role of SOD is detoxification and maintain the redox balance, acts as a first line of defence against Reactive nitrogen species (RNS), Reactive oxygen species (ROS), and other such potentially hazardous molecules. SOD catalyses the conversion of superoxide anion free radicals (O 2 -.) into molecular oxygen (O 2) and hydrogen peroxide (H 2O 2) in the cells. Superoxide dismutases (SODs) are expressed in neurons and glial cells throughout the CNS both intracellularly and extracellularly. Endogenous oxidative stress (OS) linked with enlarged production of reactive oxygen metabolites (ROMs), inflammation, deregulation of redox balance, mitochondrial dysfunction and bioenergetic crisis are found to be prerequisite for neuronal loss in neurological diseases. Clinical and genetic studies indicate a direct correlation between mutations in SOD gene and neurodegenerative diseases, like Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD), Parkinson's Disease (PD) and Alzheimer's Disease (AD). Therefore, inhibitors of OS are considered as an optimistic approach to prevent neuronal loss. SOD mimetics like Metalloporphyrin Mn (II)-cyclic polyamines, Nitroxides and Mn (III)- Salen complexes are designed and used as therapeutic extensively in the treatment of neurological disorders. SODs and SOD mimetics are promising future therapeutics in the field of various diseases with OS-mediated pathology.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Antigua, Antigua and Barbuda
| | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Ajman University, 346 Ajman, the United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, 346 Ajman, the United Arab Emirates
| | - Srinivasan Ramamurthy
- College of Pharmacy & Health Sciences, University of Science and Technology of Fujairah, 2202 Fujairah, the United Arab Emirates
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Ambika Sharma
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
25
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
26
|
Tokuda E, Sakashita Y, Tokoro N, Date A, Kosuge Y, Miyasaka T. MS785-MS27 Reactive Misfolded/Non-Native Zn-Deficient SOD1 Species Exhibit Cytotoxicity and Adopt Heterozygous Conformations in Motor Neurons. Int J Mol Sci 2024; 25:5603. [PMID: 38891791 PMCID: PMC11171496 DOI: 10.3390/ijms25115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Misfolding of superoxide dismutase-1 (SOD1) is a pathological hallmark of amyotrophic lateral sclerosis (ALS) with SOD1 mutations. The development of antibodies specific for misfolded SOD1 deepens our understanding of how the protein participates in ALS pathogenesis. Since the term "misfolding" refers to various disordered conformers other than the natively folded one, which misfolded species are recognized by specific antibodies should be determined. Here, we molecularly characterized the recognition by MS785-MS27, an antibody cocktail experimentally confirmed to recognize over 100 ALS-linked SOD1 mutants. Indirect ELISA revealed that the antibody cocktail recognized Zn-deficient wild-type and mutated SOD1 species. It also recognized conformation-disordered wild-type and mutated SOD1 species, such as unfolded and oligomeric forms, but had less affinity for the aggregated form. Antibody-reactive SOD1 exhibited cytotoxicity to a motor neuron cell model, which was blocked by Zn treatment with Zn-deficient SOD1. Immunohistochemistry revealed antibody-reactive SOD1 mainly in spinal motor neurons of SOD1G93A mice throughout the disease course, and the distribution after symptomatic stages differed from that of other misfolded SOD1 species. This suggests that misfolded/non-native SOD1 species exist as heterogeneous populations. In conclusion, MS785-MS27 recognizes various conformation-disordered SOD1 species lacking the Zn ion.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Yume Sakashita
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Naoya Tokoro
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Ayano Date
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan;
| | - Tomohiro Miyasaka
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan;
| |
Collapse
|
27
|
Salzinger A, Ramesh V, Das Sharma S, Chandran S, Thangaraj Selvaraj B. Neuronal Circuit Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2024; 13:792. [PMID: 38786016 PMCID: PMC11120636 DOI: 10.3390/cells13100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The primary neural circuit affected in Amyotrophic Lateral Sclerosis (ALS) patients is the corticospinal motor circuit, originating in upper motor neurons (UMNs) in the cerebral motor cortex which descend to synapse with the lower motor neurons (LMNs) in the spinal cord to ultimately innervate the skeletal muscle. Perturbation of these neural circuits and consequent loss of both UMNs and LMNs, leading to muscle wastage and impaired movement, is the key pathophysiology observed. Despite decades of research, we are still lacking in ALS disease-modifying treatments. In this review, we document the current research from patient studies, rodent models, and human stem cell models in understanding the mechanisms of corticomotor circuit dysfunction and its implication in ALS. We summarize the current knowledge about cortical UMN dysfunction and degeneration, altered excitability in LMNs, neuromuscular junction degeneration, and the non-cell autonomous role of glial cells in motor circuit dysfunction in relation to ALS. We further highlight the advances in human stem cell technology to model the complex neural circuitry and how these can aid in future studies to better understand the mechanisms of neural circuit dysfunction underpinning ALS.
Collapse
Affiliation(s)
- Andrea Salzinger
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Vidya Ramesh
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Shreya Das Sharma
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Bhuvaneish Thangaraj Selvaraj
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK; (A.S.); (V.R.); (S.D.S.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic (ARRNC), University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
28
|
Pokrishevsky E, DuVal MG, McAlary L, Louadi S, Pozzi S, Roman A, Plotkin SS, Dijkstra A, Julien JP, Allison WT, Cashman NR. Tryptophan residues in TDP-43 and SOD1 modulate the cross-seeding and toxicity of SOD1. J Biol Chem 2024; 300:107207. [PMID: 38522514 PMCID: PMC11087967 DOI: 10.1016/j.jbc.2024.107207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of motor neurons. Neuronal superoxide dismutase-1 (SOD1) inclusion bodies are characteristic of familial ALS with SOD1 mutations, while a hallmark of sporadic ALS is inclusions containing aggregated WT TAR DNA-binding protein 43 (TDP-43). We show here that co-expression of mutant or WT TDP-43 with SOD1 leads to misfolding of endogenous SOD1 and aggregation of SOD1 reporter protein SOD1G85R-GFP in human cell cultures and promotes synergistic axonopathy in zebrafish. Intriguingly, this pathological interaction is modulated by natively solvent-exposed tryptophans in SOD1 (tryptophan-32) and TDP-43 RNA-recognition motif RRM1 (tryptophan-172), in concert with natively sequestered TDP-43 N-terminal domain tryptophan-68. TDP-43 RRM1 intrabodies reduce WT SOD1 misfolding in human cell cultures, via blocking tryptophan-172. Tryptophan-68 becomes antibody-accessible in aggregated TDP-43 in sporadic ALS motor neurons and cell culture. 5-fluorouridine inhibits TDP-43-induced G85R-GFP SOD1 aggregation in human cell cultures and ameliorates axonopathy in zebrafish, via its interaction with SOD1 tryptophan-32. Collectively, our results establish a novel and potentially druggable tryptophan-mediated mechanism whereby two principal ALS disease effector proteins might directly interact in disease.
Collapse
Affiliation(s)
- Edward Pokrishevsky
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michéle G DuVal
- Department of Biological Sciences, Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Alberta, Canada
| | - Luke McAlary
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Louadi
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Silvia Pozzi
- Department of Psychiatry and Neuroscience, University of Laval, Québec, Quebec, Canada; CERVO Brain Research Center, Québec, Quebec, Canada
| | - Andrei Roman
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anke Dijkstra
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, University of Laval, Québec, Quebec, Canada; CERVO Brain Research Center, Québec, Quebec, Canada
| | - W Ted Allison
- Department of Biological Sciences, Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Alberta, Canada.
| | - Neil R Cashman
- Department of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
29
|
Hu Y, Chen W, Wei C, Jiang S, Li S, Wang X, Xu R. Pathological mechanisms of amyotrophic lateral Sclerosis. Neural Regen Res 2024; 19:1036-1044. [PMID: 37862206 PMCID: PMC10749610 DOI: 10.4103/1673-5374.382985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis refers to a neurodegenerative disease involving the motor system, the cause of which remains unexplained despite several years of research. Thus, the journey to understanding or treating amyotrophic lateral sclerosis is still a long one. According to current research, amyotrophic lateral sclerosis is likely not due to a single factor but rather to a combination of mechanisms mediated by complex interactions between molecular and genetic pathways. The progression of the disease involves multiple cellular processes and the interaction between different complex mechanisms makes it difficult to identify the causative factors of amyotrophic lateral sclerosis. Here, we review the most common amyotrophic lateral sclerosis-associated pathogenic genes and the pathways involved in amyotrophic lateral sclerosis, as well as summarize currently proposed potential mechanisms responsible for amyotrophic lateral sclerosis disease and their evidence for involvement in amyotrophic lateral sclerosis. In addition, we discuss current emerging strategies for the treatment of amyotrophic lateral sclerosis. Studying the emergence of these new therapies may help to further our understanding of the pathogenic mechanisms of the disease.
Collapse
Affiliation(s)
- Yushu Hu
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Wenzhi Chen
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Caihui Wei
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Shishi Jiang
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Shu Li
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Xinxin Wang
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Department of Clinical Medicine, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi Province, China
- Department of Neurology, The First Affiliated Hospital of Nanchang Medical College; The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
30
|
Dogan M, Teralı K, Eroz R, Kılıç H, Gezdirici A, Gönüllü B. Discovery of a novel homozygous SOD1 truncating variant bolsters infantile SOD1 deficiency syndrome. Mol Biol Rep 2024; 51:580. [PMID: 38668754 DOI: 10.1007/s11033-024-09513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Superoxide dismutase 1 (SOD1) is an important antioxidant enzyme whose main function is to neutralise superoxide free radicals in the cytoplasm. Heterozygous variants in SOD1 are responsible for a substantial percentage of familial amyotrophic lateral sclerosis (ALS) cases. Recently, several reports have shown that biallelic loss of SOD1 function results in a novel phenotype called infantile SOD1 deficiency syndrome, which is consistent with a recessive pattern of inheritance and can be distinguished from typical (adult-onset) ALS. METHODS We documented detailed family histories and clinical data, followed by whole-exome sequencing and family co-segregation analysis through Sanger sequencing. To facilitate comparisons, relevant data from fifteen previously reported patients with SOD1-related neurodevelopmental disorders were included. RESULTS This study presents a new Turkish family with two affected children exhibiting severe delayed motor development, infancy-onset loss of motor skills, axial hypotonia, tetraspasticity, and impaired cognitive functions. Genetic analysis revealed a novel homozygous frameshift variant in SOD1 (c.248dupG [p.Asp84Argfs*8]), with computational biochemical studies shedding light on the mechanistic aspects of SOD1 dysfunction. CONCLUSIONS Our findings contribute an affirmative report of a fourth biallelic variant resulting in a severe clinical phenotype, reminiscent of those induced by previously identified homozygous loss-of-function SOD1 variants. This research not only advances our understanding of the pathogenesis of this debilitating neurological syndrome but also aligns with ongoing intensive efforts to comprehend and address SOD1-linked ALS.
Collapse
Affiliation(s)
- Mustafa Dogan
- Department of Medical Genetics, University of Health Sciences Basaksehir Cam and Sakura State Hospital, Basaksehir Mahallesi G-434 Caddesi No: 2L Basaksehir, Istanbul, Turkey.
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Recep Eroz
- Department of Medical Genetics, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Hüseyin Kılıç
- Department of Pediatric Neurology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, University of Health Sciences Basaksehir Cam and Sakura State Hospital, Basaksehir Mahallesi G-434 Caddesi No: 2L Basaksehir, Istanbul, Turkey
| | - Burçin Gönüllü
- Department of Pediatric Neurology, Batman Research and Training Hospital, Batman, Turkey
| |
Collapse
|
31
|
Tzeplaeff L, Jürs AV, Wohnrade C, Demleitner AF. Unraveling the Heterogeneity of ALS-A Call to Redefine Patient Stratification for Better Outcomes in Clinical Trials. Cells 2024; 13:452. [PMID: 38474416 PMCID: PMC10930688 DOI: 10.3390/cells13050452] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Despite tremendous efforts in basic research and a growing number of clinical trials aiming to find effective treatments, amyotrophic lateral sclerosis (ALS) remains an incurable disease. One possible reason for the lack of effective causative treatment options is that ALS may not be a single disease entity but rather may represent a clinical syndrome, with diverse genetic and molecular causes, histopathological alterations, and subsequent clinical presentations contributing to its complexity and variability among individuals. Defining a way to subcluster ALS patients is becoming a central endeavor in the field. Identifying specific clusters and applying them in clinical trials could enable the development of more effective treatments. This review aims to summarize the available data on heterogeneity in ALS with regard to various aspects, e.g., clinical, genetic, and molecular.
Collapse
Affiliation(s)
- Laura Tzeplaeff
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, 81675 München, Germany
| | - Alexandra V. Jürs
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Camilla Wohnrade
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Antonia F. Demleitner
- Department of Neurology, Rechts der Isar Hospital, Technical University of Munich, 81675 München, Germany
| |
Collapse
|
32
|
Peggion C, Calì T, Brini M. Mitochondria Dysfunction and Neuroinflammation in Neurodegeneration: Who Comes First? Antioxidants (Basel) 2024; 13:240. [PMID: 38397838 PMCID: PMC10885966 DOI: 10.3390/antiox13020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) encompass an assorted array of disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, each characterised by distinct clinical manifestations and underlying pathological mechanisms. While some cases have a genetic basis, many NDs occur sporadically. Despite their differences, these diseases commonly feature chronic neuroinflammation as a hallmark. Consensus has recently been reached on the possibility that mitochondria dysfunction and protein aggregation can mutually contribute to the activation of neuroinflammatory response and thus to the onset and progression of these disorders. In the present review, we discuss the contribution of mitochondria dysfunction and neuroinflammation to the aetiology and progression of NDs, highlighting the possibility that new potential therapeutic targets can be identified to tackle neurodegenerative processes and alleviate the progression of these pathologies.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biology, University of Padova, 35131 Padova, Italy;
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Marisa Brini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
33
|
Mohan S, Alhazmi HA, Hassani R, Khuwaja G, Maheshkumar VP, Aldahish A, Chidambaram K. Role of ferroptosis pathways in neuroinflammation and neurological disorders: From pathogenesis to treatment. Heliyon 2024; 10:e24786. [PMID: 38314277 PMCID: PMC10837572 DOI: 10.1016/j.heliyon.2024.e24786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Ferroptosis is a newly discovered non-apoptotic and iron-dependent type of cell death. Ferroptosis mainly takes place owing to the imbalance of anti-oxidation and oxidation in the body. It is regulated via a number of factors and pathways both inside and outside the cell. Ferroptosis is closely linked with brain and various neurological disorders (NDs). In the human body, the brain contains the highest levels of polyunsaturated fatty acids, which are known as lipid peroxide precursors. In addition, there is also a connection of glutathione depletion and lipid peroxidation with NDs. There is growing evidence regarding the possible link between neuroinflammation and multiple NDs, such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and stroke. Recent studies have demonstrated that disruptions of lipid reactive oxygen species (ROS), glutamate excitatory toxicity, iron homeostasis, and various other manifestations linked with ferroptosis can be identified in various neuroinflammation-mediated NDs. It has also been reported that damage-associated molecular pattern molecules including ROS are generated during the events of ferroptosis and can cause glial activation via activating neuroimmune pathways, which subsequently leads to the generation of various inflammatory factors that play a role in various NDs. This review summarizes the regulation pathways of ferroptosis, the link between ferroptosis as well as inflammation in NDs, and the potential of a range of therapeutic agents that can be used to target ferroptosis and inflammation in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - V P Maheshkumar
- Department of Pharmacy, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India
| | - Afaf Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
34
|
Chen L, Zhang S, Liu S, Gao S. Amyotrophic Lateral Sclerosis Mechanism: Insights from the Caenorhabditis elegans Models. Cells 2024; 13:99. [PMID: 38201303 PMCID: PMC10778397 DOI: 10.3390/cells13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a debilitating neurodegenerative condition characterized by the progressive degeneration of motor neurons. Despite extensive research in various model animals, the cellular signal mechanisms of ALS remain elusive, impeding the development of efficacious treatments. Among these models, a well-characterized and diminutive organism, Caenorhabditis elegans (C. elegans), has emerged as a potent tool for investigating the molecular and cellular dimensions of ALS pathogenesis. This review summarizes the contributions of C. elegans models to our comprehension of ALS, emphasizing pivotal findings pertaining to genetics, protein aggregation, cellular pathways, and potential therapeutic strategies. We analyze both the merits and constraints of the C. elegans system in the realm of ALS research and point towards future investigations that could bridge the chasm between C. elegans foundational discoveries and clinical applications.
Collapse
Affiliation(s)
| | | | | | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (L.C.); (S.Z.); (S.L.)
| |
Collapse
|
35
|
Elmansy MF, Reidl CT, Rahaman M, Özdinler PH, Silverman RB. Small molecules targeting different cellular pathologies for the treatment of amyotrophic lateral sclerosis. Med Res Rev 2023; 43:2260-2302. [PMID: 37243319 PMCID: PMC10592673 DOI: 10.1002/med.21974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease in which the motor neuron circuitry displays progressive degeneration, affecting mostly the motor neurons in the brain and in the spinal cord. There are no effective cures, albeit three drugs, riluzole, edaravone, and AMX0035 (a combination of sodium phenylbutyrate and taurursodiol), have been approved by the Food and Drug Administration, with limited improvement in patients. There is an urgent need to build better and more effective treatment strategies for ALS. Since the disease is very heterogenous, numerous approaches have been explored, such as targeting genetic mutations, decreasing oxidative stress and excitotoxicity, enhancing mitochondrial function and protein degradation mechanisms, and inhibiting neuroinflammation. In addition, various chemical libraries or previously identified drugs have been screened for potential repurposing in the treatment of ALS. Here, we review previous drug discovery efforts targeting a variety of cellular pathologies that occur from genetic mutations that cause ALS, such as mutations in SOD1, C9orf72, FUS, and TARDP-43 genes. These mutations result in protein aggregation, which causes neuronal degeneration. Compounds used to target cellular pathologies that stem from these mutations are discussed and comparisons among different preclinical models are presented. Because the drug discovery landscape for ALS and other motor neuron diseases is changing rapidly, we also offer recommendations for a novel, more effective, direction in ALS drug discovery that could accelerate translation of effective compounds from animals to patients.
Collapse
Affiliation(s)
- Mohamed F. Elmansy
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Organometallic and Organometalloid Chemistry, National Research Centre, Cairo, Egypt
| | - Cory T. Reidl
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - Mizzanoor Rahaman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - P. Hande Özdinler
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
36
|
Rani N, Alam MM, Jamal A, Bin Ghaffar U, Parvez S. Caenorhabditis elegans: A transgenic model for studying age-associated neurodegenerative diseases. Ageing Res Rev 2023; 91:102036. [PMID: 37598759 DOI: 10.1016/j.arr.2023.102036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Neurodegenerative diseases (NDs) are a heterogeneous group of aging-associated ailments characterized by interrupting cellular proteostasic machinery and the misfolding of distinct proteins to form toxic aggregates in neurons. Neurodegenerative diseases, which include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and others, are becoming an increasing threat to human health worldwide. The degeneration and death of certain specific groups of neurons are the hallmarks of these diseases. Over the past decades, Caenorhabditis eleganshas beenwidely used as a transgenic model to investigate biological processes related to health and disease. The nematode Caenorhabditis elegans (C. elegans) has developed as a powerful tool for studying disease mechanisms due to its ease of genetic handling and instant cultivation while providing a whole-animal system amendable to several molecular and biochemical techniques. In this review, we elucidate the potential of C. elegans as a versatile platform for systematic dissection of the molecular basis of human disease, focusing on neurodegenerative disorders, and may help better our understanding of the disease mechanisms and search for new therapeutics for these devastating diseases.
Collapse
Affiliation(s)
- Nisha Rani
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Usama Bin Ghaffar
- Department of Basic Science, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
37
|
Ribeiro SS, Gnutt D, Azoulay-Ginsburg S, Fetahaj Z, Spurlock E, Lindner F, Kuz D, Cohen-Erez Y, Rapaport H, Israelson A, Gruzman AL, Ebbinghaus S. Intracellular spatially-targeted chemical chaperones increase native state stability of mutant SOD1 barrel. Biol Chem 2023; 404:909-930. [PMID: 37555646 DOI: 10.1515/hsz-2023-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurological disorder with currently no cure. Central to the cellular dysfunction associated with this fatal proteinopathy is the accumulation of unfolded/misfolded superoxide dismutase 1 (SOD1) in various subcellular locations. The molecular mechanism driving the formation of SOD1 aggregates is not fully understood but numerous studies suggest that aberrant aggregation escalates with folding instability of mutant apoSOD1. Recent advances on combining organelle-targeting therapies with the anti-aggregation capacity of chemical chaperones have successfully reduce the subcellular load of misfolded/aggregated SOD1 as well as their downstream anomalous cellular processes at low concentrations (micromolar range). Nevertheless, if such local aggregate reduction directly correlates with increased folding stability remains to be explored. To fill this gap, we synthesized and tested here the effect of 9 ER-, mitochondria- and lysosome-targeted chemical chaperones on the folding stability of truncated monomeric SOD1 (SOD1bar) mutants directed to those organelles. We found that compound ER-15 specifically increased the native state stability of ER-SOD1bar-A4V, while scaffold compound FDA-approved 4-phenylbutyric acid (PBA) decreased it. Furthermore, our results suggested that ER15 mechanism of action is distinct from that of PBA, opening new therapeutic perspectives of this novel chemical chaperone on ALS treatment.
Collapse
Affiliation(s)
- Sara S Ribeiro
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, D-44780 Bochum, Germany
| | | | - Zamira Fetahaj
- Institute of Physical Chemistry II, Ruhr University, D-44780 Bochum, Germany
| | - Ella Spurlock
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
| | - Felix Lindner
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
| | - Damon Kuz
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
| | - Yfat Cohen-Erez
- Department of Biotechnology Engineering, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Hanna Rapaport
- Department of Biotechnology Engineering, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | - Arie-Lev Gruzman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, D-38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), D-38106 Braunschweig, Germany
- Institute of Physical Chemistry II, Ruhr University, D-44780 Bochum, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Duisburg, Germany
| |
Collapse
|
38
|
Kalia M, Miotto M, Ness D, Opie-Martin S, Spargo TP, Di Rienzo L, Biagini T, Petrizzelli F, Al Khleifat A, Kabiljo R, Mazza T, Ruocco G, Milanetti E, Dobson RJB, Al-Chalabi A, Iacoangeli A. Molecular dynamics analysis of superoxide dismutase 1 mutations suggests decoupling between mechanisms underlying ALS onset and progression. Comput Struct Biotechnol J 2023; 21:5296-5308. [PMID: 37954145 PMCID: PMC10637862 DOI: 10.1016/j.csbj.2023.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
Mutations in the superoxide dismutase 1 (SOD1) gene are the second most common known cause of ALS. SOD1 variants express high phenotypic variability and over 200 have been reported in people with ALS. It was previously proposed that variants can be broadly classified in two groups, 'wild-type like' (WTL) and 'metal binding region' (MBR) variants, based on their structural location and biophysical properties. MBR variants, but not WTL variants, were associated with a reduction of SOD1 enzymatic activity. In this study we used molecular dynamics and large clinical datasets to characterise the differences in the structural and dynamic behaviour of WTL and MBR variants with respect to the wild-type SOD1, and how such differences influence the ALS clinical phenotype. Our study identified marked structural differences, some of which are observed in both variant groups, while others are group specific. Moreover, collecting clinical data of approximately 500 SOD1 ALS patients carrying variants, we showed that the survival time of patients carrying an MBR variant is generally longer (∼6 years median difference, p < 0.001) with respect to patients with a WTL variant. In conclusion, our study highlighted key differences in the dynamic behaviour between WTL and MBR SOD1 variants, and between variants and wild-type SOD1 at an atomic and molecular level, that could be further investigated to explain the associated phenotypic variability. Our results support the hypothesis of a decoupling between mechanisms of onset and progression of SOD1 ALS, and an involvement of loss-of-function of SOD1 with the disease progression.
Collapse
Affiliation(s)
- Munishikha Kalia
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Mattia Miotto
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Deborah Ness
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Thomas P. Spargo
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Tommaso Biagini
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Francesco Petrizzelli
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Renata Kabiljo
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | | | | | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Richard JB Dobson
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust King’s College London, London, United Kingdom
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- Clinical Neurosciences, King’s College Hospital, Denmark Hill, London, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust King’s College London, London, United Kingdom
| |
Collapse
|
39
|
Bellia F, Lanza V, Naletova I, Tomasello B, Ciaffaglione V, Greco V, Sciuto S, Amico P, Inturri R, Vaccaro S, Campagna T, Attanasio F, Tabbì G, Rizzarelli E. Copper(II) Complexes with Carnosine Conjugates of Hyaluronic Acids at Different Dipeptide Loading Percentages Behave as Multiple SOD Mimics and Stimulate Nrf2 Translocation and Antioxidant Response in In Vitro Inflammatory Model. Antioxidants (Basel) 2023; 12:1632. [PMID: 37627627 PMCID: PMC10452038 DOI: 10.3390/antiox12081632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
A series of copper(II) complexes with the formula [Cu2+Hy(x)Car%] varying the molecular weight (MW) of Hyaluronic acid (Hy, x = 200 or 700 kDa) conjugated with carnosine (Car) present at different loading were synthesized and characterized via different spectroscopic techniques. The metal complexes behaved as Cu, Zn-superoxide dismutase (SOD1) mimics and showed some of the most efficient reaction rate values produced using a synthetic and water-soluble copper(II)-based SOD mimic reported to date. The increase in the percentage of Car moieties parallels the enhancement of the I50 value determined via the indirect method of Fridovich. The presence of the non-functionalized Hy OH groups favors the scavenger activity of the copper(II) complexes with HyCar, recalling similar behavior previously found for the copper(II) complexes with Car conjugated using β-cyclodextrin or trehalose. In keeping with the new abilities of SOD1 to activate protective agents against oxidative stress in rheumatoid arthritis and osteoarthritis diseases, Cu2+ interaction with HyCar promotes the nuclear translocation of erythroid 2-related factor that regulates the expressions of target genes, including Heme-Oxigenase-1, thus stimulating an antioxidant response in osteoblasts subjected to an inflammatory/oxidative insult.
Collapse
Affiliation(s)
- Francesco Bellia
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Valeria Lanza
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Irina Naletova
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Pietro Amico
- Fidia Farmaceutici SpA, Contrada Pizzuta, 96017 Noto, Italy; (P.A.); (R.I.); (S.V.)
| | - Rosanna Inturri
- Fidia Farmaceutici SpA, Contrada Pizzuta, 96017 Noto, Italy; (P.A.); (R.I.); (S.V.)
| | - Susanna Vaccaro
- Fidia Farmaceutici SpA, Contrada Pizzuta, 96017 Noto, Italy; (P.A.); (R.I.); (S.V.)
| | - Tiziana Campagna
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| |
Collapse
|
40
|
Furukawa Y, Shintani A, Narikiyo S, Sue K, Akutsu M, Muraki N. Characterization of a novel cysteine-less Cu/Zn-superoxide dismutase in Paenibacillus lautus missing a conserved disulfide bond. J Biol Chem 2023; 299:105040. [PMID: 37442237 PMCID: PMC10432803 DOI: 10.1016/j.jbc.2023.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Cu/Zn-superoxide dismutase (CuZnSOD) is an enzyme that binds a copper and zinc ion and also forms an intramolecular disulfide bond. Together with the copper ion as the active site, the disulfide bond is completely conserved among these proteins; indeed, the disulfide bond plays critical roles in maintaining the catalytically competent conformation of CuZnSOD. Here, we found that a CuZnSOD protein in Paenibacillus lautus (PaSOD) has no Cys residue but exhibits a significant level of enzyme activity. The crystal structure of PaSOD revealed hydrophobic and hydrogen-bonding interactions in substitution for the disulfide bond of the other CuZnSOD proteins. Also notably, we determined that PaSOD forms a homodimer through an additional domain with a novel fold at the N terminus. While the advantages of lacking Cys residues and adopting a novel dimer configuration remain obscure, PaSOD does not require a disulfide-introducing/correcting system for maturation and could also avoid misfolding caused by aberrant thiol oxidations under an oxidative environment.
Collapse
Affiliation(s)
| | | | | | - Kaori Sue
- Department of Chemistry, Keio University, Yokohama, Japan
| | - Masato Akutsu
- Department of Chemistry, Keio University, Yokohama, Japan
| | | |
Collapse
|
41
|
Martinelli I, Zucchi E, Simonini C, Gianferrari G, Zamboni G, Pinti M, Mandrioli J. The landscape of cognitive impairment in superoxide dismutase 1-amyotrophic lateral sclerosis. Neural Regen Res 2023; 18:1427-1433. [PMID: 36571338 PMCID: PMC10075107 DOI: 10.4103/1673-5374.361535] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although mutations in the superoxide dismutase 1 gene account for only a minority of total amyotrophic lateral sclerosis cases, the discovery of this gene has been crucial for amyotrophic lateral sclerosis research. Since the identification of superoxide dismutase 1 in 1993, the field of amyotrophic lateral sclerosis genetics has considerably widened, improving our understanding of the diverse pathogenic basis of amyotrophic lateral sclerosis. In this review, we focus on cognitive impairment in superoxide dismutase 1-amyotrophic lateral sclerosis patients. Literature has mostly reported that cognition remains intact in superoxide dismutase 1-amyotrophic lateral sclerosis patients, but recent reports highlight frontal lobe function frailty in patients carrying different superoxide dismutase 1-amyotrophic lateral sclerosis mutations. We thoroughly reviewed all the various mutations reported in the literature to contribute to a comprehensive database of superoxide dismutase 1-amyotrophic lateral sclerosis genotype-phenotype correlation. Such a resource could ultimately improve our mechanistic understanding of amyotrophic lateral sclerosis, enabling a more robust assessment of how the amyotrophic lateral sclerosis phenotype responds to different variants across genes, which is important for the therapeutic strategy targeting genetic mutations. Cognition in superoxide dismutase 1-amyotrophic lateral sclerosis deserves further longitudinal research since this peculiar frailty in patients with similar mutations can be conditioned by external factors, including environment and other unidentified agents including modifier genes.
Collapse
Affiliation(s)
- Ilaria Martinelli
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia; Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Zamboni
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
42
|
Ciurea AV, Mohan AG, Covache-Busuioc RA, Costin HP, Glavan LA, Corlatescu AD, Saceleanu VM. Unraveling Molecular and Genetic Insights into Neurodegenerative Diseases: Advances in Understanding Alzheimer's, Parkinson's, and Huntington's Diseases and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:10809. [PMID: 37445986 DOI: 10.3390/ijms241310809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Neurodegenerative diseases are, according to recent studies, one of the main causes of disability and death worldwide. Interest in molecular genetics has started to experience exponential growth thanks to numerous advancements in technology, shifts in the understanding of the disease as a phenomenon, and the change in the perspective regarding gene editing and the advantages of this action. The aim of this paper is to analyze the newest approaches in genetics and molecular sciences regarding four of the most important neurodegenerative disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We intend through this review to focus on the newest treatment, diagnosis, and predictions regarding this large group of diseases, in order to obtain a more accurate analysis and to identify the emerging signs that could lead to a better outcome in order to increase both the quality and the life span of the patient. Moreover, this review could provide evidence of future possible novel therapies that target the specific genes and that could be useful to be taken into consideration when the classical approaches fail to shed light.
Collapse
Affiliation(s)
- Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| | - Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania
- Department of Neurosurgery, Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | | | - Horia-Petre Costin
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Luca-Andrei Glavan
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Vicentiu Mircea Saceleanu
- Neurosurgery Department, Sibiu County Emergency Hospital, 550245 Sibiu, Romania
- Neurosurgery Department, "Lucian Blaga" University of Medicine, 550024 Sibiu, Romania
| |
Collapse
|
43
|
Gagliardi D, Ripellino P, Meneri M, Del Bo R, Antognozzi S, Comi GP, Gobbi C, Ratti A, Ticozzi N, Silani V, Ronchi D, Corti S. Clinical and molecular features of patients with amyotrophic lateral sclerosis and SOD1 mutations: a monocentric study. Front Neurol 2023; 14:1169689. [PMID: 37265463 PMCID: PMC10230028 DOI: 10.3389/fneur.2023.1169689] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction SOD1 was the first gene associated with both familial and sporadic forms of amyotrophic lateral sclerosis (ALS) and is the second most mutated gene in Caucasian ALS patients. Given their high clinical and molecular heterogeneity, a detailed characterization of SOD1-ALS patients could improve knowledge about the natural history of this disease. Here, the authors aimed to provide a clinical and molecular description of a monocentric cohort of SOD1-ALS patients. Methods Amyotrophic lateral sclerosis (ALS) patients referring to the neurology unit of our center between 2008 and 2021 were clinically assessed and underwent molecular testing for SOD1. Segregation studies in available family members and in silico analysis were performed to sustain the pathogenicity of the identified SOD1 variants. Results Among the 576 patients in our cohort, we identified 19 individuals harboring a mutation in SOD1 (3.3%), including 15 (78.9%) with a familial and four (21.1%) with a sporadic form. The spinal onset of the disease was observed in all patients, and survival was extremely variable, ranging from 8 months to over 30 years. Twelve different SOD1 missense variants were identified in our cohort, including one novel mutation (p.Pro67Leu). Discussion In the present series, we provided the first description of an Italian monocentric cohort of SOD1-ALS patients, and we expanded the repertoire of SOD1 mutations. Our cohort presents several remarkable features, including variable expressivity in the same family, atypical presentation (ataxia, cognitive impairment, and other extra-motor symptoms), and different modes of inheritance of a given mutation in the same family. Given the recent authorization of SOD1-directed antisense oligonucleotide for use in SOD1-ALS patients, we recommend prompt screening for SOD1 mutations in novel ALS patients with familiar or sporadic presentations.
Collapse
Affiliation(s)
- Delia Gagliardi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Ripellino
- Department of Neurology, Neurocenter of Southern Switzerland EOC, Lugano, Switzerland
| | - Megi Meneri
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Sara Antognozzi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Giacomo Pietro Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudio Gobbi
- Department of Neurology, Neurocenter of Southern Switzerland EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ticozzi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Vincenzo Silani
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Dario Ronchi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
44
|
Dominov JA, Madigan LA, Whitt JP, Rademacher KL, Webster KM, Zhang H, Banno H, Tang S, Zhang Y, Wightman N, Shychuck EM, Page J, Weiss A, Kelly K, Kucukural A, Brodsky MH, Jaworski A, Fallon JR, Lipscombe D, Brown RH. Up-regulation of cholesterol synthesis pathways and limited neurodegeneration in a knock-in Sod1 mutant mouse model of ALS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539444. [PMID: 37205335 PMCID: PMC10187330 DOI: 10.1101/2023.05.05.539444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder affecting brain and spinal cord motor neurons. Mutations in the copper/zinc superoxide dismutase gene ( SOD1 ) are associated with ∼20% of inherited and 1-2% of sporadic ALS cases. Much has been learned from mice expressing transgenic copies of mutant SOD1, which typically involve high-level transgene expression, thereby differing from ALS patients expressing one mutant gene copy. To generate a model that more closely represents patient gene expression, we created a knock-in point mutation (G85R, a human ALS-causing mutation) in the endogenous mouse Sod1 gene, leading to mutant SOD1 G85R protein expression. Heterozygous Sod1 G85R mutant mice resemble wild type, whereas homozygous mutants have reduced body weight and lifespan, a mild neurodegenerative phenotype, and express very low mutant SOD1 protein levels with no detectable SOD1 activity. Homozygous mutants exhibit partial neuromuscular junction denervation at 3-4 months of age. Spinal cord motor neuron transcriptome analyses of homozygous Sod1 G85R mice revealed up-regulation of cholesterol synthesis pathway genes compared to wild type. Transcriptome and phenotypic features of these mice are similar to Sod1 knock-out mice, suggesting the Sod1 G85R phenotype is largely driven by loss of SOD1 function. By contrast, cholesterol synthesis genes are down-regulated in severely affected human TgSOD1 G93A transgenic mice at 4 months. Our analyses implicate dysregulation of cholesterol or related lipid pathway genes in ALS pathogenesis. The Sod1 G85R knock-in mouse is a useful ALS model to examine the importance of SOD1 activity in control of cholesterol homeostasis and motor neuron survival. SIGNIFICANCE STATEMENT Amyotrophic lateral sclerosis is a devastating disease involving the progressive loss of motor neurons and motor function for which there is currently no cure. Understanding biological mechanisms leading to motor neuron death is critical for developing new treatments. Using a new knock-in mutant mouse model carrying a Sod1 mutation that causes ALS in patients, and in the mouse, causes a limited neurodegenerative phenotype similar to Sod1 loss-of-function, we show that cholesterol synthesis pathway genes are up-regulated in mutant motor neurons, whereas the same genes are down-regulated in transgenic SOD1 mice with a severe phenotype. Our data implicate dysregulation of cholesterol or other related lipid genes in ALS pathogenesis and provide new insights that could contribute to strategies for disease intervention.
Collapse
|
45
|
Nemtsova Y, Steinert BL, Wharton KA. Compartment specific mitochondrial dysfunction in Drosophila knock-in model of ALS reversed by altered gene expression of OXPHOS subunits and pro-fission factor Drp1. Mol Cell Neurosci 2023; 125:103834. [PMID: 36868541 DOI: 10.1016/j.mcn.2023.103834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal multisystem neurodegenerative disease, characterized by a loss in motor function. ALS is genetically diverse, with mutations in genes ranging from those regulating RNA metabolism, like TAR DNA-binding protein (TDP-43) and Fused in sarcoma (FUS), to those that act to maintain cellular redox homeostasis, like superoxide dismutase 1 (SOD1). Although varied in genetic origin, pathogenic and clinical commonalities are clearly evident between cases of ALS. Defects in mitochondria is one such common pathology, thought to occur prior to, rather than as a consequence of symptom onset, making these organelles a promising therapeutic target for ALS, as well as other neurodegenerative diseases. Depending on the homeostatic needs of neurons throughout life, mitochondria are normally shuttled to different subcellular compartments to regulate metabolite and energy production, lipid metabolism, and buffer calcium. While originally considered a motor neuron disease due to the dramatic loss in motor function accompanied by motor neuron cell death in ALS patients, many studies have now implicated non-motor neurons and glial cells alike. Defects in non-motor neuron cell types often preceed motor neuron death suggesting their dysfunction may initiate and/or facilitate the decline in motor neuron health. Here, we investigate mitochondria in a Drosophila Sod1 knock-in model of ALS. In depth, in vivo, examination reveals mitochondrial dysfunction evident prior to onset of motor neuron degeneration. Genetically encoded redox biosensors identify a general disruption in the electron transport chain (ETC). Compartment specific abnormalities in mitochondrial morphology is observed in diseased sensory neurons, accompanied by no apparent defects in the axonal transport machinery, but instead an increase in mitophagy in synaptic regions. The decrease in networked mitochondria at the synapse is reversed upon downregulation of the pro-fission factor Drp1. Furthermore, altered expression of specific OXPHOS subunits reverses ALS-associated defects in mitochondrial morphology and function.
Collapse
Affiliation(s)
- Y Nemtsova
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, RI 02912, United States.
| | - B L Steinert
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, RI 02912, United States.
| | - K A Wharton
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, RI 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
46
|
Ezzat K, Sturchio A, Espay AJ. The shift to a proteinopenia paradigm in neurodegeneration. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:23-32. [PMID: 36803814 DOI: 10.1016/b978-0-323-85555-6.00001-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The toxic proteinopathy paradigm has defined neurodegenerative disorders for over a century. This gain-of-function (GOF) framework posited that proteins become toxic when turned into amyloids (pathology), predicting that lowering its levels would translate into clinical benefits. Genetic observations used to support a GOF framework are equally compatible with a loss-of-function (LOF) framework, as the soluble pool of proteins rendered unstable by these mutations (e.g., APP in Alzheimer's disease, SNCA in Parkinson's disease) aggregate, becoming depleted. In this review, we highlight misconceptions that have prevented LOF from gaining currency. Some of these misconceptions include no phenotype in knock-out animals (there is neurodegenerative phenotype in knock-out animals) and high levels of proteins in patients (patients have lower levels of the proteins involved in neurodegeneration than healthy age-matched controls). We also expose the internal contradictions within the GOF framework, namely that (1) pathology can have both pathogenic and protective roles; (2) the neuropathology gold standard for diagnosis can be present in normal individuals and absent in those affected; (3) oligomers are the toxic species even if they are ephemeral and decrease over time. We therefore advocate for a paradigm shift from proteinopathy (GOF) to proteinopenia (LOF) based on the universal depletion of soluble functional proteins in neurodegenerative diseases (low amyloid-β 42 in Alzheimer's disease, low α-synuclein in Parkinson's disease, and low tau in progressive supranuclear palsy) and supported by the confluence of biologic, thermodynamic, and evolutionary principles with proteins having evolved to perform a function, not to become toxic, and where protein depletion is consequential. Such shift to a Proteinopenia paradigm is necessary to examining the safety and efficacy of protein replacement strategies instead of perpetuating a therapeutic paradigm with further antiprotein permutations.
Collapse
Affiliation(s)
- Kariem Ezzat
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Andrea Sturchio
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, Stockholm, Sweden; James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
47
|
Evidence and Metabolic Implications for a New Non-Canonical Role of Cu-Zn Superoxide Dismutase. Int J Mol Sci 2023; 24:ijms24043230. [PMID: 36834640 PMCID: PMC9966940 DOI: 10.3390/ijms24043230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Copper-zinc superoxide dismutase 1 (SOD1) has long been recognized as a major redox enzyme in scavenging superoxide radicals. However, there is little information on its non-canonical role and metabolic implications. Using a protein complementation assay (PCA) and pull-down assay, we revealed novel protein-protein interactions (PPIs) between SOD1 and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) or epsilon (YWHAE) in this research. Through site-directed mutagenesis of SOD1, we studied the binding conditions of the two PPIs. Forming the SOD1 and YWHAE or YWHAZ protein complex enhanced enzyme activity of purified SOD1 in vitro by 40% (p < 0.05) and protein stability of over-expressed intracellular YWHAE (18%, p < 0.01) and YWHAZ (14%, p < 0.05). Functionally, these PPIs were associated with lipolysis, cell growth, and cell survival in HEK293T or HepG2 cells. In conclusion, our findings reveal two new PPIs between SOD1 and YWHAE or YWHAZ and their structural dependences, responses to redox status, mutual impacts on the enzyme function and protein degradation, and metabolic implications. Overall, our finding revealed a new unorthodox role of SOD1 and will provide novel perspectives and insights for diagnosing and treating diseases related to the protein.
Collapse
|
48
|
Park JH, Nordström U, Tsiakas K, Keskin I, Elpers C, Mannil M, Heller R, Nolan M, Alburaiky S, Zetterström P, Hempel M, Schara-Schmidt U, Biskup S, Steinacker P, Otto M, Weishaupt J, Hahn A, Santer R, Marquardt T, Marklund SL, Andersen PM. The motor system is exceptionally vulnerable to absence of the ubiquitously expressed superoxide dismutase-1. Brain Commun 2023; 5:fcad017. [PMID: 36793789 PMCID: PMC9924500 DOI: 10.1093/braincomms/fcad017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/21/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
Superoxide dismutase-1 is a ubiquitously expressed antioxidant enzyme. Mutations in SOD1 can cause amyotrophic lateral sclerosis, probably via a toxic gain-of-function involving protein aggregation and prion-like mechanisms. Recently, homozygosity for loss-of-function mutations in SOD1 has been reported in patients presenting with infantile-onset motor neuron disease. We explored the bodily effects of superoxide dismutase-1 enzymatic deficiency in eight children homozygous for the p.C112Wfs*11 truncating mutation. In addition to physical and imaging examinations, we collected blood, urine and skin fibroblast samples. We used a comprehensive panel of clinically established analyses to assess organ function and analysed oxidative stress markers, antioxidant compounds, and the characteristics of the mutant Superoxide dismutase-1. From around 8 months of age, all patients exhibited progressive signs of both upper and lower motor neuron dysfunction, cerebellar, brain stem, and frontal lobe atrophy and elevated plasma neurofilament concentration indicating ongoing axonal damage. The disease progression seemed to slow down over the following years. The p.C112Wfs*11 gene product is unstable, rapidly degraded and no aggregates were found in fibroblast. Most laboratory tests indicated normal organ integrity and only a few modest deviations were found. The patients displayed anaemia with shortened survival of erythrocytes containing decreased levels of reduced glutathione. A variety of other antioxidants and oxidant damage markers were within normal range. In conclusion, non-neuronal organs in humans show a remarkable tolerance to absence of Superoxide dismutase-1 enzymatic activity. The study highlights the enigmatic specific vulnerability of the motor system to both gain-of-function mutations in SOD1 and loss of the enzyme as in the here depicted infantile superoxide dismutase-1 deficiency syndrome.
Collapse
Affiliation(s)
- Julien H Park
- Department of Clinical Sciences, Neurosciences, Umeå University, 901 87 Umeå, Sweden,Department of General Paediatrics, University of Münster, 48149 Münster, Germany
| | - Ulrika Nordström
- Department of Clinical Sciences, Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Konstantinos Tsiakas
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Isil Keskin
- Department of Medical Biosciences, Pathology, Umeå University, 901 85 Umeå, Sweden
| | - Christiane Elpers
- Department of General Paediatrics, University of Münster, 48149 Münster, Germany
| | - Manoj Mannil
- Clinic for Radiology, University Hospital Münster, WWU University of Münster, 48149 Münster, Germany
| | - Raoul Heller
- Starship Children’s Health, Auckland City Hospital, Auckland 1142, New Zealand
| | - Melinda Nolan
- Starship Children’s Health, Auckland City Hospital, Auckland 1142, New Zealand
| | - Salam Alburaiky
- Starship Children’s Health, Auckland City Hospital, Auckland 1142, New Zealand
| | - Per Zetterström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Maja Hempel
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany,Current address: Institute of Human Genetics, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Saskia Biskup
- CeGAT GmbH and Praxis für Humangenetik Tübingen, 72076 Tübingen, Germany
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jochen Weishaupt
- Division for Neurodegenerative Diseases, Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University, 35392 Giessen, Germany
| | - René Santer
- Department of Paediatrics, University Medical Centre Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thorsten Marquardt
- Department of General Paediatrics, University of Münster, 48149 Münster, Germany
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Peter M Andersen
- Correspondence to: Peter Munch Andersen Department of Clinical Science, Neurosciences Umeå University, SE-901 85 Umeå, Sweden E-mail:
| |
Collapse
|
49
|
Gao F, Sun J, Yao M, Song Y, Yi H, Yang M, Ni Q, Kong J, Yuan H, Sun B, Wang Y. SERS "hot spot" enhance-array assay for misfolded SOD1 correlated with white matter lesions and aging. Anal Chim Acta 2023; 1238:340163. [PMID: 36464456 DOI: 10.1016/j.aca.2022.340163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022]
Abstract
Misfolding of superoxide dismutase-1 (SOD1) has been correlated with many neurodegenerative diseases, such as Amyotrophic lateral sclerosis's and Alzheimer's among others. However, it is unclear whether misfolded SOD1 plays a role in another neurodegenerative disease of white matter lesions (WMLs). In this study, a sensitive and specific method based on SERS technique was proposed for quantitative detection of misfolded SOD1 content in WMLs. To fabricate the double antibodysandwich substrates for SERS detection, gold nanostars modified with capture antibody were immobilized on glass substrates to prepare active SERS substrates, and then SERS probes conjugated with a Raman reporter and a specific target antibody were coupled with active SERS substrates. This SERS substrates had been employed for quantitative detection of misfolded SOD1 levels in WMLs and exhibited excellent stability, reliability, and accuracy. Moreover, experimental results indicated that the level of misfolded SOD1 increased with the increase in age and the degree of WMLs. Hence, misfolded SOD1 may be a potential blood marker for WMLs and aging. Meanwhile, SERS-based gold nanostars have great clinical application potential in the screening, diagnosis and treatment of WMLs.
Collapse
Affiliation(s)
- Feng Gao
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, China
| | - Minmin Yao
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Yanan Song
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China; Medical College of Qingdao University, Qingdao, 266021, China
| | - Hui Yi
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Mingfeng Yang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, 271000, Shandong, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, Canada
| | - Hui Yuan
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China.
| | - Baoliang Sun
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China.
| | - Ying Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China.
| |
Collapse
|
50
|
Vander Wende HM, Gopi M, Onyundo M, Medrano C, Adanlawo T, Brar GA. Meiotic resetting of the cellular Sod1 pool is driven by protein aggregation, degradation, and transient LUTI-mediated repression. J Biophys Biochem Cytol 2023; 222:213795. [PMID: 36622328 PMCID: PMC9836244 DOI: 10.1083/jcb.202206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/28/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Gametogenesis requires packaging of the cellular components needed for the next generation. In budding yeast, this process includes degradation of many mitotically stable proteins, followed by their resynthesis. Here, we show that one such case-Superoxide dismutase 1 (Sod1), a protein that commonly aggregates in human ALS patients-is regulated by an integrated set of events, beginning with the formation of pre-meiotic Sod1 aggregates. This is followed by degradation of a subset of the prior Sod1 pool and clearance of Sod1 aggregates. As degradation progresses, Sod1 protein production is transiently blocked during mid-meiotic stages by transcription of an extended and poorly translated SOD1 mRNA isoform, SOD1LUTI. Expression of SOD1LUTI is induced by the Unfolded Protein Response, and it acts to repress canonical SOD1 mRNA expression. SOD1LUTI is no longer expressed following the meiotic divisions, enabling a resurgence of canonical mRNA and synthesis of new Sod1 protein such that gametes inherit a full complement of Sod1 protein. Failure to aggregate and degrade Sod1 results in reduced gamete fitness in the presence of oxidants, highlighting the importance of this regulation. Investigation of Sod1 during yeast gametogenesis, an unusual cellular context in which Sod1 levels are tightly regulated, could shed light on conserved aspects of its aggregation and degradation, with relevance to understanding Sod1's role in human disease.
Collapse
Affiliation(s)
- Helen M. Vander Wende
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Mounika Gopi
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Megan Onyundo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Claudia Medrano
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Gloria Ann Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA,Correspondence to Gloria A. Brar:
| |
Collapse
|