1
|
Farias HR, Ramos JMO, Griesang CT, Santos L, Junior OVR, Souza DG, Ferreira FS, Somacal S, Martins LAM, de Souza DOG, Moreira JCF, Wyse ATS, Guma FTCR, de Oliveira J. LDL Exposure Disrupts Mitochondrial Function and Dynamics in a Hippocampal Neuronal Cell Line. Mol Neurobiol 2025; 62:6939-6950. [PMID: 39302616 DOI: 10.1007/s12035-024-04476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
Hypercholesterolemia has been associated with cognitive dysfunction and neurodegenerative diseases. Moreover, this metabolic condition disrupts the blood-brain barrier, allowing low-density lipoprotein (LDL) to enter the central nervous system. Thus, we investigated the effects of LDL exposure on mitochondrial function in a mouse hippocampal neuronal cell line (HT-22). HT-22 cells were exposed to human LDL (50 and 300 μg/mL) for 24 h. After this, intracellular lipid droplet (LD) content, cell viability, cell death, and mitochondrial parameters were assessed. We found that the higher LDL concentration increases LD content compared with control. Both concentrations increased the number of Annexin V-positive cells, indicating apoptosis. Moreover, in mitochondrial parameters, the LDL exposure on hippocampal neuronal cell line leads to a decrease in mitochondrial complexes I and II activities in both concentrations tested and a reduction in Mitotracker™ Red fluorescence and Mitotracker™ Red and Mitotracker™ Green ratio in the higher concentration, indicating mitochondrial impairment. The LDL incubation induces mitochondrial superoxide production and decreases superoxide dismutase activity in the lower concentration in HT-22 cells. Finally, LDL exposure increases the expression of genes associated with mitochondrial fusion (OPA1 and mitofusin 2) in the lower concentration. In conclusion, our findings suggest that LDL exposure induces mitochondrial dysfunction and modulates mitochondrial dynamics in the hippocampal neuronal cells.
Collapse
Affiliation(s)
- Hémelin Resende Farias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jessica Marques Obelar Ramos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Caroline Tainá Griesang
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucas Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Osmar Vieira Ramires Junior
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Debora Guerini Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Silva Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sabrina Somacal
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Leo Anderson Meira Martins
- Programa de Pós-Graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo Onofre Gomes de Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fátima Theresinha Costa Rodrigues Guma
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Stavrides P, Goulbourne CN, Peddy J, Huo C, Rao M, Khetarpal V, Marchionini DM, Nixon RA, Yang DS. mTOR inhibition in Q175 Huntington's disease model mice facilitates neuronal autophagy and mutant huntingtin clearance. eLife 2025; 14:RP104979. [PMID: 40392702 DOI: 10.7554/elife.104979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
Huntington's disease (HD) is caused by the expansion of the polyglutamine stretch in huntingtin protein (HTT) resulting in hallmark aggresomes/inclusion bodies (IBs) composed of mutant huntingtin protein (mHTT) and its fragments. Stimulating autophagy to enhance mHTT clearance is considered a potential therapeutic strategy for HD. Our recent evaluation of the autophagic-lysosomal pathway (ALP) in human HD brain reveals upregulated lysosomal biogenesis and relatively normal autophagy flux in early Vonsattel grade brains, but impaired autolysosome clearance in late grade brains, suggesting that autophagy stimulation could have therapeutic benefits as an early clinical intervention. Here, we tested this hypothesis by crossing the Q175 HD knock-in model with our autophagy reporter mouse TRGL (Thy-1-RFP-GFP-LC3) to investigate in vivo neuronal ALP dynamics. In the Q175 and/or TRGL/Q175 mice, mHTT was detected in autophagic vacuoles and also exhibited a high level of colocalization with autophagy receptors p62/SQSTM1 and ubiquitin in the IBs. Compared to the robust lysosomal pathology in late-stage human HD striatum, ALP alterations in Q175 models are also late-onset but milder, that included a lowered phospho-p70S6K level, lysosome depletion, and autolysosome elevation including more poorly acidified autolysosomes and larger-sized lipofuscin granules, reflecting impaired autophagic flux. Administration of a mTOR inhibitor to 6-mo-old TRGL/Q175 normalized lysosome number, ameliorated aggresome pathology while reducing mHTT-, p62-, and ubiquitin-immunoreactivities, suggesting the beneficial potential of autophagy modulation at early stages of disease progression.
Collapse
Affiliation(s)
- Philip Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, United States
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, United States
| | - James Peddy
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, United States
| | - Chunfeng Huo
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, United States
| | - Mala Rao
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, United States
| | | | | | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, United States
- Department of Cell Biology, New York University Grossman School of Medicine, New York, United States
| | - Dun-Sheng Yang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, United States
| |
Collapse
|
3
|
Jodeiri Farshbaf M, Matos TA, Niblo K, Alokam Y, Ables JL. STZ-induced hyperglycemia differentially influences mitochondrial distribution and morphology in the habenulointerpeduncular circuit. Front Cell Neurosci 2024; 18:1432887. [PMID: 39763617 PMCID: PMC11700986 DOI: 10.3389/fncel.2024.1432887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/29/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Diabetes is a metabolic disorder of glucose homeostasis that is a significant risk factor for neurodegenerative diseases, such as Alzheimer's disease, as well as mood disorders, which often precede neurodegenerative conditions. We examined the medial habenulainterpeduncular nucleus (MHb-IPN), as this circuit plays crucial roles in mood regulation, has been linked to the development of diabetes after smoking, and is rich in cholinergic neurons, which are affected in other brain areas in Alzheimer's disease. Methods This study aimed to investigate the impact of streptozotocin (STZ)-induced hyperglycemia, a type 1 diabetes model, on mitochondrial and lipid homeostasis in 4% paraformaldehyde-fixed sections from the MHb and IPN of C57BL/6 J male mice, using a recently developed automated pipeline for mitochondrial analysis in confocal images. We examined different time points after STZ-induced diabetes onset to determine how the brain responded to chronic hyperglycemia, with the limitation that mitochondria and lipids were not examined with respect to cell type or intracellular location. Results Mitochondrial distribution and morphology differentially responded to hyperglycemia depending on time and brain area. Six weeks after STZ treatment, mitochondria in the ventral MHb and dorsal IPN increased in number and exhibited altered morphology, but no changes were observed in the lateral habenula (LHb) or ventral IPN. Strikingly, mitochondrial numbers returned to normal dynamics at 12 weeks. Both blood glucose level and glycated hemoglobin (HbA1C) correlated with mitochondrial dynamics in ventral MHb, whereas only HbA1C correlated in the IPN. We also examined lipid homeostasis using BODIPY staining for neutral lipids in this model given that diabetes is associated with disrupted lipid homeostasis. BODIPY staining intensity was unchanged in the vMHb of STZ-treated mice but increased in the IPN and VTA and decreased in the LHb at 12 weeks. Interestingly, areas that demonstrated changes in mitochondria had little change in lipid staining and vice versa. Discussion This study is the first to describe the specific impacts of diabetes on mitochondria in the MHb-IPN circuit and suggests that the cholinergic MHb is uniquely sensitive to diabetesinduced hyperglycemia. Further studies are needed to understand the functional and behavioral implications of these findings.
Collapse
Affiliation(s)
- Mohammad Jodeiri Farshbaf
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Taelor A. Matos
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- PREP Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristi Niblo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Jessica L. Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn School of Medicine at Mount Sinai, Diabetes Obesity Metabolism Institute, New York, NY, United States
| |
Collapse
|
4
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
5
|
Manceau R, Majeur D, Cherian CM, Miller CJ, Wat LW, Fisher JD, Labarre A, Hollman S, Prakash S, Audet S, Chao CF, Depaauw-Holt L, Rogers B, Bosson A, Xi JJY, Callow CAS, Yoosefi N, Shahraki N, Xia YH, Hui A, VanderZwaag J, Bouyakdan K, Rodaros D, Kotchetkov P, Daneault C, Fallahpour G, Tetreault M, Tremblay MÈ, Ruiz M, Lacoste B, Parker JA, Murphy-Royal C, Huan T, Fulton S, Rideout EJ, Alquier T. Neuronal lipid droplets play a conserved and sex-biased role in maintaining whole-body energy homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613929. [PMID: 39345476 PMCID: PMC11429983 DOI: 10.1101/2024.09.19.613929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Lipids are essential for neuron development and physiology. Yet, the central hubs that coordinate lipid supply and demand in neurons remain unclear. Here, we combine invertebrate and vertebrate models to establish the presence and functional significance of neuronal lipid droplets (LD) in vivo. We find that LD are normally present in neurons in a non-uniform distribution across the brain, and demonstrate triglyceride metabolism enzymes and lipid droplet-associated proteins control neuronal LD formation through both canonical and recently-discovered pathways. Appropriate LD regulation in neurons has conserved and male-biased effects on whole-body energy homeostasis across flies and mice, specifically neurons that couple environmental cues with energy homeostasis. Mechanistically, LD-derived lipids support neuron function by providing phospholipids to sustain mitochondrial and endoplasmic reticulum homeostasis. Together, our work identifies a conserved role for LD as the organelle that coordinates lipid management in neurons, with implications for our understanding of mechanisms that preserve neuronal lipid homeostasis and function in health and disease.
Collapse
Affiliation(s)
- Romane Manceau
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Danie Majeur
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Celena M Cherian
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Colin J Miller
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Lianna W Wat
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Jasper D Fisher
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Audrey Labarre
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Serena Hollman
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Sanjana Prakash
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Sébastien Audet
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Charlotte F Chao
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Lewis Depaauw-Holt
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Benjamin Rogers
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Anthony Bosson
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Joyce J Y Xi
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Catrina A S Callow
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Niyoosha Yoosefi
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Niki Shahraki
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Alisa Hui
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Khalil Bouyakdan
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Demetra Rodaros
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Pavel Kotchetkov
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Caroline Daneault
- Montreal Heart Institute Research Centre, Montreal, Canada. QC, Canada
| | - Ghazal Fallahpour
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Martine Tetreault
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matthieu Ruiz
- Department of Nutrition Université de Montréal, Montréal, QC, Canada
- Montreal Heart Institute Research Centre, Montreal, Canada. QC, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - J A Parker
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Ciaran Murphy-Royal
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Tao Huan
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Fulton
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Nutrition Université de Montréal, Montréal, QC, Canada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Thierry Alquier
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Engelhardt PM, Veronese M, Eryiğit AA, Das A, Kaczmarek AT, Rugarli EI, Schmalz HG. A pH-Sensitive Double Chromophore Fluorescent Dye for Live-Tracking of Lipophagy. Chemistry 2024; 30:e202400808. [PMID: 38506349 DOI: 10.1002/chem.202400808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
Lipid droplet (LD) degradation provides metabolic energy and important building blocks for various cellular processes. The two major LD degradation pathways include autophagy (lipophagy), which involves delivery of LDs to autolysosomes, and lipolysis, which is mediated by lipases. While abnormalities in LD degradation are associated with various pathological disorders, our understanding of lipophagy is still rudimentary. In this study, we describe the development of a lipophilic dye containing two fluorophores, one of which is pH-sensitive and the other pH-stable. We further demonstrate that this "Lipo-Fluddy" can be used to visualize and quantify lipophagy in living cells, in an easily applicable and protein label-free approach. After estimating the ability of compound candidates to penetrate LDs, we synthesized several BODIPY and (pH-switchable) rhodol dyes, whose fluorescence properties (incl. their photophysical compatibility) were analyzed. Of three Lipo-Fluddy dyes synthesized, one exhibited the desired properties and allowed observation of lipophagy by fluorescence microscopy. Also, this dye proved to be non-toxic and suitable for the examination of various cell lines. Moreover, a method was developed to quantify the lipophagy process using flow cytometry, which could be applied in the future in the identification of lipophagy-related genes or in the screening of potential drugs against lipophagy-related diseases.
Collapse
Affiliation(s)
- Pascal M Engelhardt
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Matteo Veronese
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alpay A Eryiğit
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Anushka Das
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alexander T Kaczmarek
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Elena I Rugarli
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| |
Collapse
|
7
|
Della Torre L, Beato A, Capone V, Carannante D, Verrilli G, Favale G, Del Gaudio N, Megchelenbrink WL, Benedetti R, Altucci L, Carafa V. Involvement of regulated cell deaths in aging and age-related pathologies. Ageing Res Rev 2024; 95:102251. [PMID: 38428821 DOI: 10.1016/j.arr.2024.102251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Aging is a pathophysiological process that causes a gradual and permanent reduction in all biological system functions. The phenomenon is caused by the accumulation of endogenous and exogenous damage as a result of several stressors, resulting in significantly increased risks of various age-related diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. In addition, aging appears to be connected with mis-regulation of programmed cell death (PCD), which is required for regular cell turnover in many tissues sustained by cell division. According to the recent nomenclature, PCDs are physiological forms of regulated cell death (RCD) useful for normal tissue development and turnover. To some extent, some cell types are connected with a decrease in RCD throughout aging, whereas others are related with an increase in RCD. Perhaps the widespread decline in RCD markers with age is due to a slowdown of the normal rate of homeostatic cell turnover in various adult tissues. As a result, proper RCD regulation requires a careful balance of many pro-RCD and anti-RCD components, which may render cell death signaling pathways more sensitive to maladaptive signals during aging. Current research, on the other hand, tries to further dive into the pathophysiology of aging in order to develop therapies that improve health and longevity. In this scenario, RCD handling might be a helpful strategy for human health since it could reduce the occurrence and development of age-related disorders, promoting healthy aging and lifespan. In this review we propose a general overview of the most recent RCD mechanisms and their connection with the pathophysiology of aging in order to promote targeted therapeutic strategies.
Collapse
Affiliation(s)
- Laura Della Torre
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Antonio Beato
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Vincenza Capone
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Daniela Carannante
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Giulia Verrilli
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Gregorio Favale
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Nunzio Del Gaudio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Wouter Leonard Megchelenbrink
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy; Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, the Netherlands
| | - Rosaria Benedetti
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy; Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino 83031, Italy; IEOS CNR, Napoli 80138, Italy; Programma di Epigenetica Medica, A.O.U. "Luigi Vanvitelli", Piazza Luigi Miraglia 2, Napoli 80138, Italy
| | - Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", Vico De Crecchio 7, Napoli 80138, Italy; Biogem, Molecular Biology and Genetics Research Institute, Ariano Irpino 83031, Italy.
| |
Collapse
|
8
|
Dakterzada F, Jové M, Huerto R, Carnes A, Sol J, Pamplona R, Piñol-Ripoll G. Cerebrospinal fluid neutral lipids predict progression from mild cognitive impairment to Alzheimer's disease. GeroScience 2024; 46:683-696. [PMID: 37999901 PMCID: PMC10828158 DOI: 10.1007/s11357-023-00989-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/13/2023] [Indexed: 11/25/2023] Open
Abstract
Genetic, metabolic, and clinical evidence links lipid dysregulation to an increased risk of Alzheimer's disease (AD). However, the role of lipids in the pathophysiological processes of AD and its clinical progression is unclear. We investigated the association between cerebrospinal fluid (CSF) lipidome and the pathological hallmarks of AD, progression from mild cognitive impairment (MCI) to AD, and the rate of cognitive decline in MCI patients. The CSF lipidome was analyzed by liquid chromatography coupled to mass spectrometry in an LC-ESI-QTOF-MS/MS platform for 209 participants: 91 AD, 92 MCI, and 26 control participants. The MCI patients were followed up for a median of 58 (± 12.5) months to evaluate their clinical progression to AD. Forty-eight (52.2%) MCI patients progressed to AD during follow-up. We found that higher CSF levels of hexacosanoic acid and ceramide Cer(d38:4) were associated with an increased risk of amyloid beta 42 (Aβ42) positivity in CSF, while levels of phosphatidylethanolamine PE(40:0) were associated with a reduced risk. Higher CSF levels of sphingomyelin SM(30:1) were positively associated with pathological levels of phosphorylated tau in CSF. Cholesteryl ester CE(11D3:1) and an unknown lipid were recognized as the most associated lipid species with MCI to AD progression. Furthermore, TG(O-52:2) was identified as the lipid most strongly associated with the rate of progression. Our results indicate the involvement of membrane and intracellular neutral lipids in the pathophysiological processes of AD and the progression from MCI to AD dementia. Therefore, CSF neutral lipids can be used as potential prognostic markers for AD.
Collapse
Affiliation(s)
- Farida Dakterzada
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Hospital Universitari Santa Maria, IRBLleida, Rovira Roure No 44. 25198, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
| | - Raquel Huerto
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Hospital Universitari Santa Maria, IRBLleida, Rovira Roure No 44. 25198, Lleida, Spain
| | - Anna Carnes
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Hospital Universitari Santa Maria, IRBLleida, Rovira Roure No 44. 25198, Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
- Institut Català de La Salut, Lleida, Spain
- Research Support Unit Lleida, Fundació Institut Universitari Per a La Recerca a L'Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida, IRBLleida, Lleida, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Cognition and Behaviour Study Group, Hospital Universitari Santa Maria, IRBLleida, Rovira Roure No 44. 25198, Lleida, Spain.
| |
Collapse
|
9
|
Stańczykiewicz B, Łuc M, Banach M, Zabłocka A. Cystatins: unravelling the biological implications for neuroprotection. Arch Med Sci 2023; 20:157-166. [PMID: 38414464 PMCID: PMC10895963 DOI: 10.5114/aoms/171706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 02/29/2024] Open
Abstract
Cystatins, a family of proteins known for their inhibitory role against cysteine proteases, have garnered significant attention in the field of neurodegeneration. Numerous genetic, experimental, and clinical studies concerning cystatin C suggest it plays an important role in the course of neurodegenerative diseases. Its beneficial effects are associated with cysteine protease inhibition, impact on β-amyloid aggregation, as well as regulation of cell proliferation, autophagy, and apoptosis. Cystatin isolated from chicken egg white, called ovocystatin, has been widely used in medical and pharmaceutical research due to its structural and biological similarities to human cystatin C. This article focuses on the potential use of cystatins, with special emphasis on easily obtained ovocystatin, in the treatment of neurodegenerative diseases, such as dementia. The current evidence on cystatin use has shed light on its mechanisms of action and therapeutic implications for neuroprotection and maintenance of cognitive functions.
Collapse
Affiliation(s)
- Bartłomiej Stańczykiewicz
- Division of Consultation Psychiatry and Neuroscience, Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Mateusz Łuc
- Division of Consultation Psychiatry and Neuroscience, Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Zabłocka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
10
|
Liu S, Chen M, Wang Y, Lei Y, Huang T, Zhang Y, Lam SM, Li H, Qi S, Geng J, Lu K. The ER calcium channel Csg2 integrates sphingolipid metabolism with autophagy. Nat Commun 2023; 14:3725. [PMID: 37349354 PMCID: PMC10287731 DOI: 10.1038/s41467-023-39482-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Sphingolipids are ubiquitous components of membranes and function as bioactive lipid signaling molecules. Here, through genetic screening and lipidomics analyses, we find that the endoplasmic reticulum (ER) calcium channel Csg2 integrates sphingolipid metabolism with autophagy by regulating ER calcium homeostasis in the yeast Saccharomyces cerevisiae. Csg2 functions as a calcium release channel and maintains calcium homeostasis in the ER, which enables normal functioning of the essential sphingolipid synthase Aur1. Under starvation conditions, deletion of Csg2 causes increases in calcium levels in the ER and then disturbs Aur1 stability, leading to accumulation of the bioactive sphingolipid phytosphingosine, which specifically and completely blocks autophagy and induces loss of starvation resistance in cells. Our findings indicate that calcium homeostasis in the ER mediated by the channel Csg2 translates sphingolipid metabolism into autophagy regulation, further supporting the role of the ER as a signaling hub for calcium homeostasis, sphingolipid metabolism and autophagy.
Collapse
Affiliation(s)
- Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Yichang Wang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqing Lei
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yabin Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- LipidALL Technologies Company Limited, Changzhou, 213022, China
| | - Huihui Li
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China.
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Bresgen N, Kovacs M, Lahnsteiner A, Felder TK, Rinnerthaler M. The Janus-Faced Role of Lipid Droplets in Aging: Insights from the Cellular Perspective. Biomolecules 2023; 13:912. [PMID: 37371492 PMCID: PMC10301655 DOI: 10.3390/biom13060912] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
It is widely accepted that nine hallmarks-including mitochondrial dysfunction, epigenetic alterations, and loss of proteostasis-exist that describe the cellular aging process. Adding to this, a well-described cell organelle in the metabolic context, namely, lipid droplets, also accumulates with increasing age, which can be regarded as a further aging-associated process. Independently of their essential role as fat stores, lipid droplets are also able to control cell integrity by mitigating lipotoxic and proteotoxic insults. As we will show in this review, numerous longevity interventions (such as mTOR inhibition) also lead to strong accumulation of lipid droplets in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and mammalian cells, just to name a few examples. In mammals, due to the variety of different cell types and tissues, the role of lipid droplets during the aging process is much more complex. Using selected diseases associated with aging, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and cardiovascular disease, we show that lipid droplets are "Janus"-faced. In an early phase of the disease, lipid droplets mitigate the toxicity of lipid peroxidation and protein aggregates, but in a later phase of the disease, a strong accumulation of lipid droplets can cause problems for cells and tissues.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Melanie Kovacs
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Angelika Lahnsteiner
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| | - Thomas Klaus Felder
- Department of Laboratory Medicine, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (N.B.)
| |
Collapse
|
12
|
Rao MV, Darji S, Stavrides PH, Goulbourne CN, Kumar A, Yang DS, Yoo L, Peddy J, Lee JH, Yuan A, Nixon RA. Autophagy is a novel pathway for neurofilament protein degradation in vivo. Autophagy 2023; 19:1277-1292. [PMID: 36131358 PMCID: PMC10012948 DOI: 10.1080/15548627.2022.2124500] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
How macroautophagy/autophagy influences neurofilament (NF) proteins in neurons, a frequent target in neurodegenerative diseases and injury, is not known. NFs in axons have exceptionally long half-lives in vivo enabling formation of large stable supporting networks, but they can be rapidly degraded during Wallerian degeneration initiated by a limited calpain cleavage. Here, we identify autophagy as a previously unrecognized pathway for NF subunit protein degradation that modulates constitutive and inducible NF turnover in vivo. Levels of NEFL/NF-L, NEFM/NF-M, and NEFH/NF-H subunits rise substantially in neuroblastoma (N2a) cells after blocking autophagy either with the phosphatidylinositol 3-kinase (PtdIns3K) inhibitor 3-methyladenine (3-MA), by depleting ATG5 expression with shRNA, or by using both treatments. In contrast, activating autophagy with rapamycin significantly lowers NF levels in N2a cells. In the mouse brain, NF subunit levels increase in vivo after intracerebroventricular infusion of 3-MA. Furthermore, using tomographic confocal microscopy, immunoelectron microscopy, and biochemical fractionation, we demonstrate the presence of NF proteins intra-lumenally within autophagosomes (APs), autolysosomes (ALs), and lysosomes (LYs). Our findings establish a prominent role for autophagy in NF proteolysis. Autophagy may regulate axon cytoskeleton size and responses of the NF cytoskeleton to injury and disease.
Collapse
Affiliation(s)
- Mala V Rao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Philip H Stavrides
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Asok Kumar
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Dun-Sheng Yang
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Lang Yoo
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - James Peddy
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.,Cell Biology, NewYork University Langone Medical Center, NY, USA.,NYU Neuroscience Institute, New York University, New York, NY, USA
| |
Collapse
|
13
|
Bensalem J, Hein LK, Hassiotis S, Trim PJ, Proud CG, Heilbronn LK, Sargeant TJ. Modifying Dietary Protein Impacts mTOR Signaling and Brain Deposition of Amyloid β in a Knock-In Mouse Model of Alzheimer Disease. J Nutr 2023; 153:1407-1419. [PMID: 36870538 DOI: 10.1016/j.tjnut.2023.02.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Alzheimer disease (AD) is a neurodegenerative condition defined by the build-up of amyloid plaques in the brain and intraneuronal tangles of the protein tau. Autophagy is a cellular cleaning process involved in the degradation of proteins, including proteins directly responsible for amyloid plaques, but its activity is compromised in AD. The mechanistic target of rapamycin complex (mTORC) 1 inhibits autophagy when activated by amino acids. OBJECTIVES We hypothesized that reducing amino acid intake by decreasing dietary protein could promote autophagy, which in turn could prevent amyloid plaque deposition in AD mice. METHODS Homozygote (2-mo-old) and heterozygote (4-mo-old) amyloid precursor protein NL-G-F mice, a model of brain amyloid deposition, were used in this study to test this hypothesis. Male and female mice were fed with isocaloric low-protein, control, or high-protein diets for 4 mo and killed for analysis. Locomotor performance was measured using the inverted screen test, and body composition was measured using EchoMRI. Samples were analyzed using western blotting, enzyme-linked immunosorbent assay, mass spectrometry, and immunohistochemical staining. RESULTS mTORC1 activity in the cerebral cortex was inversely covaried with protein consumption in both homozygote and heterozygote mice. Low-protein diet improved metabolic parameters and restored locomotor performance only in male homozygous mice. Dietary protein adjustment did not affect amyloid deposition in homozygous mice. However, in the heterozygous amyloid precursor protein NL-G-F mice, amyloid plaque was lower in male mice consuming the low protein compared with that in mice fed with the control diet. CONCLUSIONS This study showed that reducing protein intake reduces mTORC1 activity and may prevent amyloid accumulation, at least in male mice. Moreover, dietary protein is a tool that can be used to change mTORC1 activity and amyloid deposition in the mouse brain, and the murine brain's response to dietary protein is sex specific.
Collapse
Affiliation(s)
- Julien Bensalem
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Leanne K Hein
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Sofia Hassiotis
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Paul J Trim
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Leonie K Heilbronn
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; Nutrition, Metabolism & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Timothy J Sargeant
- Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
14
|
Garcia-Segura ME, Durainayagam BR, Liggi S, Graça G, Jimenez B, Dehghan A, Tzoulaki I, Karaman I, Elliott P, Griffin JL. Pathway-based integration of multi-omics data reveals lipidomics alterations validated in an Alzheimer's disease mouse model and risk loci carriers. J Neurochem 2023; 164:57-76. [PMID: 36326588 PMCID: PMC10107183 DOI: 10.1111/jnc.15719] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder. Despite increasing evidence of the importance of metabolic dysregulation in AD, the underlying metabolic changes that may impact amyloid plaque formation are not understood, particularly for late-onset AD. This study analyzed genome-wide association studies (GWAS), transcriptomics, and proteomics data obtained from several data repositories to obtain differentially expressed (DE) multi-omics elements in mouse models of AD. We characterized the metabolic modulation in these data sets using gene ontology, transcription factor, pathway, and cell-type enrichment analyses. A predicted lipid signature was extracted from genome-scale metabolic networks (GSMN) and subsequently validated in a lipidomic data set derived from cortical tissue of ABCA-7 null mice, a mouse model of one of the genes associated with late-onset AD. Moreover, a metabolome-wide association study (MWAS) was performed to further characterize the association between dysregulated lipid metabolism in human blood serum and genes associated with AD risk. We found 203 DE transcripts, 164 DE proteins, and 58 DE GWAS-derived mouse orthologs associated with significantly enriched metabolic biological processes. Lipid and bioenergetic metabolic pathways were significantly over-represented across the AD multi-omics data sets. Microglia and astrocytes were significantly enriched in the lipid-predominant AD-metabolic transcriptome. We also extracted a predicted lipid signature that was validated and robustly modeled class separation in the ABCA7 mice cortical lipidome, with 11 of these lipid species exhibiting statistically significant modulations. MWAS revealed 298 AD single nucleotide polymorphisms-metabolite associations, of which 70% corresponded to lipid classes. These results support the importance of lipid metabolism dysregulation in AD and highlight the suitability of mapping AD multi-omics data into GSMNs to identify metabolic alterations.
Collapse
Affiliation(s)
- Monica Emili Garcia-Segura
- Department of Brain Sciences, Imperial College London, London, UK.,Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Brenan R Durainayagam
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK
| | - Sonia Liggi
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Gonçalo Graça
- Section of Bioinformatics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Beatriz Jimenez
- Section of Bioanalytical Chemistry and the National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Abbas Dehghan
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK.,Department of Epidemiology and Biostatistics, Imperial College London, London, UK.,MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Ioanna Tzoulaki
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK.,Department of Epidemiology and Biostatistics, Imperial College London, London, UK.,National Institute for Health Research Imperial Biomedical Research Centre, Imperial College London, UK.,Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Ibrahim Karaman
- Section of Bioinformatics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Paul Elliott
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK.,Department of Epidemiology and Biostatistics, Imperial College London, London, UK.,MRC Centre for Environment and Health, Imperial College London, London, UK.,National Institute for Health Research Imperial Biomedical Research Centre, Imperial College London, UK
| | - Julian L Griffin
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK.,Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.,The Rowett Institute, University of Aberdeen, Aberdeen, Scotland
| |
Collapse
|
15
|
Garcia-Segura ME, Durainayagam BR, Liggi S, Graça G, Jimenez B, Dehghan A, Tzoulaki I, Karaman I, Elliott P, Griffin JL. Pathway-based integration of multi-omics data reveals lipidomics alterations validated in an Alzheimer's disease mouse model and risk loci carriers. J Neurochem 2023. [PMID: 36326588 DOI: 10.1101/2021.05.10.21255052v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder. Despite increasing evidence of the importance of metabolic dysregulation in AD, the underlying metabolic changes that may impact amyloid plaque formation are not understood, particularly for late-onset AD. This study analyzed genome-wide association studies (GWAS), transcriptomics, and proteomics data obtained from several data repositories to obtain differentially expressed (DE) multi-omics elements in mouse models of AD. We characterized the metabolic modulation in these data sets using gene ontology, transcription factor, pathway, and cell-type enrichment analyses. A predicted lipid signature was extracted from genome-scale metabolic networks (GSMN) and subsequently validated in a lipidomic data set derived from cortical tissue of ABCA-7 null mice, a mouse model of one of the genes associated with late-onset AD. Moreover, a metabolome-wide association study (MWAS) was performed to further characterize the association between dysregulated lipid metabolism in human blood serum and genes associated with AD risk. We found 203 DE transcripts, 164 DE proteins, and 58 DE GWAS-derived mouse orthologs associated with significantly enriched metabolic biological processes. Lipid and bioenergetic metabolic pathways were significantly over-represented across the AD multi-omics data sets. Microglia and astrocytes were significantly enriched in the lipid-predominant AD-metabolic transcriptome. We also extracted a predicted lipid signature that was validated and robustly modeled class separation in the ABCA7 mice cortical lipidome, with 11 of these lipid species exhibiting statistically significant modulations. MWAS revealed 298 AD single nucleotide polymorphisms-metabolite associations, of which 70% corresponded to lipid classes. These results support the importance of lipid metabolism dysregulation in AD and highlight the suitability of mapping AD multi-omics data into GSMNs to identify metabolic alterations.
Collapse
Affiliation(s)
- Monica Emili Garcia-Segura
- Department of Brain Sciences, Imperial College London, London, UK
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Brenan R Durainayagam
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK
| | - Sonia Liggi
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Gonçalo Graça
- Section of Bioinformatics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Beatriz Jimenez
- Section of Bioanalytical Chemistry and the National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Abbas Dehghan
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Ioanna Tzoulaki
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- National Institute for Health Research Imperial Biomedical Research Centre, Imperial College London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Ibrahim Karaman
- Section of Bioinformatics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Paul Elliott
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- MRC Centre for Environment and Health, Imperial College London, London, UK
- National Institute for Health Research Imperial Biomedical Research Centre, Imperial College London, UK
| | - Julian L Griffin
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UK-Dementia Research Institute (UK-DRI) at Imperial College London, London, UK
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- The Rowett Institute, University of Aberdeen, Aberdeen, Scotland
| |
Collapse
|
16
|
Dodge JC, Tamsett TJ, Treleaven CM, Taksir TV, Piepenhagen P, Sardi SP, Cheng SH, Shihabuddin LS. Glucosylceramide synthase inhibition reduces ganglioside GM3 accumulation, alleviates amyloid neuropathology, and stabilizes remote contextual memory in a mouse model of Alzheimer’s disease. Alzheimers Res Ther 2022; 14:19. [PMID: 35105352 PMCID: PMC8805417 DOI: 10.1186/s13195-022-00966-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022]
Abstract
Background Gangliosides are highly enriched in the brain and are critical for its normal development and function. However, in some rare neurometabolic diseases, a deficiency in lysosomal ganglioside hydrolysis is pathogenic and leads to early-onset neurodegeneration, neuroinflammation, demyelination, and dementia. Increasing evidence also suggests that more subtle ganglioside accumulation contributes to the pathogenesis of more common neurological disorders including Alzheimer’s disease (AD). Notably, ganglioside GM3 levels are elevated in the brains of AD patients and in several mouse models of AD, and plasma GM3 levels positively correlate with disease severity in AD patients. Methods Tg2576 AD model mice were fed chow formulated with a small molecule inhibitor of glucosylceramide synthase (GCSi) to determine whether reducing glycosphingolipid synthesis affected aberrant GM3 accumulation, amyloid burden, and disease manifestations in cognitive impairment. GM3 was measured with LC-MS, amyloid burden with ELISA and amyloid red staining, and memory was assessed using the contextual fear chamber test. Results GCSi mitigated soluble Aβ42 accumulation in the brains of AD model mice when treatment was started prophylactically. Remarkably, GCSi treatment also reduced soluble Aβ42 levels and amyloid plaque burden in aged (i.e., 70 weeks old) AD mice with preexisting neuropathology. Our analysis of contextual memory in Tg2576 mice showed that impairments in remote (cortical-dependent) memory consolidation preceded deficits in short-term (hippocampal-dependent) contextual memory, which was consistent with soluble Aβ42 accumulation occurring more rapidly in the cortex of AD mice compared to the hippocampus. Notably, GCSi treatment significantly stabilized remote memory consolidation in AD mice—especially in mice with enhanced cognitive training. This finding was consistent with GCSi treatment lowering aberrant GM3 accumulation in the cortex of AD mice. Conclusions Collectively, our results indicate that glycosphingolipids regulated by GCS are important modulators of Aβ neuropathology and that glycosphingolipid homeostasis plays a critical role in the consolidation of remote memories. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00966-0.
Collapse
|
17
|
Nikolaeva SD, Fock EM, Parnova RG. Lipopolysaccharide Stimulates Triglyceride Accumulation and Lipid Droplet Biogenesis in PC12 Cells: the Role of Carnitine Palmitoyltransferase 1 Down-Regulation and Suppression of Fatty Acid Oxidation. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Liu J, Yang J. Mitochondria-associated membranes: A hub for neurodegenerative diseases. Biomed Pharmacother 2022; 149:112890. [PMID: 35367757 DOI: 10.1016/j.biopha.2022.112890] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/02/2022] Open
Abstract
In eukaryotic cells, organelles could coordinate complex mechanisms of signaling transduction metabolism and gene expression through their functional interactions. The functional domain between ER and mitochondria, called mitochondria-associated membranes (MAM), is closely associated with various physiological functions including intracellular lipid transport, Ca2+ transfer, mitochondria function maintenance, and autophagosome formation. In addition, more evidence suggests that MAM modulate cellular functions in health and disease. Studies have also demonstrated the association of MAM with numerous diseases, including neurodegenerative diseases, cancer, viral infection, obesity, and diabetes. In fact, recent evidence revealed a close relationship of MAM with Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and other neurodegenerative diseases. In this view, elucidating the role of MAM in neurodegenerative diseases is particularly important. This review will focus the main tethering protein complexes of MAM and functions of MAM. Besides, the role of MAM in the regulation of neurodegenerative diseases and the potential molecular mechanisms is introduced to provide a new understanding of the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Jinxuan Liu
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe road, Shenyang North New Area, Shenyang, 110122, People's Republic of China.
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, NO.77 Puhe road, Shenyang North New Area, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
19
|
Islimye E, Girard V, Gould AP. Functions of Stress-Induced Lipid Droplets in the Nervous System. Front Cell Dev Biol 2022; 10:863907. [PMID: 35493070 PMCID: PMC9047859 DOI: 10.3389/fcell.2022.863907] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets are highly dynamic intracellular organelles that store neutral lipids such as cholesteryl esters and triacylglycerols. They have recently emerged as key stress response components in many different cell types. Lipid droplets in the nervous system are mostly observed in vivo in glia, ependymal cells and microglia. They tend to become more numerous in these cell types and can also form in neurons as a consequence of ageing or stresses involving redox imbalance and lipotoxicity. Abundant lipid droplets are also a characteristic feature of several neurodegenerative diseases. In this minireview, we take a cell-type perspective on recent advances in our understanding of lipid droplet metabolism in glia, neurons and neural stem cells during health and disease. We highlight that a given lipid droplet subfunction, such as triacylglycerol lipolysis, can be physiologically beneficial or harmful to the functions of the nervous system depending upon cellular context. The mechanistic understanding of context-dependent lipid droplet functions in the nervous system is progressing apace, aided by new technologies for probing the lipid droplet proteome and lipidome with single-cell type precision.
Collapse
|
20
|
Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. The key roles of organelles and ferroptosis in Alzheimer's disease. J Neurosci Res 2022; 100:1257-1280. [PMID: 35293012 DOI: 10.1002/jnr.25033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, is a striking global health problem. Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation products and the accumulation of lethal reactive oxygen species. Strict regulation of iron metabolism is essential to ensure neuronal homeostasis. Excess and deficiency of iron are both associated with neurodegeneration. Studies have shown that oxidative stress caused by cerebral iron metabolism disorders in the body is involved in the process of AD, ferroptosis may play an important role in the pathogenesis of AD, and regulating ferroptosis is expected to be a new direction for the treatment of AD. Various organelles are closely related to ferroptosis: mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosome are involved in the regulation of ferroptosis from the aspects of iron metabolism and redox imbalance. In this review, the relationship between AD and the dysfunction of organelles (including mitochondria, endoplasmic reticulum, lysosome, and Golgi apparatus) and the role of organelles in ferroptosis of AD were reviewed to provide insights for understanding the relationship between organelles and ferroptosis in AD and the treatment of AD.
Collapse
Affiliation(s)
- Hui-Zhi Long
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Dan-Dan Wen
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
21
|
Luengo E, Trigo-Alonso P, Fernández-Mendívil C, Nuñez Á, Campo MD, Porrero C, García-Magro N, Negredo P, Senar S, Sánchez-Ramos C, Bernal JA, Rábano A, Hoozemans J, Casas AI, Schmidt HHHW, López MG. Implication of type 4 NADPH oxidase (NOX4) in tauopathy. Redox Biol 2022; 49:102210. [PMID: 34922273 PMCID: PMC8686076 DOI: 10.1016/j.redox.2021.102210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/01/2022] Open
Abstract
Aggregates of the microtubule-associated protein tau are a common marker of neurodegenerative diseases collectively termed as tauopathies, such as Alzheimer's disease (AD) and frontotemporal dementia. Therapeutic strategies based on tau have failed in late stage clinical trials, suggesting that tauopathy may be the consequence of upstream causal mechanisms. As increasing levels of reactive oxygen species (ROS) may trigger protein aggregation or modulate protein degradation and, we had previously shown that the ROS producing enzyme NADPH oxidase 4 (NOX4) is a major contributor to cellular autotoxicity, this study was designed to evaluate if NOX4 is implicated in tauopathy. Our results show that NOX4 is upregulated in patients with frontotemporal lobar degeneration and AD patients and, in a humanized mouse model of tauopathy induced by AVV-TauP301L brain delivery. Both, global knockout and neuronal knockdown of the Nox4 gene in mice, diminished the accumulation of pathological tau and positively modified established tauopathy by a mechanism that implicates modulation of the autophagy-lysosomal pathway (ALP) and, consequently, improving the macroautophagy flux. Moreover, neuronal-targeted NOX4 knockdown was sufficient to reduce neurotoxicity and prevent cognitive decline, even after induction of tauopathy, suggesting a direct and causal role for neuronal NOX4 in tauopathy. Thus, NOX4 is a previously unrecognized causative, mechanism-based target in tauopathies and blood-brain barrier permeable specific NOX4 inhibitors could have therapeutic potential even in established disease.
Collapse
Affiliation(s)
- Enrique Luengo
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Paula Trigo-Alonso
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Cristina Fernández-Mendívil
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Ángel Nuñez
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Del Campo
- Department of Health and Pharmaceutical Science, Faculty of Pharmacy, San Pablo CEU University, Montepríncipe, Alcorcón, Spain
| | - César Porrero
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergio Senar
- Dr. Target Machine Learning. Calle Alejo Carpentier 13, Alcala de Henares, 28806, Madrid, Spain
| | - Cristina Sánchez-Ramos
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan A Bernal
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alberto Rábano
- Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Jeroen Hoozemans
- Department of Pathology, Amsterdam University Medical Centers Location VUmc, Amsterdam, the Netherlands
| | - Ana I Casas
- Department of Pharmacology and Personalized Medicine, Maastricht Center for Systems Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Neurology, University Hospital Essen, Essen, Germany
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalized Medicine, Maastricht Center for Systems Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Manuela G López
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain.
| |
Collapse
|
22
|
Whyte LS, Fourrier C, Hassiotis S, Lau AA, Trim PJ, Hein LK, Hattersley KJ, Bensalem J, Hopwood JJ, Hemsley KM, Sargeant TJ. Lysosomal gene Hexb displays haploinsufficiency in a knock-in mouse model of Alzheimer’s disease. IBRO Neurosci Rep 2022; 12:131-141. [PMID: 35146484 PMCID: PMC8819126 DOI: 10.1016/j.ibneur.2022.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Lysosomal network abnormalities are an increasingly recognised feature of Alzheimer’s disease (AD), which appear early and are progressive in nature. Sandhoff disease and Tay-Sachs disease (neurological lysosomal storage diseases caused by mutations in genes that code for critical subunits of β-hexosaminidase) result in accumulation of amyloid-β (Aβ) and related proteolytic fragments in the brain. However, experiments that determine whether mutations in genes that code for β-hexosaminidase are risk factors for AD are currently lacking. To determine the relationship between β-hexosaminidase and AD, we investigated whether a heterozygous deletion of Hexb, the gene that encodes the beta subunit of β-hexosaminidase, modifies the behavioural phenotype and appearance of disease lesions in AppNL-G-F/NL-G-F(AppKI/KI) mice. AppKI/KI and Hexb+/- mice were crossed and evaluated in a behavioural test battery. Neuropathological hallmarks of AD and ganglioside levels in the brain were also examined. Heterozygosity of Hexb in AppKI/KI mice reduced learning flexibility during the Reversal Phase of the Morris water maze. Contrary to expectation, heterozygosity of Hexb caused a small but significant decrease in amyloid beta deposition and an increase in the microglial marker IBA1 that was region- and age-specific. Hexb heterozygosity caused detectable changes in the brain and in the behaviour of an AD model mouse, consistent with previous reports that described a biochemical relationship between HEXB and AD. This study reveals that the lysosomal enzyme gene Hexb is not haplosufficient in the mouse AD brain. The App NL-G-F Alzheimer mouse has lysosomal defects and stores ganglioside lipids. Heterozygous lysosomal Hexb did not drive amyloidosis in the App NL-G-F mouse. Heterozygous Hexb on an Alzheimer’s background reduced learning flexibility. Heterozygous Hexb on a wild-type mouse background produced hypoactivity.
Collapse
|
23
|
Napoli E, Panoutsopoulos AA, Kysar P, Satriya N, Sterling K, Shibata B, Imai D, Ruskin DN, Zarbalis KS, Giulivi C. Wdfy3 regulates glycophagy, mitophagy, and synaptic plasticity. J Cereb Blood Flow Metab 2021; 41:3213-3231. [PMID: 34187232 PMCID: PMC8669292 DOI: 10.1177/0271678x211027384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autophagy is essential to cell function, as it enables the recycling of intracellular constituents during starvation and in addition functions as a quality control mechanism by eliminating spent organelles and proteins that could cause cellular damage if not properly removed. Recently, we reported on Wdfy3's role in mitophagy, a clinically relevant macroautophagic scaffold protein that is linked to intellectual disability, neurodevelopmental delay, and autism spectrum disorder. In this study, we confirm our previous report that Wdfy3 haploinsufficiency in mice results in decreased mitophagy with accumulation of mitochondria with altered morphology, but expanding on that observation, we also note decreased mitochondrial localization at synaptic terminals and decreased synaptic density, which may contribute to altered synaptic plasticity. These changes are accompanied by defective elimination of glycogen particles and a shift to increased glycogen synthesis over glycogenolysis and glycophagy. This imbalance leads to an age-dependent higher incidence of brain glycogen deposits with cerebellar hypoplasia. Our results support and further extend Wdfy3's role in modulating both brain bioenergetics and synaptic plasticity by including glycogen as a target of macroautophagic degradation.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Alexios A Panoutsopoulos
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Patricia Kysar
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - Nathaniel Satriya
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kira Sterling
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Bradley Shibata
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA, USA
| | - Denise Imai
- Anatomic Pathology Service, Veterinary Medical Teaching Hospital, University of California, Davis, CA, USA
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, USA
| | - Konstantinos S Zarbalis
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA.,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, CA, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, CA, USA
| |
Collapse
|
24
|
Dutta S, Rahman S, Ahmad R, Kumar T, Dutta G, Banerjee S, Abubakar AR, Rowaiye AB, Dhingra S, Ravichandiran V, Kumar S, Sharma P, Haque M, Charan J. An evidence-based review of neuronal cholesterol role in dementia and statins as a pharmacotherapy in reducing risk of dementia. Expert Rev Neurother 2021; 21:1455-1472. [PMID: 34756134 DOI: 10.1080/14737175.2021.2003705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Dementia is a progressive neurodegenerative disorder impairing memory and cognition. Alzheimer's Disease, followed by vascular dementia - the most typical form. Risk factors for vascular dementia include diabetes, cardiovascular disease, hyperlipidemia. Lipids' levels are significantly associated with vascular changes in the brain. AREAS COVERED The present article reviews the cholesterol metabolism in the brain, which includes: the synthesis, transport, storage, and elimination process. Additionally, it reviews the role of cholesterol in the pathogenesis of dementia and statin as a therapeutic intervention in dementia. In addition to the above, it further reviews evidence in support of as well as against statin therapy in dementia, recent updates of statin pharmacology, and demerits of use of statin pharmacotherapy. EXPERT OPINION Amyloid-β peptides and intraneuronal neurofibrillary tangles are markers of Alzheimer's disease. Evidence shows cholesterol modulates the functioning of enzymes associated with Amyloid-β peptide processing and synthesis. Lowering cholesterol using statin may help prevent or delay the progression of dementia. This paper reviews the role of statin in dementia and recommends extensive future studies, including genetic research, to obtain a precise medication approach for patients with dementia.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| | - Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences, Bridgetown, Barbados
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, Bangladesh
| | - Tarun Kumar
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Gitashree Dutta
- Department of Community Medicine, Neigrihms, Shillong, India
| | | | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Adekunle Babajide Rowaiye
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata, India
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati University, Gandhinagar, India
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| |
Collapse
|
25
|
Shaikh S, Ahmad K, Ahmad SS, Lee EJ, Lim JH, Beg MMA, Verma AK, Choi I. Natural Products in Therapeutic Management of Multineurodegenerative Disorders by Targeting Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6347792. [PMID: 34557265 PMCID: PMC8455192 DOI: 10.1155/2021/6347792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022]
Abstract
Autophagy is an essential cellular process that involves the transport of cytoplasmic content in double-membraned vesicles to lysosomes for degradation. Neurons do not undergo cytokinesis, and thus, the cell division process cannot reduce levels of unnecessary proteins. The primary cause of neurodegenerative disorders (NDs) is the abnormal deposition of proteins inside neuronal cells, and this could be averted by autophagic degradation. Thus, autophagy is an important consideration when considering means of developing treatments for NDs. Various pharmacological studies have reported that the active components in herbal medicines exhibit therapeutic benefits in NDs, for example, by inhibiting cholinesterase activity and modulating amyloid beta levels, and α-synuclein metabolism. A variety of bioactive constituents from medicinal plants are viewed as promising autophagy controllers and are revealed to recover the NDs by targeting the autophagic pathway. In the present review, we discuss the role of autophagy in the therapeutic management of several NDs. The molecular process responsible for autophagy and its importance in various NDs and the beneficial effects of medicinal plants in NDs by targeting autophagy are also discussed.
Collapse
Affiliation(s)
- Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Amit K. Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
26
|
Melentev PA, Ryabova EV, Surina NV, Zhmujdina DR, Komissarov AE, Ivanova EA, Boltneva NP, Makhaeva GF, Sliusarenko MI, Yatsenko AS, Mohylyak II, Matiytsiv NP, Shcherbata HR, Sarantseva SV. Loss of swiss cheese in Neurons Contributes to Neurodegeneration with Mitochondria Abnormalities, Reactive Oxygen Species Acceleration and Accumulation of Lipid Droplets in Drosophila Brain. Int J Mol Sci 2021; 22:8275. [PMID: 34361042 PMCID: PMC8347196 DOI: 10.3390/ijms22158275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Various neurodegenerative disorders are associated with human NTE/PNPLA6 dysfunction. Mechanisms of neuropathogenesis in these diseases are far from clearly elucidated. Hereditary spastic paraplegia belongs to a type of neurodegeneration associated with NTE/PNLPLA6 and is implicated in neuron death. In this study, we used Drosophila melanogaster to investigate the consequences of neuronal knockdown of swiss cheese (sws)-the evolutionarily conserved ortholog of human NTE/PNPLA6-in vivo. Adult flies with the knockdown show longevity decline, locomotor and memory deficits, severe neurodegeneration progression in the brain, reactive oxygen species level acceleration, mitochondria abnormalities and lipid droplet accumulation. Our results suggest that SWS/NTE/PNPLA6 dysfunction in neurons induces oxidative stress and lipid metabolism alterations, involving mitochondria dynamics and lipid droplet turnover in neurodegeneration pathogenesis. We propose that there is a complex mechanism in neurological diseases such as hereditary spastic paraplegia, which includes a stress reaction, engaging mitochondria, lipid droplets and endoplasmic reticulum interplay.
Collapse
Affiliation(s)
- Pavel A. Melentev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Elena V. Ryabova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Nina V. Surina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Darya R. Zhmujdina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Artem E. Komissarov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Ekaterina A. Ivanova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (N.P.B.); (G.F.M.)
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (N.P.B.); (G.F.M.)
| | - Mariana I. Sliusarenko
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Andriy S. Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Iryna I. Mohylyak
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine; (I.I.M.); (N.P.M.)
| | - Nataliya P. Matiytsiv
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine; (I.I.M.); (N.P.M.)
| | - Halyna R. Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Svetlana V. Sarantseva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| |
Collapse
|
27
|
Ralhan I, Chang CL, Lippincott-Schwartz J, Ioannou MS. Lipid droplets in the nervous system. J Cell Biol 2021; 220:e202102136. [PMID: 34152362 PMCID: PMC8222944 DOI: 10.1083/jcb.202102136] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/20/2023] Open
Abstract
Lipid droplets are dynamic intracellular lipid storage organelles that respond to the physiological state of cells. In addition to controlling cell metabolism, they play a protective role for many cellular stressors, including oxidative stress. Despite prior descriptions of lipid droplets appearing in the brain as early as a century ago, only recently has the role of lipid droplets in cells found in the brain begun to be understood. Lipid droplet functions have now been described for cells of the nervous system in the context of development, aging, and an increasing number of neuropathologies. Here, we review the basic mechanisms of lipid droplet formation, turnover, and function and discuss how these mechanisms enable lipid droplets to function in different cell types of the nervous system under healthy and pathological conditions.
Collapse
Affiliation(s)
- Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Chi-Lun Chang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA
| | | | - Maria S. Ioannou
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Bhatia S, Al-Harrasi A, Bungau S. Exploring the Role of Autophagy Dysfunction in Neurodegenerative Disorders. Mol Neurobiol 2021; 58:4886-4905. [PMID: 34212304 DOI: 10.1007/s12035-021-02472-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
Autophagy is a catabolic pathway by which misfolded proteins or damaged organelles are engulfed by autophagosomes and then transported to lysosomes for degradation. Recently, a great improvement has been done to explain the molecular mechanisms and roles of autophagy in several important cellular metabolic processes. Besides being a vital clearance pathway or a cell survival pathway in response to different stresses, autophagy dysfunction, either upregulated or down-regulated, has been suggested to be linked with numerous neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Impairment at different stages of autophagy results in the formation of large protein aggregates and damaged organelles, which leads to the onset and progression of different neurodegenerative disorders. This article elucidates the recent progress about the role of autophagy in neurodegenerative disorders and explains how autophagy dysfunction is linked with the pathogenesis of such disorders as well as the novel potential autophagy-associated therapies for treating them.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
29
|
Feringa FM, van der Kant R. Cholesterol and Alzheimer's Disease; From Risk Genes to Pathological Effects. Front Aging Neurosci 2021; 13:690372. [PMID: 34248607 PMCID: PMC8264368 DOI: 10.3389/fnagi.2021.690372] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
While the central nervous system compromises 2% of our body weight, it harbors up to 25% of the body's cholesterol. Cholesterol levels in the brain are tightly regulated for physiological brain function, but mounting evidence indicates that excessive cholesterol accumulates in Alzheimer's disease (AD), where it may drive AD-associated pathological changes. This seems especially relevant for late-onset AD, as several of the major genetic risk factors are functionally associated with cholesterol metabolism. In this review we discuss the different systems that maintain brain cholesterol metabolism in the healthy brain, and how dysregulation of these processes can lead, or contribute to, Alzheimer's disease. We will also discuss how AD-risk genes might impact cholesterol metabolism and downstream AD pathology. Finally, we will address the major outstanding questions in the field and how recent technical advances in CRISPR/Cas9-gene editing and induced pluripotent stem cell (iPSC)-technology can aid to study these problems.
Collapse
Affiliation(s)
- Femke M. Feringa
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
30
|
Li W, Cang S, Sun Z, Bi K, Li Q, Li Z, Liu R. Development of an LC-MS/MS method for simultaneous quantitative analysis of macromolecular pharmaceutical adjuvant 2-hydroxypropyl-β-cyclodextrin and active pharmaceutical ingredients butylphthalide in rat plasma. J Sep Sci 2021; 44:2680-2692. [PMID: 33971083 DOI: 10.1002/jssc.202100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022]
Abstract
Hydroxypropyl-β-cyclodextrin, which possesses a high water solubility and low hemolycity, is widely used as a solubilizer and an excipient. It had also been reported that hydroxypropyl-β-cyclodextrin has the activity of regulating lipid homeostasis. In order to further understand the metabolism, the primary focus was to establish a quantitative method for hydroxypropyl-β-cyclodextrin. The analytes were extracted from plasma by protein precipitation with methanol and then carried out on a Waters CORTECS T3 column in the gradient elution of pure water and methanol. Finally, liquid chromatography-tandem mass spectrometry was applied in multiple reaction monitoring mode to complete the quantitative analysis of hydroxypropyl-β-cyclodextrin. This validated method had been successfully applied to investigate the interaction between hydroxypropyl-β-cyclodextrin and butylphthalide in vivo by optimizing the extraction reagent, simplifying the experimental procedure, and improving the sensitivity while considering the difference of drug chemical properties. Results showed that the inclusion of hydroxypropyl-β-cyclodextrin with butylphthalide significantly improved the pharmacokinetic behavior of free body hydroxypropyl-β-cyclodextrin and 3-n-butylphthalide in vivo. It had been implied that the metabolism of hydroxypropyl-β-cyclodextrin and the drug active ingredients could impact each other. It will help better application of hydroxypropyl-β-cyclodextrin and the developed method might lay the foundation for development of hydroxypropyl-β-cyclodextrin as a treatment drug for brain diseases.
Collapse
Affiliation(s)
- Wanjun Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Song Cang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Zheng Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Zuojing Li
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Ran Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China.,School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, P. R. China
| |
Collapse
|
31
|
Shen S, Wang X, Lv H, Shi Y, Xiao L. PADI4 mediates autophagy and participates in the role of ganoderic acid A monomers in delaying the senescence of Alzheimer's cells through the Akt/mTOR pathway. Biosci Biotechnol Biochem 2021; 85:1818-1829. [PMID: 33963744 DOI: 10.1093/bbb/zbab054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
The effects of PADI4 and GAA on the senescence of Alzheimer's cells were explored in the present work. HT22 cells were treated with Aβ25-35 to establish an Alzheimer's model and were then treated with different concentrations of GAA and transfected with a siPADI4 lentiviral vector. GAA could reverse the effects of Aβ25-35 on inhibiting cell viability and promoting apoptosis and senescence. siPADI4 reduced Aβ25-35-induced cell viability and upregulated Aβ25-35-induced cell apoptosis and senescence, as well as partially reversed the effect of GAA on cells, and these results were confirmed by detecting the expressions of senescence- and apoptosis-related proteins. In addition, siPADI4 was found to promote the phosphorylation of Akt and mTOR, which was partially reversed by GAA. In conclusion, PADI4 mediates autophagy and participates in the role of GAA monomers in delaying the senescence of Alzheimer's cells through the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Shuhua Shen
- Disease Prevention and Health Management Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.,Disease Prevention and Health Management Center, People's Hospital of Songyang, Lishui, Zhejiang Province, China
| | - Xiaoming Wang
- Disease Prevention and Health Management Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Hang Lv
- Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yuan Shi
- Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Luwei Xiao
- Disease Prevention and Health Management Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
32
|
Langness VF, van der Kant R, Das U, Wang L, Chaves RDS, Goldstein LSB. Cholesterol-lowering drugs reduce APP processing to Aβ by inducing APP dimerization. Mol Biol Cell 2020; 32:247-259. [PMID: 33296223 PMCID: PMC8098827 DOI: 10.1091/mbc.e20-05-0345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amyloid beta (Aβ) is a major component of amyloid plaques, which are a key pathological hallmark found in the brains of Alzheimer’s disease (AD) patients. We show that statins are effective at reducing Aβ in human neurons from nondemented control subjects, as well as subjects with familial AD and sporadic AD. Aβ is derived from amyloid precursor protein (APP) through sequential proteolytic cleavage by BACE1 and γ-secretase. While previous studies have shown that cholesterol metabolism regulates APP processing to Aβ, the mechanism is not well understood. We used iPSC-derived neurons and bimolecular fluorescence complementation assays in transfected cells to elucidate how altering cholesterol metabolism influences APP processing. Altering cholesterol metabolism using statins decreased the generation of sAPPβ and increased levels of full-length APP (flAPP), indicative of reduced processing of APP by BACE1. We further show that statins decrease flAPP interaction with BACE1 and enhance APP dimerization. Additionally, statin-induced changes in APP dimerization and APP-BACE1 are dependent on cholesterol binding to APP. Our data indicate that statins reduce Aβ production by decreasing BACE1 interaction with flAPP and suggest that this process may be regulated through competition between APP dimerization and APP cholesterol binding.
Collapse
Affiliation(s)
- Vanessa F Langness
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands
| | - Utpal Das
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Louie Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Rodrigo Dos Santos Chaves
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| |
Collapse
|
33
|
Farmer BC, Walsh AE, Kluemper JC, Johnson LA. Lipid Droplets in Neurodegenerative Disorders. Front Neurosci 2020; 14:742. [PMID: 32848541 PMCID: PMC7403481 DOI: 10.3389/fnins.2020.00742] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge of lipid droplets (LDs) has evolved from simple depots of lipid storage to dynamic and functionally active organelles involved in a variety of cellular functions. Studies have now informed significant roles for LDs in cellular signaling, metabolic disease, and inflammation. While lipid droplet biology has been well explored in peripheral organs such as the liver and heart, LDs within the brain are relatively understudied. The presence and function of these dynamic organelles in the central nervous system has recently gained attention, especially in the context of neurodegeneration. In this review, we summarize the current understanding of LDs within the brain, with an emphasis on their relevance in neurodegenerative diseases.
Collapse
Affiliation(s)
- Brandon C Farmer
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Adeline E Walsh
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Jude C Kluemper
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
34
|
Therapeutic efficacy of antisense oligonucleotides in mouse models of CLN3 Batten disease. Nat Med 2020; 26:1444-1451. [PMID: 32719489 DOI: 10.1038/s41591-020-0986-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
CLN3 Batten disease is an autosomal recessive, neurodegenerative, lysosomal storage disease caused by mutations in CLN3, which encodes a lysosomal membrane protein1-3. There are no disease-modifying treatments for this disease that affects up to 1 in 25,000 births, has an onset of symptoms in early childhood and typically is fatal by 20-30 years of life4-7. Most patients with CLN3 Batten have a deletion encompassing exons 7 and 8 (CLN3∆ex7/8), creating a reading frameshift7,8. Here we demonstrate that mice with this deletion can be effectively treated using an antisense oligonucleotide (ASO) that induces exon skipping to restore the open reading frame. A single treatment of neonatal mice with an exon 5-targeted ASO-induced robust exon skipping for more than a year, improved motor coordination, reduced histopathology in Cln3∆ex7/8 mice and increased survival in a new mouse model of the disease. ASOs also induced exon skipping in cell lines derived from patients with CLN3 Batten disease. Our findings demonstrate the utility of ASO-based reading-frame correction as an approach to treat CLN3 Batten disease and broaden the therapeutic landscape for ASOs in the treatment of other diseases using a similar strategy.
Collapse
|
35
|
He Z, Yang Y, Xing Z, Zuo Z, Wang R, Gu H, Qi F, Yao Z. Intraperitoneal injection of IFN-γ restores microglial autophagy, promotes amyloid-β clearance and improves cognition in APP/PS1 mice. Cell Death Dis 2020; 11:440. [PMID: 32514180 PMCID: PMC7280212 DOI: 10.1038/s41419-020-2644-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/07/2023]
Abstract
Autophagy is a major self-degradative process that maintains cellular homeostasis and function in mammalian cells. Autophagic dysfunction occurs in the early pathogenesis of Alzheimer’s disease (AD) and directly regulates amyloid-β (Aβ) metabolism. Although it has been proven that the cytokine IFN-γ enhances autophagy in macrophage cell lines, whether the signaling cascade is implicated in Aβ degradation in AD mouse models remains to be elucidated. Here, we found that 9 days of the intraperitoneal administration of IFN-γ significantly increased the LC3II/I ratio and decreased the level of p62 in APP/PS1 mice, an AD mouse model. In vitro, IFN-γ protected BV2 cells from Aβ toxicity by upregulating the expressions of Atg7 and Atg5 and the LC3II/I ratio, whereas these protective effects were ablated by interference with Atg5 expression. Moreover, IFN-γ enhanced autophagic flux, probably through suppressing the AKT/mTOR pathway both in vivo and in vitro. Importantly, using intravital two-photon microscopy and fluorescence staining, we found that microglia interacted with exogenous IFN-γ and Aβ, and surrounded Aβ in APP/PS1;CX3CR1-GFP+/− mice. In addition, IFN-γ treatment decreased the Aβ plaque load in the cortex and hippocampus and rescued cognitive deficits in APP/PS1 mice. Our data suggest a possible mechanism by which the peripheral injection of IFN-γ restores microglial autophagy to induce the phagocytosis of cerebral Aβ, which represents a potential therapeutic approach for the use of exogenous IFN-γ in AD.
Collapse
Affiliation(s)
- Zitian He
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Yunjie Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Zhiwei Xing
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Zejie Zuo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Rui Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China
| | - Huaiyu Gu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.
| | - Fangfang Qi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China. .,Teaching and Research Bureau of Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, Guangdong, China.
| | - Zhibin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, #74, Zhongshan No. 2 Road, 510080, Guangzhou, China.
| |
Collapse
|
36
|
Loving BA, Bruce KD. Lipid and Lipoprotein Metabolism in Microglia. Front Physiol 2020; 11:393. [PMID: 32411016 PMCID: PMC7198855 DOI: 10.3389/fphys.2020.00393] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Microglia, once viewed as static bystanders with limited homeostatic functions, are now considered key players in the development of neuroinflammatory and neurodegenerative diseases. Microglial activation is a salient feature of neuroinflammation involving a dynamic process that generates multitudinous microglial phenotypes that can respond to a variety of situational cues in the central nervous system. Recently, a flurry of single cell RNA-sequencing studies have defined microglial phenotypes in unprecedented detail, and have highlighted robust changes in the expression of genes involved in lipid and lipoprotein metabolism. Increased expression of genes such as Apolipoprotein E (ApoE), Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) and Lipoprotein Lipase (LPL) in microglia during development, damage, and disease, suggest that increased lipid metabolism is needed to fuel protective cellular functions such as phagocytosis. This review describes our current understanding of lipid and lipoprotein metabolism in microglia, and highlights microglial lipid metabolism as a modifiable target for the treatment of neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Bailey A. Loving
- School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
37
|
Breiden B, Sandhoff K. Mechanism of Secondary Ganglioside and Lipid Accumulation in Lysosomal Disease. Int J Mol Sci 2020; 21:ijms21072566. [PMID: 32272755 PMCID: PMC7178057 DOI: 10.3390/ijms21072566] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
Gangliosidoses are caused by monogenic defects of a specific hydrolase or an ancillary sphingolipid activator protein essential for a specific step in the catabolism of gangliosides. Such defects in lysosomal function cause a primary accumulation of multiple undegradable gangliosides and glycosphingolipids. In reality, however, predominantly small gangliosides also accumulate in many lysosomal diseases as secondary storage material without any known defect in their catabolic pathway. In recent reconstitution experiments, we identified primary storage materials like sphingomyelin, cholesterol, lysosphingolipids, and chondroitin sulfate as strong inhibitors of sphingolipid activator proteins (like GM2 activator protein, saposin A and B), essential for the catabolism of many gangliosides and glycosphingolipids, as well as inhibitors of specific catabolic steps in lysosomal ganglioside catabolism and cholesterol turnover. In particular, they trigger a secondary accumulation of ganglioside GM2, glucosylceramide and cholesterol in Niemann–Pick disease type A and B, and of GM2 and glucosylceramide in Niemann–Pick disease type C. Chondroitin sulfate effectively inhibits GM2 catabolism in mucopolysaccharidoses like Hurler, Hunter, Sanfilippo, and Sly syndrome and causes a secondary neuronal ganglioside GM2 accumulation, triggering neurodegeneration. Secondary ganglioside and lipid accumulation is furthermore known in many more lysosomal storage diseases, so far without known molecular basis.
Collapse
|
38
|
Kaya I, Jennische E, Lange S, Tarik Baykal A, Malmberg P, Fletcher JS. Brain region-specific amyloid plaque-associated myelin lipid loss, APOE deposition and disruption of the myelin sheath in familial Alzheimer's disease mice. J Neurochem 2020; 154:84-98. [PMID: 32141089 DOI: 10.1111/jnc.14999] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022]
Abstract
There is emerging evidence that amyloid beta (Aβ) aggregates forming neuritic plaques lead to impairment of the lipid-rich myelin sheath and glia. In this study, we examined focal myelin lipid alterations and the disruption of the myelin sheath associated with amyloid plaques in a widely used familial Alzheimer's disease (AD) mouse model; 5xFAD. This AD mouse model has Aβ42 peptide-rich plaque deposition in the brain parenchyma. Matrix-assisted laser desorption/ionization imaging mass spectrometry of coronal brain tissue sections revealed focal Aβ plaque-associated depletion of multiple myelin-associated lipid species including sulfatides, galactosylceramides, and specific plasmalogen phopshatidylethanolamines in the hippocampus, cortex, and on the edges of corpus callosum. Certain phosphatidylcholines abundant in myelin were also depleted in amyloid plaques on the edges of corpus callosum. Further, lysophosphatidylethanolamines and lysophosphatidylcholines, implicated in neuroinflammation, were found to accumulate in amyloid plaques. Double staining of the consecutive sections with fluoromyelin and amyloid-specific antibody revealed amyloid plaque-associated myelin sheath disruption on the edges of the corpus callosum which is specifically correlated with plaque-associated myelin lipid loss only in this region. Further, apolipoprotein E, which is implicated in depletion of sulfatides in AD brain, is deposited in all the Aβ plaques which suggest apolipoprotein E might mediate sulfatide depletion as a consequence of an immune response to Aβ deposition. This high-spatial resolution matrix-assisted laser desorption/ionization imaging mass spectrometry study in combination with (immuno) fluorescence staining of 5xFAD mouse brain provides new understanding of morphological, molecular and immune signatures of Aβ plaque pathology-associated myelin lipid loss and myelin degeneration in a brain region-specific manner. Read the Editorial Highlight for this article on page 7.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eva Jennische
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Lange
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - John S Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Hui L, Soliman ML, Geiger NH, Miller NM, Afghah Z, Lakpa KL, Chen X, Geiger JD. Acidifying Endolysosomes Prevented Low-Density Lipoprotein-Induced Amyloidogenesis. J Alzheimers Dis 2020; 67:393-410. [PMID: 30594929 DOI: 10.3233/jad-180941] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol dyshomeostasis has been linked to the pathogenesis of sporadic Alzheimer's disease (AD). In furthering the understanding of mechanisms by which increased levels of circulating cholesterol augments the risk of developing sporadic AD, others and we have reported that low-density lipoprotein (LDL) enters brain parenchyma by disrupting the blood-brain barrier and that endolysosome de-acidification plays a role in LDL-induced amyloidogenesis in neurons. Here, we tested the hypothesis that endolysosome de-acidification was central to amyloid-β (Aβ) generation and that acidifying endolysosomes protects against LDL-induced increases in Aβ levels in neurons. We demonstrated that LDL, but not HDL, de-acidified endolysosomes and increased intraneuronal and secreted levels of Aβ. ML-SA1, an agonist of endolysosome-resident TRPML1 channels, acidified endolysosomes, and TRPML1 knockdown attenuated ML-SA1-induced endolysosome acidification. ML-SA1 blocked LDL-induced increases in intraneuronal and secreted levels of Aβ as well as Aβ accumulation in endolysosomes, prevented BACE1 accumulation in endolysosomes, and decreased BACE1 activity levels. LDL downregulated TRPML1 protein levels, and TRPML1 knockdown worsens LDL-induced increases in Aβ. Our findings suggest that endolysosome acidification by activating TRPML1 may represent a protective strategy against sporadic AD.
Collapse
Affiliation(s)
- Liang Hui
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Mahmoud L Soliman
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nicholas H Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Koffi L Lakpa
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
40
|
Gomez W, Morales R, Maracaja-Coutinho V, Parra V, Nassif M. Down syndrome and Alzheimer's disease: common molecular traits beyond the amyloid precursor protein. Aging (Albany NY) 2020; 12:1011-1033. [PMID: 31918411 PMCID: PMC6977673 DOI: 10.18632/aging.102677] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer’s disease (AD) is the most prevalent type of dementia. Down syndrome (DS) is the leading genetic risk factor for Early-Onset AD, prematurely presenting the classic pathological features of the brain with AD. Augmented gene dosage, including the APP gene, could partially cause this predisposition. Recent works have revealed that alterations in chromosome location due to the extra Chromosome 21, as well as epigenetic modifications, could promote changes in gene expression other than those from Chromosome 21. As a result, similar pathological features and cellular dysfunctions in DS and AD, including impaired autophagy, lysosomal activity, and mitochondrial dysfunction, could be controlled beyond APP overexpression. In this review, we highlight some recent data regarding the origin of the shared features between DS and AD and explore the mechanisms concerning cognitive deficiencies in DS associated with dementia, which could shed some light into the search for new therapeutic targets for AD treatment.
Collapse
Affiliation(s)
- Wileidy Gomez
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile.,Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,CIBQA, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Center for Exercise, Metabolism, and Cancer Studies (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Autophagy Research Center, Universidad de Chile, Santiago, Chile
| | - Melissa Nassif
- Laboratory of Neuroprotection and Autophagy, Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
41
|
Kaya I, Jennische E, Dunevall J, Lange S, Ewing AG, Malmberg P, Baykal AT, Fletcher JS. Spatial Lipidomics Reveals Region and Long Chain Base Specific Accumulations of Monosialogangliosides in Amyloid Plaques in Familial Alzheimer's Disease Mice (5xFAD) Brain. ACS Chem Neurosci 2020; 11:14-24. [PMID: 31774647 DOI: 10.1021/acschemneuro.9b00532] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ganglioside metabolism is significantly altered in Alzheimer's disease (AD), which is a progressive neurodegenerative disease prominently characterized by one of its pathological hallmarks, amyloid deposits or "senile plaques". While the plaques mainly consist of aggregated variants of amyloid-β protein (Aβ), recent studies have revealed a number of lipid species including gangliosides in amyloid plaques along with Aβ peptides. It has been widely suggested that long chain (sphingosine) base (LCBs), C18:1-LCB and C20:1-LCB, containing gangliosides might play different roles in neuronal function in vivo. In order to elucidate region-specific aspects of amyloid-plaque associated C18:1-LCB and C20:1-LCB ganglioside accumulations, high spatial resolution (10 μm per pixel) matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) of gangliosides in amyloid plaques was performed in hippocampal and adjacent cortical regions of 12 month old 5xFAD mouse coronal brain sections from two different stereotaxic coordinates (bregma points, -2.2 and -2.7 mm). MALDI-IMS uncovered brain-region (2 and 3D) and/or LCB specific accumulations of monosialogangliosides (GMs): GM1, GM2, and GM3 in the hippocampal and cortical amyloid plaques. The results reveal monosialogangliosides to be an important component of amyloid plaques and the accumulation of different gangliosides is region and LCB specific in 12 month old 5xFAD mouse brain. This is discussed in relation to amyloid-associated AD pathogenesis such as lipid related immune changes in amyloid plaques, AD specific ganglioside metabolism, and, notably, AD-associated impaired neurogenesis in the subgranular zone.
Collapse
Affiliation(s)
- Ibrahim Kaya
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal 43180, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, University of Gothenburg and Chalmers University of Technology, Gothenburg, Sweden
| | - Eva Jennische
- Institute of Biomedicine, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Stefan Lange
- Institute of Biomedicine, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, University of Gothenburg and Chalmers University of Technology, Gothenburg, Sweden
| | - Per Malmberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - John S. Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- The Gothenburg Imaging Mass Spectrometry (Go:IMS) Platform, University of Gothenburg and Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
42
|
Inhibition of Lysosome Membrane Recycling Causes Accumulation of Gangliosides that Contribute to Neurodegeneration. Cell Rep 2019; 23:3813-3826. [PMID: 29949766 PMCID: PMC6045775 DOI: 10.1016/j.celrep.2018.05.098] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/24/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022] Open
Abstract
Lysosome membrane recycling occurs at the end of the autophagic pathway and requires proteins that are mostly encoded by genes mutated in neurodegenerative diseases. However, its implication in neuronal death is still unclear. Here, we show that spatacsin, which is required for lysosome recycling and whose loss of function leads to hereditary spastic paraplegia 11 (SPG11), promotes clearance of gangliosides from lysosomes in mouse and human SPG11 models. We demonstrate that spatacsin acts downstream of clathrin and recruits dynamin to allow lysosome membrane recycling and clearance of gangliosides from lysosomes. Gangliosides contributed to the accumulation of autophagy markers in lysosomes and to neuronal death. In contrast, decreasing ganglioside synthesis prevented neurodegeneration and improved motor phenotype in a SPG11 zebrafish model. Our work reveals how inhibition of lysosome membrane recycling leads to the deleterious accumulation of gangliosides, linking lysosome recycling to neurodegeneration. Loss of spatacsin promotes accumulation of simple gangliosides in lysosomes Inhibition of lysosome membrane recycling leads to accumulation of gangliosides Gangliosides promote accumulation of autophagy markers in lysosomes Gangliosides contribute to neurodegeneration when lysosome recycling is compromised
Collapse
|
43
|
Boutry M, Pierga A, Matusiak R, Branchu J, Houllegatte M, Ibrahim Y, Balse E, El Hachimi KH, Brice A, Stevanin G, Darios F. Loss of spatacsin impairs cholesterol trafficking and calcium homeostasis. Commun Biol 2019; 2:380. [PMID: 31637311 PMCID: PMC6797781 DOI: 10.1038/s42003-019-0615-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Mutations in SPG11, leading to loss of spatacsin function, impair the formation of membrane tubules in lysosomes and cause lysosomal lipid accumulation. However, the full nature of lipids accumulating in lysosomes and the physiological consequences of such accumulation are unknown. Here we show that loss of spatacsin inhibits the formation of tubules on lysosomes and prevents the clearance of cholesterol from this subcellular compartment. Accumulation of cholesterol in lysosomes decreases cholesterol levels in the plasma membrane, enhancing the entry of extracellular calcium by store-operated calcium entry and increasing resting cytosolic calcium levels. Higher cytosolic calcium levels promote the nuclear translocation of the master regulator of lysosomes TFEB, preventing the formation of tubules and the clearance of cholesterol from lysosomes. Our work reveals a homeostatic balance between cholesterol trafficking and cytosolic calcium levels and shows that loss of spatacsin impairs this homeostatic equilibrium.
Collapse
Affiliation(s)
- Maxime Boutry
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
- Present Address: Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON Canada
| | - Alexandre Pierga
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Raphaël Matusiak
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Julien Branchu
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Marc Houllegatte
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Yoan Ibrahim
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Elise Balse
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1166, F-75013 Paris, France
| | - Khalid-Hamid El Hachimi
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Alexis Brice
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Frédéric Darios
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| |
Collapse
|
44
|
Liu J, Li L. Targeting Autophagy for the Treatment of Alzheimer's Disease: Challenges and Opportunities. Front Mol Neurosci 2019; 12:203. [PMID: 31507373 PMCID: PMC6713911 DOI: 10.3389/fnmol.2019.00203] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/02/2019] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia which characterized by a progressive loss of memory and cognitive function due to degeneration of synapses and axons. Currently, there is no cure for AD. Deposition of extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles (NFTs) are two hallmark pathologic changes in the brains of Alzheimer's patients. Autophagy is the major mechanism in cells responsible for removing protein aggregates. Accumulation of immature autophagic vacuoles (AVs) in dystrophic neurites of Alzheimer patients' brains suggests that autophagy process is disrupted. Till now, it is far from clear what role autophagy plays in AD, a causative role, a protective role, or just a consequence of the disease process itself. To design more effective therapeutic strategies towards this devastating disorder, it is essential to understand the exact role of autophagy played during different stages of AD.
Collapse
Affiliation(s)
- Jie Liu
- Translational Center for Stem Cell Research, Stem Cell Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lian Li
- Translational Center for Stem Cell Research, Stem Cell Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Lauritzen I, Pardossi-Piquard R, Bourgeois A, Bécot A, Checler F. Does Intraneuronal Accumulation of Carboxyl-terminal Fragments of the Amyloid Precursor Protein Trigger Early Neurotoxicity in Alzheimer’s Disease? Curr Alzheimer Res 2019; 16:453-457. [DOI: 10.2174/1567205016666190325092841] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/18/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
Abstract
Background:
Alzheimer’s disease (AD) is associated with extracellular accumulation and
aggregation of amyloid β (Aβ) peptides ultimately seeding in senile plaques. Recent data show that their
direct precursor C99 (βCTF) also accumulates in AD-affected brain as well as in AD-like mouse models.
C99 is consistently detected much earlier than Aβ, suggesting that this metabolite could be an early
contributor to AD pathology. C99 accumulates principally within endolysosomal and autophagic structures
and its accumulation was described as both a consequence and one of the causes of endolysosomalautophagic
pathology, the occurrence of which has been documented as an early defect in AD. C99 was
also accompanied by C99-derived C83 (αCTF) accumulation occurring within the same intracellular
organelles. Both these CTFs were found to dimerize leading to the generation of higher molecular
weight CTFs, which were immunohistochemically characterized in situ by means of aggregate-specific
antibodies.
Discussion:
Here, we discuss studies demonstrating a direct link between the accumulation of C99 and
C99-derived APP-CTFs and early neurotoxicity. We discuss the role of C99 in endosomal-lysosomalautophagic
dysfunction, neuroinflammation, early brain network alterations and synaptic dysfunction as
well as in memory-related behavioral alterations, in triple transgenic mice as well as in newly developed
AD animal models.
Conclusion:
This review summarizes current evidence suggesting a potential role of the β -secretasederived
APP C-terminal fragment C99 in Alzheimer’s disease etiology
Collapse
Affiliation(s)
- I. Lauritzen
- IPMC, UMR7275 CNRS/UNS, Laboratory of Excellence DistALZ, 660 route des Lucioles, 0660 Valbonne, France
| | - R. Pardossi-Piquard
- IPMC, UMR7275 CNRS/UNS, Laboratory of Excellence DistALZ, 660 route des Lucioles, 0660 Valbonne, France
| | - A. Bourgeois
- IPMC, UMR7275 CNRS/UNS, Laboratory of Excellence DistALZ, 660 route des Lucioles, 0660 Valbonne, France
| | - A. Bécot
- IPMC, UMR7275 CNRS/UNS, Laboratory of Excellence DistALZ, 660 route des Lucioles, 0660 Valbonne, France
| | - F. Checler
- IPMC, UMR7275 CNRS/UNS, Laboratory of Excellence DistALZ, 660 route des Lucioles, 0660 Valbonne, France
| |
Collapse
|
46
|
Lysosomal Dysfunction in Down Syndrome Is APP-Dependent and Mediated by APP-βCTF (C99). J Neurosci 2019; 39:5255-5268. [PMID: 31043483 DOI: 10.1523/jneurosci.0578-19.2019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
Lysosomal failure underlies pathogenesis of numerous congenital neurodegenerative disorders and is an early and progressive feature of Alzheimer's disease (AD) pathogenesis. Here, we report that lysosomal dysfunction in Down ayndrome (trisomy 21), a neurodevelopmental disorder and form of early onset AD, requires the extra gene copy of amyloid precursor protein (APP) and is specifically mediated by the β cleaved carboxy terminal fragment of APP (APP-βCTF, C99). In primary fibroblasts from individuals with DS, lysosomal degradation of autophagic and endocytic substrates is selectively impaired, causing them to accumulate in enlarged autolysosomes/lysosomes. Direct measurements of lysosomal pH uncovered a significant elevation (0.6 units) as a basis for slowed LC3 turnover and the inactivation of cathepsin D and other lysosomal hydrolases known to be unstable or less active when lysosomal pH is persistently elevated. Normalizing lysosome pH by delivering acidic nanoparticles to lysosomes ameliorated lysosomal deficits, whereas RNA sequencing analysis excluded a transcriptional contribution to hydrolase declines. Cortical neurons cultured from the Ts2 mouse model of DS exhibited lysosomal deficits similar to those in DS cells. Lowering APP expression with siRNA or BACE1 inhibition reversed cathepsin deficits in both fibroblasts and neurons. Deleting one Bace1 allele from adult Ts2 mice had similar rescue effects in vivo The modest elevation of endogenous APP-βCTF needed to disrupt lysosomal function in DS is relevant to sporadic AD where APP-βCTF, but not APP, is also elevated. Our results extend evidence that impaired lysosomal acidification drives progressive lysosomal failure in multiple forms of AD.SIGNIFICANCE STATEMENT Down syndrome (trisomy 21) (DS) is a neurodevelopmental disorder invariably leading to early-onset Alzheimer's disease (AD). We showed in cells from DS individuals and neurons of DS models that one extra copy of a normal amyloid precursor protein (APP) gene impairs lysosomal acidification, thereby depressing lysosomal hydrolytic activities and turnover of autophagic and endocytic substrates, processes vital to neuronal survival. These deficits, which were reversible by correcting lysosomal pH, are mediated by elevated levels of endogenous β-cleaved carboxy-terminal fragment of APP (APP-βCTF). Notably, similar endosomal-lysosomal pathobiology emerges early in sporadic AD, where neuronal APP-βCTF is also elevated, underscoring its importance as a therapeutic target and underscoring the functional and pathogenic interrelationships between the endosomal-lysosomal pathway and genes causing AD.
Collapse
|
47
|
Meng T, Lin S, Zhuang H, Huang H, He Z, Hu Y, Gong Q, Feng D. Recent progress in the role of autophagy in neurological diseases. Cell Stress 2019; 3:141-161. [PMID: 31225510 PMCID: PMC6551859 DOI: 10.15698/cst2019.05.186] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy (here refers to macroautophagy) is a catabolic pathway by which large protein aggregates and damaged organelles are first sequestered into a double-membraned structure called autophago-some and then delivered to lysosome for destruction. Recently, tremen-dous progress has been made to elucidate the molecular mechanism and functions of this essential cellular metabolic process. In addition to being either a rubbish clearing system or a cellular surviving program in response to different stresses, autophagy plays important roles in a large number of pathophysiological conditions, such as cancer, diabetes, and especially neurodegenerative disorders. Here we review recent progress in the role of autophagy in neurological diseases and discuss how dysregulation of autophagy initiation, autophagosome formation, maturation, and/or au-tophagosome-lysosomal fusion step contributes to the pathogenesis of these disorders in the nervous system.
Collapse
Affiliation(s)
- Tian Meng
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Shiyin Lin
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Haixia Zhuang
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Haofeng Huang
- Institute of Neurology, Guangdong Key Laboratory of Age-Related Cardiac-Cerebral Vascular Disease, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Zhengjie He
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Yongquan Hu
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Du Feng
- State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University; Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
48
|
Gabandé‐Rodríguez E, Keane L, Capasso M. Microglial phagocytosis in aging and Alzheimer's disease. J Neurosci Res 2019; 98:284-298. [DOI: 10.1002/jnr.24419] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/20/2019] [Accepted: 03/08/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Enrique Gabandé‐Rodríguez
- Department of Molecular Neuropathology Centro de Biología Molecular “Severo Ochoa” (CSIC‐UAM) Madrid Spain
| | - Lily Keane
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
| | - Melania Capasso
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
| |
Collapse
|
49
|
van der Kant R, Langness VF, Herrera CM, Williams DA, Fong LK, Leestemaker Y, Steenvoorden E, Rynearson KD, Brouwers JF, Helms JB, Ovaa H, Giera M, Wagner SL, Bang AG, Goldstein LSB. Cholesterol Metabolism Is a Druggable Axis that Independently Regulates Tau and Amyloid-β in iPSC-Derived Alzheimer's Disease Neurons. Cell Stem Cell 2019; 24:363-375.e9. [PMID: 30686764 PMCID: PMC6414424 DOI: 10.1016/j.stem.2018.12.013] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/26/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
Abstract
Genetic, epidemiologic, and biochemical evidence suggests that predisposition to Alzheimer's disease (AD) may arise from altered cholesterol metabolism, although the molecular pathways that may link cholesterol to AD phenotypes are only partially understood. Here, we perform a phenotypic screen for pTau accumulation in AD-patient iPSC-derived neurons and identify cholesteryl esters (CE), the storage product of excess cholesterol, as upstream regulators of Tau early during AD development. Using isogenic induced pluripotent stem cell (iPSC) lines carrying mutations in the cholesterol-binding domain of APP or APP null alleles, we found that while CE also regulate Aβ secretion, the effects of CE on Tau and Aβ are mediated by independent pathways. Efficacy and toxicity screening in iPSC-derived astrocytes and neurons showed that allosteric activation of CYP46A1 lowers CE specifically in neurons and is well tolerated by astrocytes. These data reveal that CE independently regulate Tau and Aβ and identify a druggable CYP46A1-CE-Tau axis in AD.
Collapse
Affiliation(s)
- Rik van der Kant
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands
| | - Vanessa F Langness
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cheryl M Herrera
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel A Williams
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lauren K Fong
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yves Leestemaker
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Evelyne Steenvoorden
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Kevin D Rynearson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Research Biologist, VA San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
50
|
Lee JH, Rao MV, Yang DS, Stavrides P, Im E, Pensalfini A, Huo C, Sarkar P, Yoshimori T, Nixon RA. Transgenic expression of a ratiometric autophagy probe specifically in neurons enables the interrogation of brain autophagy in vivo. Autophagy 2019; 15:543-557. [PMID: 30269645 PMCID: PMC6351128 DOI: 10.1080/15548627.2018.1528812] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022] Open
Abstract
Autophagy-lysosome pathway (ALP) disruption is considered pathogenic in multiple neurodegenerative diseases; however, current methods are inadequate to investigate macroautophagy/autophagy flux in brain in vivo and its therapeutic modulation. Here, we describe a novel autophagy reporter mouse (TRGL6) stably expressing a dual-fluorescence-tagged LC3 (tfLC3, mRFP-eGFP-LC3) by transgenesis selectively in neurons. The tfLC3 probe distributes widely in the central nervous system, including spinal cord. Expression levels were similar to endogenous LC3 and induced no detectable ALP changes. This ratiometric reporter registers differential pH-dependent changes in color as autophagosomes form, fuse with lysosomes, acidify, and degrade substrates within autolysosomes. We confirmed predicted changes in neuronal autophagy flux following specific experimental ALP perturbations. Furthermore, using a third fluorescence label in TRGL6 brains to identify lysosomes by immunocytochemistry, we validated a novel procedure to detect defective autolysosomal acidification in vivo. Thus, TRGL6 mice represent a unique tool to investigate in vivo ALP dynamics in specific neuron populations in relation to neurological diseases, aging, and disease modifying agents. Abbreviations: ACTB: actin, beta; AD: Alzheimer disease; AL: autolysosomes; ALP: autophagy-lysosome pathway; AP: autophagosome; APP: amyloid beta (Abeta) precursor protein; ATG5: autophagy related 5; ATG7: autophagy related 7; AV: autophagic vacuoles; CNS: central nervous system; CTSD: cathepsin D; CQ: chloroquine; DMEM: Dulbecco's modified Eagle's medium; GFP: green fluorescent protein; GABARAP: gamma-aminobutyric acid receptor associated protein; GABARAPL2/GATE16: gamma-aminobutyric acid (GABA) receptor-associated protein-like 2; ICC: immunocytochemistry; ICV: intra-cerebroventricular; LAMP2: lysosomal-associated membrane protein 2; Leup: leupeptin; LY: lysosomes; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; RFP: red fluorescent protein; RPS6KB1: ribosomal protein S6 kinase, polypeptide 1; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SQSTM1: sequestosome 1; tfLC3: mRFP-eGFP-LC3; TRGL6: Thy1 mRFP eGFP LC3-line 6; PCR: polymerase chain reaction; PD: Parkinson disease.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, New York University, New York, NY, USA
| | - Mala V. Rao
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, New York University, New York, NY, USA
| | - Dun-Sheng Yang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, New York University, New York, NY, USA
| | - Philip Stavrides
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Eunju Im
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, New York University, New York, NY, USA
| | - Anna Pensalfini
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, New York University, New York, NY, USA
| | - Chunfeng Huo
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Pallabi Sarkar
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
| | | | - Ralph A. Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, New York University, New York, NY, USA
- Department of Cell Biology, New York University, New York, NY, USA
| |
Collapse
|