1
|
Bekerman VP, Berman E, You B, Turbin R, Frohman L. A Novel Mitochondrial Mutation for Lebers Hereditary Optic Neuropathy Presenting With Vitamin B12 Deficiency. J Neuroophthalmol 2023; 43:e136-e138. [PMID: 34417767 DOI: 10.1097/wno.0000000000001391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Vladislav P Bekerman
- Department of Ophthalmology and Visual Science (VPB, RT, LF), Rutgers-New Jersey Medical School, Newark, New Jersey; Storm Eye Institute (EB), Medical University of South Carolina, Charleston, South Carolina; and Departments of Genetics (BY) and Neurosciences (RT, LF), Rutgers-New Jersey Medical School, Newark, New Jersey
| | | | | | | | | |
Collapse
|
2
|
Abstract
Mitochondrial optic neuropathies have a leading role in the field of mitochondrial medicine ever since 1988, when the first mutation in mitochondrial DNA was associated with Leber's hereditary optic neuropathy (LHON). Autosomal dominant optic atrophy (DOA) was subsequently associated in 2000 with mutations in the nuclear DNA affecting the OPA1 gene. LHON and DOA are both characterized by selective neurodegeneration of retinal ganglion cells (RGCs) triggered by mitochondrial dysfunction. This is centered on respiratory complex I impairment in LHON and defective mitochondrial dynamics in OPA1-related DOA, leading to distinct clinical phenotypes. LHON is a subacute, rapid, severe loss of central vision involving both eyes within weeks or months, with age of onset between 15 and 35 years old. DOA is a more slowly progressive optic neuropathy, usually apparent in early childhood. LHON is characterized by marked incomplete penetrance and a clear male predilection. The introduction of next-generation sequencing has greatly expanded the genetic causes for other rare forms of mitochondrial optic neuropathies, including recessive and X-linked, further emphasizing the exquisite sensitivity of RGCs to compromised mitochondrial function. All forms of mitochondrial optic neuropathies, including LHON and DOA, can manifest either as pure optic atrophy or as a more severe multisystemic syndrome. Mitochondrial optic neuropathies are currently at the forefront of a number of therapeutic programs, including gene therapy, with idebenone being the only approved drug for a mitochondrial disorder.
Collapse
Affiliation(s)
- Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Spiegel SJ, Sadun AA. Solutions to a Radical Problem: Overview of Current and Future Treatment Strategies in Leber's Hereditary Opic Neuropathy. Int J Mol Sci 2022; 23:13205. [PMID: 36361994 PMCID: PMC9656544 DOI: 10.3390/ijms232113205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Leber's Hereditary Optic Neuropathy (LHON) is the most common primary mitochondrial DNA disorder. It is characterized by bilateral severe central subacute vision loss due to specific loss of Retinal Ganglion Cells and their axons. Historically, treatment options have been quite limited, but ongoing clinical trials show promise, with significant advances being made in the testing of free radical scavengers and gene therapy. In this review, we summarize management strategies and rational of treatment based on current insights from molecular research. This includes preventative recommendations for unaffected genetic carriers, current medical and supportive treatments for those affected, and emerging evidence for future potential therapeutics.
Collapse
Affiliation(s)
- Samuel J. Spiegel
- Gavin Herbert Eye Institute, University of California, Irvine, CA 92617, USA
| | - Alfredo A. Sadun
- Jules Stein and Doheny Eye Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Zaslavsky K, Margolin EA. Leber's Hereditary Optic Neuropathy in Older Individuals Because of Increased Alcohol Consumption During the COVID-19 Pandemic. J Neuroophthalmol 2021; 41:316-320. [PMID: 34415266 DOI: 10.1097/wno.0000000000001333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Leber's hereditary optic neuropathy (LHON) is a disorder affecting oxidative phosphorylation in mitochondria. A majority of affected patients are men of 15 to 35 years of age. Phenotypic penetrance of this condition is only 50% in man and 10% in women and increases if the cellular energy demands go up, with the most common risk factors being smoking and alcohol use. METHODS Review of clinical features of 3 patients who were diagnosed with LHON in their sixth decade of life after doubling their alcohol intake during the recent COVID-19 pandemic. RESULTS All 3 patients were older than the age of 50 when they developed severe sequential visual loss. All have at least doubled their alcohol intake for at least 4 weeks preceding visual loss, and 2 who were smokers increased the number of cigarettes consumed daily because of the stress and boredom during the lockdowns triggered by the pandemic. CONCLUSIONS Significant increase in substance abuse in the general population during the recent lockdowns to combat the COVID-19 pandemic is well documented. We report 3 patients older than the age of 50, one of them a woman, who developed severe bilateral visual loss due to LHON after doubling their alcohol consumption and increasing number of cigarettes smoked daily during the pandemic. Clinicians are reminded to consider LHON in the differential diagnosis when encountering older patients with bilateral sequential visual loss and to specifically inquire about alcohol use and cigarette smoking in these patients.
Collapse
Affiliation(s)
- Kirill Zaslavsky
- Departments of Ophthalmology and Vision Sciences (KZ, EM), University of Toronto, Toronto, Canada ; and Department of Medicine (EM), Division of Neurology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
5
|
Amore G, Romagnoli M, Carbonelli M, Barboni P, Carelli V, La Morgia C. Therapeutic Options in Hereditary Optic Neuropathies. Drugs 2021; 81:57-86. [PMID: 33159657 PMCID: PMC7843467 DOI: 10.1007/s40265-020-01428-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Options for the effective treatment of hereditary optic neuropathies have been a long time coming. The successful launch of the antioxidant idebenone for Leber's Hereditary Optic Neuropathy (LHON), followed by its introduction into clinical practice across Europe, was an important step forward. Nevertheless, other options, especially for a variety of mitochondrial optic neuropathies such as dominant optic atrophy (DOA), are needed, and a number of pharmaceutical agents, acting on different molecular pathways, are currently under development. These include gene therapy, which has reached Phase III development for LHON, but is expected to be developed also for DOA, whilst most of the other agents (other antioxidants, anti-apoptotic drugs, activators of mitobiogenesis, etc.) are almost all at Phase II or at preclinical stage of research. Here, we review proposed target mechanisms, preclinical evidence, available clinical trials with primary endpoints and results, of a wide range of tested molecules, to give an overview of the field, also providing the landscape of future scenarios, including gene therapy, gene editing, and reproductive options to prevent transmission of mitochondrial DNA mutations.
Collapse
Affiliation(s)
- Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | | | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|
6
|
Mejia-Vergara AJ, Seleme N, Sadun AA, Karanjia R. Pathophysiology of Conversion to Symptomatic Leber Hereditary Optic Neuropathy and Therapeutic Implications: a Review. Curr Neurol Neurosci Rep 2020; 20:11. [DOI: 10.1007/s11910-020-01032-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Bris C, Goudenege D, Desquiret-Dumas V, Charif M, Colin E, Bonneau D, Amati-Bonneau P, Lenaers G, Reynier P, Procaccio V. Bioinformatics Tools and Databases to Assess the Pathogenicity of Mitochondrial DNA Variants in the Field of Next Generation Sequencing. Front Genet 2018; 9:632. [PMID: 30619459 PMCID: PMC6297213 DOI: 10.3389/fgene.2018.00632] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022] Open
Abstract
The development of next generation sequencing (NGS) has greatly enhanced the diagnosis of mitochondrial disorders, with a systematic analysis of the whole mitochondrial DNA (mtDNA) sequence and better detection sensitivity. However, the exponential growth of sequencing data renders complex the interpretation of the identified variants, thereby posing new challenges for the molecular diagnosis of mitochondrial diseases. Indeed, mtDNA sequencing by NGS requires specific bioinformatics tools and the adaptation of those developed for nuclear DNA, for the detection and quantification of mtDNA variants from sequence alignment to the calling steps, in order to manage the specific features of the mitochondrial genome including heteroplasmy, i.e., coexistence of mutant and wildtype mtDNA copies. The prioritization of mtDNA variants remains difficult, relying on a limited number of specific resources: population and clinical databases, and in silico tools providing a prediction of the variant pathogenicity. An evaluation of the most prominent bioinformatics tools showed that their ability to predict the pathogenicity was highly variable indicating that special efforts should be directed at developing new bioinformatics tools dedicated to the mitochondrial genome. In addition, massive parallel sequencing raised several issues related to the interpretation of very low mtDNA mutational loads, discovery of variants of unknown significance, and mutations unrelated to patient phenotype or the co-occurrence of mtDNA variants. This review provides an overview of the current strategies and bioinformatics tools for accurate annotation, prioritization and reporting of mtDNA variations from NGS data, in order to carry out accurate genetic counseling in individuals with primary mitochondrial diseases.
Collapse
Affiliation(s)
- Céline Bris
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - David Goudenege
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Valérie Desquiret-Dumas
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Majida Charif
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France
| | - Estelle Colin
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Dominique Bonneau
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Patrizia Amati-Bonneau
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Guy Lenaers
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France
| | - Pascal Reynier
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| | - Vincent Procaccio
- UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France.,Biochemistry and Genetics Department, Angers Hospital, Angers, France
| |
Collapse
|
8
|
International Consensus Statement on the Clinical and Therapeutic Management of Leber Hereditary Optic Neuropathy. J Neuroophthalmol 2017; 37:371-381. [PMID: 28991104 DOI: 10.1097/wno.0000000000000570] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Leber hereditary optic neuropathy (LHON) is currently estimated as the most frequent mitochondrial disease (1 in 27,000-45,000). Its molecular pathogenesis and natural history is now fairly well understood. LHON also is the first mitochondrial disease for which a treatment has been approved (idebenone-Raxone, Santhera Pharmaceuticals) by the European Medicine Agency, under exceptional circumstances because of the rarity and severity of the disease. However, what remains unclear includes the optimal target population, timing, dose, and frequency of administration of idebenone in LHON due to lack of accepted definitions, criteria, and general guidelines for the clinical management of LHON. To address these issues, a consensus conference with a panel of experts from Europe and North America was held in Milan, Italy, in 2016. The intent was to provide expert consensus statements for the clinical and therapeutic management of LHON based on the currently available evidence. We report the conclusions of this conference, providing the guidelines for clinical and therapeutic management of LHON.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Leber hereditary optic neuropathy (LHON) is the most common primary mitochondrial DNA (mtDNA) genetic disorder in the population. We address the clinical evolution of the disease, the secondary etiological factors that could contribute to visual loss, and the challenging task of developing effective treatments. RECENT FINDINGS LHON is characterized by a preclinical phase that reflects retinal ganglion cell (RGC) dysfunction before rapid visual deterioration ensues. Children can present atypically with slowly progressive visual loss or an insidious/subclinical onset that frequently results in considerable diagnostic delays. The LHON mtDNA mutation is not sufficient on its own to precipitate RGC loss and the current body of evidence supports a role for smoking and estrogen levels influencing disease conversion. Clinical trials are currently investigating the efficacy of adeno-associated viral vectors-based gene therapy approaches for patients carrying the m.11778G>A mutation. Mitochondrial replacement therapy is being developed as a reproductive option to prevent the maternal transmission of pathogenic mtDNA mutations. SUMMARY LHON is phenotypically more heterogeneous than previously considered and a complex interplay of genetic, environmental and hormonal factors modulates the risk of a LHON carrier losing vision. Advances in disease modelling, drug screening and genetic engineering offer promising avenues for therapeutic breakthroughs in LHON.
Collapse
|
10
|
Caporali L, Maresca A, Capristo M, Del Dotto V, Tagliavini F, Valentino ML, La Morgia C, Carelli V. Incomplete penetrance in mitochondrial optic neuropathies. Mitochondrion 2017; 36:130-137. [PMID: 28716668 DOI: 10.1016/j.mito.2017.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 06/27/2017] [Accepted: 07/13/2017] [Indexed: 01/06/2023]
Abstract
Incomplete penetrance characterizes the two most frequent inherited optic neuropathies, Leber's Hereditary Optic Neuropathy (LHON) and dominant optic atrophy (DOA), due to genetic errors in the mitochondrial DNA (mtDNA) and the nuclear DNA (nDNA), respectively. For LHON, compelling evidence has accumulated on the complex interplay of mtDNA haplogroups and environmental interacting factors, whereas the nDNA remains essentially non informative. However, a compensatory mechanism of activated mitochondrial biogenesis and increased mtDNA copy number, possibly driven by a permissive nDNA background, is documented in LHON; when successful it maintains unaffected the mutation carriers, but in some individuals it might be hampered by tobacco smoking or other environmental factors, resulting in disease onset. In females, mitochondrial biogenesis is promoted and maintained within the compensatory range by estrogens, partially explaining the gender bias in LHON. Concerning DOA, none of the above mechanisms has been fully explored, thus mtDNA haplogroups, environmental factors such as tobacco and alcohol, and further nDNA variants may all participate as protective factors or, on the contrary, favor disease expression and severity. Next generation sequencing, complemented by transcriptomics and proteomics, may provide some answers in the next future, even if the multifactorial model that seems to apply to incomplete penetrance in mitochondrial optic neuropathies remains problematic, and careful stratification of patients will play a key role for data interpretation. The deep understanding of which factors impinge on incomplete penetrance may shed light on the pathogenic mechanisms leading to optic nerve atrophy, on their possible compensation and, thus, on development of therapeutic strategies.
Collapse
Affiliation(s)
- Leonardo Caporali
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | | | - Valentina Del Dotto
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Francesca Tagliavini
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Chiara La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
11
|
Majander A, Bowman R, Poulton J, Antcliff RJ, Reddy MA, Michaelides M, Webster AR, Chinnery PF, Votruba M, Moore AT, Yu-Wai-Man P. Childhood-onset Leber hereditary optic neuropathy. Br J Ophthalmol 2017; 101:1505-1509. [PMID: 28314831 DOI: 10.1136/bjophthalmol-2016-310072] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND The onset of Leber hereditary optic neuropathy (LHON) is relatively rare in childhood. This study describes the clinical and molecular genetic features observed in this specific LHON subgroup. METHODS Our retrospective study consisted of a UK paediatric LHON cohort of 27 patients and 69 additional cases identified from a systematic review of the literature. Patients were included if visual loss occurred at the age of 12 years or younger with a confirmed pathogenic mitochondrial DNA mutation: m.3460G>A, m.11778G>A or m.14484T>C. RESULTS In the UK paediatric LHON cohort, three patterns of visual loss and progression were observed: (1) classical acute (17/27, 63%); (2) slowly progressive (4/27, 15%); and (3) insidious or subclinical (6/27, 22%). Diagnostic delays of 3-15 years occurred in children with an insidious mode of onset. Spontaneous visual recovery was more common in patients carrying the m.3460G>A and m.14484T>C mutations compared with the m.11778G>A mutation. Based a meta-analysis of 67 patients with available visual acuity data, 26 (39%) patients achieved a final best-corrected visual acuity (BCVA) ≥0.5 Snellen decimal in at least one eye, whereas 13 (19%) patients had a final BCVA <0.05 in their better seeing eye. CONCLUSIONS Although childhood-onset LHON carries a relatively better visual prognosis, approximately 1 in 5 patients will remain within the visual acuity criteria for legal blindness in the UK. The clinical presentation can be insidious and LHON should be considered in the differential diagnosis when faced with a child with unexplained subnormal vision and optic disc pallor.
Collapse
Affiliation(s)
- Anna Majander
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK.,Department of Ophthalmology, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | | | - Joanna Poulton
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, UK
| | | | | | - Michel Michaelides
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Andrew R Webster
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK
| | - Patrick F Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Medical Research Council Mitochondrial Biology Unit, Cambridge, UK.,Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University and Cardiff Eye Unit, University Hospital Wales, Cardiff, UK
| | - Anthony T Moore
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK.,Ophthalmology Department, UCSF School of Medicine, San Francisco, California, USA
| | - Patrick Yu-Wai-Man
- UCL Institute of Ophthalmology, London, UK.,Moorfields Eye Hospital, London, UK.,Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| |
Collapse
|