1
|
Chen S, Bao Q, Xu W, Zhai X. Extracellular particles: emerging insights into central nervous system diseases. J Nanobiotechnology 2025; 23:263. [PMID: 40170148 PMCID: PMC11960037 DOI: 10.1186/s12951-025-03354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
Extracellular particles (EPs), including extracellular vesicles (EVs) and non-vesicular extracellular particles (NVEPs), are multimolecular biomaterials released by cells that play a crucial role in intercellular communication. Recently, new subtypes of EPs associated with central nervous system (CNS), such as exophers and supermeres have been identified. These EPs provide new perspectives for understanding the pathological progression of CNS disorders and confer potential diagnostic value for liquid biopsies in neurodegenerative diseases (NDs). Moreover, EPs have emerged as promising drug delivery vehicles and targeted platforms for CNS-specific therapies. In this review, we delineate the landscape of EP subtypes and their roles in the pathophysiology of CNS diseases. We also review the recent advances of EP-based diagnosis in NDs and highlight the importance of analytical platforms with single-particle resolution in the exploitation of potential biomarkers. Furthermore, we summarize the application of engineered EVs in the treatment of CNS diseases and outline the underexplored potential of NVEPs as novel therapeutic agents.
Collapse
Affiliation(s)
- Shenyuan Chen
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Qinghua Bao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Suzhou, Jiangsu, 215600, China.
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| | - Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Vekrellis K, Emmanouilidou E, Xilouri M, Stefanis L. α-Synuclein in Parkinson's Disease: 12 Years Later. Cold Spring Harb Perspect Med 2024; 14:a041645. [PMID: 39349314 PMCID: PMC11529858 DOI: 10.1101/cshperspect.a041645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
α-Synuclein (AS) is a small presynaptic protein that is genetically, biochemically, and neuropathologically linked to Parkinson's disease (PD) and related synucleinopathies. We present here a review of the topic of this relationship, focusing on more recent knowledge. In particular, we review the genetic evidence linking AS to familial and sporadic PD, including a number of recently identified point mutations in the SNCA gene. We briefly go over the relevant neuropathological findings, stressing the evidence indicating a correlation between aberrant AS deposition and nervous system dysfunction. We analyze the structural characteristics of the protein, in relation to both its physiologic and pathological conformations, with particular emphasis on posttranslational modifications, aggregation properties, and secreted forms. We review the interrelationship of AS with various cellular compartments and functions, with particular focus on the synapse and protein degradation systems. We finally go over the recent exciting data indicating that AS can provide the basis for novel robust biomarkers in the field of synucleinopathies, while at the same time results from the first clinical trials specifically targeting AS are being reported.
Collapse
Affiliation(s)
- Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Maria Xilouri
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Leonidas Stefanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens 11528, Greece; and Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| |
Collapse
|
3
|
Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Elewa YHA, AL‐Farga A, Aqlan F, Zahran MH, Batiha GE. Sleep disorders cause Parkinson's disease or the reverse is true: Good GABA good night. CNS Neurosci Ther 2024; 30:e14521. [PMID: 38491789 PMCID: PMC10943276 DOI: 10.1111/cns.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative brain disease due to degeneration of dopaminergic neurons (DNs) presented with motor and non-motor symptoms. PD symptoms are developed in response to the disturbance of diverse neurotransmitters including γ-aminobutyric acid (GABA). GABA has a neuroprotective effect against PD neuropathology by protecting DNs in the substantia nigra pars compacta (SNpc). It has been shown that the degeneration of GABAergic neurons is linked with the degeneration of DNs and the progression of motor and non-motor PD symptoms. GABA neurotransmission is a necessary pathway for normal sleep patterns, thus deregulation of GABAergic neurotransmission in PD could be the potential cause of sleep disorders in PD. AIM Sleep disorders affect GABA neurotransmission leading to memory and cognitive dysfunction in PD. For example, insomnia and short sleep duration are associated with a reduction of brain GABA levels. Moreover, PD-related disorders including rigidity and nocturia influence sleep patterns leading to fragmented sleep which may also affect PD neuropathology. However, the mechanistic role of GABA in PD neuropathology regarding motor and non-motor symptoms is not fully elucidated. Therefore, this narrative review aims to clarify the mechanistic role of GABA in PD neuropathology mainly in sleep disorders, and how good GABA improves PD. In addition, this review of published articles tries to elucidate how sleep disorders such as insomnia and REM sleep behavior disorder (RBD) affect PD neuropathology and severity. The present review has many limitations including the paucity of prospective studies and most findings are taken from observational and preclinical studies. GABA involvement in the pathogenesis of PD has been recently discussed by recent studies. Therefore, future prospective studies regarding the use of GABA agonists in the management of PD are suggested to observe their distinct effects on motor and non-motor symptoms. CONCLUSION There is a bidirectional relationship between the pathogenesis of PD and sleep disorders which might be due to GABA deregulation.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary MedicineZagazig UniversityZagazigEgypt
- Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Ammar AL‐Farga
- Biochemistry Department, College of SciencesUniversity of JeddahJeddahSaudia Arbia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbb GovernorateYemen
| | | | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhur UniversityDamanhurEgypt
| |
Collapse
|
4
|
Leandrou E, Chalatsa I, Anagnostou D, Machalia C, Semitekolou M, Filippa V, Makridakis M, Vlahou A, Anastasiadou E, Vekrellis K, Emmanouilidou E. α-Synuclein oligomers potentiate neuroinflammatory NF-κB activity and induce Ca v3.2 calcium signaling in astrocytes. Transl Neurodegener 2024; 13:11. [PMID: 38378800 PMCID: PMC10880263 DOI: 10.1186/s40035-024-00401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND It is now realized that Parkinson's disease (PD) pathology extends beyond the substantia nigra, affecting both central and peripheral nervous systems, and exhibits a variety of non-motor symptoms often preceding motor features. Neuroinflammation induced by activated microglia and astrocytes is thought to underlie these manifestations. α-Synuclein aggregation has been linked with sustained neuroinflammation in PD, aggravating neuronal degeneration; however, there is still a lack of critical information about the structural identity of the α-synuclein conformers that activate microglia and/or astrocytes and the molecular pathways involved. METHODS To investigate the role of α-synuclein conformers in the development and maintenance of neuroinflammation, we used primary quiescent microglia and astrocytes, post-mortem brain tissues from PD patients and A53T α-synuclein transgenic mice that recapitulate key features of PD-related inflammatory responses in the absence of cell death, i.e., increased levels of pro-inflammatory cytokines and complement proteins. Biochemical and -omics techniques including RNAseq and secretomic analyses, combined with 3D reconstruction of individual astrocytes and live calcium imaging, were used to uncover the molecular mechanisms underlying glial responses in the presence of α-synuclein oligomers in vivo and in vitro. RESULTS We found that the presence of SDS-resistant hyper-phosphorylated α-synuclein oligomers, but not monomers, was correlated with sustained inflammatory responses, such as elevated levels of endogenous antibodies and cytokines and microglial activation. Similar oligomeric α-synuclein species were found in post-mortem human brain samples of PD patients but not control individuals. Detailed analysis revealed a decrease in Iba1Low/CD68Low microglia and robust alterations in astrocyte number and morphology including process retraction. Our data indicated an activation of the p38/ATF2 signaling pathway mostly in microglia and a sustained induction of the NF-κB pathway in astrocytes of A53T mice. The sustained NF-κB activity triggered the upregulation of astrocytic T-type Cav3.2 Ca2+ channels, altering the astrocytic secretome and promoting the secretion of IGFBPL1, an IGF-1 binding protein with anti-inflammatory and neuroprotective potential. CONCLUSIONS Our work supports a causative link between the neuron-produced α-synuclein oligomers and sustained neuroinflammation in vivo and maps the signaling pathways that are stimulated in microglia and astrocytes. It also highlights the recruitment of astrocytic Cav3.2 channels as a potential neuroprotective mediator against the α-synuclein-induced neuroinflammation.
Collapse
Affiliation(s)
- Emmanouela Leandrou
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Ioanna Chalatsa
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Dimitrios Anagnostou
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
| | - Christina Machalia
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Maria Semitekolou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
- School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Vicky Filippa
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Manousos Makridakis
- Center for Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Antonia Vlahou
- Center for Systems Biology, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Ema Anastasiadou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece
| | - Evangelia Emmanouilidou
- Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15772, Athens, Greece.
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 11527, Athens, Greece.
| |
Collapse
|
5
|
Ratan Y, Rajput A, Pareek A, Pareek A, Jain V, Sonia S, Farooqui Z, Kaur R, Singh G. Advancements in Genetic and Biochemical Insights: Unraveling the Etiopathogenesis of Neurodegeneration in Parkinson's Disease. Biomolecules 2024; 14:73. [PMID: 38254673 PMCID: PMC10813470 DOI: 10.3390/biom14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative movement disorder worldwide, which is primarily characterized by motor impairments. Even though multiple hypotheses have been proposed over the decades that explain the pathogenesis of PD, presently, there are no cures or promising preventive therapies for PD. This could be attributed to the intricate pathophysiology of PD and the poorly understood molecular mechanism. To address these challenges comprehensively, a thorough disease model is imperative for a nuanced understanding of PD's underlying pathogenic mechanisms. This review offers a detailed analysis of the current state of knowledge regarding the molecular mechanisms underlying the pathogenesis of PD, with a particular emphasis on the roles played by gene-based factors in the disease's development and progression. This study includes an extensive discussion of the proteins and mutations of primary genes that are linked to PD, including α-synuclein, GBA1, LRRK2, VPS35, PINK1, DJ-1, and Parkin. Further, this review explores plausible mechanisms for DAergic neural loss, non-motor and non-dopaminergic pathologies, and the risk factors associated with PD. The present study will encourage the related research fields to understand better and analyze the current status of the biochemical mechanisms of PD, which might contribute to the design and development of efficacious and safe treatment strategies for PD in future endeavors.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
6
|
Pereira VM, Pradhanang S, Prather JF, Nair S. Role of Metalloproteinases in Diabetes-associated Mild Cognitive Impairment. Curr Neuropharmacol 2024; 23:58-74. [PMID: 38963109 PMCID: PMC11519823 DOI: 10.2174/1570159x22666240517090855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 07/05/2024] Open
Abstract
Diabetes has been linked to an increased risk of mild cognitive impairment (MCI), a condition characterized by a subtle cognitive decline that may precede the development of dementia. The underlying mechanisms connecting diabetes and MCI involve complex interactions between metabolic dysregulation, inflammation, and neurodegeneration. A critical mechanism implicated in diabetes and MCI is the activation of inflammatory pathways. Chronic low-grade inflammation, as observed in diabetes, can lead to the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and interferon-gamma (IFNγ), each of which can exacerbate neuroinflammation and contribute to cognitive decline. A crucial enzyme involved in regulating inflammation is ADAM17, a disintegrin, and metalloproteinase, which can cleave and release TNF-α from its membrane-bound precursor and cause it to become activated. These processes, in turn, activate additional inflammation-related pathways, such as AKT, NF-κB, NLP3, MAPK, and JAK-STAT pathways. Recent research has provided novel insights into the role of ADAM17 in diabetes and neurodegenerative diseases. ADAM17 is upregulated in both diabetes and Alzheimer's disease, suggesting a shared mechanism and implicating inflammation as a possible contributor to much broader forms of pathology and pointing to a possible link between inflammation and the emergence of MCI. This review provides an overview of the different roles of ADAM17 in diabetes-associated mild cognitive impairment diseases. It identifies mechanistic connections through which ADAM17 and associated pathways may influence the emergence of mild cognitive impairment.
Collapse
Affiliation(s)
- Vitoria Mattos Pereira
- School of Pharmacy, College of Health Sciences, Biomedical Sciences, Interdisciplinary Graduate Program, University of Wyoming, Laramie, WY 82071, USA
| | - Suyasha Pradhanang
- School of Pharmacy, College of Health Sciences, Biomedical Sciences, Interdisciplinary Graduate Program, University of Wyoming, Laramie, WY 82071, USA
| | - Jonathan F. Prather
- Department of Zoology and Physiology, Program in Neuroscience, University of Wyoming, Laramie, WY 82071, USA
| | - Sreejayan Nair
- School of Pharmacy, College of Health Sciences, Biomedical Sciences, Interdisciplinary Graduate Program, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
7
|
Bohnen NI, Barr J, Vangel R, Roytman S, Paalanen R, Frey KA, Scott PJH, Kanel P. GABA A Receptor Benzodiazepine Binding Sites and Motor Impairments in Parkinson's Disease. Brain Sci 2023; 13:1711. [PMID: 38137159 PMCID: PMC10741877 DOI: 10.3390/brainsci13121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Flumazenil is an allosteric modulator of the γ-aminobutyric acid-A receptor (GABAAR) benzodiazepine binding site that could normalize neuronal signaling and improve motor impairments in Parkinson's disease (PD). Little is known about how regional GABAAR availability affects motor symptoms. We investigated the relationship between regional availability of GABAAR benzodiazepine binding sites and motor impairments in PD. Methods: A total of 11 Patients with PD (males; mean age 69.0 ± 4.6 years; Hoehn and Yahr stages 2-3) underwent [11C]flumazenil GABAAR benzodiazepine binding site and [11C]dihydrotetrabenazine vesicular monoamine transporter type-2 (VMAT2) PET imaging and clinical assessment. Stepwise regression analysis was used to predict regional cerebral correlates of the four cardinal UPDRS motor scores using cortical, striatal, thalamic, and cerebellar flumazenil binding estimates. Thalamic GABAAR availability was selectively associated with axial motor scores (R2 = 0.55, F = 11.0, β = -6.4, p = 0.0009). Multi-ligand analysis demonstrated significant axial motor predictor effects by both thalamic GABAAR availability (R2 = 0.47, β = -5.2, F = 7.2, p = 0.028) and striatal VMAT2 binding (R2 = 0.30, β = -3.9, F = 9.1, p = 0.019; total model: R2 = 0.77, F = 11.9, p = 0.0056). Post hoc analysis demonstrated that thalamic [11C]methyl-4-piperidinyl propionate cholinesterase PET and K1 flow delivery findings were not significant confounders. Findings suggest that reduced thalamic GABAAR availability correlates with worsened axial motor impairments in PD, independent of nigrostriatal degeneration. These findings may augur novel non-dopaminergic approaches to treating axial motor impairments in PD.
Collapse
Affiliation(s)
- Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.B.); (R.V.); (S.R.); (K.A.F.); (P.J.H.S.); (P.K.)
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Jaimie Barr
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.B.); (R.V.); (S.R.); (K.A.F.); (P.J.H.S.); (P.K.)
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Robert Vangel
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.B.); (R.V.); (S.R.); (K.A.F.); (P.J.H.S.); (P.K.)
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.B.); (R.V.); (S.R.); (K.A.F.); (P.J.H.S.); (P.K.)
| | - Rebecca Paalanen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kirk A. Frey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.B.); (R.V.); (S.R.); (K.A.F.); (P.J.H.S.); (P.K.)
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.B.); (R.V.); (S.R.); (K.A.F.); (P.J.H.S.); (P.K.)
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (J.B.); (R.V.); (S.R.); (K.A.F.); (P.J.H.S.); (P.K.)
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Chen X, Feng Y, Quinn RJ, Pountney DL, Richardson DR, Mellick GD, Ma L. Potassium Channels in Parkinson's Disease: Potential Roles in Its Pathogenesis and Innovative Molecular Targets for Treatment. Pharmacol Rev 2023; 75:758-788. [PMID: 36918260 DOI: 10.1124/pharmrev.122.000743] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the midbrain. The loss of neurons results in a subsequent reduction of dopamine in the striatum, which underlies the core motor symptoms of PD. To date, there are no effective treatments to stop, slow, or reverse the pathologic progression of dopaminergic neurodegeneration. This unfortunate predicament is because of the current early stages in understanding the biologic targets and pathways involved in PD pathogenesis. Ion channels have become emerging targets for new therapeutic development for PD due to their essential roles in neuronal function and neuroinflammation. Potassium channels are the most prominent ion channel family and have been shown to be critically important in PD pathology because of their roles in modulating neuronal excitability, neurotransmitter release, synaptic transmission, and neuroinflammation. In this review, members of the subfamilies of voltage-gated K+ channels, inward rectifying K+ channels, and Ca2+-activated K+ channels are described. Evidence of the role of these channels in PD etiology is discussed together with the latest views on related pathologic mechanisms and their potential as biologic targets for developing neuroprotective drugs for PD. SIGNIFICANCE STATEMENT: Parkinson's disease (PD) is the second most common neurodegenerative disorder, featuring progressive degeneration of dopaminergic neurons in the midbrain. It is a multifactorial disease involving multiple risk factors and complex pathobiological mechanisms. Mounting evidence suggests that ion channels play vital roles in the pathogenesis and progression of PD by regulating neuronal excitability and immune cell function. Therefore, they have become "hot" biological targets for PD, as demonstrated by multiple clinical trials of drug candidates targeting ion channels for PD therapy.
Collapse
Affiliation(s)
- Xiaoyi Chen
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Yunjiang Feng
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Ronald J Quinn
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Dean L Pountney
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Des R Richardson
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - George D Mellick
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Linlin Ma
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| |
Collapse
|
9
|
Xiao X, Bi M, Du X, Jiang H. The ATP-sensitive potassium channel: a therapeutic target for neurodegeneration? Expert Opin Ther Targets 2023; 27:517-521. [PMID: 37489110 DOI: 10.1080/14728222.2023.2240023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Affiliation(s)
- Xue Xiao
- Physiology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
| | - Mingxia Bi
- Physiology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
| | - Xixun Du
- Physiology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
| | - Hong Jiang
- Physiology, School of Basic Medicine, Medical College of Qingdao University, Qingdao, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao City, Shandong, China
| |
Collapse
|
10
|
Anagnostou D, Sfakianaki G, Melachroinou K, Soutos M, Constantinides V, Vaikath N, Tsantzali I, Paraskevas GP, Agnaf OE, Vekrellis K, Emmanouilidou E. Assessment of Aggregated and Exosome-Associated α-Synuclein in Brain Tissue and Cerebrospinal Fluid Using Specific Immunoassays. Diagnostics (Basel) 2023; 13:2192. [PMID: 37443586 DOI: 10.3390/diagnostics13132192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Even though it is currently well-established that α-synuclein aggregation is closely associated with the pathological events in Parkinson's disease (PD) and several other neurodegenerative disorders, collectively called synucleinopathies, the mechanistic link between α-synuclein aggregates and the onset and progression of neurodegeneration in these diseases remain unclear. The process of aggregation initiates from a structurally distorted monomer that gradually oligomerizes to generate a repertoire of fibrillar and oligomeric multimers that deposit within diseased cells in the brain. Total α-synuclein has been proposed as a potential biomarker in PD, but most of the studies do not discriminate between distinct α-synuclein conformers. To correlate protein measurements to disease pathology, we have developed a conformation-specific ELISA method that selectively detects fibrillar and oligomeric forms of α-synuclein without cross-reacting with monomers. We have used this assay to determine the levels of aggregated α-synuclein in human and mouse brain tissue as well as in CSF and CSF-derived exosomes from patients with synucleinopathy and control subjects. Our results verify the ability of the new assay to detect aggregated α-synuclein in complex matrices and support the idea that the levels of these conformers are related to the age of onset in PD patients, while CSF analysis showed that these species exist in low abundance in CSF and CSF-derived exosomes. Future studies will be required to fully assess the diagnostic usefulness of this ELISA in synucleinopathies.
Collapse
Affiliation(s)
- Dimitrios Anagnostou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Garifalia Sfakianaki
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Katerina Melachroinou
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Miltiadis Soutos
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Vassilios Constantinides
- Neurochemistry Unit, 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Nishant Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (H.B.K.U.), Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Ioanna Tsantzali
- 2nd Department of Neurology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - George P Paraskevas
- 2nd Department of Neurology, Attikon General University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Omar El Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (H.B.K.U.), Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Evangelia Emmanouilidou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
11
|
Haque R, Maity D. Small molecule-based fluorescent probes for the detection of α-Synuclein aggregation states. Bioorg Med Chem Lett 2023; 86:129257. [PMID: 36966976 DOI: 10.1016/j.bmcl.2023.129257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
The formation of aggregates due to protein misfolding is encountered in various neurodegenerative diseases. α-Synuclein (α-Syn) aggregation is linked to Parkinson's disease (PD). It is one of the most prevalent neurodegenerative disorders after Alzheimer's disease. Aggregation of α-Syn is associated with Lewy body formation and degeneration of the dopaminergic neurons in the brain. These are the pathological hallmarks of PD progression. α-Syn aggregates in a multi-step process. The native unstructured α-Syn monomers combine to form oligomers, followed by amyloid fibrils, and finally Lewy bodies. Recent evidence suggests that α-Syn oligomerization and fibrils formation play major roles in PD development. α-Syn oligomeric species is the main contributor to neurotoxicity. Therefore, the detection of α-Syn oligomers and fibrils has drawn significant attention for potential diagnostic and therapeutic development. In this regard, the fluorescence strategy has become the most popular approach for following the protein aggregation process. Thioflavin T (ThT) is the most frequently used probe for monitoring amyloid kinetics. Unfortunately, it suffers from several significant drawbacks including the inability to detect neurotoxic oligomers. Researchers developed several small molecule-based advanced fluorescent probes compared to ThT for the detection/monitoring of α-Syn aggregates states. These are summarized here.
Collapse
|
12
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
13
|
iPSC-Derived Striatal Medium Spiny Neurons from Patients with Multiple System Atrophy Show Hypoexcitability and Elevated α-Synuclein Release. Cells 2023; 12:cells12020223. [PMID: 36672158 PMCID: PMC9856678 DOI: 10.3390/cells12020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Multiple system atrophy of the parkinsonian type (MSA-P) is a rare, fatal neurodegenerative disease with sporadic onset. It is still unknown if MSA-P is a primary oligodendropathy or caused by neuronal pathophysiology leading to severe, α-synuclein-associated neurodegeneration, mainly in the striatum. In this study, we generated and differentiated induced pluripotent stem cells (iPSCs) from patients with the clinical diagnosis of probable MSA-P (n = 3) and from three matched healthy controls into GABAergic striatal medium spiny neurons (MSNs). We found a significantly elevated release and neuronal distribution for α-synuclein, as well as hypoexcitability in the MSNs derived from the MSA-P patients compared to the healthy controls. These data suggest that the striatal hypoexcitable neurons of MSA-P patients contribute to a pathological α-synuclein burden which is likely to spread to neighboring cells and projection targets, facilitating disease progression.
Collapse
|
14
|
Mamelak M. The Treatment of Parkinson's Disease with Sodium Oxybate. Curr Mol Pharmacol 2023; 16:564-579. [PMID: 36330625 DOI: 10.2174/1874467216666221103121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
Sodiun Oxybate (SO) has a number of attributes that may mitigate the metabolic stress on the substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons in Parkinson's disease (PD). These neurons function at the borderline of energy sufficiency. SO is metabolized to succinate and supplies energy to the cell by generating ATP. SO is a GABAB agonist and, as such, also arrests the high energy requiring calcium pace-making activity of these neurons. In addition, blocking calcium entry impedes the synaptic release and subsequent neurotransmission of aggregated synuclein species. As DA neurons degenerate, a homeostatic failure exposes these neurons to glutamate excitotoxicity, which in turn accelerates the damage. SO inhibits the neuronal release of glutamate and blocks its agonistic actions. Most important, SO generates NADPH, the cell's major antioxidant cofactor. Excessive free radical production within DA neurons and even more so within activated microglia are early and key features of the degenerative process that are present long before the onset of motor symptoms. NADPH maintains cell glutathione levels and alleviates oxidative stress and its toxic consequences. SO, a histone deacetylase inhibitor also suppresses the expression of microglial NADPH oxidase, the major source of free radicals in Parkinson brain. The acute clinical use of SO at night has been shown to reduce daytime sleepiness and fatigue in patients with PD. With long-term use, its capacity to supply energy to DA neurons, impede synuclein transmission, block excitotoxicity and maintain an anti-oxidative redox environment throughout the night may delay the onset of PD and slow its progress.
Collapse
Affiliation(s)
- Mortimer Mamelak
- Department of Psychiatry, Baycrest Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Martel AC, Galvan A. Connectivity of the corticostriatal and thalamostriatal systems in normal and parkinsonian states: An update. Neurobiol Dis 2022; 174:105878. [PMID: 36183947 PMCID: PMC9976706 DOI: 10.1016/j.nbd.2022.105878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 02/06/2023] Open
Abstract
The striatum receives abundant glutamatergic afferents from the cortex and thalamus. These inputs play a major role in the functions of the striatal neurons in normal conditions, and are significantly altered in pathological states, such as Parkinson's disease. This review summarizes the current knowledge of the connectivity of the corticostriatal and thalamostriatal pathways, with emphasis on the most recent advances in the field. We also discuss novel findings regarding structural changes in cortico- and thalamostriatal connections that occur in these connections as a consequence of striatal loss of dopamine in parkinsonism.
Collapse
Affiliation(s)
- Anne-Caroline Martel
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
16
|
Manavi MA, Mohammad Jafari R, Shafaroodi H, Ejtemaei-Mehr S, Sharifzadeh M, Dehpour AR. Anticonvulsant effects of ivermectin on pentylenetetrazole- and maximal electroshock-induced seizures in mice: the role of GABAergic system and K ATP channels. Heliyon 2022; 8:e11375. [PMID: 36387449 PMCID: PMC9647207 DOI: 10.1016/j.heliyon.2022.e11375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Ivermectin (IVM) is an antiparasitic medicine that exerts its function through glutamate-gated chloride channels and GABAA receptors predominantly. There is paucity of information on anti-seizure activity of IVM. Moreover, the probable pharmacological mechanisms underlying this phenomenon have not been identified. MATERIALS AND METHODS In this study, pentylenetetrazole (PTZ)-induced clonic seizures and maximal electroshock (MES)-induced tonic-clonic seizure models, respectively in mice was utilized to inquire whether IVM could alter clonic seizure threshold (CST) and seizure susceptibility. To assess the underlying mechanism behind the anti-seizure activity of IVM, we used positive and negative allosteric modulators of GABAA (diazepam and flumazenil, respectively) as well as KATP channel opener and closer (cromakalim and glibenclamide, respectively). Data are provided as mean ± S.E.M. After the performance of the variance homogeneity test, a one-way and two-way analysis of variance was used. Fisher's exact test was performed in case of MES. P-value less than 0.05 considered statistically significant. RESULTS and Discussion: Our data showed that IVM (0.5, 1, 5, and 10 mg/kg, i.p.) increased CST. Furthermore, flumazenil 0.25 mg/kg, i.p. and glibenclamide 1 mg/kg, i.p., could inhibit the anticonvulsant effects of IVM. Supplementary, an ineffective dose of diazepam 0.02 mg/kg, i.p. or cromakalim 10 μg/kg, i.p. were able to enhance the anticonvulsant effects of IVM. Besides, we figure out that the IVM (1 and 5 mg/kg, i.p.) could delay the onset of first clonic seizure and also might decrease the frequency of clonic seizures induced by PTZ (85 mg/kg, i.p.). Finally, IVM could prevent the incidence and death in MES-induced tonic-clonic seizures. CONCLUSION Based on the obtained results, it can be concluded that IVM may exert anticonvulsant effects against PTZ- and MES-induced seizures in mice that might be mediated by GABAA receptors and KATP channels.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaei-Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Zhang J, Shen Q, Ma Y, Liu L, Jia W, Chen L, Xie J. Calcium Homeostasis in Parkinson's Disease: From Pathology to Treatment. Neurosci Bull 2022; 38:1267-1270. [PMID: 35727497 PMCID: PMC9554109 DOI: 10.1007/s12264-022-00899-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jingxian Zhang
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Qingqing Shen
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Yue Ma
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Lin Liu
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Wenting Jia
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Leilei Chen
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
18
|
Network Pharmacology and Molecular Docking Analyses Unveil the Mechanisms of Yiguanjian Decoction against Parkinson’s Disease from Inner/Outer Brain Perspective. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4758189. [PMID: 36237735 PMCID: PMC9552692 DOI: 10.1155/2022/4758189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
Objective This study aims to explore the pharmacodynamic mechanism of Yiguanjian (YGJ) decoction against Parkinson's disease (PD) through integrating the central nervous (inner brain) and peripheral system (outer brain) relationship spectrum. Methods The active components of YGJ were achieved from the TCMSP, TCMID, and TCM@Taiwan databases. The blood-brain barrier (BBB) permeability of the active components along with their corresponding targets was evaluated utilizing the existing website, namely, SwissADME and SwissTargetPrediction. The targets of PD were determined through database retrieval. The interaction network was constructed upon the STRING database, followed by the visualization using Cytoscape software. Then, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on potential targets. Finally, the molecular docking approach was employed to assess the binding affinity between key components and key targets. Results Overall, we identified 79 active components, 128 potential targets of YGJ, and 97 potential targets of YGJ-BBB potentially suitable for the treatment of PD. GO and KEGG analyses showed that the YGJ treatment of PD mainly relied on PI3K-Akt pathway while the YGJ-BBB was mostly involved in endocrine resistance. The molecular docking results displayed high affinity between multiple compounds and targets in accordance with previous observations. Conclusions Our study unveiled the potential mechanisms of YGJ against PD from a systemic perspective: (1) for the YGJ, they have potential exerting effects on the peripheral system and inhibiting neuronal apoptosis through regulating the PI3K-Akt pathway; (2) for the YGJ-BBB, they can directly modulate endocrine resistance of the central nervous and holistically enhance body resistance to PD along with YGJ on PI3K-Akt pathway.
Collapse
|
19
|
Kim Y, Geng L, Lenhart AE, Li J, Dauer WT, Kennedy RT. Measurement of α-Synuclein Dynamics In Vivo Using Microdialysis with a Novel Homogeneous Immunoassay. ACS Chem Neurosci 2022; 13:2557-2564. [PMID: 35959902 DOI: 10.1021/acschemneuro.2c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Understanding the regulation of α-synuclein release could be important in better understanding Parkinson's disease development, progression, and treatment. Advances in such studies are hindered by technical challenges that limit the ability to monitor α-synuclein concentration in vivo. We developed a novel α-synuclein microdialysis method coupled with a specific and sensitive immunoassay that requires a small sample volume (1 μL). Using this method, basal α-synuclein level was estimated at 254 ± 78 pM in the striatum of freely moving mice. Additionally, we observed that potassium (75 mM) and nicotine (0.5 mg/kg) administration significantly increased α-synuclein in dialysates. These results provide evidence that the methods we report here can be useful to investigate the physiological roles of α-synuclein and support the idea that α-synuclein is secreted to the extracellular space in a neuronal activity-dependent manner.
Collapse
Affiliation(s)
- Youngsoo Kim
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lequn Geng
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ashley E Lenhart
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jay Li
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - William T Dauer
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Luo A, Xie Z, Wang Y, Wang X, Li S, Yan J, Zhan G, Zhou Z, Zhao Y, Li S. Type 2 diabetes mellitus-associated cognitive dysfunction: Advances in potential mechanisms and therapies. Neurosci Biobehav Rev 2022; 137:104642. [PMID: 35367221 DOI: 10.1016/j.neubiorev.2022.104642] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes (T2D) and its target organ injuries cause distressing impacts on personal health and put an enormous burden on the healthcare system, and increasing attention has been paid to T2D-associated cognitive dysfunction (TDACD). TDACD is characterized by cognitive dysfunction, delayed executive ability, and impeded information-processing speed. Brain imaging data suggest that extensive brain regions are affected in patients with T2D. Based on current findings, a wide spectrum of non-specific neurodegenerative mechanisms that partially overlap with the mechanisms of neurodegenerative diseases is hypothesized to be associated with TDACD. However, it remains unclear whether TDACD is a consequence of T2D or a complication that co-occurs with T2D. Theoretically, anti-diabetes methods are promising neuromodulatory approaches to reduce brain injury in patients with T2D. In this review, we summarize potential mechanisms underlying TDACD and promising neurotropic effects of anti-diabetes methods and some neuroprotective natural compounds. Constructing screening or diagnostic tools and developing targeted treatment and preventive strategies would be expected to reduce the burden of TDACD.
Collapse
Affiliation(s)
- Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zheng Xie
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yue Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Xuan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| |
Collapse
|
21
|
Pietrzak D, Kasperek K, Rękawek P, Piątkowska-Chmiel I. The Therapeutic Role of Ketogenic Diet in Neurological Disorders. Nutrients 2022; 14:1952. [PMID: 35565918 PMCID: PMC9102882 DOI: 10.3390/nu14091952] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate and adequate-protein diet that has gained popularity in recent years in the context of neurological diseases (NDs). The complexity of the pathogenesis of these diseases means that effective forms of treatment are still lacking. Conventional therapy is often associated with increasing tolerance and/or drug resistance. Consequently, more effective therapeutic strategies are being sought to increase the effectiveness of available forms of therapy and improve the quality of life of patients. For the moment, it seems that KD can provide therapeutic benefits in patients with neurological problems by effectively controlling the balance between pro- and antioxidant processes and pro-excitatory and inhibitory neurotransmitters, and modulating inflammation or changing the composition of the gut microbiome. In this review we evaluated the potential therapeutic efficacy of KD in epilepsy, depression, migraine, Alzheimer's disease and Parkinson's disease. In our opinion, KD should be considered as an adjuvant therapeutic option for some neurological diseases.
Collapse
Affiliation(s)
- Diana Pietrzak
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (K.K.); (P.R.)
| | | | | | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (K.K.); (P.R.)
| |
Collapse
|
22
|
Ponterio G, Faustini G, El Atiallah I, Sciamanna G, Meringolo M, Tassone A, Imbriani P, Cerri S, Martella G, Bonsi P, Bellucci A, Pisani A. Alpha-Synuclein is Involved in DYT1 Dystonia Striatal Synaptic Dysfunction. Mov Disord 2022; 37:949-961. [PMID: 35420219 PMCID: PMC9323501 DOI: 10.1002/mds.29024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 12/26/2022] Open
Abstract
Background The neuronal protein alpha‐synuclein (α‐Syn) is crucially involved in Parkinson's disease pathophysiology. Intriguingly, torsinA (TA), the protein causative of DYT1 dystonia, has been found to accumulate in Lewy bodies and to interact with α‐Syn. Both proteins act as molecular chaperones and control synaptic machinery. Despite such evidence, the role of α‐Syn in dystonia has never been investigated. Objective We explored whether α‐Syn and N‐ethylmaleimide sensitive fusion attachment protein receptor proteins (SNAREs), that are known to be modulated by α‐Syn, may be involved in DYT1 dystonia synaptic dysfunction. Methods We used electrophysiological and biochemical techniques to study synaptic alterations in the dorsal striatum of the Tor1a+/Δgag mouse model of DYT1 dystonia. Results In the Tor1a+/Δgag DYT1 mutant mice, we found a significant reduction of α‐Syn levels in whole striata, mainly involving glutamatergic corticostriatal terminals. Strikingly, the striatal levels of the vesicular SNARE VAMP‐2, a direct α‐Syn interactor, and of the transmembrane SNARE synaptosome‐associated protein 23 (SNAP‐23), that promotes glutamate synaptic vesicles release, were markedly decreased in mutant mice. Moreover, we detected an impairment of miniature glutamatergic postsynaptic currents (mEPSCs) recorded from striatal spiny neurons, in parallel with a decreased asynchronous release obtained by measuring quantal EPSCs (qEPSCs), which highlight a robust alteration in release probability. Finally, we also observed a significant reduction of TA striatal expression in α‐Syn null mice. Conclusions Our data demonstrate an unprecedented relationship between TA and α‐Syn, and reveal that α‐Syn and SNAREs alterations characterize the synaptic dysfunction underlying DYT1 dystonia. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ilham El Atiallah
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.,UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Pisani
- IRCCS Fondazione Mondino, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
23
|
A double-hit in vivo model of GBA viral microRNA-mediated downregulation and human alpha-synuclein overexpression demonstrates nigrostriatal degeneration. Neurobiol Dis 2022; 163:105612. [PMID: 34995756 DOI: 10.1016/j.nbd.2022.105612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/19/2021] [Accepted: 01/03/2022] [Indexed: 01/30/2023] Open
Abstract
Preclinical and clinical studies support a strong association between mutations in the GBA1 gene that encodes beta-glucocerebrosidase (GCase) (EC 3.2.1.45; glucosylceramidase beta) and Parkinson's disease (PD). Alpha-synuclein (AS), a key player in PD pathogenesis, and GBA1 mutations may independently and synergistically cause lysosomal dysfunction and thus, embody clinically well-validated targets of the neurodegenerative disease process in PD. However, in vivo models, recapitulating pathological features of PD that can be used to dissect the nature of the complex relationship between GCase and AS on the nigrostriatal axis, the region particularly vulnerable in PD, are direly needed. To address this, we implemented a bidirectional approach in mice to examine the effects of: 1) GCase overexpression (wild-type and mutant N370S GBA) on endogenous AS levels and 2) downregulation of endogenous GCase (Gba) combined with AS overexpression. Striatal delivery of viral-mediated GCase overexpression revealed minimal effects on cortical and nigrostriatal AS tissue levels and no significant effect on dopaminergic system integrity. On the other hand, microRNA (miR)-mediated Gba1 downregulation (miR Gba), combined with virus-mediated human AS overexpression (+AS), yields decreased GCase activity in the cortex, mimicking levels seen in GBA1 heterozygous carriers (30-40%), increased astrogliosis and microgliosis, decreased striatal dopamine levels (50% compared to controls) and loss of nigral dopaminergic neurons (~33%)- effects that were all reversible with miR rescue. Most importantly, the synergistic neurodegeneration of miR Gba + AS correlated with augmented AS accumulation and extracellular release in the striatum. Collectively, our results suggest that GCase downregulation alone is not sufficient to recapitulate key pathological features of PD in vivo, but its synergistic interplay with AS, via increased AS levels and extracellular release, drives nigrostriatal neurodegeneration. Furthermore, we report a novel double-hit GBA-AS model that can be used to identify putative mechanisms driving PD pathophysiology and can be subsequently used to test novel therapeutic approaches.
Collapse
|
24
|
Abstract
GABA is the main inhibitory neurotransmitter in the mammalian central nervous system (CNS) and acts via metabotropic GABAB receptors. Neurodegenerative diseases are a major burden and affect an ever increasing number of humans. The actual therapeutic drugs available are partially effective to slow down the progression of the diseases, but there is a clear need to improve pharmacological treatment thus find alternative drug targets and develop newer pharmaco-treatments. This chapter is dedicated to reviewing the latest evidence about GABAB receptors and their inhibitory mechanisms and pathways involved in the neurodegenerative pathologies.
Collapse
Affiliation(s)
- Alessandra P Princivalle
- Department of Bioscience and Chemistry, Biomolecular Research Centre, College of Health, Wellbeing and Life Sciences at Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
25
|
Oliveira LMA, Gasser T, Edwards R, Zweckstetter M, Melki R, Stefanis L, Lashuel HA, Sulzer D, Vekrellis K, Halliday GM, Tomlinson JJ, Schlossmacher M, Jensen PH, Schulze-Hentrich J, Riess O, Hirst WD, El-Agnaf O, Mollenhauer B, Lansbury P, Outeiro TF. Alpha-synuclein research: defining strategic moves in the battle against Parkinson's disease. NPJ Parkinsons Dis 2021; 7:65. [PMID: 34312398 PMCID: PMC8313662 DOI: 10.1038/s41531-021-00203-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
With the advent of the genetic era in Parkinson's disease (PD) research in 1997, α-synuclein was identified as an important player in a complex neurodegenerative disease that affects >10 million people worldwide. PD has been estimated to have an economic impact of $51.9 billion in the US alone. Since the initial association with PD, hundreds of researchers have contributed to elucidating the functions of α-synuclein in normal and pathological states, and these remain critical areas for continued research. With this position paper the authors strive to achieve two goals: first, to succinctly summarize the critical features that define α-synuclein's varied roles, as they are known today; and second, to identify the most pressing knowledge gaps and delineate a multipronged strategy for future research with the goal of enabling therapies to stop or slow disease progression in PD.
Collapse
Affiliation(s)
- Luis M A Oliveira
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA.
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Robert Edwards
- Departments of Neurology and Physiology, UCSF School of Medicine, San Francisco, CA, USA
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ronald Melki
- Institut François Jacob, MIRCen, CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Leonidas Stefanis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- First Department of Neurology, Medical School of the National and Kapodistrian University of Athens, Athens, Greece
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Faculty of Life Sciences, EPFL, Lausanne, Switzerland
| | - David Sulzer
- Department of Psychiatry, Neurology, Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Kostas Vekrellis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Glenda M Halliday
- University of Sydney, Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, Sydney, NSW, Australia
| | - Julianna J Tomlinson
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Michael Schlossmacher
- Neuroscience Program, The Ottawa Hospital, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
| | - Poul Henning Jensen
- Aarhus University, Department of Biomedicine & DANDRITE, Danish Research Institute of Translational Neuroscience, Aarhus, Denmark
| | - Julia Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, USA
| | - Omar El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | | | - Tiago F Outeiro
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Max Planck Institute for Experimental Medicine, Göttingen, Germany.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK.
| |
Collapse
|
26
|
Role of SNAREs in Neurodegenerative Diseases. Cells 2021; 10:cells10050991. [PMID: 33922505 PMCID: PMC8146804 DOI: 10.3390/cells10050991] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are pathologies of the central and peripheral nervous systems characterized by loss of brain functions and problems in movement which occur due to the slow and progressive degeneration of cellular elements. Several neurodegenerative diseases are known such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis and many studies on the molecular mechanisms underlying these pathologies have been conducted. Altered functions of some key proteins and the presence of intraneuronal aggregates have been identified as responsible for the development of the diseases. Interestingly, the formation of the SNARE complex has been discovered to be fundamental for vesicle fusion, vesicle recycling and neurotransmitter release. Indeed, inhibition of the formation of the SNARE complex, defects in the SNARE-dependent exocytosis and altered regulation of SNARE-mediated vesicle fusion have been associated with neurodegeneration. In this review, the biological aspects of neurodegenerative diseases and the role of SNARE proteins in relation to the onset of these pathologies are described.
Collapse
|
27
|
Maurya SK, Bhattacharya N, Mishra S, Bhattacharya A, Banerjee P, Senapati S, Mishra R. Microglia Specific Drug Targeting Using Natural Products for the Regulation of Redox Imbalance in Neurodegeneration. Front Pharmacol 2021; 12:654489. [PMID: 33927630 PMCID: PMC8076853 DOI: 10.3389/fphar.2021.654489] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Microglia, a type of innate immune cell of the brain, regulates neurogenesis, immunological surveillance, redox imbalance, cognitive and behavioral changes under normal and pathological conditions like Alzheimer's, Parkinson's, Multiple sclerosis and traumatic brain injury. Microglia produces a wide variety of cytokines to maintain homeostasis. It also participates in synaptic pruning and regulation of neurons overproduction by phagocytosis of neural precursor cells. The phenotypes of microglia are regulated by the local microenvironment of neurons and astrocytes via interaction with both soluble and membrane-bound mediators. In case of neuron degeneration as observed in acute or chronic neurodegenerative diseases, microglia gets released from the inhibitory effect of neurons and astrocytes, showing activated phenotype either of its dual function. Microglia shows neuroprotective effect by secreting growths factors to heal neurons and clears cell debris through phagocytosis in case of a moderate stimulus. But the same microglia starts releasing pro-inflammatory cytokines like TNF-α, IFN-γ, reactive oxygen species (ROS), and nitric oxide (NO), increasing neuroinflammation and redox imbalance in the brain under chronic signals. Therefore, pharmacological targeting of microglia would be a promising strategy in the regulation of neuroinflammation, redox imbalance and oxidative stress in neurodegenerative diseases. Some studies present potentials of natural products like curcumin, resveratrol, cannabidiol, ginsenosides, flavonoids and sulforaphane to suppress activation of microglia. These natural products have also been proposed as effective therapeutics to regulate the progression of neurodegenerative diseases. The present review article intends to explain the molecular mechanisms and functions of microglia and molecular dynamics of microglia specific genes and proteins like Iba1 and Tmem119 in neurodegeneration. The possible interventions by curcumin, resveratrol, cannabidiol, ginsenosides, flavonoids and sulforaphane on microglia specific protein Iba1 suggest possibility of natural products mediated regulation of microglia phenotypes and its functions to control redox imbalance and neuroinflammation in management of Alzheimer's, Parkinson's and Multiple Sclerosis for microglia-mediated therapeutics.
Collapse
Affiliation(s)
| | - Neetu Bhattacharya
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
| | - Suman Mishra
- Department of Molecular Medicine and Biotechnology, SGPGI, Lucknow, India
| | - Amit Bhattacharya
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
28
|
Koziorowski D, Figura M, Milanowski ŁM, Szlufik S, Alster P, Madetko N, Friedman A. Mechanisms of Neurodegeneration in Various Forms of Parkinsonism-Similarities and Differences. Cells 2021; 10:656. [PMID: 33809527 PMCID: PMC7999195 DOI: 10.3390/cells10030656] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD), dementia with Lewy body (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA) belong to a group of neurodegenerative diseases called parkinsonian syndromes. They share several clinical, neuropathological and genetic features. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra- and intracellular accumulation of misfolded proteins. The parkinsonian diseases affect distinct areas of the brain. PD and MSA belong to a group of synucleinopathies that are characterized by the presence of fibrillary aggregates of α-synuclein protein in the cytoplasm of selected populations of neurons and glial cells. PSP is a tauopathy associated with the pathological aggregation of the microtubule associated tau protein. Although PD is common in the world's aging population and has been extensively studied, the exact mechanisms of the neurodegeneration are still not fully understood. Growing evidence indicates that parkinsonian disorders to some extent share a genetic background, with two key components identified so far: the microtubule associated tau protein gene (MAPT) and the α-synuclein gene (SNCA). The main pathways of parkinsonian neurodegeneration described in the literature are the protein and mitochondrial pathways. The factors that lead to neurodegeneration are primarily environmental toxins, inflammatory factors, oxidative stress and traumatic brain injury.
Collapse
Affiliation(s)
- Dariusz Koziorowski
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Monika Figura
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Łukasz M. Milanowski
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Piotr Alster
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Natalia Madetko
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Andrzej Friedman
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| |
Collapse
|
29
|
Walters DC, Lawrence R, Kirby T, Ahrendsen JT, Anderson MP, Roullet JB, Murphy EJ, Gibson KM. Postmortem Analyses in a Patient With Succinic Semialdehyde Dehydrogenase Deficiency (SSADHD): II. Histological, Lipid, and Gene Expression Outcomes in Regional Brain Tissue. J Child Neurol 2021; 36:1177-1188. [PMID: 33557678 PMCID: PMC8349921 DOI: 10.1177/0883073820987742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study has extended previous metabolic measures in postmortem tissues (frontal and parietal lobes, pons, cerebellum, hippocampus, and cerebral cortex) obtained from a 37-year-old male patient with succinic semialdehyde dehydrogenase deficiency (SSADHD) who expired from SUDEP (sudden unexplained death in epilepsy). Histopathologic characterization of fixed cortex and hippocampus revealed mild to moderate astrogliosis, especially in white matter. Analysis of total phospholipid mass in all sections of the patient revealed a 61% increase in cortex and 51% decrease in hippocampus as compared to (n = 2-4) approximately age-matched controls. Examination of mass and molar composition of major phospholipid classes showed decreases in phospholipids enriched in myelin, such as phosphatidylserine, sphingomyelin, and ethanolamine plasmalogen. Evaluation of gene expression (RT2 Profiler PCR Arrays, GABA, glutamate; Qiagen) revealed dysregulation in 14/15 GABAA receptor subunits in cerebellum, parietal, and frontal lobes with the most significant downregulation in ∊, θ, ρ1, and ρ2 subunits (7.7-9.9-fold). GABAB receptor subunits were largely unaffected, as were ionotropic glutamate receptors. The metabotropic glutamate receptor 6 was consistently downregulated (maximum 5.9-fold) as was the neurotransmitter transporter (GABA), member 13 (maximum 7.3-fold). For other genes, consistent dysregulation was seen for interleukin 1β (maximum downregulation 9.9-fold) and synuclein α (maximal upregulation 6.5-fold). Our data provide unique insight into SSADHD brain function, confirming astrogliosis and lipid abnormalities previously observed in the null mouse model while highlighting long-term effects on GABAergic/glutamatergic gene expression in this disorder.
Collapse
Affiliation(s)
- DC Walters
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| | - R Lawrence
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - T Kirby
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| | - JT Ahrendsen
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - MP Anderson
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - J-B Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA
| | - EJ Murphy
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND
| | - KM Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA,Correspondence: Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Health Sciences Building Room 210C, Washington State University, 412 E. Spokane Falls Boulevard, Spokane, WA 99202-2131; phone 509-358-7954; fax 508-358-7667;
| | | |
Collapse
|
30
|
Gao L, Wang W, Wang X, Yang F, Xie L, Shen J, Brimble MA, Xiao Q, Yao SQ. Fluorescent probes for bioimaging of potential biomarkers in Parkinson's disease. Chem Soc Rev 2021; 50:1219-1250. [PMID: 33284303 DOI: 10.1039/d0cs00115e] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Parkinson's disease (PD), as the second most common neurodegenerative disease, is caused by complex pathological processes and currently remains very difficult to treat. PD brings great distress to patients and imposes a heavy economic burden on society. The number of PD patients is growing as the aging population increases worldwide. Therefore, it is crucial to develop new tools for aiding the early diagnosis and treatment of PD. The significant pathological features involved in PD include the abnormal accumulation of α-synuclein, metal ion dyshomeostasis, oxidative stress, mitochondrial dysfunction and neurotransmitter deficiencies. In recent years, fluorescent probes have emerged as a powerful bioimaging tool with potential to help understand the pathological processes of PD via the detection and monitoring of pathological features. In this review, we comprehensively summarize the design and working mechanisms of fluorescent probes along with their applications in the detection of various PD biomarkers. We also discuss the current limitations of fluorescent probes and provide perspectives on how these limitations can be overcome to develop better fluorescent probes suitable for application in clinical trials in the future. We hope that this review provides valuable information and guidance for the development of new fluorescent probes that can be used clinically in the early diagnosis of PD and contributes to the development of efficient PD drugs in the future.
Collapse
Affiliation(s)
- Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhao S, Wang M, Ma Z. Therapeutic potential of ATP-sensitive potassium channels in Parkinson's disease. Brain Res Bull 2021; 169:1-7. [PMID: 33434622 DOI: 10.1016/j.brainresbull.2021.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022]
Abstract
In the past decade, there was an increasing interest in the therapeutic potential targeting ATP-sensitive potassium (KATP) channels for an effective treatment of Parkinson's disease (PD). KATP channels are widely expressed in the central nervous system and were reported to mediate the degeneration and death of nigral dopamine neurons in the pathogenesis of PD. This review aims to address the pivotal roles of KATP channels played in the mechanisms underlying PD pathogenesis, and provide possible directions for further research from different perspectives, such as the vulnerability of dopamine neurons in the substantia nigra, neurotransmitter releasing, iron metabolism in the brain, α-synuclein secretion and mitochondrial dysfunction, which are off critical importance in the investigation of KATP channels-targeted precise therapeutic interventions for PD.
Collapse
Affiliation(s)
- Sha Zhao
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - MengZhen Wang
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - ZeGang Ma
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China; Institute of Brain Science and Disorders, Qingdao University, Qingdao, China.
| |
Collapse
|
32
|
Minakaki G, Krainc D, Burbulla LF. The Convergence of Alpha-Synuclein, Mitochondrial, and Lysosomal Pathways in Vulnerability of Midbrain Dopaminergic Neurons in Parkinson's Disease. Front Cell Dev Biol 2020; 8:580634. [PMID: 33381501 PMCID: PMC7767856 DOI: 10.3389/fcell.2020.580634] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by progressive bradykinesia, rigidity, resting tremor, and gait impairment, as well as a spectrum of non-motor symptoms including autonomic and cognitive dysfunction. The cardinal motor symptoms of PD stem from the loss of substantia nigra (SN) dopaminergic (DAergic) neurons, and it remains unclear why SN DAergic neurons are preferentially lost in PD. However, recent identification of several genetic PD forms suggests that mitochondrial and lysosomal dysfunctions play important roles in the degeneration of midbrain dopamine (DA) neurons. In this review, we discuss the interplay of cell-autonomous mechanisms linked to DAergic neuron vulnerability and alpha-synuclein homeostasis. Emerging studies highlight a deleterious feedback cycle, with oxidative stress, altered DA metabolism, dysfunctional lysosomes, and pathological alpha-synuclein species representing key events in the pathogenesis of PD. We also discuss the interactions of alpha-synuclein with toxic DA metabolites, as well as the biochemical links between intracellular iron, calcium, and alpha-synuclein accumulation. We suggest that targeting multiple pathways, rather than individual processes, will be important for developing disease-modifying therapies. In this context, we focus on current translational efforts specifically targeting lysosomal function, as well as oxidative stress via calcium and iron modulation. These efforts could have therapeutic benefits for the broader population of sporadic PD and related synucleinopathies.
Collapse
Affiliation(s)
- Georgia Minakaki
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lena F Burbulla
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
33
|
Wu Q, Shaikh MA, Meymand ES, Zhang B, Luk KC, Trojanowski JQ, Lee VMY. Neuronal activity modulates alpha-synuclein aggregation and spreading in organotypic brain slice cultures and in vivo. Acta Neuropathol 2020; 140:831-849. [PMID: 33021680 DOI: 10.1007/s00401-020-02227-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Alpha-synuclein (αSyn) preformed fibrils (PFF) induce endogenous αSyn aggregation leading to reduced synaptic transmission. Neuronal activity modulates release of αSyn; however, whether neuronal activity regulates the spreading of αSyn pathology remains elusive. Here, we established a hippocampal slice culture system from wild-type (WT) mice and found that both Ca2+ influx and the uptake of αSyn PFF were higher in the CA3 than in the CA1 sub-region. Pharmacologically enhancing neuronal activity substantially increased αSyn pathology in αSyn PFF-treated hippocampal or midbrain slice cultures and accelerated dopaminergic neuron degeneration. Consistently, neuronal hyperactivity promoted PFF trafficking along axons/dendrites within microfluidic chambers. Unexpectedly, enhancing neuronal activity in LRRK2 G2019S mutant slice cultures further increased αSyn pathology, especially with more Lewy body (LB) forming than in WT slice cultures. Finally, following injection of αSyn PFF and chemogenetic modulators into the dorsal striatum of WT mice, both motor behavior and αSyn pathology were exacerbated likely by enhancing neuronal activity, since they were ameliorated by reducing neuronal activity. Thus, a greater understanding of the impact of neuronal activity on αSyn aggregation and spreading, as well as dopaminergic neuronal vulnerability, may provide new therapeutic strategies for patients with LB disease (LBD).
Collapse
Affiliation(s)
- Qihui Wu
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA
| | - Muhammad A Shaikh
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA
| | - Emily S Meymand
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA.
| |
Collapse
|
34
|
Dinter E, Saridaki T, Diederichs L, Reichmann H, Falkenburger BH. Parkinson's disease and translational research. Transl Neurodegener 2020; 9:43. [PMID: 33256849 PMCID: PMC7708097 DOI: 10.1186/s40035-020-00223-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is diagnosed when patients exhibit bradykinesia with tremor and/or rigidity, and when these symptoms respond to dopaminergic medications. Yet in the last years there was a greater recognition of additional aspects of the disease including non-motor symptoms and prodromal states with associated pathology in various regions of the nervous system. In this review we discuss current concepts of two major alterations found during the course of the disease: cytoplasmic aggregates of the protein α-synuclein and the degeneration of dopaminergic neurons. We provide an overview of new approaches in this field based on current concepts and latest literature. In many areas, translational research on PD has advanced the understanding of the disease but there is still a need for more effective therapeutic options based on the insights into the basic biological phenomena.
Collapse
Affiliation(s)
- Elisabeth Dinter
- Department of Neurology, Technische Universität Dresden, Dresden, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Dresden, Germany
| | | | | | - Heinz Reichmann
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Björn H Falkenburger
- Department of Neurology, Technische Universität Dresden, Dresden, Germany. .,Deutsches Zentrum für Neurodegenerative Erkrankungen, Dresden, Germany. .,Department of Neurology, RWTH University Aachen, Aachen, Germany.
| |
Collapse
|
35
|
Sun Y, He Y, Yang L, Liang D, Shi W, Zhu X, Jiang Y, Ou C. Manganese induced nervous injury by α-synuclein accumulation via ATP-sensitive K(+) channels and GABA receptors. Toxicol Lett 2020; 332:164-170. [PMID: 32659473 DOI: 10.1016/j.toxlet.2020.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/27/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Manganese (Mn) is an environmental pollutant having a toxic effect on Parkinson's disease, with significant damage seen in the neurons of basal ganglia. Hence, Mn pollution is a public health concern. A Sprague-Dawley rat model was used to determine the damage to basal nuclei, and the effect of Mn intake was detected using the Morris water maze test and transmission electron microscopy. The SH-SY5Y cell line was exposed to Mn, and downstream signaling was assessed to determine the mechanism of toxicity. Mn exposure injured neurons, repressing GABAAR receptors and inducing GABABR receptors. The synergistic effect of the GABABR receptor and Kir6.1-SUR1 or Kir6.2-SUR1 was found to be one of the potential factors for the secretion of α-synuclein. The accumulation of α-synuclein regulated downstream factors calmodulin (CAM) cAMP response element-binding protein (CREB), thereby impairing learning and memory. Other genes downstream of CREB, rather than the feedback regulation of CREB, and brain-derived neurotrophic factor might also be involved.
Collapse
Affiliation(s)
- Yi Sun
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Yonghua He
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Lin Yang
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Dan Liang
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Wenxiang Shi
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Xiaonian Zhu
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Naning 530021, China
| | - Chaoyan Ou
- Department of Toxicology, School of Public Health, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
36
|
Ross A, Xing V, Wang TT, Bureau SC, Link GA, Fortin T, Zhang H, Hayley S, Sun H. Alleviating toxic α-Synuclein accumulation by membrane depolarization: evidence from an in vitro model of Parkinson's disease. Mol Brain 2020; 13:108. [PMID: 32736645 PMCID: PMC7395353 DOI: 10.1186/s13041-020-00648-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the formation of toxic, fibrillar form alpha-synuclein (α-Syn) protein aggregates in dopaminergic neurons. Accumulating evidence has shown a multifactorial interplay between the intracellular calcium elevation and α-Syn dynamics. However, whether membrane depolarization regulates toxic α-Syn aggregates remains unclear. To understand this better, we used an in vitro α-Syn preformed fibrils (PFF) model of PD in human neural cells. We demonstrated functional membrane depolarization in differentiated SH-SY5Y cells induced by two independent treatments: high extracellular K+ and the GABAA receptor blocker picrotoxin. We then observed that these treatments significantly alleviated toxic α-Syn aggregation in PFF-treated SH-SY5Y cells. Moreover, clinically relevant direct current stimulation (DCS) also remarkably decreased toxic α-Syn aggregation in PFF-treated SH-SY5Y cells. Taken together, our findings suggest that membrane depolarization plays an important role in alleviating PFF-induced toxic α-Syn aggregates, and that it may represent a novel therapeutic mechanism for PD.
Collapse
Affiliation(s)
- Alysia Ross
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Viktoria Xing
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Ting Ting Wang
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Samantha C Bureau
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Giovana A Link
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Teresa Fortin
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Hui Zhang
- Department of Neurology, SUNY Downstate Medical center, Brooklyn, NY, 11226, USA
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Hongyu Sun
- Department of Neuroscience, Carleton University, Ottawa, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
37
|
Bi D, Wen L, Wu Z, Shen Y. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease. Alzheimers Dement 2020; 16:1312-1329. [PMID: 32543726 DOI: 10.1002/alz.12088] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To propose a new hypothesis that GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease (AD). BACKGROUND Synaptic dysfunction and E/I imbalance emerge decades before the appearance of cognitive decline in AD patients, which contribute to neurodegeneration. Initially, E/I imbalance was thought to occur first, due to dysfunction of the glutamatergic and cholinergic systems. However, new evidence has demonstrated that the GABAergic system, the counterpart of E/I balance and the major inhibitory neurotransmitter system in the central nervous system, is altered enormously and that this contributes to E/I imbalance and further AD pathogenesis. NEW HYPOTHESIS Alterations to the GABAergic system, induced by multiple AD pathogenic or risk factors, contribute to E/I imbalance and AD pathogenesis. MAJOR CHALLENGES FOR THE HYPOTHESIS This GABAergic hypothesis accounts for many critical questions and common challenges confronting a new hypothesis of AD pathogenesis. More specifically, it explains why amyloid beta (Aβ), β-secretase (BACE1), apolipoprotein E4 gene (APOE ε4), hyperactive glia cells, contributes to AD pathogenesis and why age and sex are the risk factors of AD. GABAergic dysfunction promotes the spread of Aβ pathology throughout the AD brain and associated cognitive impairments, and the induction of dysfunction induced by these varied risk factors shares this common neurobiology leading to E/I imbalance. In turn, some of these factors exacerbate GABAergic dysfunction and E/I imbalance. Moreover, the GABAergic system modulates various brain functions and thus, the GABAergic hypothesis accounts for nonamnestic manifestations. Furthermore, corrections of E/I balance through manipulation of GABAergic functions have shown positive outcomes in preclinical and clinical studies, suggesting the potential of the GABAergic system as a therapeutic target in AD. LINKAGE TO OTHER MAJOR THEORIES Dysfunction of the GABAergic system is induced by multiple critical signaling pathways, which include the existing major theories of AD pathogenesis, such as the Aβ and neuroinflammation hypotheses. In a new perspective, this GABAergic hypothesis accounts for the E/I imbalance and related excitotoxicity, which contribute to cognitive decline and AD pathogenesis. Therefore, the GABAergic system could be a key target to restore, at least partially, the E/I balance and cognitive function in AD patients.
Collapse
Affiliation(s)
- Danlei Bi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lang Wen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zujun Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
38
|
Zhang L, Zheng Y, Xie J, Shi L. Potassium channels and their emerging role in parkinson's disease. Brain Res Bull 2020; 160:1-7. [PMID: 32305406 DOI: 10.1016/j.brainresbull.2020.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/21/2020] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, which is associated with a selective loss of dopaminergic neurons in the substantia nigra (SN) and a reduction of dopamine in the striatum. Recently, ion channel dysfunction has been considered a reason for the pathogenesis of PD. Potassium (K+) channels are widespread in the central nervous system, and play key roles in modulating cellular excitability, synaptic transmission, and neurotransmitter release. Based on recent studies and data, we propose that K+ channels may be new therapeutic targets for PD that slow the progressive loss of dopaminergic neurons and attenuate motor and non-motor symptoms. In this review, we mainly focus on: delayed rectifier, inwardly rectifying, and double-pore K+ channels. We summarize the expression and function of these channels in PD-related brain regions. We also discuss the effects of pharmacological blockade or activation of K+ channels in the progression and treatment of PD.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Yanan Zheng
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
39
|
The expression level of alpha-synuclein in different neuronal populations is the primary determinant of its prion-like seeding. Sci Rep 2020; 10:4895. [PMID: 32184415 PMCID: PMC7078319 DOI: 10.1038/s41598-020-61757-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/25/2020] [Indexed: 11/08/2022] Open
Abstract
Alpha-synuclein (aSyn)-rich aggregates propagate in neuronal networks and compromise cellular homeostasis leading to synucleinopathies such as Parkinson's disease. Aggregated aSyn spread follows a conserved spatio-temporal pattern that is not solely dependent on connectivity. Hence, the differential tropism of aSyn-rich aggregates to distinct brain regions, or their ability to amplify within those regions, must contribute to this process. To better understand what underlies aSyn-rich aggregates distribution within the brain, we generated primary neuronal cultures from various brain regions of wild-type mice and mice expressing a reduced level of aSyn, and exposed them to fibrillar aSyn. We then assessed exogenous fibrillar aSyn uptake, endogenous aSyn seeding, and endogenous aSyn physiological expression levels. Despite a similar uptake of exogenous fibrils by neuronal cells from distinct brain regions, the seeded aggregation of endogenous aSyn differed greatly from one neuronal population to another. The different susceptibility of neuronal populations was linked to their aSyn expression level. Our data establish that endogenous aSyn expression level plays a key role in fibrillar aSyn prion-like seeding, supporting that endogenous aSyn expression level participates in selective regional brain vulnerability.
Collapse
|
40
|
Zhang W, Zhou M, Lu W, Gong J, Gao F, Li Y, Xu X, Lin Y, Zhang X, Ding L, Zhang Z, Li G, Chen X, Sun X, Zhu X, Xu P, Zhang Y. CNTNAP4 deficiency in dopaminergic neurons initiates parkinsonian phenotypes. Am J Cancer Res 2020; 10:3000-3021. [PMID: 32194851 PMCID: PMC7053186 DOI: 10.7150/thno.40798] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Contactin-associated protein-like 4 (CNTNAP4) belongs to the neurexin superfamily and has critical functions in neurological development and synaptic function. Loss of CNTNAP4 in interneurons has been linked to autism, schizophrenia, and epilepsy. CNTNAP4 is also highly enriched in dopaminergic (DA) neurons in the substantia nigra (SN), however, few studies have investigated the role of CNTNAP4 in DA neurons, and whether CNTNAP4 deficiency in DA neurons contributes to Parkinson's disease (PD) remains unclear. Methods: Effects of CNTNAP4 knockdown or overexpression on the DA MN9D cell line were assessed via Western blotting, immunocytochemistry, and RNA sequencing. An in vivo animal model, including CNTNAP4 knockout mice and stereotaxic injections of adeno-associated viral short-hairpin RNA with the tyrosine-hydroxylase promotor to silence CNTNAP4 in the SN, as well as the resulting physiological/behavioral effects, were evaluated via behavioral tests, Western blotting, immunohistochemistry, and transmission electron microscopy. Enzyme-linked immunosorbent assays (ELISAs) were performed to examine the cerebrospinal fluid (CSF) and plasma CNTNAP4 concentrations in PD patients. Results: We demonstrated that CNTNAP4 knockdown induced mitophagy and increased α-synuclein expression in MN9D cells. CNTNAP4 knockdown in the SN induced PD-like increases in SN-specific α-synuclein expression, DA neuronal degeneration, and motor dysfunction in mice. In addition, CNTNAP4 knockdown in SN-DA neurons increased autophagosomes and reduced synaptic vesicles in the SN. Furthermore, CNTNAP4 knockout mice showed movement deficits, nigral DA degeneration, and increased autophagy, which were consistent with the SN-specific knockdown model. We also found that CSF and plasma CNTNAP4 expression was increased in PD patients; in particular, plasma CNTNAP4 was increased in male PD patients compared with controls or female PD patients. Conclusion: Our findings suggest that CNTNAP4 deficiency may initiate phenotypes relevant to PD, of which we elucidated some of the underlying mechanisms.
Collapse
|
41
|
MacIsaac S, Quevedo Melo T, Zhang Y, Volta M, Farrer MJ, Milnerwood AJ. Neuron-autonomous susceptibility to induced synuclein aggregation is exacerbated by endogenous Lrrk2 mutations and ameliorated by Lrrk2 genetic knock-out. Brain Commun 2020; 2:fcz052. [PMID: 32510053 PMCID: PMC7273240 DOI: 10.1093/braincomms/fcz052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
Neuronal aggregates containing α-synuclein are a pathological hallmark of several degenerative diseases; including Parkinson’s disease, Parkinson’s disease with dementia and dementia with Lewy bodies. Understanding the process of α-synuclein aggregation, and discovering means of preventing it, may help guide therapeutic strategy and drug design. Recent advances provide tools to induce α-synuclein aggregation in neuronal cultures. Application of exogenous pre-formed fibrillar α-synuclein induces pathological phosphorylation and accumulation of endogenous α-synuclein, typical of that seen in disease. Genomic variability and mutations in α-synuclein and leucine-rich repeat kinase 2 proteins are the major genetic risk factors for Parkinson’s disease. Reports demonstrate fibril-induced α-synuclein aggregation is increased in cells from leucine-rich repeat kinase 2 pathogenic mutant (G2019S) overexpressing mice, and variously decreased by leucine-rich repeat kinase 2 inhibitors. Elsewhere in vivo antisense knock-down of leucine-rich repeat kinase 2 protein has been shown to protect mice from fibril-induced α-synuclein aggregation, whereas kinase inhibition did not. To help bring clarity to this issue, we took a purely genetic approach in a standardized neuron-enriched culture, lacking glia. We compared fibril treatment of leucine-rich repeat kinase 2 germ-line knock-out, and G2019S germ-line knock-in, mouse cortical neuron cultures with those from littermates. We found leucine-rich repeat kinase 2 knock-out neurons are resistant to α-synuclein aggregation, which predominantly forms within axons, and may cause axonal fragmentation. Conversely, leucine-rich repeat kinase 2 knock-in neurons are more vulnerable to fibril-induced α-synuclein accumulation. Protection and resistance correlated with basal increases in a lysosome marker in knock-out, and an autophagy marker in knock-in cultures. The data add to a growing number of studies that argue leucine-rich repeat kinase 2 silencing, and potentially kinase inhibition, may be a useful therapeutic strategy against synucleinopathy.
Collapse
Affiliation(s)
- Sarah MacIsaac
- Department of Human Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada
| | - Thaiany Quevedo Melo
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yuting Zhang
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mattia Volta
- Department of Human Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada.,EURAC Research, Institute for Biomedicine, Bolzano, Italy
| | - Matthew J Farrer
- Department of Human Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Austen J Milnerwood
- Department of Human Genetics, Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
42
|
Leandrou E, Emmanouilidou E, Vekrellis K. Voltage-Gated Calcium Channels and α-Synuclein: Implications in Parkinson's Disease. Front Mol Neurosci 2019; 12:237. [PMID: 31649506 PMCID: PMC6794345 DOI: 10.3389/fnmol.2019.00237] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (α-syn) is biochemically and genetically linked to Parkinson's disease (PD) and other synucleinopathies. It is now widely accepted that α-syn can be released in the extracellular space, even though the mechanism of its release is still unclear. In addition, pathology-related aggregated species of α-syn have been shown to propagate between neurons in synaptically connected areas of the brain thereby assisting the spreading of pathology in healthy neighboring neuronal cells. In neurons, calcium channels are key signaling elements that modulate the release of bioactive molecules (hormones, proteins, and neurotransmitters) through calcium sensing. Such calcium sensing activity is determined by the distinct biophysical and pharmacological properties and the ability of calcium channels to interact with other modulatory proteins. Although the function of extracellular α-syn is currently unknown, previous work suggested the presence of a calcium-dependent mechanism for α-syn secretion both in vitro, in neuronal cells in culture, and also in vivo, in the context of a trans-neuronal network in brain. Mechanisms regulating extracellular α-syn levels may be of particular importance as they could represent novel therapeutic targets. We discuss here how calcium channel activity may contribute to α-syn aggregation and secretion as a pathway to disease progression in synucleinopathies.
Collapse
Affiliation(s)
- Emmanouela Leandrou
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Evangelia Emmanouilidou
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| |
Collapse
|
43
|
α-Synuclein 2.0 — Moving towards Cell Type Specific Pathophysiology. Neuroscience 2019; 412:248-256. [DOI: 10.1016/j.neuroscience.2019.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022]
|
44
|
Foffani G, Obeso JA. A Cortical Pathogenic Theory of Parkinson's Disease. Neuron 2019; 99:1116-1128. [PMID: 30236282 DOI: 10.1016/j.neuron.2018.07.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 01/17/2023]
Abstract
In Parkinson's disease, the progressive neurodegeneration of nigrostriatal dopaminergic neurons in the substantia nigra pars compacta (SNc) is associated with classic motor features, which typically have a focal onset. Since a defined somatotopic arrangement in the SNc has not been recognized, this focal motor onset is unexplained and hardly justified by current pathogenic theories of bottom-up disease progression (Braak's hypothesis, prionopathy). Here we propose that corticostriatal activity may represent a critical somatotopic "stressor" for nigrostriatal terminals, ultimately driving retrograde nigrostriatal degeneration and leading to focal motor onset and progression of Parkinson's disease. As a pathogenic mechanism, corticostriatal activity may promote secretion of striatal extracellular alpha-synuclein, favoring its pathological aggregation at vulnerable dopaminergic synapses. A similar pathogenic process may occur at corticofugal projections to the medulla oblongata and other vulnerable structures, thereby contributing to the bottom-up progression of Lewy pathology. This cortical pathogenesis may co-exist with bottom-up mechanisms, adding an integrative top-down perspective to the quest for the factors that impinge upon the vulnerability of dopaminergic cells in the onset and progression of Parkinson's disease.
Collapse
Affiliation(s)
- Guglielmo Foffani
- CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU-San Pablo, Madrid, Spain; Hospital Nacional de Parapléjicos, Toledo, Spain.
| | - José A Obeso
- CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU-San Pablo, Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
45
|
Vargas JY, Grudina C, Zurzolo C. The prion-like spreading of α-synuclein: From in vitro to in vivo models of Parkinson's disease. Ageing Res Rev 2019; 50:89-101. [PMID: 30690184 DOI: 10.1016/j.arr.2019.01.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/06/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. PD is characterized by the loss of dopaminergic neurons, primarily in brain regions that control motor functions, thereby leading to motor impairments in the patients. Pathological aggregated forms of the synaptic protein, α-synuclein (α-syn), are involved in the generation and progression of PD. In PD brains, α-syn accumulates inside neurons and propagates from cell-to-cell in a prion-like manner. In this review, we discuss the in vitro and in vivo models used to study the prion-like properties of α-syn and related findings. In particular, we focus on the different mechanisms of α-syn spreading, which could be relevant for the development of alternative therapeutic approaches for PD treatment.
Collapse
|
46
|
Yamada K. In Vivo Microdialysis Method to Collect Large Extracellular Proteins from Brain Interstitial Fluid with High-molecular Weight Cut-off Probes. J Vis Exp 2018. [PMID: 30320744 DOI: 10.3791/57869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In vivo microdialysis is a powerful technique to collect ISF from awake, freely-behaving animals based on a dialysis principle. While microdialysis is an established method that measures relatively small molecules including amino acids or neurotransmitters, it has been recently used to also assess dynamics of larger molecules in ISF using probes with high molecular weight cut off membranes. Upon using such probes, microdialysis has to be run in a push-pull mode to avoid pressure accumulated inside of the probes. This article provides step-by-step protocols including stereotaxic surgery and how to set up microdialysis lines to collect proteins from ISF. During microdialysis, drugs can be administered either systemically or by direct infusion into ISF. Reverse microdialysis is a technique to directly infuse compounds into ISF. Inclusion of drugs in the microdialysis perfusion buffer allows them to diffuse into ISF through the probes while simultaneously collecting ISF. By measuring tau protein as an example, the author shows how its levels are altered upon stimulating neuronal activity by reverse microdialysis of picrotoxin. Advantages and limitations of microdialysis are described along with the extended application by combining other in vivo methods.
Collapse
Affiliation(s)
- Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, University of Tokyo;
| |
Collapse
|
47
|
Ferreira SA, Romero-Ramos M. Microglia Response During Parkinson's Disease: Alpha-Synuclein Intervention. Front Cell Neurosci 2018; 12:247. [PMID: 30127724 PMCID: PMC6087878 DOI: 10.3389/fncel.2018.00247] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
The discovery of the central role played by the protein alpha-synuclein in Parkinson's disease and other Lewy body brain disorders has had a great relevance in the understanding of the degenerative process occurring in these diseases. In addition, during the last two decades, the evidence suggesting an immune response in Parkinson's disease patients have multiplied. The role of the immune system in the disease is supported by data from genetic studies and patients, as well as from laboratory animal models and cell cultures. In the immune response, the microglia, the immune cell of the brain, will have a determinant role. Interestingly, alpha-synuclein is suggested to have a central function not only in the neuronal events occurring in Parkinson's disease, but also in the immune response during the disease. Numerous studies have shown that alpha-synuclein can act directly on immune cells, such as microglia in brain, initiating a sterile response that will have consequences for the neuronal health and that could also translate in a peripheral immune response. In parallel, microglia should also act clearing alpha-synuclein thus avoiding an overabundance of the protein, which is crucial to the disease progression. Therefore, the microglia response in each moment will have significant consequences for the neuronal fate. Here we will review the literature addressing the microglia response in Parkinson's disease with an especial focus on the protein alpha-synuclein. We will also reflect upon the limitations of the studies carried so far and in the therapeutic possibilities opened based on these recent findings.
Collapse
Affiliation(s)
- Sara A Ferreira
- AU IDEAS center NEURODIN, Aarhus University, Aarhus, Denmark.,Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- AU IDEAS center NEURODIN, Aarhus University, Aarhus, Denmark.,Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
48
|
Davis AA, Leyns CEG, Holtzman DM. Intercellular Spread of Protein Aggregates in Neurodegenerative Disease. Annu Rev Cell Dev Biol 2018; 34:545-568. [PMID: 30044648 DOI: 10.1146/annurev-cellbio-100617-062636] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most neurodegenerative diseases are characterized by the accumulation of protein aggregates, some of which are toxic to cells. Mounting evidence demonstrates that in several diseases, protein aggregates can pass from neuron to neuron along connected networks, although the role of this spreading phenomenon in disease pathogenesis is not completely understood. Here we briefly review the molecular and histopathological features of protein aggregation in neurodegenerative disease, we summarize the evidence for release of proteins from donor cells into the extracellular space, and we highlight some other mechanisms by which protein aggregates might be transmitted to recipient cells. We also discuss the evidence that supports a role for spreading of protein aggregates in neurodegenerative disease pathogenesis and some limitations of this model. Finally, we consider potential therapeutic strategies to target spreading of protein aggregates in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Albert A Davis
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Cheryl E G Leyns
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
49
|
Tang BL. Unconventional Secretion and Intercellular Transfer of Mutant Huntingtin. Cells 2018; 7:59. [PMID: 29904030 PMCID: PMC6025013 DOI: 10.3390/cells7060059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 01/17/2023] Open
Abstract
The mechanism of intercellular transmission of pathological agents in neurodegenerative diseases has received much recent attention. Huntington's disease (HD) is caused by a monogenic mutation in the gene encoding Huntingtin (HTT). Mutant HTT (mHTT) harbors a CAG repeat extension which encodes an abnormally long polyglutamine (polyQ) repeat at HTT's N-terminus. Neuronal pathology in HD is largely due to the toxic gain-of-function by mHTT and its proteolytic products, which forms both nuclear and cytoplasmic aggregates that perturb nuclear gene transcription, RNA splicing and transport as well cellular membrane dynamics. The neuropathological effects of mHTT have been conventionally thought to be cell-autonomous in nature. Recent findings have, however, indicated that mHTT could be secreted by neurons, or transmitted from one neuronal cell to another via different modes of unconventional secretion, as well as via tunneling nanotubes (TNTs). These modes of transmission allow the intercellular spread of mHTT and its aggregates, thus plausibly promoting neuropathology within proximal neuronal populations and between neurons that are connected within neural circuits. Here, the various possible modes for mHTT's neuronal cell exit and intercellular transmission are discussed.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, 117597 Singapore, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, 117456 Singapore, Singapore.
| |
Collapse
|
50
|
Wang Q, Li WX, Dai SX, Guo YC, Han FF, Zheng JJ, Li GH, Huang JF. Meta-Analysis of Parkinson's Disease and Alzheimer's Disease Revealed Commonly Impaired Pathways and Dysregulation of NRF2-Dependent Genes. J Alzheimers Dis 2018; 56:1525-1539. [PMID: 28222515 DOI: 10.3233/jad-161032] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many lines of evidence suggest that Parkinson's disease (PD) and Alzheimer's disease (AD) have common characteristics, such as mitochondrial dysfunction and oxidative stress. As the underlying molecular mechanisms are unclear, we perform a meta-analysis with 9 microarray datasets of PD studies and 7 of AD studies to explore it. Functional enrichment analysis revealed that PD and AD both showed dysfunction in the synaptic vesicle cycle, GABAergic synapses, phagosomes, oxidative phosphorylation, and TCA cycle pathways, and AD had more enriched genes. Comparing the differentially expressed genes between AD and PD, we identified 54 common genes shared by more than six tissues. Among them, 31 downregulated genes contained the antioxidant response element (ARE) consensus sequence bound by NRF2. NRF2 is a transcription factor, which protects cells against oxidative stress through coordinated upregulation of ARE-driven genes. To our surprise, although NRF2 was upregulated, its target genes were all downregulated. Further exploration found that MAFF was upregulated in all tissues and significantly negatively correlated with the 31 NRF2-dependent genes in diseased conditions. Previous studies have demonstrated over-expressed small MAFs can form homodimers and act as transcriptional repressors. Therefore, MAFF might play an important role in dysfunction of NRF2 regulatory network in PD and AD.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Institute of Health Sciences, Anhui University, Hefei, Anhui, China
| | - Shao-Xing Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Cheng Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Fei-Fei Han
- Immuno-Metabolic Computational Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun-Juan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Fei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Kunming, Yunnan, China.,Collaborative Innovation Center for Natural Products and Biological Drugs of Yunnan, Kunming, Yunnan, China.,Chinese University of Hong Kong Joint Research Center for Bio-resources and Human Disease Mechanisms, Kunming, Yunnan, China
| |
Collapse
|