1
|
Wang K, Sun Z, Shao Q, Wang Z, Zhang H, Li Y, Ming J, Zhang W, Wang T, Zhao Y, Wang Q, Cheng F. Modulation of double-negative T cells by Huang-Lian-Jie-Du Decoction attenuates neuroinflammation in ischemic stroke: insights from single-cell transcriptomics. Front Immunol 2025; 16:1537277. [PMID: 40018035 PMCID: PMC11865039 DOI: 10.3389/fimmu.2025.1537277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/20/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Ischemic stroke (IS) represents a significant global health challenge, characterized by elevated morbidity and mortality rates, largely driven by inflammatory responses. Double-negative T cells (DNTs), a distinct subset of T cells lacking both CD4 and CD8 markers, have been implicated in the pathogenesis of IS, exhibiting potentially dual roles. However, the precise functional contributions of DNTs in this context remain poorly understood. Methods In this study, we investigated the role of DNTs during the acute phase of IS and assessed the influence of Huang-Lian-Jie-Du Decoction (HLJD), a traditional Chinese medicinal formula, on these cells. Using single-cell transcriptomics, we identified two distinct subtypes of DNTs: an activated, cytotoxic phenotype (Kill+) and a resting, immunosuppressive phenotype (Kill-). Results Our findings indicate that HLJD treatment modulates the balance between these DNT subtypes, specifically reducing the proportion of cytotoxic DNTs while promoting an increase in immunosuppressive DNTs. This shift was associated with a reduction in immune cell infiltration and inflammation within the brain tissue, potentially mitigating neuronal damage. Discussion These results suggest that HLJD exerts neuroprotective effects in IS by modulating the activity and distribution of DNT cells, offering valuable insights into the therapeutic potential of traditional Chinese medicine for the treatment of IS. Further studies are required to elucidate the mechanisms underlying DNT-mediated immune responses in IS and to explore the broader applications of HLJD in other neuroinflammatory conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Zhao
- *Correspondence: Yan Zhao, ; Qingguo Wang, ; Fafeng Cheng,
| | - Qingguo Wang
- *Correspondence: Yan Zhao, ; Qingguo Wang, ; Fafeng Cheng,
| | - Fafeng Cheng
- *Correspondence: Yan Zhao, ; Qingguo Wang, ; Fafeng Cheng,
| |
Collapse
|
2
|
Greilach SA, McIntyre LL, Nguyen QH, Silva J, Kessenbrock K, Lane TE, Walsh CM. Presentation of Human Neural Stem Cell Antigens Drives Regulatory T Cell Induction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1677-1686. [PMID: 37083696 PMCID: PMC10192095 DOI: 10.4049/jimmunol.2200798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Transplantation of human neural stem cells (hNSCs) is a promising regenerative therapy to promote remyelination in patients with multiple sclerosis (MS). Transplantation of hNSCs has been shown to increase the number of CD4+CD25+Foxp3+ T regulatory cells (Tregs) in the spinal cords of murine models of MS, which is correlated with a strong localized remyelination response. However, the mechanisms by which hNSC transplantation leads to an increase in Tregs in the CNS remains unclear. We report that hNSCs drive the conversion of T conventional (Tconv) cells into Tregs in vitro. Conversion of Tconv cells is Ag driven and fails to occur in the absence of TCR stimulation by cognate antigenic self-peptides. Furthermore, CNS Ags are sufficient to drive this conversion in the absence of hNSCs in vitro and in vivo. Importantly, only Ags presented in the thymus during T cell selection drive this Treg response. In this study, we investigate the mechanisms by which hNSC Ags drive the conversion of Tconv cells into Tregs and may provide key insight needed for the development of MS therapies.
Collapse
Affiliation(s)
- Scott A. Greilach
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| | - Laura L. McIntyre
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| | - Quy H. Nguyen
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697
| | - Jorge Silva
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697
| | - Thomas E. Lane
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697
| | - Craig M. Walsh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697
| |
Collapse
|
3
|
Fathallah AM, Oldfield P, Fiedler‐Kelly J, Ramadan A. Immunogenicity Considerations for Therapeutic Modalities Used in Rare Diseases. J Clin Pharmacol 2022; 62 Suppl 2:S110-S118. [DOI: 10.1002/jcph.2166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022]
Affiliation(s)
| | - Philip Oldfield
- Scientific and Regulatory Consultant Greater Montreal Metropolitan Canada
| | | | | |
Collapse
|
4
|
Parham KA, Tan XXS, Morelli DM, Chowdhury L, Craig HC, Kerfoot SM. Pre–Germinal Center Interactions with T Cells Are Natural Checkpoints to Limit Autoimmune B Cell Responses. THE JOURNAL OF IMMUNOLOGY 2022; 209:1703-1712. [DOI: 10.4049/jimmunol.2200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022]
|
5
|
Negron A, Stüve O, Forsthuber TG. Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control? Front Neurol 2020; 11:607766. [PMID: 33363512 PMCID: PMC7753025 DOI: 10.3389/fneur.2020.607766] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Olaf Stüve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Neurology Section, Veterans Affairs North Texas Health Care System, Medical Service, Dallas, TX, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
6
|
Vitamin D3 receptor polymorphisms regulate T cells and T cell-dependent inflammatory diseases. Proc Natl Acad Sci U S A 2020; 117:24986-24997. [PMID: 32958661 DOI: 10.1073/pnas.2001966117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It has proven difficult to identify the underlying genes in complex autoimmune diseases. Here, we use forward genetics to identify polymorphisms in the vitamin D receptor gene (Vdr) promoter, controlling Vdr expression and T cell activation. We isolated these polymorphisms in a congenic mouse line, allowing us to study the immunomodulatory properties of VDR in a physiological context. Congenic mice overexpressed VDR selectively in T cells, and thus did not suffer from calcemic effects. VDR overexpression resulted in an enhanced antigen-specific T cell response and more severe autoimmune phenotypes. In contrast, vitamin D3-deficiency inhibited T cell responses and protected mice from developing autoimmune arthritis. Our observations are likely translatable to humans, as Vdr is overexpressed in rheumatic joints. Genetic control of VDR availability codetermines the proinflammatory behavior of T cells, suggesting that increased presence of VDR at the site of inflammation might limit the antiinflammatory properties of its ligand.
Collapse
|
7
|
Malviya M, Saoudi A, Bauer J, Fillatreau S, Liblau R. Treatment of experimental autoimmune encephalomyelitis with engineered bi-specific Foxp3+ regulatory CD4+ T cells. J Autoimmun 2020; 108:102401. [PMID: 31948790 DOI: 10.1016/j.jaut.2020.102401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/01/2020] [Indexed: 12/22/2022]
Abstract
The use of autoantigen-specific regulatory T cells (Tregs) as a cellular therapy for autoimmune diseases is appealing. However, it is challenging to isolate and expand large quantity of Tregs expressing disease-relevant T-cell receptors (TCR). To overcome this problem, we used an approach aiming at redirecting the specificity of polyclonal Tregs through autoreactive TCR gene transfer technology. In this study, we examined whether Tregs engineered through retroviral transduction to express a TCR cross-reactive to two CNS autoantigens, myelin oligodendrocyte glycoprotein (MOG) and neurofilament-medium (NF-M), had a superior protective efficacy compared with Tregs expressing a MOG mono-specific TCR. We observed that engineered Tregs (engTregs) exhibited in vitro regulatory effects related to the antigenic specificity of the introduced TCR, and commensurate in potency with the avidity of the transduced TCR. In experimental autoimmune encephalomyelitis (EAE), adoptively transferred engTregs proliferated, and migrated to the CNS, while retaining FoxP3 expression. EngTregs expressing MOG/NF-M cross-reactive TCR had superior protective properties over engTregs expressing MOG-specific TCR in MOG-induced EAE. Remarkably, MOG/NF-M bi-specific TCR-engTregs also improved recovery from EAE induced by an unrelated CNS autoantigen, proteolipid protein (PLP). This study underlines the benefit of using TCRs cross-reacting towards multiple autoantigens, compared with mono-reactive TCR, for the generation of engTregs affording protection from autoimmune disease in adoptive cell therapy.
Collapse
Affiliation(s)
- Manish Malviya
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse, France
| | - Abdelhadi Saoudi
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse, France
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, A-1090, Austria
| | - Simon Fillatreau
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, 75993, Paris, France; AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Roland Liblau
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paul Sabatier (UPS), Toulouse, France.
| |
Collapse
|
8
|
Autoreactive, Low-Affinity T Cells Preferentially Drive Differentiation of Short-Lived Memory B Cells at the Expense of Germinal Center Maintenance. Cell Rep 2019; 25:3342-3355.e5. [PMID: 30566861 DOI: 10.1016/j.celrep.2018.11.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/04/2018] [Accepted: 11/16/2018] [Indexed: 01/06/2023] Open
Abstract
B cell fate decisions within a germinal center (GC) are critical to determining the outcome of the immune response to a given antigen. Here, we characterize GC kinetics and B cell fate choices in a response to the autoantigen myelin oligodendrocyte glycoprotein (MOG) and compare the response with a standard model foreign antigen. Both antigens generate productive primary responses, as evidenced by GC development, circulating antigen-specific antibodies, and differentiation of memory B cells. However, in the MOG response, the status of the cognate T cell partner drives preferential B cell differentiation to a memory phenotype at the expense of GC maintenance, resulting in a truncated GC. Reduced plasma cell differentiation is largely independent of T cell influence. Interestingly, memory-phenotype B cells formed in the MOG GC are not long lived, resulting in a failure of the B cell response to secondary challenge.
Collapse
|
9
|
Abstract
CD3+CD4-CD8- T cells (double-negative T cells; DNTs) have diverse functions in peripheral immune-related diseases by regulating immunological and inflammatory homeostasis. However, the functions of DNTs in the central nervous system remain unknown. Here, we found that the levels of DNTs were dramatically increased in both the brain and peripheral blood of stroke patients and in a mouse model in a time-dependent manner. The infiltrating DNTs enhanced cerebral immune and inflammatory responses and exacerbated ischemic brain injury by modulating the FasL/PTPN2/TNF-α signaling pathway. Blockade of this pathway limited DNT-mediated neuroinflammation and improved the outcomes of stroke. Our results identified a critical function of DNTs in the ischemic brain, suggesting that this unique population serves as an attractive target for the treatment of ischemic stroke.
Collapse
|
10
|
Jayaraman S, Prabhakar BS. Immune Tolerance in Autoimmune Central Nervous System Disorders. CONTEMPORARY CLINICAL NEUROSCIENCE 2019. [PMCID: PMC7121051 DOI: 10.1007/978-3-030-19515-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Chen Z, Chen S, Liu J. The role of T cells in the pathogenesis of Parkinson's disease. Prog Neurobiol 2018; 169:1-23. [PMID: 30114440 DOI: 10.1016/j.pneurobio.2018.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/24/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023]
Abstract
Recent evidence has shown that neuroinflammation plays a key role in the pathogenesis of Parkinson's disease (PD). However, different components of the brain's immune system may exert diverse effects on neuroinflammatory events in PD. The adaptive immune response, especially the T cell response, can trigger type 1 pro-inflammatory activities and suppress type 2 anti-inflammatory activities, eventually resulting in deregulated neuroinflammation and subsequent dopaminergic neurodegeneration. Additionally, studies have increasingly shown that therapies targeting T cells can alleviate neurodegeneration and motor behavior impairment in animal models of PD. Therefore, we conclude that abnormal T cell-mediated immunity is a fundamental pathological process that may be a promising translational therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Zhichun Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated with the Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW We discuss new paradigms for understanding the immunopathology of multiple sclerosis through the recent development of high throughput genetic analysis, emergence of numerous candidate biomarkers, and the broadening of the treatment arsenal. RECENT FINDINGS The recent use of genome wide association studies provide new tools for a better understanding of multiple sclerosis etiology. Genome-wide association studies have identified many genes implicated in immune regulation and the next step will be to elucidate how those genetic variations influence immune cell function to drive disease development and progression. Furthermore, patient care has seen the emergence of new biomarkers for monitoring disease progression and response to treatment. Finally, the introduction of numerous immunomodulatory treatments will likely improve clinical outcome of multiple sclerosis patients in the future. SUMMARY Breakthroughs in the field of multiple sclerosis have led to a better understanding of the physiopathology of the disease, follow up, and treatment of the patients that develop relapsing remitting multiple sclerosis. The next challenge for multiple sclerosis will be to press forward to model and decipher multiple sclerosis progression, which will help both to develop therapeutics and generate knowledge about mechanisms of neurodegeneration.
Collapse
|
13
|
Blanchfield L, Sabatino JJ, Lawrence L, Evavold BD. NFM Cross-Reactivity to MOG Does Not Expand a Critical Threshold Level of High-Affinity T Cells Necessary for Onset of Demyelinating Disease. THE JOURNAL OF IMMUNOLOGY 2017; 199:2680-2691. [PMID: 28887429 DOI: 10.4049/jimmunol.1700792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/09/2017] [Indexed: 11/19/2022]
Abstract
Of interest to the etiology of demyelinating autoimmune disease is the potential to aberrantly activate CD4+ T cells due to cross-recognition of multiple self-epitopes such as has been suggested for myelin oligodendrocyte glycoprotein epitope 35-55 (MOG35-55) and neurofilament medium protein epitope 15-35 (NFM15-35). NFM15-35 is immunogenic in C57BL/6 mice but fails to induce demyelinating disease by polyclonal T cells despite having the same TCR contact residues as MOG35-55, a known encephalitogenic Ag. Despite reported cross-reactivity with MOG-specific T cells, the polyclonal response to NFM15-35 did not expand threshold numbers of MOG38-49 tetramer-positive T cells. Furthermore, NFM lacked functional synergy with MOG to promote experimental autoimmune encephalomyelitis because NFM-deficient synonymous with knockout mice developed an identical disease course to wild-type mice after challenge with MOG35-55 Single-cell analysis of encephalitogenic T cells using the peptide:MHC monomer-based two-dimensional micropipette adhesion frequency assay confirmed that NFM was not a critical Ag driving demyelinating disease because NFM18-30-specific T cells in the CNS were predominantly reactive to MOG38-49 The absence of NFM contribution to disease allowed mapping of the amino acids required for encephalitogenicity and expansion of high-affinity, MOG-specific T cells that defined the polyclonal response. Alterations of N-terminal residues outside of the NFM15-35 core nonamer promoted expansion of high-affinity, MOG38-49 tetramer-positive T cells and promoted consistent experimental autoimmune encephalomyelitis induction, unlike mice challenged with NFM15-35 Although NFM15-35 is immunogenic and cross-reactive with MOG at the polyclonal level, it fails to expand a threshold level of encephalitogenic, high-affinity MOG-specific T cells.
Collapse
Affiliation(s)
- Lori Blanchfield
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Joseph J Sabatino
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158; and
| | - Laurel Lawrence
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
14
|
Lucca LE, Axisa PP, Aloulou M, Perals C, Ramadan A, Rufas P, Kyewski B, Derbinski J, Fazilleau N, Mars LT, Liblau RS. Myelin oligodendrocyte glycoprotein induces incomplete tolerance of CD4(+) T cells specific for both a myelin and a neuronal self-antigen in mice. Eur J Immunol 2016; 46:2247-59. [PMID: 27334749 DOI: 10.1002/eji.201646416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/09/2016] [Accepted: 06/17/2016] [Indexed: 01/28/2023]
Abstract
T-cell polyspecificity, predicting that individual T cells recognize a continuum of related ligands, implies that multiple antigens can tolerize T cells specific for a given self-antigen. We previously showed in C57BL/6 mice that part of the CD4(+) T-cell repertoire specific for myelin oligodendrocyte glycoprotein (MOG) 35-55 also recognizes the neuronal antigen neurofilament medium (NF-M) 15-35. Such bi-specific CD4(+) T cells are frequent and produce inflammatory cytokines after stimulation. Since T cells recognizing two self-antigens would be expected to be tolerized more efficiently, this finding prompted us to study how polyspecificity impacts tolerance. We found that similar to MOG, NF-M is expressed in the thymus by medullary thymic epithelial cells, a tolerogenic population. Nevertheless, the frequency, phenotype, and capacity to transfer experimental autoimmune encephalomyelitis (EAE) of MOG35-55 -reactive CD4(+) T cells were increased in MOG-deficient but not in NF-M-deficient mice. We found that presentation of NF-M15-35 by I-A(b) on dendritic cells is of short duration, suggesting unstable MHC class II binding. Consistently, introducing an MHC-anchoring residue into NF-M15-35 (NF-M15-35 T20Y) increased its immunogenicity, activating a repertoire able to induce EAE. Our results show that in C57BL/6 mice bi-specific encephalitogenic T cells manage to escape tolerization due to inefficient exposure to two self-antigens.
Collapse
Affiliation(s)
- Liliana E Lucca
- INSERM, U1043, Toulouse, France.,Centre National de la Recherche Scientifique, U5282, Toulouse, France.,Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse, France
| | - Pierre-Paul Axisa
- INSERM, U1043, Toulouse, France.,Centre National de la Recherche Scientifique, U5282, Toulouse, France.,Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse, France
| | - Meryem Aloulou
- INSERM, U1043, Toulouse, France.,Centre National de la Recherche Scientifique, U5282, Toulouse, France.,Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse, France
| | - Corine Perals
- INSERM, U1043, Toulouse, France.,Centre National de la Recherche Scientifique, U5282, Toulouse, France.,Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse, France
| | - Abdulraouf Ramadan
- INSERM, U1043, Toulouse, France.,Centre National de la Recherche Scientifique, U5282, Toulouse, France.,Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse, France
| | - Pierre Rufas
- INSERM, U1043, Toulouse, France.,Centre National de la Recherche Scientifique, U5282, Toulouse, France.,Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse, France
| | - Bruno Kyewski
- Developmental Immunobiology, Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | - Jens Derbinski
- Developmental Immunobiology, Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | - Nicolas Fazilleau
- INSERM, U1043, Toulouse, France.,Centre National de la Recherche Scientifique, U5282, Toulouse, France.,Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse, France
| | - Lennart T Mars
- INSERM, U1043, Toulouse, France.,Centre National de la Recherche Scientifique, U5282, Toulouse, France.,Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse, France
| | - Roland S Liblau
- INSERM, U1043, Toulouse, France. .,Centre National de la Recherche Scientifique, U5282, Toulouse, France. .,Centre de Physiopathologie Toulouse-Purpan, Université Toulouse 3, Toulouse, France. .,CHU Toulouse, Département d'Immunologie, Toulouse, France.
| |
Collapse
|