1
|
Mallas EJ, De Simoni S, Jenkins PO, David MCB, Bourke NJ, Sharp DJ. Methylphenidate differentially alters corticostriatal connectivity after traumatic brain injury. Brain 2025; 148:1360-1373. [PMID: 39432756 PMCID: PMC11969465 DOI: 10.1093/brain/awae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 09/28/2024] [Indexed: 10/23/2024] Open
Abstract
Traumatic brain injury commonly impairs attention and executive function and disrupts the large-scale brain networks that support these cognitive functions. Abnormalities of functional connectivity are seen in corticostriatal networks, which are associated with executive dysfunction and damage to neuromodulatory catecholaminergic systems caused by head injury. Methylphenidate, a stimulant medication that increases extracellular dopamine and noradrenaline, can improve cognitive function following traumatic brain injury. In this experimental medicine add-on study to a randomized, double-blind, placebo-controlled clinical trial, we test whether administration of methylphenidate alters corticostriatal network function and influences drug response. Forty-three moderate-severe traumatic brain injury patients received 0.3 mg/kg of methylphenidate or placebo twice a day in 2-week blocks. Twenty-eight patients were included in the neuropsychological and functional imaging analysis (four females, mean age 40.9 ± 12.7 years, range 20-65 years) and underwent functional MRI and neuropsychological assessment after each block. 123I-Ioflupane single-photon emission computed tomography dopamine transporter scans were performed, and specific binding ratios were extracted from caudate subdivisions. Functional connectivity and the relationship to cognition were compared between drug and placebo conditions. Methylphenidate increased caudate to anterior cingulate cortex functional connectivity compared with placebo and decreased connectivity from the caudate to the default mode network. Connectivity within the default mode network was also decreased by methylphenidate administration, and there was a significant relationship between caudate functional connectivity and dopamine transporter binding during methylphenidate administration. Methylphenidate significantly improved executive function in traumatic brain injury patients, and this was associated with alterations in the relationship between executive function and right anterior caudate functional connectivity. Functional connectivity is strengthened to brain regions, including the anterior cingulate, that are activated when attention is focused externally. These results show that methylphenidate alters caudate interactions with cortical brain networks involved in executive control. In contrast, caudate functional connectivity reduces to default mode network regions involved in internally focused attention and that deactivate during tasks that require externally focused attention. These results suggest that the beneficial cognitive effects of methylphenidate might be mediated through its impact on the caudate. Methylphenidate differentially influences how the caudate interacts with large-scale functional brain networks that exhibit co-ordinated but distinct patterns of activity required for attentionally demanding tasks.
Collapse
Affiliation(s)
- Emma-Jane Mallas
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London W12 0BZ, UK
| | - Sara De Simoni
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- Brain Injury Service, Royal Hospital for Neuro-disability, London SW15 3SW, UK
| | - Peter O Jenkins
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- Department of Neurology, Hampshire Hospitals NHS Foundation Trust, Basingstoke RG24 9NA, UK
| | - Michael C B David
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London W12 0BZ, UK
| | - Niall J Bourke
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AB, UK
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London W12 0BZ, UK
- Department of Bioengineering, Royal British Legion Centre for Blast Injury Studies, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
2
|
Hadi Z, Mahmud M, Calzolari E, Chepisheva M, Zimmerman KA, Tahtis V, Smith RM, Rust HM, Sharp DJ, Seemungal BM. Balance recovery and its link to vestibular agnosia in traumatic brain injury: a longitudinal behavioural and neuro-imaging study. J Neurol 2025; 272:132. [PMID: 39812836 PMCID: PMC11735511 DOI: 10.1007/s00415-024-12876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Vestibular dysfunction causing imbalance affects c. 80% of acute hospitalized traumatic brain injury (TBI) cases. Poor balance recovery is linked to worse return-to-work rates and reduced longevity. We previously showed that white matter network disruption, particularly of right inferior longitudinal fasciculus, mediates the overlap between imbalance and impaired vestibular perception of self-motion (i.e., vestibular agnosia) in acute hospitalized TBI. However, there are no prior reports tracking the acute-longitudinal trajectory of objectively measured vestibular function for hospitalized TBI patients. We hypothesized that recovery of vestibular agnosia and imbalance is linked and mediated by overlapping brain networks. METHODS We screened 918 acute major trauma in-patients, assessed 146, recruited 39 acutely, and retested 34 at 6 months. Inclusion criteria were 18-65-year-old adults hospitalized for TBI with laboratory-confirmed preserved peripheral vestibular function. Benign paroxysmal positional vertigo and migraine were treated prior to testing. Vestibular agnosia was quantified by participants' ability to perceive whole-body yaw plane rotations via an automated rotating-chair algorithm. Subjective symptoms of imbalance (via questionnaires) and objective imbalance (via posturography) were also assessed. RESULTS Acute vestibular agnosia predicted poor balance recovery at 6 months. Recovery of vestibular agnosia and linked imbalance was mediated by bihemispheric fronto-posterior cortical circuits. Recovery of subjective symptoms of imbalance and objective imbalance were not correlated. CONCLUSION Vestibular agnosia mediates balance recovery post-TBI. The link between subjective dizziness and brain injury recovery, although important, is unclear. Therapeutic trials of vestibular recovery post-TBI should target enhancing bi-hemispheric connectivity and linked objective clinical measures (e.g., posturography).
Collapse
Affiliation(s)
- Zaeem Hadi
- Centre for Vestibular Neurology (CVeN), Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK.
| | - Mohammad Mahmud
- Centre for Vestibular Neurology (CVeN), Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK
| | - Elena Calzolari
- Centre for Vestibular Neurology (CVeN), Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK
| | - Mariya Chepisheva
- Centre for Vestibular Neurology (CVeN), Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK
| | - Karl A Zimmerman
- Department of Brain Sciences, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
- Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London, London, UK
| | - Vassilios Tahtis
- Centre for Vestibular Neurology (CVeN), Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK
- King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK
| | - Rebecca M Smith
- Centre for Vestibular Neurology (CVeN), Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK
| | - Heiko M Rust
- Centre for Vestibular Neurology (CVeN), Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - David J Sharp
- Department of Brain Sciences, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
- Care Research & Technology Centre, UK Dementia Research Institute, Imperial College London, London, UK
| | - Barry M Seemungal
- Centre for Vestibular Neurology (CVeN), Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK.
| |
Collapse
|
3
|
Kashou AW, Frees DM, Kang K, Parks CO, Harralson H, Fischer JT, Rosenbaum PE, Baham M, Sheridan C, Bickart KC. Drivers of resting-state fMRI heterogeneity in traumatic brain injury across injury characteristics and imaging methods: a systematic review and semiquantitative analysis. Front Neurol 2024; 15:1487796. [PMID: 39664747 PMCID: PMC11631856 DOI: 10.3389/fneur.2024.1487796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024] Open
Abstract
Traumatic brain injury (TBI) is common and costly. Although neuroimaging modalities such as resting-state functional MRI (rsfMRI) promise to differentiate injured from healthy brains and prognosticate long-term outcomes, the field suffers from heterogeneous findings. To assess whether this heterogeneity stems from variability in the TBI populations studied or the imaging methods used, and to determine whether a consensus exists in this literature, we performed the first systematic review of studies comparing rsfMRI functional connectivity (FC) in patients with TBI to matched controls for seven canonical brain networks across injury severity, age, chronicity, population type, and various imaging methods. Searching PubMed, Web of Science, Google Scholar, and ScienceDirect, 1,105 manuscripts were identified, 50 fulfilling our criteria. Across these manuscripts, 179 comparisons were reported between a total of 1,397 patients with TBI and 1,179 matched controls. Collapsing across injury characteristics, imaging methods, and networks, there were roughly equal significant to null findings and increased to decreased connectivity differences reported. Whereas most factors did not explain these mixed findings, stratifying across severity and chronicity, separately, showed a trend of increased connectivity at higher severities and greater chronicities of TBI. Among methodological factors, studies were more likely to find connectivity differences when scans were longer than 360 s, custom image processing pipelines were used, and when patients kept their eyes open versus closed during scans. We offer guidelines to address this variability, focusing on aspects of study design and rsfMRI acquisition to move the field toward reproducible results with greater potential for clinical translation.
Collapse
Affiliation(s)
- Alexander W. Kashou
- Department of Radiology, Loma Linda University School of Medicine, Loma Linda, CA, United States
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel M. Frees
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Kaylee Kang
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Christian O. Parks
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hunter Harralson
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jesse T. Fischer
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Kinesiology, Occidental College, Los Angeles, CA, United States
| | - Philip E. Rosenbaum
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael Baham
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Christopher Sheridan
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kevin C. Bickart
- UCLA Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
4
|
Verhulst MMLH, Keijzer HM, van Gils PCW, van Heugten CM, Meijer FJA, Tonino BAR, Bonnes JL, Delnoij TSR, Hofmeijer J, Helmich RC. Functional connectivity in resting-state networks relates to short-term global cognitive functioning in cardiac arrest survivors. Hum Brain Mapp 2024; 45:e26769. [PMID: 39449030 PMCID: PMC11502408 DOI: 10.1002/hbm.26769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 10/26/2024] Open
Abstract
Long-term cognitive impairment is common in cardiac arrest survivors. Screening to identify patients at risk is recommended. Functional magnetic resonance brain imaging (fMRI) holds potential to contribute to prediction of cognitive outcomes. In this study, we investigated the possible value of early changes in resting-state networks for predicting short and long-term cognitive functioning of cardiac arrest survivors. We performed a prospective multicenter cohort study in cardiac arrest survivors in three Dutch hospitals. Resting-state fMRI scans were acquired within a month after cardiac arrest. We primarily focused on functional connectivity within the default-mode network (DMN) and salience network (SN), and additionally explored functional connectivity in seven other networks. Cognitive outcome was measured using the Montreal Cognitive Assessment (MoCA) during hospital admission and at 3 and 12 months, and by neuropsychological examination (NPE) at 12 months. We tested mixed effects models to evaluate the value of connectivity within the networks for predicting global cognitive outcomes at the three time points, and long-term cognitive outcomes in the memory, attention, and executive functioning domains. We included 80 patients (age 60 ± 11 years, 72 (90%) male). MoCA scores increased significantly between hospital admission and 3 months (ΔMoCAhospital-3M = 2.89, p < 0.01), but not between 3 and 12 months (ΔMoCA3M-12M = 0.38, p = 0.52). Connectivity within the DMN, SN, and dorsal attention network (DAN) was positively related to global cognitive functioning during hospital admission (βDMN = 0.85, p = 0.03; βSN = 1.48, p < 0.01; βDAN = 0.96, p = 0.01), but not at 3 and 12 months. Network connectivity was also unrelated to long-term memory, attention, or executive functioning. Resting-state functional connectivity in the DMN, SN, and DAN measured in the first month after cardiac arrest is related to short-term global, but not long-term global or domain-specific cognitive performance of survivors. These results do not support the value of functional connectivity within these RSNs for prediction of long-term cognitive performance after cardiac arrest.
Collapse
Affiliation(s)
- Marlous M. L. H. Verhulst
- Clinical Neurophysiology, TechMed CentreUniversity of TwenteEnschedeThe Netherlands
- Department of NeurologyRijnstate HospitalArnhemThe Netherlands
| | | | - Pauline C. W. van Gils
- Clinical Neurophysiology, TechMed CentreUniversity of TwenteEnschedeThe Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Limburg Brain Injury CenterMaastricht UniversityMaastrichtThe Netherlands
| | - Caroline M. van Heugten
- Limburg Brain Injury CenterMaastricht UniversityMaastrichtThe Netherlands
- Department of Neuropsychology and PsychopharmacologyMaastricht UniversityMaastrichtThe Netherlands
| | | | | | - Judith L. Bonnes
- Department of CardiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Thijs S. R. Delnoij
- Department of CardiologyMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, TechMed CentreUniversity of TwenteEnschedeThe Netherlands
- Department of NeurologyRijnstate HospitalArnhemThe Netherlands
| | - Rick C. Helmich
- Donders Institute for Brain, Cognition and Behaviour, Centre of Expertise for Parkinson and Movement Disorders, Neurology DepartmentRadboud University Medical CentreNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive NeuroimagingRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
5
|
Fedele B, Williams G, McKenzie D, Giles R, McKay A, Olver J. Sleep Disturbance During Post-Traumatic Amnesia and Early Recovery After Traumatic Brain Injury. J Neurotrauma 2024; 41:e1961-e1975. [PMID: 38553904 DOI: 10.1089/neu.2023.0656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
After moderate to severe traumatic brain injury (TBI), sleep disturbance commonly emerges during the confused post-traumatic amnesia (PTA) recovery stage. However, the evaluation of early sleep disturbance during PTA, its recovery trajectory, and influencing factors is limited. This study aimed to evaluate sleep outcomes in patients experiencing PTA using ambulatory gold-standard polysomnography (PSG) overnight and salivary endogenous melatonin (a hormone that influences the sleep-wake cycle) assessment at two time-points. The relationships between PSG-derived sleep-wake parameters and PTA symptoms (i.e., agitation and cognitive disturbance) were also evaluated. In a patient subset, PSG was repeated after PTA had resolved to assess the trajectory of sleep disturbance. Participants with PTA were recruited from Epworth HealthCare's inpatient TBI Rehabilitation Unit. Trained nurses administered overnight PSG at the patient bedside using the Compumedics Somté portable PSG device (Compumedics, Ltd., Australia). Two weeks after PTA had resolved, PSG was repeated. On a separate evening, two saliva specimens were collected (at 24:00 and 06:00) for melatonin testing. Results of routine daily hospital measures (i.e., Agitated Behavior Scale and Westmead PTA Scale) were also collected. Twenty-nine patients were monitored with PSG (mean: 41.6 days post-TBI; standard deviation [SD]: 28.3). Patients' mean sleep duration was reduced (5.6 h, SD: 1.2), and was fragmented with frequent awakenings (mean: 27.7, SD: 15.0). Deep, slow-wave restorative sleep was reduced, or completely absent (37.9% of patients). The use of PSG did not appear to exacerbate patient agitation or cognitive disturbance. Mean melatonin levels at both time-points were commonly outside of normal reference ranges. After PTA resolved, patients (n = 11) displayed significantly longer mean sleep time (5.3 h [PTA]; 6.5 h [out of PTA], difference between means: 1.2, p = 0.005). However, disturbances to other sleep-wake parameters (e.g., increased awakenings, wake time, and sleep latency) persisted after PTA resolved. This is the first study to evaluate sleep disturbance in a cohort of patients as they progressed through the early TBI recovery phases. There is a clear need for tailored assessment of sleep disturbance during PTA, which currently does not form part of routine hospital assessment, to suggest new treatment paradigms, enhance patient recovery, and reduce its long-term impacts.
Collapse
Affiliation(s)
- Bianca Fedele
- Department of Rehabilitation, Department of Rehabilitation and Mental Health, Epworth HealthCare, Melbourne, Australia
- Department of Rehabilitation, Epworth Monash Rehabilitation Medicine (EMReM) Unit, Melbourne, Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Gavin Williams
- Department of Rehabilitation, Department of Rehabilitation and Mental Health, Epworth HealthCare, Melbourne, Australia
- Department of Rehabilitation, Epworth Monash Rehabilitation Medicine (EMReM) Unit, Melbourne, Australia
- Department of Physiotherapy, The University of Melbourne, Melbourne, Australia
| | - Dean McKenzie
- Research Development and Governance Unit, Department of Rehabilitation and Mental Health, Epworth HealthCare, Melbourne, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Robert Giles
- Sleep Unit, Department of Rehabilitation and Mental Health, Epworth HealthCare, Melbourne, Australia
| | - Adam McKay
- Department of Rehabilitation, Department of Rehabilitation and Mental Health, Epworth HealthCare, Melbourne, Australia
- School of Psychological Sciences, Monash University, Melbourne, Australia
- Monash Epworth Rehabilitation Research Centre, Melbourne, Australia
| | - John Olver
- Department of Rehabilitation, Department of Rehabilitation and Mental Health, Epworth HealthCare, Melbourne, Australia
- Department of Rehabilitation, Epworth Monash Rehabilitation Medicine (EMReM) Unit, Melbourne, Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
6
|
Tao Y, Schubert T, Wiley R, Stark C, Rapp B. Cortical and Subcortical Mechanisms of Orthographic Word-form Learning. J Cogn Neurosci 2024; 36:1071-1098. [PMID: 38527084 DOI: 10.1162/jocn_a_02147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
We examined the initial stages of orthographic learning in real time as literate adults learned spellings for spoken pseudowords during fMRI scanning. Participants were required to learn and store orthographic word forms because the pseudoword spellings were not uniquely predictable from sound to letter mappings. With eight learning trials per word form, we observed changes in the brain's response as learning was taking place. Accuracy was evaluated during learning, immediately after scanning, and 1 week later. We found evidence of two distinct learning systems-hippocampal and neocortical-operating during orthographic learning, consistent with the predictions of dual systems theories of learning/memory such as the complementary learning systems framework [McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419-457, 1995]. The bilateral hippocampus and the visual word form area (VWFA) showed significant BOLD response changes over learning, with the former exhibiting a rising pattern and the latter exhibiting a falling pattern. Moreover, greater BOLD signal increase in the hippocampus was associated with better postscan recall. In addition, we identified two distinct bilateral brain networks that mirrored the rising and falling patterns of the hippocampus and VWFA. Functional connectivity analysis revealed that regions within each network were internally synchronized. These novel findings highlight, for the first time, the relevance of multiple learning systems in orthographic learning and provide a paradigm that can be used to address critical gaps in our understanding of the neural bases of orthographic learning in general and orthographic word-form learning specifically.
Collapse
|
7
|
Zimmerman KA, Hain JA, Graham NSN, Rooney EJ, Lee Y, Del-Giovane M, Parker TD, Friedland D, Cross MJ, Kemp S, Wilson MG, Sylvester RJ, Sharp DJ. Prospective cohort study of long-term neurological outcomes in retired elite athletes: the Advanced BiomaRker, Advanced Imaging and Neurocognitive (BRAIN) Health Study protocol. BMJ Open 2024; 14:e082902. [PMID: 38663922 PMCID: PMC11043776 DOI: 10.1136/bmjopen-2023-082902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Although limited, recent research suggests that contact sport participation might have an adverse long-term effect on brain health. Further work is required to determine whether this includes an increased risk of neurodegenerative disease and/or subsequent changes in cognition and behaviour. The Advanced BiomaRker, Advanced Imaging and Neurocognitive Health Study will prospectively examine the neurological, psychiatric, psychological and general health of retired elite-level rugby union and association football/soccer players. METHODS AND ANALYSIS 400 retired athletes will be recruited (200 rugby union and 200 association football players, male and female). Athletes will undergo a detailed clinical assessment, advanced neuroimaging, blood testing for a range of brain health outcomes and neuropsychological assessment longitudinally. Follow-up assessments will be completed at 2 and 4 years after baseline visit. 60 healthy volunteers will be recruited and undergo an aligned assessment protocol including advanced neuroimaging, blood testing and neuropsychological assessment. We will describe the previous exposure to head injuries across the cohort and investigate relationships between biomarkers of brain injury and clinical outcomes including cognitive performance, clinical diagnoses and psychiatric symptom burden. ETHICS AND DISSEMINATION Relevant ethical approvals have been granted by the Camberwell St Giles Research Ethics Committee (Ref: 17/LO/2066). The study findings will be disseminated through manuscripts in clinical/academic journals, presentations at professional conferences and through participant and stakeholder communications.
Collapse
Affiliation(s)
- Karl A Zimmerman
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Injury Studies, Imperial College London, London, UK
| | - Jessica A Hain
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Neil S N Graham
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Injury Studies, Imperial College London, London, UK
| | - Erin Jane Rooney
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
| | - Ying Lee
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
| | - Martina Del-Giovane
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Thomas D Parker
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Neurodegenerative Disease, The Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Daniel Friedland
- Department of Brain Sciences, Imperial College London, London, UK
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
| | - Matthew J Cross
- Carnegie Applied Rugby Research Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Premiership Rugby, London, UK
| | - Simon Kemp
- Rugby Football Union, Twickenham, UK
- London School of Hygiene & Tropical Medicine, London, UK
| | - Mathew G Wilson
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
- HCA Healthcare Research Institute, London, UK
| | - Richard J Sylvester
- Institute of Sport, Exercise and Health (ISEH), University College London, London, UK
- Acute Stroke and Brain Injury Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - David J Sharp
- Centre for Care, Research and Technology, UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Injury Studies, Imperial College London, London, UK
| |
Collapse
|
8
|
van der Horn HJ, Ling JM, Wick TV, Dodd AB, Robertson-Benta CR, McQuaid JR, Zotev V, Vakhtin AA, Ryman SG, Cabral J, Phillips JP, Campbell RA, Sapien RE, Mayer AR. Dynamic Functional Connectivity in Pediatric Mild Traumatic Brain Injury. Neuroimage 2024; 285:120470. [PMID: 38016527 PMCID: PMC10815936 DOI: 10.1016/j.neuroimage.2023.120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
Resting-state fMRI can be used to identify recurrent oscillatory patterns of functional connectivity within the human brain, also known as dynamic brain states. Alterations in dynamic brain states are highly likely to occur following pediatric mild traumatic brain injury (pmTBI) due to the active developmental changes. The current study used resting-state fMRI to investigate dynamic brain states in 200 patients with pmTBI (ages 8-18 years, median = 14 years) at the subacute (∼1-week post-injury) and early chronic (∼ 4 months post-injury) stages, and in 179 age- and sex-matched healthy controls (HC). A k-means clustering analysis was applied to the dominant time-varying phase coherence patterns to obtain dynamic brain states. In addition, correlations between brain signals were computed as measures of static functional connectivity. Dynamic connectivity analyses showed that patients with pmTBI spend less time in a frontotemporal default mode/limbic brain state, with no evidence of change as a function of recovery post-injury. Consistent with models showing traumatic strain convergence in deep grey matter and midline regions, static interhemispheric connectivity was affected between the left and right precuneus and thalamus, and between the right supplementary motor area and contralateral cerebellum. Changes in static or dynamic connectivity were not related to symptom burden or injury severity measures, such as loss of consciousness and post-traumatic amnesia. In aggregate, our study shows that brain dynamics are altered up to 4 months after pmTBI, in brain areas that are known to be vulnerable to TBI. Future longitudinal studies are warranted to examine the significance of our findings in terms of long-term neurodevelopment.
Collapse
Affiliation(s)
| | - Josef M Ling
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | - Tracey V Wick
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | - Andrew B Dodd
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | | | | | - Vadim Zotev
- The Mind Research Network/LBERI, Albuquerque, NM 87106
| | | | | | - Joana Cabral
- Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
| | | | - Richard A Campbell
- Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Robert E Sapien
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131
| | - Andrew R Mayer
- The Mind Research Network/LBERI, Albuquerque, NM 87106; Department of Psychiatry & Behavioral Sciences, University of New Mexico, Albuquerque, NM 87131; Department of Psychology, University of New Mexico, Albuquerque, NM 87131; Department of Neurology, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
9
|
Sultana T, Hasan MA, Kang X, Liou-Johnson V, Adamson MM, Razi A. Neural mechanisms of emotional health in traumatic brain injury patients undergoing rTMS treatment. Mol Psychiatry 2023; 28:5150-5158. [PMID: 37414927 DOI: 10.1038/s41380-023-02159-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Emotional dysregulation such as that seen in depression, are a long-term consequence of mild traumatic brain injury (TBI), that can be improved by using neuromodulation treatments such as repetitive transcranial magnetic stimulation (rTMS). Previous studies provide insights into the changes in functional connectivity related to general emotional health after the application of rTMS procedures in patients with TBI. However, these studies provide little understanding of the underlying neuronal mechanisms that drive the improvement of the emotional health in these patients. The current study focuses on inferring the effective (causal) connectivity changes and their association with emotional health, after rTMS treatment of cognitive problems in TBI patients (N = 32). Specifically, we used resting state functional magnetic resonance imaging (fMRI) together with spectral dynamic causal model (spDCM) to investigate changes in brain effective connectivity, before and after the application of high frequency (10 Hz) rTMS over left dorsolateral prefrontal cortex. We investigated the effective connectivity of the cortico-limbic network comprised of 11 regions of interest (ROIs) which are part of the default mode, salience, and executive control networks, known to be implicated in emotional processing. The results indicate that overall, among extrinsic connections, the strength of excitatory connections decreased while that of inhibitory connections increased after the neuromodulation. The cardinal region in the analysis was dorsal anterior cingulate cortex (dACC) which is considered to be the most influenced during emotional health disorders. Our findings implicate the altered connectivity of dACC with left anterior insula and medial prefrontal cortex, after the application of rTMS, as a potential neural mechanism underlying improvement of emotional health. Our investigation highlights the importance of these brain regions as treatment targets in emotional processing in TBI.
Collapse
Affiliation(s)
- Tajwar Sultana
- Department of Computer and Information Systems Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
- Neurocomputation Laboratory, National Centre of Artificial Intelligence, Peshawar, Pakistan
| | - Muhammad Abul Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, 75270, Pakistan
- Neurocomputation Laboratory, National Centre of Artificial Intelligence, Peshawar, Pakistan
| | - Xiaojian Kang
- WRIISC-WOMEN, VA Palo Alto Healthcare System, Palo Alto, CA, 94304, USA
- Rehabilitation Service, Veterans Affairs Palo Alto Healthcare System (VAPAHCS), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Victoria Liou-Johnson
- Rehabilitation Service, Veterans Affairs Palo Alto Healthcare System (VAPAHCS), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- Clinical Excellence Research Center, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Maheen Mausoof Adamson
- WRIISC-WOMEN, VA Palo Alto Healthcare System, Palo Alto, CA, 94304, USA
- Rehabilitation Service, Veterans Affairs Palo Alto Healthcare System (VAPAHCS), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR, London, United Kingdom.
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, ON, Canada.
| |
Collapse
|
10
|
Li LM, Carson A, Dams-O'Connor K. Psychiatric sequelae of traumatic brain injury - future directions in research. Nat Rev Neurol 2023; 19:556-571. [PMID: 37591931 DOI: 10.1038/s41582-023-00853-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/19/2023]
Abstract
Despite growing appreciation that traumatic brain injury (TBI) is an important public health burden, our understanding of the psychiatric and behavioural consequences of TBI remains limited. These changes are particularly detrimental to a person's sense of self, their relationships and their participation in the wider community, and they continue to have devastating individual and cumulative effects long after TBI. This Review relates specifically to TBIs that confer objective clinical or biomarker evidence of structural brain injury; symptomatic head injuries without such evidence are outside the scope of this article. Common psychiatric, affective and behavioural sequelae of TBI and their proposed underlying mechanisms are outlined, along with a brief overview of current treatments. Suggestions for how scientists and clinicians can work together in the future to address the chasms in clinical care and knowledge are discussed in depth.
Collapse
Affiliation(s)
- Lucia M Li
- Department of Brain Sciences, Imperial College London, London, UK.
| | - Alan Carson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Kristen Dams-O'Connor
- Brain Injury Research Center, Department of Rehabilitation and Human Performance, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Yao S, Zhu Q, Zhang Q, Cai Y, Liu S, Pang L, Jing Y, Yin X, Cheng H. Managing Cancer and Living Meaningfully (CALM) alleviates chemotherapy related cognitive impairment (CRCI) in breast cancer survivors: A pilot study based on resting-state fMRI. Cancer Med 2023; 12:16231-16242. [PMID: 37409628 PMCID: PMC10469649 DOI: 10.1002/cam4.6285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Chemotherapy related cognitive impairment (CRCI) is a type of memory and cognitive impairment induced by chemotherapy and has become a growing clinical problem. Breast cancer survivors (BCs) refer to patients from the moment of breast cancer diagnosis to the end of their lives. Managing Cancer and Living Meaningfully (CALM) is a convenient and easy-to-apply psychological intervention that has been proven to improve quality of life and alleviate CRCI in BCs. However, the underlying neurobiological mechanisms remain unclear. Resting-state functional magnetic resonance imaging (rs-fMRI) has become an effective method for understanding the neurobiological mechanisms of brain networks in CRCI. The fractional amplitude of low-frequency fluctuations (fALFF) and ALFF have often been used in analyzing the power and intensity of spontaneous regional resting state neural activity. METHODS The recruited BCs were randomly divided into the CALM group and the care as usual (CAU) group. All BCs were evaluated by the Functional Assessment of Cancer Therapy Cognitive Function (FACT-Cog) before and after CALM or CAU. The rs-fMRI imaging was acquired before and after CALM intervention in CALM group BCs. The BCs were defined as before CALM intervention (BCI) group and after CALM intervention (ACI) group. RESULTS There were 32 BCs in CALM group and 35 BCs in CAU group completed the overall study. There were significant differences between the BCI group and the ACI group in the FACT-Cog-PCI scores. Compared with the BCI group, the ACI group showed lower fALFF signal in the left medial frontal gyrus and right sub-gyral and higher fALFF in the left occipital_sup and middle occipital gyrus. There was a significant positive correlation between hippocampal ALFF value and FACT-Cog-PCI scores. CONCLUSIONS CALM intervention may have an effective function in alleviating CRCI of BCs. The altered local synchronization and regional brain activity may be correlated with the improved cognitive function of BCs who received the CALM intervention. The ALFF value of hippocampus seems to be an important factor in reflect cognitive function in BCs with CRCI and the neural network mechanism of CALM intervention deserves further exploration to promote its application.
Collapse
Affiliation(s)
- Senbang Yao
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Qinqin Zhu
- Department of RadiologyQuzhou People's HospitalQuzhouChina
| | - Qianqian Zhang
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Yinlian Cai
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Shaochun Liu
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Lulian Pang
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Yanyan Jing
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Xiangxiang Yin
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Cancer and Cognition LaboratoryAnhui Medical UniversityHefeiChina
| | - Huaidong Cheng
- Department of OncologyThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Shenzhen Clinical Medical School of Southern Medical UniversityShenzhenChina
- Department of OncologyShenzhen Hospital of Southern Medical UniversityShenzhenChina
| |
Collapse
|
12
|
Markowitsch HJ, Staniloiu A. Behavioral, neurological, and psychiatric frailty of autobiographical memory. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1617. [PMID: 35970754 DOI: 10.1002/wcs.1617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 05/20/2023]
Abstract
Autobiographical-episodic memory is considered to be the most complex of the five long-term memory systems. It is autonoetic, which means, self-reflective, relies on emotional colorization, and needs the features of place and time; it allows mental time traveling. Compared to the other four long-term memory systems-procedural memory, priming, perceptual, and semantic memory-it develops the latest in phylogeny and ontogeny, and is the most vulnerable of the five systems, being easily impaired by brain damage and psychiatric disorders. Furthermore, it is characterized by its fragility and proneness to distortion due to environmental influences and subsequent information. On the brain level, a distinction has to be made between memory encoding and consolidating, memory storage, and memory retrieval. For encoding, structures of the limbic system, with the hippocampus in its center, are crucial, for storage of widespread cortical networks, and for retrieval again a distributed recollection network, in which the prefrontal cortex plays a crucial role, is engaged. Brain damage and psychiatric diseases can lead to what is called "focal retrograde amnesia." In this context, the clinical picture of dissociative or functional or psychogenic amnesia is central, as it may result in autobiographical-emotional amnesia of the total past with the consequence of an impairment of the self as well. The social environment therefore can have a major impact on the brain and on autobiographical-episodic memory processing. This article is categorized under: Psychology > Memory.
Collapse
Affiliation(s)
- Hans J Markowitsch
- Department of Physiological Psychology, University of Bielefeld, Bielefeld, Germany
| | - Angelica Staniloiu
- Department of Physiological Psychology, University of Bielefeld, Bielefeld, Germany
- Oberberg Clinic, Hornberg, Germany
- Department of Psychology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
13
|
Verhulst MMLH, Glimmerveen AB, van Heugten CM, Helmich RCG, Hofmeijer J. MRI factors associated with cognitive functioning after acute onset brain injury: Systematic review and meta-analysis. Neuroimage Clin 2023; 38:103415. [PMID: 37119695 PMCID: PMC10165272 DOI: 10.1016/j.nicl.2023.103415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Impairments of memory, attention, and executive functioning are frequently reported after acute onset brain injury. MRI markers hold potential to contribute to identification of patients at risk for cognitive impairments and clarification of mechanisms. The aim of this systematic review was to summarize and value the evidence on MRI markers of memory, attention, and executive functioning after acute onset brain injury. We included ninety-eight studies, on six classes of MRI factors (location and severity of damage (n = 15), volume/atrophy (n = 36), signs of small vessel disease (n = 15), diffusion-weighted imaging measures (n = 36), resting-state functional MRI measures (n = 13), and arterial spin labeling measures (n = 1)). Three measures showed consistent results regarding their association with cognition. Smaller hippocampal volume was associated with worse memory in fourteen studies (pooled correlation 0.58 [95% CI: 0.46-0.68] for whole, 0.11 [95% CI: 0.04-0.19] for left, and 0.34 [95% CI: 0.17-0.49] for right hippocampus). Lower fractional anisotropy in cingulum and fornix was associated with worse memory in six and five studies (pooled correlation 0.20 [95% CI: 0.08-0.32] and 0.29 [95% CI: 0.20-0.37], respectively). Lower functional connectivity within the default-mode network was associated with worse cognition in four studies. In conclusion, hippocampal volume, fractional anisotropy in cingulum and fornix, and functional connectivity within the default-mode network showed consistent associations with cognitive performance in all types of acute onset brain injury. External validation and cut off values for predicting cognitive impairments are needed for clinical implementation.
Collapse
Affiliation(s)
- Marlous M L H Verhulst
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands.
| | - Astrid B Glimmerveen
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Caroline M van Heugten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Limburg Brain Injury Center, Maastricht University, Maastricht, The Netherlands; Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rick C G Helmich
- Donders Institute for Brain, Cognition, and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
14
|
Wang X, Lin D, Zhao C, Li H, Fu L, Huang Z, Xu S. Abnormal metabolic connectivity in default mode network of right temporal lobe epilepsy. Front Neurosci 2023; 17:1011283. [PMID: 37034164 PMCID: PMC10076532 DOI: 10.3389/fnins.2023.1011283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Aims Temporal lobe epilepsy (TLE) is a common neurological disorder associated with the dysfunction of the default mode network (DMN). Metabolic connectivity measured by 18F-fluorodeoxyglucose Positron Emission Computed Tomography (18F-FDG PET) has been widely used to assess cumulative energy consumption and provide valuable insights into the pathophysiology of TLE. However, the metabolic connectivity mechanism of DMN in TLE is far from fully elucidated. The present study investigated the metabolic connectivity mechanism of DMN in TLE using 18F-FDG PET. Method Participants included 40 TLE patients and 41 health controls (HC) who were age- and gender-matched. A weighted undirected metabolic network of each group was constructed based on 14 primary volumes of interest (VOIs) in the DMN, in which Pearson's correlation coefficients between each pair-wise of the VOIs were calculated in an inter-subject manner. Graph theoretic analysis was then performed to analyze both global (global efficiency and the characteristic path length) and regional (nodal efficiency and degree centrality) network properties. Results Metabolic connectivity in DMN showed that regionally networks changed in the TLE group, including bilateral posterior cingulate gyrus, right inferior parietal gyrus, right angular gyrus, and left precuneus. Besides, significantly decreased (P < 0.05, FDR corrected) metabolic connections of DMN in the TLE group were revealed, containing bilateral hippocampus, bilateral posterior cingulate gyrus, bilateral angular gyrus, right medial of superior frontal gyrus, and left inferior parietal gyrus. Conclusion Taken together, the present study demonstrated the abnormal metabolic connectivity in DMN of TLE, which might provide further insights into the understanding the dysfunction mechanism and promote the treatment for TLE patients.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Dandan Lin
- Department of Clinical Medicine, Fujian Health College, Fuzhou, Fujian, China
| | - Chunlei Zhao
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Hui Li
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
| | - Liyuan Fu
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Zhifeng Huang
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Shangwen Xu
- Department of Medical Imaging, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, China
- Department of Medical Imaging, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Smith SM, Garcia EL, Davidson CG, Thompson JJ, Lovett SD, Ferekides N, Federico Q, Bumanglag AV, Hernandez AR, Abisambra JF, Burke SN. Paired associates learning is disrupted after unilateral parietal lobe controlled cortical impact in rats: A trial-by-trial behavioral analysis. Behav Brain Res 2023; 437:114106. [PMID: 36089100 PMCID: PMC9927580 DOI: 10.1016/j.bbr.2022.114106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 02/01/2023]
Abstract
Approximately 60-70 million people suffer from traumatic brain injury (TBI) each year. Animal models continue to be paramount in understanding mechanisms of cellular dysfunction and testing new treatments for TBI. Enhancing the translational potential of novel interventions therefore necessitates testing pre-clinical intervention strategies with clinically relevant cognitive assays. This study used a unilateral parietal lobe controlled cortical impact (CCI) model of TBI and tested rats on a touchscreen-based Paired Associates Learning (PAL) task, which is part of the Cambridge Neuropsychological Test Automated Battery. In humans, the PAL task has been used to assess cognitive deficits in the ability to form stimulus-location associations in a multitude of disease states, including TBI. Although the use of PAL in animal models could be important for understanding the clinical severity of cognitive impairment post-injury and throughout intervention, to date, the extent to which a rat model of TBI produces deficits in PAL task performance has not yet been reported. This study details the behavioral consequences of the CCI injury model with a Trial-by-Trial analysis of PAL performance that enables behavioral strategy use to be inferred. Following behavior, the extent of the injury was quantified with histology and staining for the presence of glial fibrillary acid protein and ionized calcium-binding adapter molecule 1. Rats that received unilateral CCI were impaired on the PAL task and showed more aberrant response-driven behavior. The magnitude of PAL impairment was also correlated with Iba1 staining in the thalamus. These observations suggest that PAL could be useful for pre-clinical assessments of novel interventions for treating TBI.
Collapse
Affiliation(s)
- Samantha M Smith
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida, United States
| | - Elena L Garcia
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Caroline G Davidson
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - John J Thompson
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Sarah D Lovett
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Nedi Ferekides
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Quinten Federico
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Argyle V Bumanglag
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Abbi R Hernandez
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jose F Abisambra
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, United States
| | - Sara N Burke
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States; Institute on Aging, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
16
|
Gupta A, Vardalakis N, Wagner FB. Neuroprosthetics: from sensorimotor to cognitive disorders. Commun Biol 2023; 6:14. [PMID: 36609559 PMCID: PMC9823108 DOI: 10.1038/s42003-022-04390-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Neuroprosthetics is a multidisciplinary field at the interface between neurosciences and biomedical engineering, which aims at replacing or modulating parts of the nervous system that get disrupted in neurological disorders or after injury. Although neuroprostheses have steadily evolved over the past 60 years in the field of sensory and motor disorders, their application to higher-order cognitive functions is still at a relatively preliminary stage. Nevertheless, a recent series of proof-of-concept studies suggest that electrical neuromodulation strategies might also be useful in alleviating some cognitive and memory deficits, in particular in the context of dementia. Here, we review the evolution of neuroprosthetics from sensorimotor to cognitive disorders, highlighting important common principles such as the need for neuroprosthetic systems that enable multisite bidirectional interactions with the nervous system.
Collapse
Affiliation(s)
- Ankur Gupta
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | - Fabien B. Wagner
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
17
|
Hadi Z, Mahmud M, Pondeca Y, Calzolari E, Chepisheva M, Smith RM, Rust HM, Sharp DJ, Seemungal BM. The human brain networks mediating the vestibular sensation of self-motion. J Neurol Sci 2022; 443:120458. [PMID: 36332321 DOI: 10.1016/j.jns.2022.120458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Vestibular Agnosia - where peripheral vestibular activation triggers the usual reflex nystagmus response but with attenuated or no self-motion perception - is found in brain disease with disrupted cortical network functioning, e.g. traumatic brain injury (TBI) or neurodegeneration (Parkinson's Disease). Patients with acute focal hemispheric lesions (e.g. stroke) do not manifest vestibular agnosia. Thus, brain network mapping techniques, e.g. resting state functional MRI (rsfMRI), are needed to interrogate functional brain networks mediating vestibular agnosia. Hence, we prospectively recruited 39 acute TBI patients with preserved peripheral vestibular function and obtained self-motion perceptual thresholds during passive yaw rotations in the dark and additionally acquired whole-brain rsfMRI in the acute phase. Following quality-control checks, 26 patient scans were analyzed. Using self-motion perceptual thresholds from a matched healthy control group, 11 acute TBI patients were classified as having vestibular agnosia versus 15 with normal self-motion perception thresholds. Using independent component analysis on the rsfMRI data, we found altered functional connectivity in bilateral lingual gyrus and temporo-occipital fusiform cortex in the vestibular agnosia patients. Moreover, regions of interest analyses showed both inter-hemispheric and intra-hemispheric network disruption in vestibular agnosia. In conclusion, our results show that vestibular agnosia is mediated by bilateral anterior and posterior network dysfunction and reveal the distributed brain mechanisms mediating vestibular self-motion perception.
Collapse
Affiliation(s)
- Zaeem Hadi
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK.
| | - Mohammad Mahmud
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK
| | - Yuscah Pondeca
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK
| | - Elena Calzolari
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK
| | - Mariya Chepisheva
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK
| | - Rebecca M Smith
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK
| | - Heiko M Rust
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK; Neurology, Universitätsspital Basel, Basel, Switzerland
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, UK
| | - Barry M Seemungal
- Centre for Vestibular Neurology, Department of Brain Sciences, Imperial College London, UK.
| |
Collapse
|
18
|
Pathological Slow-Wave Activity and Impaired Working Memory Binding in Post-Traumatic Amnesia. J Neurosci 2022; 42:9193-9210. [PMID: 36316155 PMCID: PMC9761692 DOI: 10.1523/jneurosci.0564-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Associative binding is key to normal memory function and is transiently disrupted during periods of post-traumatic amnesia (PTA) following traumatic brain injury (TBI). Electrophysiological abnormalities, including low-frequency activity, are common following TBI. Here, we investigate associative memory binding during PTA and test the hypothesis that misbinding is caused by pathological slowing of brain activity disrupting cortical communication. Thirty acute moderate to severe TBI patients (25 males; 5 females) and 26 healthy controls (20 males; 6 females) were tested with a precision working memory paradigm requiring the association of object and location information. Electrophysiological effects of TBI were assessed using resting-state EEG in a subsample of 17 patients and 21 controls. PTA patients showed abnormalities in working memory function and made significantly more misbinding errors than patients who were not in PTA and controls. The distribution of localization responses was abnormally biased by the locations of nontarget items for patients in PTA, suggesting a specific impairment of object and location binding. Slow-wave activity was increased following TBI. Increases in the δ-α ratio indicative of an increase in low-frequency power specifically correlated with binding impairment in working memory. Connectivity changes in TBI did not correlate with binding impairment. Working memory and electrophysiological abnormalities normalized at 6 month follow-up. These results show that patients in PTA show high rates of misbinding that are associated with a pathological shift toward lower-frequency oscillations.SIGNIFICANCE STATEMENT How do we remember what was where? The mechanism by which information (e.g., object and location) is integrated in working memory is a central question for cognitive neuroscience. Following significant head injury, many patients will experience a period of post-traumatic amnesia (PTA) during which this associative binding is disrupted. This may be because of electrophysiological changes in the brain. Using a precision working memory test and resting-state EEG, we show that PTA patients demonstrate impaired binding ability, and this is associated with a shift toward slower-frequency activity on EEG. Abnormal EEG connectivity was observed but was not specific to PTA or binding ability. These findings contribute to both our mechanistic understanding of working memory binding and PTA pathophysiology.
Collapse
|
19
|
Massot-Tarrús A, Mirsattari SM. Roles of fMRI and Wada tests in the presurgical evaluation of language functions in temporal lobe epilepsy. Front Neurol 2022; 13:884730. [PMID: 36247757 PMCID: PMC9562037 DOI: 10.3389/fneur.2022.884730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Surgical treatment of pharmacoresistant temporal lobe epilepsy (TLE) carries risks for language function that can significantly affect the quality of life. Predicting the risks of decline in language functions before surgery is, consequently, just as important as predicting the chances of becoming seizure-free. The intracarotid amobarbital test, generally known as the Wada test (WT), has been traditionally used to determine language lateralization and to estimate their potential decline after surgery. However, the test is invasive and it does not localize the language functions. Therefore, other noninvasive methods have been proposed, of which functional magnetic resonance (fMRI) has the greatest potential. Functional MRI allows localization of language areas. It has good concordance with the WT for language lateralization, and it is of predictive value for postsurgical naming outcomes. Consequently, fMRI has progressively replaced WT for presurgical language evaluation. The objective of this manuscript is to review the most relevant aspects of language functions in TLE and the current role of fMRI and WT in the presurgical evaluation of language. First, we will provide context by revising the language network distribution and the effects of TLE on them. Then, we will assess the functional outcomes following various forms of TLE surgery and measures to reduce postoperative language decline. Finally, we will discuss the current indications for WT and fMRI and the potential usefulness of the resting-state fMRI technique.
Collapse
Affiliation(s)
| | - Seyed M. Mirsattari
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| |
Collapse
|
20
|
Shibahara I, Saito R, Kanamori M, Sonoda Y, Sato S, Hide T, Tominaga T, Kumabe T. Role of the parietooccipital fissure and its implications in the pathophysiology of posterior medial temporal gliomas. J Neurosurg 2022; 137:505-514. [PMID: 34905728 DOI: 10.3171/2021.7.jns21990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The parietooccipital fissure is an anatomical landmark that divides the temporal, occipital, and parietal lobes. More than 40% of gliomas are located in these three lobes, and the temporal lobe is the most common location. The parietooccipital fissure is located just posterior to the medial temporal lobe, but little is known about the clinical significance of this fissure in gliomas. The authors investigated the anatomical correlations between the parietooccipital fissure and posterior medial temporal gliomas to reveal the radiological features and unique invasion patterns of these gliomas. METHODS The authors retrospectively reviewed records of all posterior medial temporal glioma patients treated at their institutions and examined the parietooccipital fissure. To clarify how the surrounding structures were invaded in each case, the authors categorized tumor invasion as being toward the parietal lobe, occipital lobe, isthmus of the cingulate gyrus, insula/basal ganglia, or splenium of the corpus callosum. DSI Studio was used to visualize the fiber tractography running through the posterior medial temporal lobe. RESULTS Twenty-four patients with posterior medial temporal gliomas were identified. All patients presented with a parietooccipital fissure as an uninterrupted straight sulcus and as the posterior border of the tumor. Invasion direction was toward the parietal lobe in 13 patients, the occipital lobe in 4 patients, the isthmus of the cingulate gyrus in 19 patients, the insula/basal ganglia in 3 patients, and the splenium of the corpus callosum in 8 patients. Although the isthmus of the cingulate gyrus and the occipital lobe are located just posterior to the posterior medial temporal lobe, there was a significantly greater preponderance of invasion toward the isthmus of the cingulate gyrus than toward the occipital lobe (p = 0.00030, McNemar test). Based on Schramm's classification for the medial temporal tumors, 4 patients had type A and 20 patients had type D tumors. The parietooccipital fissure determined the posterior border of the tumors, resulting in a unique and identical radiological feature. Diffusion spectrum imaging (DSI) tractography indicated that the fibers running through the posterior medial temporal lobe toward the occipital lobe had to detour laterally around the bottom of the parietooccipital fissure. CONCLUSIONS Posterior medial temporal gliomas present identical invasion patterns, resulting in unique radiological features that are strongly affected by the parietooccipital fissure. The parietooccipital fissure is a key anatomical landmark for understanding the complex infiltrating architecture of posterior medial temporal gliomas.
Collapse
Affiliation(s)
- Ichiyo Shibahara
- 1Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara
| | - Ryuta Saito
- 2Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya
| | - Masayuki Kanamori
- 3Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi; and
| | - Yukihiko Sonoda
- 4Department of Neurosurgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Sumito Sato
- 1Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara
| | - Takuichiro Hide
- 1Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara
| | - Teiji Tominaga
- 3Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi; and
| | - Toshihiro Kumabe
- 1Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara
| |
Collapse
|
21
|
Miller TD, Butler CR. Acute-onset amnesia: transient global amnesia and other causes. Pract Neurol 2022; 22:201-208. [PMID: 35504698 DOI: 10.1136/practneurol-2020-002826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
Abstract
Acute-onset amnesia is a dramatic neurological presentation that can cause considerable concern to both patient and clinician. The patient typically presents with an inability not only to retain new memories but also to access previously acquired memories, suggesting disturbance of hippocampal function. Transient global amnesia (TGA) is the most common cause of acute-onset amnesia, and is characterised by a profound anterograde and retrograde amnesia that typically lasts for up to 24 hours. Although TGA has a strikingly stereotypical presentation, it can be challenging to distinguish from other causes of acute-onset amnesia, including posterior circulation strokes, transient epileptic amnesia, psychogenic amnesia, post-traumatic amnesia, and toxic/drug-related amnesia. Here, we describe the general approach to the patient with acute amnesia; summarise the clinical and neuropsychological differences between the potential causes; and, provide practical recommendations to aid diagnosis and management of acute amnesia. Regardless of cause and the dramatic presentation, non-ischaemic acute-onset amnesia generally has a favourable prognosis.
Collapse
Affiliation(s)
- Thomas D Miller
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK .,National Hospital for Neurology and Neurosurgery, London, UK
| | | |
Collapse
|
22
|
Abstract
OBJECTIVES Post-traumatic amnesia (PTA) is a transient period of recovery following traumatic brain injury (TBI) characterised by disorientation, amnesia, and cognitive disturbance. Agitation is common during PTA and presents as a barrier to patient outcome. A relationship between cognitive impairment and agitation has been observed. This prospective study aimed to examine the different aspects of cognition associated with agitation. METHODS The sample comprised 82 participants (75.61% male) admitted to an inpatient rehabilitation hospital in PTA. All patients had sustained moderate to extremely severe brain injury as assessed using the Westmead Post-Traumatic Amnesia Scale (WPTAS) (mean duration = 42.30 days, SD = 35.10). Participants were assessed daily using the Agitated Behaviour Scale and WPTAS as part of routine clinical practice during PTA. The Confusion Assessment Protocol was administered two to three times per week until passed criterion was achieved (mean number assessments = 3.13, SD = 3.76). Multilevel mixed modelling was used to investigate the association between aspects of cognition and agitation using performance on items of mental control, orientation, memory free recall, memory recognition, vigilance, and auditory comprehension. RESULTS Findings showed that improvement in orientation was significantly associated with lower agitation levels. A nonsignificant trend was observed between improved recognition memory and lower agitation. CONCLUSIONS Current findings suggest that the presence of disorientation in PTA may interfere with a patient's ability to understand and engage with the environment, which in turn results in agitated behaviours. Interventions aimed at maximizing orientation may serve to minimize agitation during PTA.
Collapse
|
23
|
Zhang H, Zhao Y, Qu Y, Huang Y, Chen Z, Lan H, Peng Y, Ren H. The Effect of Repetitive Transcranial Magnetic Stimulation (rTMS) on Cognition in Patients With Traumatic Brain Injury: A Protocol for a Randomized Controlled Trial. Front Neurol 2022; 13:832818. [PMID: 35432165 PMCID: PMC9005968 DOI: 10.3389/fneur.2022.832818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive impairment, defined as a decline in memory and executive function, is one of the most severe complications of traumatic brain injury (TBI). Patients with TBI are often unable to return to work due to cognitive impairment and their overall quality of life is reduced. TBI can bring a serious economic burden to patient's families and to society. Reported findings on the efficacy of repetitive transcranial magnetic stimulation (rTMS) in improving cognitive impairment following TBI are inconsistent. The purpose of the proposed study is to investigate whether rTMS can improve memory and executive function in patients with TBI. Herein, we propose a prospective randomized placebo-controlled (rTMS, sham rTMS, cognitive training), parallel-group, single-center trial. 36 participants with a TBI occurring at least 6 months prior will be recruited from an inpatient rehabilitation center. Participants will be randomly assigned to the real rTMS, sham rTMS, or cognitive training groups with a ratio of 1:1:1. A 20-session transcranial magnetic stimulation protocol will be applied to the left and right dorsolateral prefrontal cortices (DLPFC) at frequencies of 10 Hz and 1 Hz, respectively. Neuropsychological assessments will be performed at four time points: baseline, after the 10th rTMS session, after the 20th rTMS session, and 30 days post-intervention. The primary outcome is change in executive function assessed using the Shape Trail Test (STT). The secondary outcome measures are measures from neuropsychological tests: the Hopkins Verbal Learning Test (HVLT), the Brief Visuospatial Memory Test (BVMT), the Digit Span Test (DST). We report on positive preliminary results in terms of improving memory and executive function as well as beneficial changes in brain connectivity among TBI patients undergoing rTMS and hypothesize that we will obtain similar results in the proposed study.
Collapse
Affiliation(s)
- Han Zhang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, China
| | - Yu Zhao
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, China
- *Correspondence: Yun Qu
| | - Yunyun Huang
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Zhu Chen
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Hong Lan
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yi Peng
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Hongying Ren
- Department of Rehabilitation Medicine, Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| |
Collapse
|
24
|
Johnson LW, Hall KD. A Scoping Review of Cognitive Assessment in Adults With Acute Traumatic Brain Injury. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2022; 31:739-756. [PMID: 35050695 DOI: 10.1044/2021_ajslp-21-00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PURPOSE The purpose of this study was to describe and synthesize the current research regarding the prevailing cognitive domains impacted by acute traumatic brain injury (TBI) in adults. Standardized and nonstandardized assessments of cognitive function and comorbidities influencing cognitive function during the initial stages of recovery are presented to help guide clinical assessment. METHOD A scoping review, guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework, was used to explore four electronic databases. Searches identified peer-reviewed empirical literature addressing aspects of cognitive domains impacted after TBI, cognitive assessment, and comorbidities impacting assessment in adults after acute TBI. RESULTS A total of 1,072 records were identified and reduced to 75 studies based on inclusion criteria. The cognitive domains most impacted in acute TBI were memory and executive function. The Glasgow Coma Scale (GCS) was the most frequently used tool to assess cognitive abilities, despite it being a measurement of consciousness, not of cognition. Psychological changes were the most commonly noted comorbidity impacting cognitive assessment. CONCLUSIONS Assessment of cognition after acute TBI requires a multifaceted approach that considers the typical profile of cognitive impairment, as well as patient-specific factors influencing cognitive abilities following initial brain injury. The present results support the generally held view that memory and executive function deficits are common cognitive difficulties associated with acute TBI in adults. The GCS remains the most widely used tool to assess function, though numerous tools are available that specifically address cognitive domains. Acute medical comorbidities common within this stage of injury are highlighted, as well as gaps of clinical knowledge that remain. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.18372086.
Collapse
Affiliation(s)
- Leslie W Johnson
- Department of Communication Sciences and Disorders, North Carolina Central University, Durham
| | - Kellyn D Hall
- Department of Communication Sciences and Disorders, North Carolina Central University, Durham
| |
Collapse
|
25
|
Task-related connectivity of decision points during spatial navigation in a schematic map. Brain Struct Funct 2022; 227:1697-1710. [PMID: 35194657 DOI: 10.1007/s00429-022-02466-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
Abstract
Successful navigation is largely dependent on the ability to make correct decisions at navigational decision points. However, the interaction between the brain regions associated with the navigational decision point in a schematic map is unclear. In this study, we adopted a 2D subway paradigm to study the neural basis underlying decision points. Twenty-eight subjects performed a spatial navigation task using a subway map during fMRI scanning. We adopted a voxel-wise general linear model (GLM) approach and found four brain regions, the left hippocampus (HIP), left parahippocampal gyrus (PHG), left ventromedial prefrontal cortex (vmPFC), and right retrosplenial cortex (RSC), activated at a navigational decision point in a schematic map. Using a psychophysiological interactions (PPI) method, we found that (1) both the left vmPFC and right HIP interacted cooperatively with the right RSC, and (2) the left HIP and the left vmPFC interacted cooperatively at the decision point. These findings may be helpful for revealing the neural mechanisms underlying decision points in a schematic map during spatial navigation.
Collapse
|
26
|
Bruijel J, Quaedflieg CWEM, Otto T, van de Ven V, Stapert SZ, van Heugten C, Vermeeren A. Task-induced subjective fatigue and resting-state striatal connectivity following traumatic brain injury. Neuroimage Clin 2022; 33:102936. [PMID: 35007852 PMCID: PMC8749448 DOI: 10.1016/j.nicl.2022.102936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023]
Abstract
Fatigue is a very frequent and disabling symptom in traumatic brain injury (TBI). Effects of task-induced fatigue on resting-state functional connectivity (rsFC). Striatal rsFC relates differently to subjective fatigue in TBI compared to controls. Default mode network rsFC relates similar to subjective fatigue in TBI and controls.
Background People with traumatic brain injury (TBI) often experience fatigue, but an understanding of the neural underpinnings of fatigue following TBI is still lacking. This study used resting-state functional magnetic resonance imaging (rs-fMRI) to examine associations between functional connectivity (FC) changes and task-induced changes in subjective fatigue in people with moderate-severe TBI. Methods Sixteen people with moderate-severe TBI and 17 matched healthy controls (HC) performed an adaptive N-back task (working memory task) to induce cognitive fatigue. Before and after the task they rated their state fatigue level and underwent rs-fMRI. Seed-to-voxel analyses with seeds in areas involved in cognitive fatigue, namely the striatum and default mode network (DMN) including, medial prefrontal cortex and posterior cingulate cortex, were performed. Results The adaptive N-back task was effective in inducing fatigue in both groups. Subjective task-induced fatigue was positively associated with FC between striatum and precuneus in people with TBI, while there was a negative association in HC. In contrast, subjective task-induced fatigue was negatively associated with FC between striatum and cerebellum in the TBI group, while there was no association in HC. Similar associations between task-induced subjective fatigue and DMN FC were found across the groups. Conclusions Our results suggest that the subjective experience of fatigue was linked to DMN connectivity in both groups and was differently associated with striatal connectivity in people with moderate-severe TBI compared to HC. Defining fatigue-induced neuronal network changes is pertinent to the development of treatments that target abnormal neuronal activity after TBI.
Collapse
Affiliation(s)
- J Bruijel
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Limburg Brain Injury Centre, Limburg, the Netherlands.
| | - C W E M Quaedflieg
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - T Otto
- Dept of Work and Social Psychology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - V van de Ven
- Dept of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - S Z Stapert
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Limburg Brain Injury Centre, Limburg, the Netherlands; Dept of Medical Psychology, Zuyderland Medical Centre, Sittard-Geleen, the Netherlands
| | - C van Heugten
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Limburg Brain Injury Centre, Limburg, the Netherlands; School for Mental Health and Neuroscience, Dept of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - A Vermeeren
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
27
|
Parker TD, Rees R, Rajagopal S, Griffin C, Goodliffe L, Dilley M, Jenkins PO. Post-traumatic amnesia. Pract Neurol 2021; 22:129-137. [PMID: 34906998 DOI: 10.1136/practneurol-2021-003056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2021] [Indexed: 11/03/2022]
Abstract
Post-traumatic amnesia is the transient state of altered brain function that may follow a traumatic brain injury. At a practical level, an individual has emerged from post-traumatic amnesia when he or she is fully orientated and with return of continuous memory. However, the clinical manifestations are often more complex, with numerous cognitive domains commonly affected, as well as behaviour. In the acute setting, post-traumatic amnesia may easily go unrecognised; this is problematic as it has important implications for both immediate management and for longer-term prognosis. We therefore recommend its careful clinical assessment and prospective evaluation using validated tools. Patients in post-traumatic amnesia who have behavioural disturbance can be particularly challenging to manage. Behavioural and environmental measures form the mainstay of its treatment while avoiding pharmacological interventions where possible, as they may worsen agitation. Patients need assessing regularly to determine their need for further rehabilitation and to facilitate safe discharge planning.
Collapse
Affiliation(s)
- Thomas D Parker
- Atkinson Morley Neuroscience Unit, St George's University Hospitals NHS Foundation Trust, London, UK.,Department of Brain Sciences, Imperial College London, London, UK
| | - Richard Rees
- Atkinson Morley Neuroscience Unit, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Sangeerthana Rajagopal
- Atkinson Morley Neuroscience Unit, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Colette Griffin
- Atkinson Morley Neuroscience Unit, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Luke Goodliffe
- Atkinson Morley Neuroscience Unit, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Michael Dilley
- Atkinson Morley Neuroscience Unit, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Peter Owen Jenkins
- Atkinson Morley Neuroscience Unit, St George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
28
|
Venkatesan UM, Rabinowitz AR, Wolfert SJ, Hillary FG. Duration of post-traumatic amnesia is uniquely associated with memory functioning in chronic moderate-to-severe traumatic brain injury. NeuroRehabilitation 2021; 49:221-233. [PMID: 34397431 DOI: 10.3233/nre-218022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Disrupted memory circuitry may contribute to post-traumatic amnesia (PTA) after traumatic brain injury (TBI). It is unclear whether duration of PTA (doPTA) uniquely impacts memory functioning in the chronic post-injury stage. OBJECTIVE To examine the relationship between doPTA and memory functioning, independent of other cognitive abilities, in chronic moderate-to-severe TBI. METHODS Participants were 82 individuals (median chronicity = 10.5 years) with available doPTA estimates and neuropsychological data. Composite memory, processing speed (PS), and executive functioning (EF) performance scores, as well as data on subjective memory (SM) beliefs, were extracted. DoPTA-memory associations were evaluated via linear modeling of doPTA with memory performance and clinical memory status (impaired/unimpaired), controlling for PS, EF and demographic covariates. Interrelationships between doPTA, objective memory functioning, and SM were assessed. RESULTS DoPTA was significantly related to memory performance, even after covariate adjustment. Impairment in memory, but not PS or EF, was associated with a history of longer doPTA. SM was associated with memory performance, but unrelated to doPTA. CONCLUSIONS Findings suggest a specific association between doPTA-an acute injury phenomenon-and chronic memory deficits after TBI. Prospective studies are needed to understand how underlying mechanisms of PTA shape distinct outcome trajectories, particularly functional abilities related to memory processing.
Collapse
Affiliation(s)
- Umesh M Venkatesan
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.,Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Amanda R Rabinowitz
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.,Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Stephanie J Wolfert
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.,Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Frank G Hillary
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.,Department of Psychology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
29
|
Barnett AJ, Reilly W, Dimsdale-Zucker HR, Mizrak E, Reagh Z, Ranganath C. Intrinsic connectivity reveals functionally distinct cortico-hippocampal networks in the human brain. PLoS Biol 2021; 19:e3001275. [PMID: 34077415 PMCID: PMC8202937 DOI: 10.1371/journal.pbio.3001275] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/14/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Episodic memory depends on interactions between the hippocampus and interconnected neocortical regions. Here, using data-driven analyses of resting-state functional magnetic resonance imaging (fMRI) data, we identified the networks that interact with the hippocampus-the default mode network (DMN) and a "medial temporal network" (MTN) that included regions in the medial temporal lobe (MTL) and precuneus. We observed that the MTN plays a critical role in connecting the visual network to the DMN and hippocampus. The DMN could be further divided into 3 subnetworks: a "posterior medial" (PM) subnetwork comprised of posterior cingulate and lateral parietal cortices; an "anterior temporal" (AT) subnetwork comprised of regions in the temporopolar and dorsomedial prefrontal cortex; and a "medial prefrontal" (MP) subnetwork comprised of regions primarily in the medial prefrontal cortex (mPFC). These networks vary in their functional connectivity (FC) along the hippocampal long axis and represent different kinds of information during memory-guided decision-making. Finally, a Neurosynth meta-analysis of fMRI studies suggests new hypotheses regarding the functions of the MTN and DMN subnetworks, providing a framework to guide future research on the neural architecture of episodic memory.
Collapse
Affiliation(s)
- Alexander J. Barnett
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
| | - Walter Reilly
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
| | | | - Eda Mizrak
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
- Department of Psychology, University of Zurich, Zürich, Switzerland
| | - Zachariah Reagh
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
- Department of Neurology, University of California at Davis, Sacramento, California, United States of America
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Charan Ranganath
- Center for Neuroscience, University of California at Davis, Davis, California, United States of America
| |
Collapse
|
30
|
Mallas EJ, De Simoni S, Scott G, Jolly AE, Hampshire A, Li LM, Bourke NJ, Roberts SAG, Gorgoraptis N, Sharp DJ. Abnormal dorsal attention network activation in memory impairment after traumatic brain injury. Brain 2021; 144:114-127. [PMID: 33367761 DOI: 10.1093/brain/awaa380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/17/2020] [Accepted: 08/19/2020] [Indexed: 11/14/2022] Open
Abstract
Memory impairment is a common, disabling effect of traumatic brain injury. In healthy individuals, successful memory encoding is associated with activation of the dorsal attention network as well as suppression of the default mode network. Here, in traumatic brain injury patients we examined whether: (i) impairments in memory encoding are associated with abnormal brain activation in these networks; (ii) whether changes in this brain activity predict subsequent memory retrieval; and (iii) whether abnormal white matter integrity underpinning functional networks is associated with impaired subsequent memory. Thirty-five patients with moderate-severe traumatic brain injury aged 23-65 years (74% males) in the post-acute/chronic phase after injury and 16 healthy control subjects underwent functional MRI during performance of an abstract image memory encoding task. Diffusion tensor imaging was used to assess structural abnormalities across patient groups compared to 28 age-matched healthy controls. Successful memory encoding across all participants was associated with activation of the dorsal attention network, the ventral visual stream and medial temporal lobes. Decreased activation was seen in the default mode network. Patients with preserved episodic memory demonstrated increased activation in areas of the dorsal attention network. Patients with impaired memory showed increased left anterior prefrontal activity. White matter microstructure underpinning connectivity between core nodes of the encoding networks was significantly reduced in patients with memory impairment. Our results show for the first time that patients with impaired episodic memory show abnormal activation of key nodes within the dorsal attention network and regions regulating default mode network activity during encoding. Successful encoding was associated with an opposite direction of signal change between patients with and without memory impairment, suggesting that memory encoding mechanisms could be fundamentally altered in this population. We demonstrate a clear relationship between functional networks activated during encoding and underlying abnormalities within the structural connectome in patients with memory impairment. We suggest that encoding failures in this group are likely due to failed control of goal-directed attentional resources.
Collapse
Affiliation(s)
- Emma-Jane Mallas
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK
| | - Sara De Simoni
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK
| | - Amy E Jolly
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK
| | - Adam Hampshire
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK.,UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London, UK
| | - Lucia M Li
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK.,UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London, UK
| | - Niall J Bourke
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK
| | - Stuart A G Roberts
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK.,Academic Department of Military Surgery and Trauma (ADMST), Royal Centre for Defence Medicine (RCDM), Birmingham, UK
| | - Nikos Gorgoraptis
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Imperial College London, London, UK.,UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London, London, UK.,Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
31
|
Olsen A, Babikian T, Bigler ED, Caeyenberghs K, Conde V, Dams-O'Connor K, Dobryakova E, Genova H, Grafman J, Håberg AK, Heggland I, Hellstrøm T, Hodges CB, Irimia A, Jha RM, Johnson PK, Koliatsos VE, Levin H, Li LM, Lindsey HM, Livny A, Løvstad M, Medaglia J, Menon DK, Mondello S, Monti MM, Newcombe VFJ, Petroni A, Ponsford J, Sharp D, Spitz G, Westlye LT, Thompson PM, Dennis EL, Tate DF, Wilde EA, Hillary FG. Toward a global and reproducible science for brain imaging in neurotrauma: the ENIGMA adult moderate/severe traumatic brain injury working group. Brain Imaging Behav 2021; 15:526-554. [PMID: 32797398 PMCID: PMC8032647 DOI: 10.1007/s11682-020-00313-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The global burden of mortality and morbidity caused by traumatic brain injury (TBI) is significant, and the heterogeneity of TBI patients and the relatively small sample sizes of most current neuroimaging studies is a major challenge for scientific advances and clinical translation. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Adult moderate/severe TBI (AMS-TBI) working group aims to be a driving force for new discoveries in AMS-TBI by providing researchers world-wide with an effective framework and platform for large-scale cross-border collaboration and data sharing. Based on the principles of transparency, rigor, reproducibility and collaboration, we will facilitate the development and dissemination of multiscale and big data analysis pipelines for harmonized analyses in AMS-TBI using structural and functional neuroimaging in combination with non-imaging biomarkers, genetics, as well as clinical and behavioral measures. Ultimately, we will offer investigators an unprecedented opportunity to test important hypotheses about recovery and morbidity in AMS-TBI by taking advantage of our robust methods for large-scale neuroimaging data analysis. In this consensus statement we outline the working group's short-term, intermediate, and long-term goals.
Collapse
Affiliation(s)
- Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Virginia Conde
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Kristen Dams-O'Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Helen Genova
- Center for Traumatic Brain Injury, Kessler Foundation, East Hanover, NJ, USA
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Physical Medicine & Rehabilitation, Neurology, Department of Psychiatry & Department of Psychology, Cognitive Neurology and Alzheimer's, Center, Feinberg School of Medicine, Weinberg, Chicago, IL, USA
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hopsital, Trondheim University Hospital, Trondheim, Norway
| | - Ingrid Heggland
- Section for Collections and Digital Services, NTNU University Library, Norwegian University of Science and Technology, Trondheim, Norway
| | - Torgeir Hellstrøm
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, Oslo, Norway
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ruchira M Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, Pittsburgh, PA, USA
| | - Paula K Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Vassilis E Koliatsos
- Departments of Pathology(Neuropathology), Neurology, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Neuropsychiatry Program, Sheppard and Enoch Pratt Hospital, Baltimore, MD, USA
| | - Harvey Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Lucia M Li
- C3NL, Imperial College London, London, UK
- UK DRI Centre for Health Care and Technology, Imperial College London, London, UK
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Marianne Løvstad
- Sunnaas Rehabilitation Hospital, Nesodden, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - John Medaglia
- Department of Psychology, Drexel University, Philadelphia, PA, USA
- Department of Neurology, Drexel University, Philadelphia, PA, USA
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, Brain Injury Research Center (BIRC), UCLA, Los Angeles, CA, USA
| | | | - Agustin Petroni
- Department of Psychology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Computer Science, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific & Technical Research Council, Institute of Research in Computer Science, Buenos Aires, Argentina
| | - Jennie Ponsford
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
- Monash Epworth Rehabilitation Research Centre, Epworth Healthcare, Melbourne, Australia
| | - David Sharp
- Department of Brain Sciences, Imperial College London, London, UK
- Care Research & Technology Centre, UK Dementia Research Institute, London, UK
| | - Gershon Spitz
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Frank G Hillary
- Department of Neurology, Hershey Medical Center, State College, PA, USA.
| |
Collapse
|
32
|
Chen Q, Lv X, Zhang S, Lin J, Song J, Cao B, Weng Y, Li L, Huang R. Altered properties of brain white matter structural networks in patients with nasopharyngeal carcinoma after radiotherapy. Brain Imaging Behav 2021; 14:2745-2761. [PMID: 31900892 DOI: 10.1007/s11682-019-00224-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous neuroimaging studies revealed radiation-induced brain injury in patients with nasopharyngeal carcinoma (NPC) in the years after radiotherapy (RT). These injuries may be associated with structural and functional alterations. However, differences in the brain structural connectivity of NPC patients at different times after RT, especially in the early-delayed period, remain unclear. We acquired diffusion tensor imaging (DTI) data from three groups of NPC patients, 25 in the pre-RT (before RT) group, 22 in the early-delayed (1-6 months) period (post-RT-ED) group, and 33 in the late-delayed (>6 months) period (post-RT-LD) group. Then, we constructed brain white matter (WM) structural networks and used graph theory to compare their between-group differences. The NPC patients in the post-RT-ED group showed decreased global properties when compared with the pre-RT group. We also detected the nodes with between-group differences in nodal parameters. The nodes that differed between the post-RT-ED and pre-RT groups were mainly located in the default mode (DMN) and central executive networks (CEN); those that differed between the post-RT-LD and pre-RT groups were located in the limbic system; and those that differed between the post-RT-LD and post-RT-ED groups were mainly in the DMN. These findings may indicate that radiation-induced brain injury begins in the early-delayed period and that a reorganization strategy begins in the late-delayed period. Our findings may provide new insight into the pathogenesis of radiation-induced brain injury in normal-appearing brain tissue from the network perspective.
Collapse
Affiliation(s)
- Qinyuan Chen
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Xiaofei Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Shufei Zhang
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jiabao Lin
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Jie Song
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Bolin Cao
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yihe Weng
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Li Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Ruiwang Huang
- Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
33
|
More than amnesia: prospective cohort study of an integrated novel assessment of the cognitive and behavioural features of PTA. BRAIN IMPAIR 2021. [DOI: 10.1017/brimp.2021.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackground and Objective:Post-traumatic amnesia (PTA) is an early significant stage of recovery from traumatic brain injury (TBI). Current prospective PTA scales do not assess the full range of PTA symptomatology. This study conducted a novel integrated assessment of cognition and behaviour during PTA.Method:Twenty-four moderate-to-severe TBI participants in PTA and 23 TBI controls emerged from PTA were matched for age, gender, and years of education. All completed PTA measures (Galveston Orientation and Amnesia Test: GOAT, Westmead Post-traumatic Amnesia Scale: WPTAS), a cognitive battery; and behaviour ratings scored by 2 independent raters (informant and staff).Results:Significantly poorer performance was found during PTA for attention, processing speed, delayed verbal free recall and recognition, and visual learning. A large effect size was found for category fluency only. Behaviour ratings were significantly higher during PTA. Five behaviours were rated as high frequency (>50%) by both raters: Inattention, Impulsivity, Sleep Disturbance, Daytime Arousal, and Self-Monitoring. Prospective PTA measures produced significantly different duration estimates from 2 days (GOAT vs. WPTAS 1st day) to 9 days (WPTAS 1st day vs. 3-day). The WPTAS correlated most highly with processing speed and language tasks; whilst the GOAT correlated most highly with language and executive control of verbal memory.Conclusion:New prospective measures are needed that integrate core cognitive and behavioural features are brief, easy to administer, and capable of measuring emergence. The term PTA is a misnomer that requires revision to better accommodate the clinical syndrome.
Collapse
|
34
|
Assessing the Severity of Traumatic Brain Injury-Time for a Change? J Clin Med 2021; 10:jcm10010148. [PMID: 33406786 PMCID: PMC7795933 DOI: 10.3390/jcm10010148] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury (TBI) has been described to be man's most complex disease, in man's most complex organ. Despite this vast complexity, variability, and individuality, we still classify the severity of TBI based on non-specific, often unreliable, and pathophysiologically poorly understood measures. Current classifications are primarily based on clinical evaluations, which are non-specific and poorly predictive of long-term disability. Brain imaging results have also been used, yet there are multiple ways of doing brain imaging, at different timepoints in this very dynamic injury. Severity itself is a vague concept. All prediction models based on combining variables that can be assessed during the acute phase have reached only modest predictive values for later outcome. Yet, these early labels of severity often determine how the patient is treated by the healthcare system at large. This opinion paper examines the problems and provides caveats regarding the use of current severity labels and the many practical and scientific issues that arise from doing so. The objective of this paper is to show the causes and consequences of current practice and propose a new approach based on risk classification. A new approach based on multimodal quantifiable data (including imaging and biomarkers) and risk-labels would be of benefit both for the patients and for TBI clinical research and should be a priority for international efforts in the field.
Collapse
|
35
|
Traumatic Microbleeds in the Hippocampus and Corpus Callosum Predict Duration of Posttraumatic Amnesia. J Head Trauma Rehabil 2020; 34:E10-E18. [PMID: 31033742 DOI: 10.1097/htr.0000000000000479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Radiologic predictors of posttraumatic amnesia (PTA) duration are lacking. We hypothesized that the number and distribution of traumatic microbleeds (TMBs) detected by gradient recalled echo (GRE) magnetic resonance imaging (MRI) predicts PTA duration. SETTING Academic, tertiary medical center. PARTICIPANTS Adults with traumatic brain injury (TBI). DESIGN We identified 65 TBI patients with acute GRE MRI. PTA duration was determined with the Galveston Orientation and Amnesia Test, Orientation Log, or chart review. TMBs were identified within memory regions (hippocampus, corpus callosum, fornix, thalamus, and temporal lobe) and control regions (internal capsule and global). Regression tree analysis was performed to identify radiologic predictors of PTA duration, controlling for clinical PTA predictors. MAIN MEASURES TMB distribution, PTA duration. RESULTS Sixteen patients (25%) had complicated mild, 4 (6%) had moderate, and 45 (69%) had severe TBI. Median PTA duration was 43 days (range, 0-240 days). In univariate analysis, PTA duration correlated with TMBs in the corpus callosum (R = 0.29, P = .02) and admission Glasgow Coma Scale (GCS) score (R = -0.34, P = .01). In multivariate regression analysis, admission GCS score was the only significant contributor to PTA duration. However, in regression tree analysis, hippocampal TMBs, callosal TMBs, age, and admission GCS score explained 26% of PTA duration variance and distinguished a subgroup with prolonged PTA. CONCLUSIONS Hippocampal and callosal TMBs are potential radiologic predictors of PTA duration.
Collapse
|
36
|
de Souza NL, Parker R, Gonzalez CS, Ryan JD, Esopenko C. Effect of age at time of injury on long-term changes in intrinsic functional connectivity in traumatic brain injury. Brain Inj 2020; 34:1646-1654. [PMID: 33090913 DOI: 10.1080/02699052.2020.1832257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Alterations in resting-state functional connectivity (rsFC) occur in the acute and chronic phases following traumatic brain injury (TBI); however, few studies have assessed long-term (>1 year) changes in rsFC. METHODS Resting-state functional magnetic resonance imaging (rsfMRI) scans were obtained from the Federal Interagency Traumatic Brain Injury Research Informatics Systems. Patients with primarily mild TBI (n = 39) completed rsfMRI scans at the sub-acute (~10 days) and long-term (~18 months) phases. We examined changes in voxel-based rsFC from anterior medial prefrontal cortex (aMPFC) and posterior cingulate cortex (PCC) seeds in the default mode network (DMN) between both phases. The effect of age at the time of injury on long-term rsFC was also examined. RESULTS Increased rsFC from the aMPFC and the PCC to frontal and temporal regions was shown at ~18-months post-injury. Widespread increases in rsFC from the aMPFC and between the PCC and frontal regions were shown for younger patients at time of injury, but limited increases of rsFC were noted at ~18 months in older patients. CONCLUSION Long-term increases in rsFC were found following TBI, but age at the time of injury was associated with distinct rsFC profiles suggesting that younger patients show greater increases in rsFC over time.
Collapse
Affiliation(s)
- Nicola L de Souza
- School of Graduate Studies, Biomedical Sciences, Rutgers Biomedical and Health Sciences , Newark, New Jersey, USA
| | - Rachel Parker
- Rotman Research Institute at Baycrest , Toronto, Ontario, Canada
| | - Christie S Gonzalez
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences , Newark, New Jersey, USA
| | - Jennifer D Ryan
- Rotman Research Institute at Baycrest , Toronto, Ontario, Canada.,Department of Psychology, University of Toronto , Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto , Toronto, Ontario, Canada
| | - Carrie Esopenko
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences , Newark, New Jersey, USA
| |
Collapse
|
37
|
Zuo X, Zhuang J, Chen NK, Cousins S, Cunha P, Lad EM, Madden DJ, Potter G, Whitson HE. Relationship between neural functional connectivity and memory performance in age-related macular degeneration. Neurobiol Aging 2020; 95:176-185. [PMID: 32829250 DOI: 10.1016/j.neurobiolaging.2020.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Age-related macular degeneration (AMD) has been linked to memory deficits, with no established neural mechanisms. We collected resting-state brain functional magnetic resonance imaging and standardized verbal recall tests from 42 older adults with AMD and 41 age-matched controls. We used seed-based whole brain analysis to quantify the strength of functional connectivity between hubs of the default mode network and a network of medial temporal regions relevant for memory. Our results indicated neither memory performance nor network connectivity differed by AMD status. However, the AMD participants exhibited stronger relationships than the controls between memory performance and connectivity from the memory network hub (left parahippocampal) to 2 other regions: the left temporal pole and the right superior/middle frontal gyri. Also, the connectivity between the medial prefrontal cortex and posterior cingulate cortex of default mode network correlated more strongly with memory performance in AMD compared to control. We concluded that stronger brain-behavior correlation in AMD may suggest a role for region-specific connectivity in supporting memory in the context of AMD.
Collapse
Affiliation(s)
- Xintong Zuo
- Department of Internal Medicine, University of Hawaii, Honolulu, HI, USA; Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
| | - Jie Zhuang
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Nan-Kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Scott Cousins
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Priscila Cunha
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA; Duke University School of Medicine, Durham, NC, USA
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Guy Potter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Heather E Whitson
- Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA; Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA; Department of Medicine (Geriatrics), Duke University Medical Center, Durham, NC, USA; Geriatrics Research Education & Clinical Center, Durham VA Medical Center, Durham, NC, USA.
| |
Collapse
|
38
|
Jolly AE, Scott GT, Sharp DJ, Hampshire AH. Distinct patterns of structural damage underlie working memory and reasoning deficits after traumatic brain injury. Brain 2020; 143:1158-1176. [PMID: 32243506 PMCID: PMC7174032 DOI: 10.1093/brain/awaa067] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/10/2019] [Accepted: 01/25/2020] [Indexed: 12/21/2022] Open
Abstract
It is well established that chronic cognitive problems after traumatic brain injury relate to diffuse axonal injury and the consequent widespread disruption of brain connectivity. However, the pattern of diffuse axonal injury varies between patients and they have a correspondingly heterogeneous profile of cognitive deficits. This heterogeneity is poorly understood, presenting a non-trivial challenge for prognostication and treatment. Prominent amongst cognitive problems are deficits in working memory and reasoning. Previous functional MRI in controls has associated these aspects of cognition with distinct, but partially overlapping, networks of brain regions. Based on this, a logical prediction is that differences in the integrity of the white matter tracts that connect these networks should predict variability in the type and severity of cognitive deficits after traumatic brain injury. We use diffusion-weighted imaging, cognitive testing and network analyses to test this prediction. We define functionally distinct subnetworks of the structural connectome by intersecting previously published functional MRI maps of the brain regions that are activated during our working memory and reasoning tasks, with a library of the white matter tracts that connect them. We examine how graph theoretic measures within these subnetworks relate to the performance of the same tasks in a cohort of 92 moderate-severe traumatic brain injury patients. Finally, we use machine learning to determine whether cognitive performance in patients can be predicted using graph theoretic measures from each subnetwork. Principal component analysis of behavioural scores confirm that reasoning and working memory form distinct components of cognitive ability, both of which are vulnerable to traumatic brain injury. Critically, impairments in these abilities after traumatic brain injury correlate in a dissociable manner with the information-processing architecture of the subnetworks that they are associated with. This dissociation is confirmed when examining degree centrality measures of the subnetworks using a canonical correlation analysis. Notably, the dissociation is prevalent across a number of node-centric measures and is asymmetrical: disruption to the working memory subnetwork relates to both working memory and reasoning performance whereas disruption to the reasoning subnetwork relates to reasoning performance selectively. Machine learning analysis further supports this finding by demonstrating that network measures predict cognitive performance in patients in the same asymmetrical manner. These results accord with hierarchical models of working memory, where reasoning is dependent on the ability to first hold task-relevant information in working memory. We propose that this finer grained information may be useful for future applications that attempt to predict long-term outcomes or develop tailored therapies.
Collapse
Affiliation(s)
- Amy E Jolly
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Burlington Danes Building, Hammersmith Campus, Imperial College London, Du Cane Road, London W12 ONN, UK
| | - Gregory T Scott
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Burlington Danes Building, Hammersmith Campus, Imperial College London, Du Cane Road, London W12 ONN, UK
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Burlington Danes Building, Hammersmith Campus, Imperial College London, Du Cane Road, London W12 ONN, UK
| | - Adam H Hampshire
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Brain Sciences, Burlington Danes Building, Hammersmith Campus, Imperial College London, Du Cane Road, London W12 ONN, UK
| |
Collapse
|
39
|
Jendryczko D, Berkemeyer L, Holling H. Introducing a Computerized Figural Memory Test Based on Automatic Item Generation: An Analysis With the Rasch Poisson Counts Model. Front Psychol 2020; 11:945. [PMID: 32587542 PMCID: PMC7298330 DOI: 10.3389/fpsyg.2020.00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
An automatic item generator for figural memory test items called figumem was developed. It is available in R. A cognitive model allowed the generation of hypothetically parallel items within three difficulty levels determined by visual information load. In a pilot study, participants solved three items for each level of visual load. Within an item response theory approach, the Rasch Poisson counts model and modifications of it were fitted to the data. Results showed overall satisfying fit. Visual information load explained most of the variance in item difficulty. Differences in difficulty between items of the same family were comparatively low, displaying the utility of the item generator for the creation of parallel test forms. Implications, limitations, and suggestions for the use and extensions of figumem are discussed.
Collapse
Affiliation(s)
- David Jendryczko
- Institute for Psychology, Universität Konstanz, Konstanz, Germany
- Institute for Psychology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Laura Berkemeyer
- Institute for Psychology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Heinz Holling
- Institute for Psychology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
40
|
Abstract
Traumatic brain injury is a calamity of various causes, pathologies, and extremely varied and often complex clinical presentations. Because of its predilection for brain systems underlying cognitive and complex behavioral operations, it may cause chronic and severe psychiatric illness that requires expert management. This is more so for the modern epidemic of athletic and military brain injuries which are dominated by psychiatric symptoms. Past medical, including psychiatric, history, and comorbidities are important and relevant for formulation and management. Traumatic brain injury is a model for other neuropsychiatric disorders and may serve as an incubator of new ideas for neurodegenerative disease.
Collapse
Affiliation(s)
- Vassilis E Koliatsos
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Neuropsychiatry Program, Sheppard Pratt Health System, Baltimore, MD, USA.
| | - Vani Rao
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Roberts CM, Spitz G, Mundy M, Ponsford JL. Retrograde Autobiographical Memory From PTA Emergence to Six-Month Follow-Up in Moderate to Severe Traumatic Brain Injury. J Neuropsychiatry Clin Neurosci 2019; 31:112-122. [PMID: 30404534 DOI: 10.1176/appi.neuropsych.18010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The overwhelming focus of research on memory following traumatic brain injury (TBI) has been on anterograde amnesia, and very little attention has been paid to retrograde amnesia. There is evidence to suggest that retrograde autobiographical memory deficits exist after severe TBI, although there have been no prospective studies of autobiographical memory in a representative sample of moderate to severe cases recruited from hospital admissions. METHODS The purpose of the present study was to report changes in autobiographical memory performance among a group of patients soon after emergence from posttraumatic amnesia (PTA) and at the 6-month follow-up compared with a healthy control (HC) group. The authors also examined associations with anterograde memory function and community integration to assist in understanding the functional impact of autobiographical memory deficits and potential underlying mechanisms. The Autobiographical Memory Interview and the Rey Auditory Verbal Learning Test were used as measures of retrograde and anterograde memory, respectively, and the Community Integration Questionnaire was used as a measure of functional outcome in the TBI group. RESULTS The results demonstrated that both personal semantic and episodic autobiographical memory scores were impaired following emergence from PTA and at the 6-month follow-up. Only subtle differences emerged in change over time in different injury severity groups. Recent retrograde memory function was associated with anterograde memory performance, which supports some degree of overlap in underlying mechanisms. CONCLUSIONS The findings suggest that autobiographical memory deficits are prevalent following moderate to severe TBI and warrant consideration in rehabilitation.
Collapse
Affiliation(s)
- Caroline M Roberts
- From the Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia (CMR, GS, MM, JLP); the Monash-Epworth Rehabilitation Research Centre, Melbourne, Australia (CMR, GS, JLP); and Epworth Healthcare, Melbourne, Australia (JLP)
| | - Gershon Spitz
- From the Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia (CMR, GS, MM, JLP); the Monash-Epworth Rehabilitation Research Centre, Melbourne, Australia (CMR, GS, JLP); and Epworth Healthcare, Melbourne, Australia (JLP)
| | - Matthew Mundy
- From the Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia (CMR, GS, MM, JLP); the Monash-Epworth Rehabilitation Research Centre, Melbourne, Australia (CMR, GS, JLP); and Epworth Healthcare, Melbourne, Australia (JLP)
| | - Jennie L Ponsford
- From the Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia (CMR, GS, MM, JLP); the Monash-Epworth Rehabilitation Research Centre, Melbourne, Australia (CMR, GS, JLP); and Epworth Healthcare, Melbourne, Australia (JLP)
| |
Collapse
|
42
|
Liu J, Zhou X, Zhang Z, Qin L, Ye W, Zheng J. Disrupted functional network in patients with temporal lobe epilepsy with impaired alertness. Epilepsy Behav 2019; 101:106573. [PMID: 31677580 DOI: 10.1016/j.yebeh.2019.106573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/14/2019] [Accepted: 09/14/2019] [Indexed: 10/25/2022]
Abstract
Cognitive impairment is common in patients with temporal lobe epilepsy (TLE). Alertness is an important subfunction of cognition, but it is poorly understood in TLE. We hypothesized that disruptions to underlying brain networks may affect alertness in patients with TLE. Patients with unilateral TLE were grouped into low-alertness and high-alertness groups, and they were matched with healthy controls (HCs) (n = 20 each). Functional magnetic resonance imaging (fMRI) was used to construct functional brain networks, and graph theory was used to identify topological parameters of the networks. At the global level, patients with low alertness had networks with less small-worldness and less normalized clustering than HCs. At the nodal level, patients with low alertness exhibited decreased centrality of the bilateral parahippocampal gyrus compared with HCs and increased centrality of the right postcentral gyrus compared with patients with high alertness. This study reveals a decreased separation, tending toward randomization, of the functional network in patients with TLE with impaired alertness. Our results also suggest that the parahippocampal gyrus may contribute to impaired alertness and the right postcentral gyrus plays an important role in the modulation of alertness in patients with TLE.
Collapse
Affiliation(s)
- Jinping Liu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xia Zhou
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhao Zhang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Lu Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wei Ye
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinou Zheng
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
43
|
Lancaster K, Venkatesan UM, Lengenfelder J, Genova HM. Default Mode Network Connectivity Predicts Emotion Recognition and Social Integration After Traumatic Brain Injury. Front Neurol 2019; 10:825. [PMID: 31447760 PMCID: PMC6696510 DOI: 10.3389/fneur.2019.00825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Moderate-severe traumatic brain injury (TBI) may result in difficulty with emotion recognition, which has negative implications for social functioning. As aspects of social cognition have been linked to resting-state functional connectivity (RSFC) in the default mode network (DMN), we sought to determine whether DMN connectivity strength predicts emotion recognition and level of social integration in TBI. To this end, we examined emotion recognition ability of 21 individuals with TBI and 27 healthy controls in relation to RSFC between DMN regions. Across all participants, decreased emotion recognition ability was related to increased connectivity between dorsomedial prefrontal cortex (dmPFC) and temporal regions (temporal pole and parahippocampal gyrus). Furthermore, within the TBI group, connectivity between dmPFC and parahippocampal gyrus predicted level of social integration on the Community Integration Questionnaire, an important index of post-injury social functioning in TBI. This finding was not explained by emotion recognition ability, indicating that DMN connectivity predicts social functioning independent of emotion recognition. These results advance our understanding of the neural underpinnings of emotional and social processes in both healthy and injured brains, and suggest that RSFC may be an important marker of social outcomes in individuals with TBI.
Collapse
Affiliation(s)
- Katie Lancaster
- Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | | | - Jean Lengenfelder
- Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Helen M Genova
- Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
44
|
Einarsen CE, Moen KG, Håberg AK, Eikenes L, Kvistad KA, Xu J, Moe HK, Tollefsen MH, Vik A, Skandsen T. Patients with Mild Traumatic Brain Injury Recruited from Both Hospital and Primary Care Settings: A Controlled Longitudinal Magnetic Resonance Imaging Study. J Neurotrauma 2019; 36:3172-3182. [PMID: 31280698 PMCID: PMC6818486 DOI: 10.1089/neu.2018.6360] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
With an emphasis on traumatic axonal injury (TAI), frequency and evolution of traumatic intracranial lesions on 3T clinical magnetic resonance imaging (MRI) were assessed in a combined hospital and community-based study of patients with mild traumatic brain injury (mTBI). The findings were related to post-concussion symptoms (PCS) at 3 and 12 months. Prospectively, 194 patients (16–60 years of age) were recruited from the emergency departments at a level 1 trauma center and a municipal outpatient clinic into the Trondheim mTBI follow-up study. MRI was acquired within 72 h (n = 194) and at 3 (n = 165) and 12 months (n = 152) in patients and community controls (n = 78). The protocol included T2, diffusion weighted imaging, fluid attenuated inversion recovery (FLAIR), and susceptibility weighted imaging (SWI). PCS was assessed with British Columbia Post Concussion Symptom Inventory in patients and controls. Traumatic lesions were present in 12% on very early MRI, and in 5% when computed tomography (CT) was negative. TAI was found in 6% and persisted for 12 months on SWI, whereas TAI lesions on FLAIR disappeared or became less conspicuous on follow-up. PCS occurred in 33% of patients with lesions on MRI and in 19% in patients without lesions at 3 months (p = 0.12) and in 21% with lesions and 14% without lesions at 12 months (p = 0.49). Very early MRI depicted cases of TAI in patients with mTBI with microbleeds persisting for 12 months. Patients with traumatic lesions may have a more protracted recovery, but the study was underpowered to detect significant differences for PCS because of the low frequency of trauma-related MRI lesions.
Collapse
Affiliation(s)
- Cathrine Elisabeth Einarsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kent Gøran Moen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Radiology, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Asta Kristine Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjell Arne Kvistad
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jian Xu
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Hans Kristian Moe
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marie Hexeberg Tollefsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
45
|
Baxendale S, Heaney D, Rugg-Gunn F, Friedland D. Neuropsychological outcomes following traumatic brain injury. Pract Neurol 2019; 19:476-482. [PMID: 31196883 DOI: 10.1136/practneurol-2018-002113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2019] [Indexed: 11/04/2022]
Abstract
This review examines the clinical and neuroradiological features of traumatic brain injury that are most frequently associated with persistent cognitive complaints. Neuropsychological outcomes do not depend solely on brain injury severity but result from a complex interplay between premorbid factors, the extent and nature of the underlying structural damage, the person's neuropsychological reserve and the impact of non-neurological factors in the recovery process. Brain injury severity is only one of these factors and has limited prognostic significance with respect to neuropsychological outcome. We examine the preinjury and postinjury factors that interact with the severity of a traumatic brain injury to shape outcome trajectories. We aim to provide a practical base on which to build discussions with the patient and their family about what to expect following injury and also to plan appropriate neurorehabilitation.
Collapse
Affiliation(s)
- Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, University College London, Institute of Neurology, London, UK
| | - Dominic Heaney
- Department of Clinical Neurology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Fergus Rugg-Gunn
- Department of Clinical and Experimental Epilepsy, University College London, Institute of Neurology, London, UK
| | - Daniel Friedland
- Aquired Brain Injury Team, NHS MDT TBI Team, Imperial College, London, UK
| |
Collapse
|
46
|
Comparing the Wada Test and Functional MRI for the Presurgical Evaluation of Memory in Temporal Lobe Epilepsy. Curr Neurol Neurosci Rep 2019; 19:31. [PMID: 31044310 DOI: 10.1007/s11910-019-0945-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The usefulness of the Wada test (WT) predicting memory impairment from temporal lobe epilepsy (TLE) surgery has been debated, and it has progressively been replaced by functional MRI (fMRI). We review the current role of WT and fMRI in the presurgical assessment of TLE, and how novel surgical techniques might improve cognitive outcomes. RECENT FINDINGS fMRI's ability to predict global amnesia has not been assessed. Although WT can produce false-positive results, it is still indicated in patients at risk for developing global amnesia: those with significant bilateral or contralateral memory deficits. In the current review, WT exhibited no added value, beyond preclinical data, for predicting material-specific memory impairment, whereas fMRI was reliable for either verbal or non-verbal memory decline. Abnormal functional connectivity on resting state fMRI (rs-fMRI) between the posterior cingulate and the hippocampus may be a predictor of postsurgical memory outcomes. Restricted resections to the pathogenic tissue, stereotactic laser, radiosurgery, and SEEG-guided thermos-coagulation were associated with better cognitive outcome. fMRI should be used routinely in the presurgical workup of TLE to predict verbal and/or non-verbal memory decline, whereas WT may be indicated when there is a high risk of postsurgical global amnesia. Rs-fMRI is a promising tool for the presurgical workup of TLE, and more restricted resections are recommended to enhance cognitive outcomes.
Collapse
|
47
|
De Simoni S, Jenkins PO, Bourke NJ, Fleminger JJ, Hellyer PJ, Jolly AE, Patel MC, Cole JH, Leech R, Sharp DJ. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury. Brain 2019; 141:148-164. [PMID: 29186356 PMCID: PMC5837394 DOI: 10.1093/brain/awx309] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/25/2017] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of executive dysfunction. We show for the first time that altered subcortical connectivity is associated with large-scale network disruption in traumatic brain injury and that this disruption is related to the cognitive impairments seen in these patients.
Collapse
Affiliation(s)
- Sara De Simoni
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Peter O Jenkins
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Niall J Bourke
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Jessica J Fleminger
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Peter J Hellyer
- Department of Bioengineering, Imperial College London, London, UK
| | - Amy E Jolly
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | | | - James H Cole
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - Robert Leech
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| | - David J Sharp
- Computational, Cognitive and Clinical Neuroimaging Laboratory, Imperial College London, Division of Brain Sciences, Hammersmith Hospital, London, UK
| |
Collapse
|
48
|
Tong X, An D, Xiao F, Lei D, Niu R, Li W, Ren J, Liu W, Tang Y, Zhang L, Zhou B, Gong Q, Zhou D. Real‐time effects of interictal spikes on hippocampus and amygdala functional connectivity in unilateral temporal lobe epilepsy: AnEEG‐fMRIstudy. Epilepsia 2019; 60:246-254. [PMID: 30653664 DOI: 10.1111/epi.14646] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Xin Tong
- Department of Neurology West China Hospital Sichuan University Chengdu Sichuan China
| | - Dongmei An
- Department of Neurology West China Hospital Sichuan University Chengdu Sichuan China
| | - Fenglai Xiao
- Department of Neurology West China Hospital Sichuan University Chengdu Sichuan China
| | - Du Lei
- Huaxi MR Research Center Department of Radiology West China Hospital Sichuan University Chengdu Sichuan China
| | - Running Niu
- Huaxi MR Research Center Department of Radiology West China Hospital Sichuan University Chengdu Sichuan China
| | - Wei Li
- Department of Neurology West China Hospital Sichuan University Chengdu Sichuan China
| | - Jiechuan Ren
- Department of Neurology West China Hospital Sichuan University Chengdu Sichuan China
| | - Wenyu Liu
- Department of Neurology West China Hospital Sichuan University Chengdu Sichuan China
| | - Yingying Tang
- Department of Neurology West China Hospital Sichuan University Chengdu Sichuan China
| | - Le Zhang
- Department of Neurology West China Hospital Sichuan University Chengdu Sichuan China
| | - Baiwan Zhou
- Huaxi MR Research Center Department of Radiology West China Hospital Sichuan University Chengdu Sichuan China
| | - Qiyong Gong
- Huaxi MR Research Center Department of Radiology West China Hospital Sichuan University Chengdu Sichuan China
| | - Dong Zhou
- Department of Neurology West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
49
|
Holshouser B, Pivonka-Jones J, Nichols JG, Oyoyo U, Tong K, Ghosh N, Ashwal S. Longitudinal Metabolite Changes after Traumatic Brain Injury: A Prospective Pediatric Magnetic Resonance Spectroscopic Imaging Study. J Neurotrauma 2018; 36:1352-1360. [PMID: 30351247 DOI: 10.1089/neu.2018.5919] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The aims of this study were to evaluate longitudinal metabolite changes in traumatic brain injury (TBI) subjects and determine whether early magnetic resonance spectroscopic imaging (MRSI) changes in discrete brain regions predict 1-year neuropsychological outcomes. Three-dimensional (3D) proton MRSI was performed in pediatric subjects with complicated mild (cMild), moderate, and severe injury, acutely (6-17 days) and 1-year post-injury along with neurological and cognitive testing. Longitudinal analysis found that in the cMild/Moderate group, all MRSI ratios from 12 regions returned to control levels at 1 year. In the severe group, only cortical gray matter regions fully recovered to control levels whereas N-acetylaspartate (NAA) ratios from the hemispheric white matter and subcortical regions remained statistically different from controls. A factor analysis reduced the data to two loading factors that significantly differentiated between TBI groups; one included acute regional NAA variables and another consisted of clinically observed variables (e.g., days in coma). Using scores calculated from the two loading factors in a logistic regression model, we found that the percent accuracy for classification of TBI groups was greatest for the dichotomized attention measure (93%), followed by Full Scale Intelligence Quotient at 91%, and the combined memory Z-score measure (90%). Using the acute basal ganglia NAA/creatine (Cr) ratio alone achieved a higher percent accuracy of 94.7% for the attention measure whereas the acute thalamic NAA/Cr ratio alone achieved a higher percent accuracy of 91.9% for the memory measure. These results support the conclusions that reduced NAA is an early indicator of tissue injury and that measurements from subcortical brain regions are more predictive of long-term cognitive outcome.
Collapse
Affiliation(s)
- Barbara Holshouser
- 1 Department of Radiology, Loma Linda University School of Medicine, Loma Linda, California
| | - Jamie Pivonka-Jones
- 2 Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Joy G Nichols
- 2 Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Udo Oyoyo
- 1 Department of Radiology, Loma Linda University School of Medicine, Loma Linda, California
| | - Karen Tong
- 1 Department of Radiology, Loma Linda University School of Medicine, Loma Linda, California
| | - Nirmalya Ghosh
- 2 Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| | - Stephen Ashwal
- 2 Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
50
|
Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proc Natl Acad Sci U S A 2018; 115:12295-12300. [PMID: 30420501 PMCID: PMC6275484 DOI: 10.1073/pnas.1804876115] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human default mode network (DMN) is implicated in several unique mental capacities. In this study, we tested whether brain-wide interregional communication in the DMN can be derived from population variability in intrinsic activity fluctuations, gray-matter morphology, and fiber tract anatomy. In a sample of 10,000 UK Biobank participants, pattern-learning algorithms revealed functional coupling states in the DMN that are linked to connectivity profiles between other macroscopical brain networks. In addition, DMN gray matter volume was covaried with white matter microstructure of the fornix. Collectively, functional and structural patterns unmasked a possible division of labor within major DMN nodes: Subregions most critical for cortical network interplay were adjacent to subregions most predictive of fornix fibers from the hippocampus that processes memories and places.
Collapse
|