1
|
Ogloblinsky MSC, Conrad DF, Baudot A, Tournier-Lasserve E, Génin E, Marenne G. Benchmark of computational methods to detect digenism in sequencing data. Eur J Hum Genet 2025:10.1038/s41431-025-01834-9. [PMID: 40204980 DOI: 10.1038/s41431-025-01834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Digenic inheritance is characterized by the combined alteration of two different genes leading to a disease. It could explain the etiology of many currently undiagnosed rare diseases. With the advent of next-generation sequencing technologies, the identification of digenic inheritance patterns has become more technically feasible, yet still poses significant challenges without any gold standard method. Here, we present a comprehensive overview of the existing methods developed to detect digenic inheritance in sequencing data and provide a classification in cohort-based and individual-based methods. The latter category of methods appeared the most applicable to rare diseases, especially the ones not needing patient phenotypic description as input. We discuss the availability of the different methods, their output and scalability to inform potential users. Focusing on methods to detect digenic inheritance in the case of very rare or heterogeneous diseases, we propose a benchmark using different real-life scenarios involving known digenic and putative neutral pairs of genes. Among these different methods, DiGePred stood out as the one giving the least number of false positives, ARBOCK as giving the greatest number of true positives, and DIEP as having the best balance between both. By synthesizing the state-of-the-art techniques and providing insights into their practical utility, this benchmark serves as a valuable resource for researchers and clinicians in selecting suitable methodologies for detecting digenic inheritance in a wide range of disorders using sequencing data.
Collapse
Affiliation(s)
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Anaïs Baudot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Elisabeth Tournier-Lasserve
- Université Paris Cité, Inserm, NeuroDiderot, Unité Mixte de Recherche 1141, F-75019, Paris, France
- Assistance publique-Hôpitaux de Paris, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, F-75010, Paris, France
| | - Emmanuelle Génin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
- Assistance publique-Hôpitaux de Paris, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, F-75010, Paris, France
| | | |
Collapse
|
2
|
Yu JW, Yoon JG, Han C, Noh SH, Shin DM, Yang YM, Kim YO, Shim KW, Lee MG. Digenic impairments of haploinsufficient genes in patients with craniosynostosis. JCI Insight 2025; 10:e176985. [PMID: 39989454 PMCID: PMC11949007 DOI: 10.1172/jci.insight.176985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2025] [Indexed: 02/25/2025] Open
Abstract
Craniosynostosis (CRS) is characterized by the development of abnormal cranial suture ossification and premature fusion. Despite the identification of several associated genetic disorders, the genetic determinants of CRS remain poorly understood. In this study, we conducted integrative analyses on 225 exomes, comprising 121 CRS probands and 104 parental exomes (52 trios). These analyses encompassed de novo and pathogenic variants, and digenic combinations within haploinsufficient genes harboring rare variants. Our analysis unveils a shared molecular network between genes associated with CRS and those linked to skeletal and neurodevelopmental disorders, with a notable enrichment of deleterious variants within haploinsufficient genes. Additionally, we identified a unique digenic pair (IL6ST and TRPS1) within haploinsufficient genes that was present in 2 patients with nonsyndromic CRS but absent in parents or 1,048 population controls. In vitro experiments provided evidence that the identified missense variants were hypomorphs, and accelerated bone mineralization could result from the additive effects of diminished IL6ST and TRPS1 activities in osteoblasts. Overall, our study underscores the important role of rare variations in haploinsufficient genes and suggests that in a subset of undiagnosed patients, the CRS phenotype may arise from multiple genetic variations.
Collapse
Affiliation(s)
- Jung Woo Yu
- Department of Pharmacology, Graduate School of Medical Science Brain Korea 21 Project
- Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic
| | - Jihoon G. Yoon
- Department of Pharmacology, Graduate School of Medical Science Brain Korea 21 Project
- Department of Laboratory Medicine, Gangnam Severance Hospital, and
| | - Chaerim Han
- Department of Pharmacology, Graduate School of Medical Science Brain Korea 21 Project
| | - Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yu-Mi Yang
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Yong Oock Kim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Won Shim
- Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic
| | - Min Goo Lee
- Department of Pharmacology, Graduate School of Medical Science Brain Korea 21 Project
| |
Collapse
|
3
|
Aouchiche K, Charmensat C, Morgane P, Teinturier C, Bretones P, Brac de la Perriere A, Layet V, Bouhours-Nouet N, Vantyghem MC, Haine E, Nunes-Sanchez ML, Camard O, Baron S, Castinetti F, Barlier A, Brue T, Reynaud R, Saveanu A. Phenotype and genotype of 23 patients with hypopituitarism and pathogenic GLI2 variants. Eur J Endocrinol 2025; 192:110-118. [PMID: 39938560 DOI: 10.1093/ejendo/lvaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 01/30/2025] [Indexed: 02/14/2025]
Abstract
OBJECTIVE To analyze the phenotype and genotype of patients with congenital hypopituitarism (CH) and pathogenic (P) GLI2 variants. METHODS A large cohort of patients with hypopituitarism was screened for GLI2 variants using a next-generation sequencing panel. Genotype-phenotype correlations were then assessed using GENHYPOPIT phenotypic data. RESULTS Of the 39 GLI2 variants identified in 717 index cases, 17 were classified as pathogenic and likely pathogenic. All these GLI2 variants were identified in 23 patients (17 index cases and 6 relatives) with associated pituitary stalk interruption syndrome or extrapituitary manifestations. GLI2 variants were the most frequently identified genetic cause in patients with syndromic hypopituitarism (68%): 88% (15/17) of mutations were truncating variants, and 45% were de novo. Most patients with a GLI2 variant (21/23, 91%) had hypopituitarism, including 21.7% (5/23) presenting isolated growth hormone deficiency. Two patients had Kallmann syndrome. Pituitary morphological abnormalities were present in 84% of the patients with P GLI2 variants (index cases and affected relatives). The remaining signs included neurocognitive disorders (38%), hexadactyly (27%), cardiac septal defects, and renal/vesical abnormalities. A possible digenic origin (GLI2/HESX1) is proposed in one family. CONCLUSION In this large multicentric international cohort, GLI2 was the most frequently identified genetic cause of syndromic CH with constant association of pituitary stalk interruption syndrome or extrapituitary clinical features. In addition to polydactyly and neurocognitive disorders, cardiac and renal abnormalities were also frequently observed and should be investigated further. The variable expression of GLI2-associated phenotypes justifies further research in this area.
Collapse
Affiliation(s)
- Karine Aouchiche
- Department of Pediatrics Endocrinology, CHU Timone Enfants, Assistance Publique-Hôpitaux de Marseille (APHM), 13385 Marseille, France
- Aix Marseille University, INSERM, MMG, UMR 1251, 13385 Marseille, France
| | - Camille Charmensat
- Department of Pediatrics Endocrinology, CHU Timone Enfants, Assistance Publique-Hôpitaux de Marseille (APHM), 13385 Marseille, France
| | - Pertuit Morgane
- Laboratory of Molecular Biology GEnOPé, Assistance-Publique des Hôpitaux de Marseille (AP-HM), Hôpital de la Timone, 13385 Marseille, France
| | - Cécile Teinturier
- Department of Pediatric Endocrinology and Diabetes, Assistance Publique-Hôpitaux de Paris (AP-HP), Endocrinology and Diabetes for Children, Bicêtre Paris Sud Hospital (HUPS), 94270 Le Kremlin-Bicêtre, Val-de-Marne, France
| | - Patricia Bretones
- Department of Pediatric Endocrinology, Hopital Mère Enfant, Hospices Civils de Lyon (HCL), 69500 Bron, France
| | - Aude Brac de la Perriere
- Department of Endocrinology, Groupement Hospitalier Est, Hospices Civils de Lyon (HCL), 69500 Bron, France
| | - Valérie Layet
- Department of Genetics, Havre's Hospital, 76600 Le Havre, France
| | - Natacha Bouhours-Nouet
- Department of Pediatric Endocrinology and Diabetology, University Hospital of Angers, 49933 Angers, France
| | - Marie-Christine Vantyghem
- Department of Endocrinology, Diabetology, Metabolism, University Hospital of Lille, 59037 Lille, France
| | - Elsa Haine
- Department of Pediatrics, University Hospital of Nice-Lenval Hospital, 06200 Nice, France
| | | | - Odile Camard
- Department of Pediatrics, Niort Hospital, 79021 Niort, France
| | - Sabine Baron
- Department of Pediatric Endocrinology and Diabetology, University Hospital of Nantes, 44093 Nantes, France
| | - Frederic Castinetti
- Department of Endocrinology, APHM, Aix Marseille Univ, INSERM, MMG, MarMaRa Institute, UMR 1251, La Conception University Hospital, 13385 Marseille, France
| | - Anne Barlier
- Department of Endocrinology, APHM, Aix Marseille Univ, INSERM, MMG, MarMaRa Institute, UMR 1251, La Conception University Hospital, 13385 Marseille, France
- Laboratory of Molécular Biology GenOpé, APHM, Aix Marseille Univ, INSERM, MMG, IUMR 1251, La Timone University Hospital, 13385 Marseille, France
| | - Thierry Brue
- Department of Endocrinology, APHM, Aix Marseille Univ, INSERM, MMG, MarMaRa Institute, UMR 1251, La Conception University Hospital, 13385 Marseille, France
| | - Rachel Reynaud
- Department of Pediatrics Endocrinology, CHU Timone Enfants, Assistance Publique-Hôpitaux de Marseille (APHM), 13385 Marseille, France
- Aix Marseille University, INSERM, MMG, UMR 1251, 13385 Marseille, France
| | - Alexandru Saveanu
- Laboratory of Molécular Biology GenOpé, APHM, Aix Marseille Univ, INSERM, MMG, IUMR 1251, La Timone University Hospital, 13385 Marseille, France
| |
Collapse
|
4
|
Dahawi M, de Sainte Agathe JM, Elmagzoub MS, Ahmed EA, Buratti J, Courtin T, Noé E, Bogoin J, Copin B, Elmugadam FA, Abdelgadir WA, Ahmed AKMA, Daldoum MA, Altayeb RMI, Bashir M, Khalid LM, Gamil S, Baldassari S, Elsayed L, Keren B, Nuel G, Ahmed AE, Leguern E. Genetic heterogeneity in familial forms of genetic generalized epilepsy: from mono- to oligogenism. Hum Genomics 2024; 18:130. [PMID: 39574152 PMCID: PMC11583555 DOI: 10.1186/s40246-024-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/16/2024] [Indexed: 11/24/2024] Open
Abstract
Genetic generalized epilepsy (GGE) including childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures (TCS) (GGE-TCS), is genetically influenced with a two- to four- fold increased risk in the first-degree relatives of patients. Since large families with GGE are very rare, international studies have focused on sporadic GGE patients using whole exome sequencing, suggesting that GGE are highly genetically heterogeneous and rather involve rare or ultra-rare variants. Moreover, a polygenic mode of inheritance is suspected in most cases. We performed SNP microarrays and whole exome sequencing in 20 families from Sudan, focusing on those with at least four affected members. Standard genetic filters and Endeavour algorithm for functional prioritization of genes selected likely susceptibility variants in FAT1, DCHS1 or ASTN2 genes. FAT1 and DCHS1 are adhesion transmembrane proteins interacting during brain development, while ASTN2 is involved in dendrite development. Our approach on familial forms of GGE is complementary to large-scale collaborative consortia studies of sporadic cases. Our study reinforces the hypothesis that GGE is genetically heterogeneous, even in a relatively limited geographic area, and mainly oligogenic, as supported by the low familial penetrance of GGE and by the Bayesian algorithm that we developed in a large pedigree with JME. Since populations with founder effect and endogamy are appropriate to study autosomal recessive pathologies, they would be also adapted to decipher genetic components of complex diseases, using the reported bayesian model.
Collapse
Affiliation(s)
- Maha Dahawi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France.
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan.
| | - Jean-Madeleine de Sainte Agathe
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Mohamed S Elmagzoub
- Faculty of Medicine, National Ribat University, Khartoum, Sudan
- Neuroscience Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Elhami A Ahmed
- Faculty of Dentistry, Shendi University, Shendi, Sudan
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Julien Buratti
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Thomas Courtin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Eric Noé
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Julie Bogoin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Bruno Copin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | | | - Wasma A Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mohamed A Daldoum
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Division of Neurology, Sudan Medical Council, Khartoum, Sudan
| | | | - Mohamed Bashir
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Sahar Gamil
- Department of Basic Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, AL-Kharj, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Liena Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Boris Keren
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Gregory Nuel
- Stochastics and Biology Group (MAV), Probability and Statistics (LPSM, CNRS 8001), Sorbonne Université, Paris, France
| | - Ammar E Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
5
|
Lavillaureix A, Rollier P, Kim A, Panasenkava V, De Tayrac M, Carré W, Guyodo H, Faoucher M, Poirel E, Akloul L, Quélin C, Whalen S, Bos J, Broekema M, van Hagen JM, Grand K, Allen-Sharpley M, Magness E, McLean SD, Kayserili H, Altunoglu U, En Qi Chong A, Xue S, Jeanne M, Almontashiri N, Habhab W, Vanlerberghe C, Faivre L, Viora-Dupont E, Philippe C, Safraou H, Laffargue F, Mittendorf L, Abou Jamra R, Patil SJ, Dalal A, Sarma AS, Keren B, Reversade B, Dubourg C, Odent S, Dupé V. DISP1 deficiency: Monoallelic and biallelic variants cause a spectrum of midline craniofacial malformations. Genet Med 2024; 26:101126. [PMID: 38529886 DOI: 10.1016/j.gim.2024.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
PURPOSE DISP1 encodes a transmembrane protein that regulates the secretion of the morphogen, Sonic hedgehog, a deficiency of which is a major cause of holoprosencephaly (HPE). This disorder covers a spectrum of brain and midline craniofacial malformations. The objective of the present study was to better delineate the clinical phenotypes associated with division transporter dispatched-1 (DISP1) variants. METHODS This study was based on the identification of at least 1 pathogenic variant of the DISP1 gene in individuals for whom detailed clinical data were available. RESULTS A total of 23 DISP1 variants were identified in heterozygous, compound heterozygous or homozygous states in 25 individuals with midline craniofacial defects. Most cases were minor forms of HPE, with craniofacial features such as orofacial cleft, solitary median maxillary central incisor, and congenital nasal pyriform aperture stenosis. These individuals had either monoallelic loss-of-function variants or biallelic missense variants in DISP1. In individuals with severe HPE, the DISP1 variants were commonly found associated with a variant in another HPE-linked gene (ie, oligogenic inheritance). CONCLUSION The genetic findings we have acquired demonstrate a significant involvement of DISP1 variants in the phenotypic spectrum of midline defects. This underlines its importance as a crucial element in the efficient secretion of Sonic hedgehog. We also demonstrated that the very rare solitary median maxillary central incisor and congenital nasal pyriform aperture stenosis combination is part of the DISP1-related phenotype. The present study highlights the clinical risks to be flagged up during genetic counseling after the discovery of a pathogenic DISP1 variant.
Collapse
Affiliation(s)
- Alinoë Lavillaureix
- Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France; Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France
| | - Paul Rollier
- Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France; Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France
| | - Artem Kim
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France; Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Veranika Panasenkava
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France
| | - Marie De Tayrac
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France; Génétique Moléculaire et Génomique, FHU GenOMedS, CHU de Rennes, Rennes, France
| | - Wilfrid Carré
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France; Génétique Moléculaire et Génomique, FHU GenOMedS, CHU de Rennes, Rennes, France
| | - Hélène Guyodo
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France
| | - Marie Faoucher
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France; Génétique Moléculaire et Génomique, FHU GenOMedS, CHU de Rennes, Rennes, France
| | - Elisabeth Poirel
- Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France
| | - Linda Akloul
- Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France
| | - Chloé Quélin
- Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France
| | - Sandra Whalen
- APHP, Sorbonne Université, Département de Génétique, Centre de Référence Maladies Rares des Anomalies du Développement et Syndromes Malformatifs, Hôpital Trousseau & Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Jessica Bos
- Department of Human Genetics, Section Clinical Genetic, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marjoleine Broekema
- Department of Human Genetics, Section Clinical Genetic, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Johanna M van Hagen
- Department of Human Genetics, Section Clinical Genetic, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Katheryn Grand
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Emily Magness
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Scott D McLean
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Division of Clinical Genetics, Christus Children's, San Antonio, TX
| | - Hülya Kayserili
- Department of Medical Genetics, Koç University School of Medicine, Istanbul, Turkey
| | - Umut Altunoglu
- Department of Medical Genetics, Koç University School of Medicine, Istanbul, Turkey
| | - Angie En Qi Chong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shifeng Xue
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Médéric Jeanne
- Service de Génétique, FHU GenOMedS, CHRU de Tours, Tours, France; UMR1253, iBrain, Inserm, University of Tours, Tours, France
| | - Naif Almontashiri
- Center for Genetics and Inherited Diseases (CGID), Taibah University, Madinah, Saudi Arabia
| | - Wisam Habhab
- Department of Genetic Medicine, Faculty of Medicine, Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Centre Hospitalier Universitaire, Dijon, France; Genetics of Developmental Disorders, INSERM UMR1231, Université de Bourgogne, Dijon, France
| | - Eléonore Viora-Dupont
- Genetics of Developmental Disorders, INSERM UMR1231, Université de Bourgogne, Dijon, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU TRANSLAD, Centre Hospitalier Universitaire, Dijon, France
| | - Christophe Philippe
- Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU TRANSLAD, Centre Hospitalier Universitaire, Dijon, France; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon, Dijon, France
| | - Hana Safraou
- Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU TRANSLAD, Centre Hospitalier Universitaire, Dijon, France; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon, Dijon, France
| | - Fanny Laffargue
- CHU Clermont Ferrand, Service de Génétique Clinique, Clermont Ferrand, France
| | - Luisa Mittendorf
- Department for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | | | | | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Asodu Sandeep Sarma
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Boris Keren
- APHP, Sorbonne Université, Département de Génétique Médicale, GH Pitié Salpêtrière, Paris, France
| | - Bruno Reversade
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A∗STAR, Department of Physiology, Cardiovascular Disease, Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Medical Genetics, Koç University School of Medicine, Istanbul, Turkey; Laboratory of Human Genetics and Therapeutics Smart-Health Initiative, BESE, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Christèle Dubourg
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France; Génétique Moléculaire et Génomique, FHU GenOMedS, CHU de Rennes, Rennes, France
| | - Sylvie Odent
- Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France; Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France
| | - Valérie Dupé
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France.
| |
Collapse
|
6
|
Deng S, Wu Y, Huang S, Yang X. Novel insights into the roles of migrasome in cancer. Discov Oncol 2024; 15:166. [PMID: 38748047 PMCID: PMC11096295 DOI: 10.1007/s12672-024-00942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/18/2024] [Indexed: 05/18/2024] Open
Abstract
Cell migration, a hallmark of cancer malignancy, plays a critical role in cancers. Improperly initiated or misdirected cell migration can lead to invasive metastatic cancer. Migrasomes are newly discovered vesicular cellular organelles produced by migrating cells and depending on cell migration. Four marker proteins [NDST1 (bifunctionalheparan sulfate N-deacetylase/N-sulfotransferase 1), EOGT (Epidermal growth factor domains pecific O-linked N-acetylglucosaminetransferase), CPQ (carboxypeptidase Q), and PIGK (phosphatidylinositol glycan anchor biosynthesis, class K)] of migrasomes were successfully identified. There are three marker proteins (NDST1, PIGK, and EOGT) of migrasome expressed in cancer. In this review, we will discuss the process of migrasome discovery, the formation of migrasome, the possible functions of migrasome, and the differences between migrasomes and exosomes, especially, the biological functions of migrasome marker proteins in cancer, and discuss some possible roles of migrasomes in cancer. We speculate that migrasomes and migracytosis can play key roles in regulating the development of cancer.
Collapse
Affiliation(s)
- Sijun Deng
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Yiwen Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Sheng Huang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China.
| |
Collapse
|
7
|
Guyodo H, Rizzo A, Diab F, Noury F, Mironov S, de Tayrac M, David V, Odent S, Dubourg C, Dupé V. Impact of Sonic Hedgehog-dependent sphenoid bone defect on craniofacial growth. Clin Exp Dent Res 2024; 10:e861. [PMID: 38558491 PMCID: PMC10982674 DOI: 10.1002/cre2.861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVES The main objective of this study was to evaluate how an apparently minor anomaly of the sphenoid bone, observed in a haploinsufficient mouse model for Sonic Hedgehog (Shh), affects the growth of the adult craniofacial region. This study aims to provide valuable information to orthodontists when making decisions regarding individuals carrying SHH mutation. MATERIALS AND METHODS The skulls of embryonic, juvenile and adult mice of two genotypes (Shh heterozygous and wild type) were examined and measured using landmark-based linear dimensions. Additionally, we analysed the clinical characteristics of a group of patients and their relatives with SHH gene mutations. RESULTS In the viable Shh+/ - mouse model, bred on a C57BL/6J background, we noted the presence of a persistent foramen at the midline of the basisphenoid bone. This particular anomaly was attributed to the existence of an ectopic pituitary gland. We discovered that this anomaly led to premature closure of the intrasphenoidal synchondrosis and contributed to craniofacial deformities in adult mice, including a longitudinally shortened skull base. This developmental anomaly is reminiscent of that commonly observed in human holoprosencephaly, a disorder resulting from a deficiency in SHH activity. However, sphenoid morphogenesis is not currently monitored in individuals carrying SHH mutations. CONCLUSION Haploinsufficiency of Shh leads to isolated craniofacial skeletal hypoplasia in adult mouse. This finding highlights the importance of radiographic monitoring of the skull base in all individuals with SHH gene mutations.
Collapse
Affiliation(s)
- Hélène Guyodo
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
| | - Aurélie Rizzo
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
| | - Farah Diab
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), “Maladies génétiques d'expression pédiatrique”ParisFrance
| | - Fanny Noury
- Faculté des Sciences Pharmaceutiques et BiologiquesUniv Rennes, INSERM, LTSI ‐ UMR 1099RennesFrance
| | - Svetlana Mironov
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
| | - Marie de Tayrac
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
- Service de Génétique Moléculaire et Génomique, CHURennesFrance
| | - Véronique David
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
| | - Sylvie Odent
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
- Service de Génétique Clinique, CHURennesFrance
| | - Christèle Dubourg
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
- Service de Génétique Moléculaire et Génomique, CHURennesFrance
| | - Valérie Dupé
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)‐UMR6290RennesFrance
| |
Collapse
|
8
|
Ritter J, Lisec K, Klinner M, Heinrich M, von Schweinitz D, Kappler R, Hubertus J. Genetic Disruption of Cilia-Associated Signaling Pathways in Patients with VACTERL Association. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050882. [PMID: 37238430 DOI: 10.3390/children10050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
VACTERL association is a rare malformation complex consisting of vertebral defects, anorectal malformation, cardiovascular defects, tracheoesophageal fistulae with esophageal atresia, renal malformation, and limb anomalies. According to current knowledge, VACTERL is based on a multifactorial pathogenesis including genomic alterations. This study aimed to improve the understanding of the genetic mechanisms in the development of VACTERL by investigating the genetic background with a focus on signaling pathways and cilia function. The study was designed as genetic association study. For this, whole-exome sequencing with subsequent functional enrichment analyses was performed for 21 patients with VACTERL or a VACTERL-like phenotype. In addition, whole-exome sequencing was performed for three pairs of parents and Sanger-sequencing was performed for ten pairs of parents. Analysis of the WES-data revealed genetic alteration in the Shh- and Wnt-signaling pathways. Additional performed functional enrichment analysis identified an overrepresentation of the cilia, including 47 affected ciliary genes with clustering in the DNAH gene family and the IFT-complex. The examination of the parents showed that most of the genetic changes were inherited. In summary, this study indicates three genetically determined damage mechanisms for VACTERL with the potential to influence each other, namely Shh- and Wnt-signaling pathway disruption, structural cilia defects and disruption of the ciliary signal transduction.
Collapse
Affiliation(s)
- Jessica Ritter
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, LMU Munich University, 80337 Munich, Germany
- Department of Diagnostic and Interventional Radiology, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
| | - Kristina Lisec
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, LMU Munich University, 80337 Munich, Germany
| | - Marina Klinner
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, LMU Munich University, 80337 Munich, Germany
| | - Martina Heinrich
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, LMU Munich University, 80337 Munich, Germany
| | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, LMU Munich University, 80337 Munich, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, LMU Munich University, 80337 Munich, Germany
| | - Jochen Hubertus
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, LMU Munich University, 80337 Munich, Germany
- Department of Pediatric Surgery, Marien Hospital Witten, Ruhr-University Bochum, 58452 Witten, Germany
| |
Collapse
|
9
|
Jacquemin V, Versbraegen N, Duerinckx S, Massart A, Soblet J, Perazzolo C, Deconinck N, Brischoux-Boucher E, De Leener A, Revencu N, Janssens S, Moorgat S, Blaumeiser B, Avela K, Touraine R, Abou Jaoude I, Keymolen K, Saugier-Veber P, Lenaerts T, Abramowicz M, Pirson I. Congenital hydrocephalus: new Mendelian mutations and evidence for oligogenic inheritance. Hum Genomics 2023; 17:16. [PMID: 36859317 PMCID: PMC9979489 DOI: 10.1186/s40246-023-00464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Congenital hydrocephalus is characterized by ventriculomegaly, defined as a dilatation of cerebral ventricles, and thought to be due to impaired cerebrospinal fluid (CSF) homeostasis. Primary congenital hydrocephalus is a subset of cases with prenatal onset and absence of another primary cause, e.g., brain hemorrhage. Published series report a Mendelian cause in only a minority of cases. In this study, we analyzed exome data of PCH patients in search of novel causal genes and addressed the possibility of an underlying oligogenic mode of inheritance for PCH. MATERIALS AND METHODS We sequenced the exome in 28 unrelated probands with PCH, 12 of whom from families with at least two affected siblings and 9 of whom consanguineous, thereby increasing the contribution of genetic causes. Patient exome data were first analyzed for rare (MAF < 0.005) transmitted or de novo variants. Population stratification of unrelated PCH patients and controls was determined by principle component analysis, and outliers identified using Mahalanobis distance 5% as cutoff. Patient and control exome data for genes biologically related to cilia (SYScilia database) were analyzed by mutation burden test. RESULTS In 18% of probands, we identify a causal (pathogenic or likely pathogenic) variant of a known hydrocephalus gene, including genes for postnatal, syndromic hydrocephalus, not previously reported in isolated PCH. In a further 11%, we identify mutations in novel candidate genes. Through mutation burden tests, we demonstrate a significant burden of genetic variants in genes coding for proteins of the primary cilium in PCH patients compared to controls. CONCLUSION Our study confirms the low contribution of Mendelian mutations in PCH and reports PCH as a phenotypic presentation of some known genes known for syndromic, postnatal hydrocephalus. Furthermore, this study identifies novel Mendelian candidate genes, and provides evidence for oligogenic inheritance implicating primary cilia in PCH.
Collapse
Affiliation(s)
- Valerie Jacquemin
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium.
| | - Nassim Versbraegen
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah Duerinckx
- Service de Neuropédiatrie, Hôpital Universitaire de Bruxelles and CUB Hôpital Erasme and Université Libre de Bruxelles, Brussels, Belgium
| | - Annick Massart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
- Department of Nephrology, University Hospital of Antwerp, Edegem, Belgium
| | - Julie Soblet
- Human Genetics Department, CUB Hôpital Erasme, Brussels, Belgium
| | - Camille Perazzolo
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Deconinck
- Hopital Universitaire des Enfants Reine Fabiola and Hopital Universitaire de Bruxelles and Université Libre de Bruxelles, Brussels, Belgium
| | - Elise Brischoux-Boucher
- Centre de génétique humaine - CHU de Besançon, Université de Bourgogne-Franche-Comté, Besançon, France
| | - Anne De Leener
- Centre de Génétique Humaine, Cliniques Universitaires Saint-Luc et Université Catholique de Louvain, Brussels, Belgium
| | - Nicole Revencu
- Centre de Génétique Humaine, Cliniques Universitaires Saint-Luc et Université Catholique de Louvain, Brussels, Belgium
| | - Sandra Janssens
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Stèphanie Moorgat
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Bettina Blaumeiser
- Center of Medical Genetics, Antwerp University and Antwerp University Hospital, Edegem, Belgium
| | - Kristiina Avela
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
| | - Renaud Touraine
- Génétique Clinique Chromosomique et Moléculaire, CHU de Saint-Etienne, St-Priest-en-Jarez, France
| | - Imad Abou Jaoude
- Department of Gynecology and Obstetrics, Abou Jaoude Hospital, Jal El Dib, Lebanon
| | | | - Pascale Saugier-Veber
- Department of Genetics and Reference Center for Developmental Disorders, Université Rouen Normandie, Inserm U1245 and CHU Rouen, Rouen, France
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marc Abramowicz
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium.
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.
| | - Isabelle Pirson
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
10
|
The emergence of genotypic divergence and future precision medicine applications. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:87-99. [PMID: 36796950 DOI: 10.1016/b978-0-323-85538-9.00013-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Genotypic divergence is a term adapted from population genetics and intimately linked to evolution. We use divergence here to emphasize the differences that set individuals apart in any cohort. The history of genetics is filled with descriptions of genotypic differences, but causal inference of interindividual biological variation has been scarce. We suggest that the practice of precision medicine requires a divergent approach, an approach dependent on the causal interpretation of previous convergent (and preliminary) knowledge in the field. This knowledge has relied on convergent descriptive syndromology (lumping), which has overemphasized a reductionistic gene determinism on the quest of seeking associations without causal understanding. Regulatory variants with small effect and somatic mutations are some of the modifying factors that lead to incomplete penetrance and intrafamilial variable expressivity often observed in apparently monogenic clinical disorders. A truly divergent approach to precision medicine requires splitting, that is, the consideration of different layers of genetic phenomena that interact causally in a nonlinear fashion. This chapter reviews convergences and divergences in genetics and genomics, aiming to discuss what can be causally understood to approximate the as-yet utopian lands of Precision Medicine for patients with neurodegenerative disorders.
Collapse
|
11
|
Bando H, Brinkmeier ML, Castinetti F, Fang Q, Lee MS, Saveanu A, Albarel F, Dupuis C, Brue T, Camper SA. Heterozygous variants in SIX3 and POU1F1 cause pituitary hormone deficiency in mouse and man. Hum Mol Genet 2023; 32:367-385. [PMID: 35951005 PMCID: PMC9851746 DOI: 10.1093/hmg/ddac192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023] Open
Abstract
Congenital hypopituitarism is a genetically heterogeneous condition that is part of a spectrum disorder that can include holoprosencephaly. Heterozygous mutations in SIX3 cause variable holoprosencephaly in humans and mice. We identified two children with neonatal hypopituitarism and thin pituitary stalk who were doubly heterozygous for rare, likely deleterious variants in the transcription factors SIX3 and POU1F1. We used genetically engineered mice to understand the disease pathophysiology. Pou1f1 loss-of-function heterozygotes are unaffected; Six3 heterozygotes have pituitary gland dysmorphology and incompletely ossified palate; and the Six3+/-; Pou1f1+/dw double heterozygote mice have a pronounced phenotype, including pituitary growth through the palate. The interaction of Pou1f1 and Six3 in mice supports the possibility of digenic pituitary disease in children. Disruption of Six3 expression in the oral ectoderm completely ablated anterior pituitary development, and deletion of Six3 in the neural ectoderm blocked the development of the pituitary stalk and both anterior and posterior pituitary lobes. Six3 is required in both oral and neural ectodermal tissues for the activation of signaling pathways and transcription factors necessary for pituitary cell fate. These studies clarify the mechanism of SIX3 action in pituitary development and provide support for a digenic basis for hypopituitarism.
Collapse
Affiliation(s)
- Hironori Bando
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Frederic Castinetti
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Qing Fang
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Mi-Sun Lee
- Michigan Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Alexandru Saveanu
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Frédérique Albarel
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Clémentine Dupuis
- Department of Pediatrics, Centre Hospitalier Universitaire de Grenoble-Alpes, site Nord, Hôpital Couple Enfants, Grenoble, France
| | - Thierry Brue
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
The Power of Clinical Diagnosis for Deciphering Complex Genetic Mechanisms in Rare Diseases. Genes (Basel) 2023; 14:genes14010196. [PMID: 36672937 PMCID: PMC9858967 DOI: 10.3390/genes14010196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Complex genetic disease mechanisms, such as structural or non-coding variants, currently pose a substantial difficulty in frontline diagnostic tests. They thus may account for most unsolved rare disease patients regardless of the clinical phenotype. However, the clinical diagnosis can narrow the genetic focus to just a couple of genes for patients with well-established syndromes defined by prominent physical and/or unique biochemical phenotypes, allowing deeper analyses to consider complex genetic origin. Then, clinical-diagnosis-driven genome sequencing strategies may expedite the development of testing and analytical methods to account for complex disease mechanisms as well as to advance functional assays for the confirmation of complex variants, clinical management, and the development of new therapies.
Collapse
|
13
|
Jung HJ, Yeo S, Jang J, Pleasure S, Choe Y. Brain heterotopia formation by ciliopathic breakdown of neuroepithelial and blood-cerebrospinal fluid barriers. Brain Pathol 2023:e13148. [PMID: 36623505 DOI: 10.1111/bpa.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The developmental functions of primary cilia and the downstream signaling pathways have been widely studied; however, the roles of primary cilia in the developing neurovascular system are not clearly understood. In this study, we found that ablation of genes encoding ciliary transport proteins such as intraflagellar transport homolog 88 (Ift88) and kinesin family member 3a (Kif3a) in cortical radial progenitors led to periventricular heterotopia during late mouse embryogenesis. Conditional mutation of primary cilia unexpectedly caused breakdown of both the neuroepithelial lining and the blood-choroid plexus barrier. Choroidal leakage was partially caused by enlargement of the choroid plexus in the cilia mutants. We found that the choroid plexus expressed platelet-derived growth factor A (Pdgf-A) and that Pdgf-A expression was ectopically increased in cilia-mutant embryos. Cortices obtained from embryos in utero electroporated with Pdgfa mimicked periventricular heterotopic nodules of the cilia mutant. These results suggest that defective ciliogenesis in both cortical progenitors and the choroid plexus leads to breakdown of cortical and choroidal barriers causing forebrain neuronal dysplasia, which may be related to developmental cortical malformation.
Collapse
Affiliation(s)
| | - Seungeun Yeo
- Korea Brain Research Institute, Daegu, South Korea
| | | | - Samuel Pleasure
- Department of Neurology, Program in Neuroscience, Developmental Stem Cell Biology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and University of California, San Francisco, California, USA
| | | |
Collapse
|
14
|
Douceau S, Deutsch Guerrero T, Ferent J. Establishing Hedgehog Gradients during Neural Development. Cells 2023; 12:225. [PMID: 36672161 PMCID: PMC9856818 DOI: 10.3390/cells12020225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023] Open
Abstract
A morphogen is a signaling molecule that induces specific cellular responses depending on its local concentration. The concept of morphogenic gradients has been a central paradigm of developmental biology for decades. Sonic Hedgehog (Shh) is one of the most important morphogens that displays pleiotropic functions during embryonic development, ranging from neuronal patterning to axon guidance. It is commonly accepted that Shh is distributed in a gradient in several tissues from different origins during development; however, how these gradients are formed and maintained at the cellular and molecular levels is still the center of a great deal of research. In this review, we first explored all of the different sources of Shh during the development of the nervous system. Then, we detailed how these sources can distribute Shh in the surrounding tissues via a variety of mechanisms. Finally, we addressed how disrupting Shh distribution and gradients can induce severe neurodevelopmental disorders and cancers. Although the concept of gradient has been central in the field of neurodevelopment since the fifties, we also describe how contemporary leading-edge techniques, such as organoids, can revisit this classical model.
Collapse
Affiliation(s)
- Sara Douceau
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Tanya Deutsch Guerrero
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Julien Ferent
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| |
Collapse
|
15
|
Lipinski RJ, Krauss RS. Gene-environment interactions in birth defect etiology: Challenges and opportunities. Curr Top Dev Biol 2023; 152:1-30. [PMID: 36707208 PMCID: PMC9942595 DOI: 10.1016/bs.ctdb.2022.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Birth defects are relatively common congenital outcomes that significantly impact affected individuals, their families, and communities. Effective development and deployment of prevention and therapeutic strategies for these conditions requires sufficient understanding of etiology, including underlying genetic and environmental causes. Tremendous progress has been made in defining the genetic basis of familial and syndromic forms of birth defects. However, the majority of birth defect cases are considered nonsyndromic and thought to result from multifactorial gene-environment interactions. While substantial advances have been made in elucidating the genetic landscape of these etiologically complex conditions, significant biological and technical constraints have stymied progress toward a refined knowledge of environmental risk factors. Defining specific gene-environment interactions in birth defect etiology is even more challenging. However, progress has been made, including demonstration of critical proofs of concept and development of new conceptual and technical approaches for resolving complex gene-environment interactions. In this review, we discuss current views of multifactorial birth defect etiology, comparing them with other diseases that also involve gene-environment interactions, including primary immunodeficiency and cancer. We describe how various model systems have illuminated mechanisms of multifactorial etiology and these models' individual strengths and weaknesses. Finally, suggestions for areas of future emphasis are proposed.
Collapse
Affiliation(s)
- Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States,Corresponding authors: ;
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Corresponding authors: ;
| |
Collapse
|
16
|
Cospain A, Faoucher M, Cauchois A, Carre W, Quelin C, Dubourg C. Fetal Description of the Pancreatic Agenesis and Holoprosencephaly Syndrome Associated to a Specific CNOT1 Variant. Pediatr Dev Pathol 2022; 25:548-552. [PMID: 35481434 DOI: 10.1177/10935266221095305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Holoprosencephaly (HPE) is a clinically and genetically heterogeneous disease, which can be associated with various prenatal comorbidities not always detectable on prenatal ultrasound. We report on the case of a foetus carrying a semi-lobar HPE diagnosed at ultrasound, for which a fetal autopsy and a whole exome sequencing were performed following a medical termination of pregnancy. Neuropathological examination confirmed the semi-lobar HPE and general autopsy disclosed a total pancreas agenesis. Whole exome sequencing found the CNOT1 missense c.1603C>T, p.(Arg535Cys), occurring de novo in the foetus. The same variant was previously reported in 5 unrelated children. All individuals had HPE, and 4 out of 5 presented endo- and exocrine pancreatic insufficiency or total pancreas agenesis. CNOT1 encodes a subunit of the CCRN4-NOT complex, expressed at the early stage of embryonic development. This report is the first fetal description of the phenotype associating HPE and pancreatic agenesis linked to the recurrent CNOT1 missense c.1603C>T, p.(Arg535Cys). This finding strengthens the hypothesis of a specific recurrent variant associated with a particular phenotype of HPE and pancreas agenesis. The fetal autopsy that revealed the pancreas agenesis was crucial in guiding the genetic diagnosis and enabling accurate genetic counselling.
Collapse
Affiliation(s)
- Auriane Cospain
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN ITHACA, Hôpital Sud, 36684CHU Rennes, Rennes, France.,Service de Génétique Moléculaire et Génomique, 36684CHU, Rennes, France
| | - Marie Faoucher
- Service de Génétique Moléculaire et Génomique, 36684CHU, Rennes, France.,CNRS, IGDR, UMR 6290, Univ Rennes, Rennes, France
| | - Aurélie Cauchois
- Anatomie et cytologie pathologiques, CHU de Rennes, Rennes, France
| | - Wilfrid Carre
- Service de Génétique Moléculaire et Génomique, 36684CHU, Rennes, France.,CNRS, IGDR, UMR 6290, Univ Rennes, Rennes, France
| | - Chloé Quelin
- Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN ITHACA, Hôpital Sud, 36684CHU Rennes, Rennes, France.,Anatomie et cytologie pathologiques, CHU de Rennes, Rennes, France
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, 36684CHU, Rennes, France.,CNRS, IGDR, UMR 6290, Univ Rennes, Rennes, France
| |
Collapse
|
17
|
Barratt KS, Drover KA, Thomas ZM, Arkell RM. Patterning of the antero-ventral mammalian brain: Lessons from holoprosencephaly comparative biology in man and mouse. WIREs Mech Dis 2022; 14:e1552. [PMID: 35137563 DOI: 10.1002/wsbm.1552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Adult form and function are dependent upon the activity of specialized signaling centers that act early in development at the embryonic midline. These centers instruct the surrounding cells to adopt a positional fate and to form the patterned structures of the phylotypic embryo. Abnormalities in these processes have devastating consequences for the individual, as exemplified by holoprosencephaly in which anterior midline development fails, leading to structural defects of the brain and/or face. In the 25 years since the first association between human holoprosencephaly and the sonic hedgehog gene, a combination of human and animal genetic studies have enhanced our understanding of the genetic and embryonic causation of this congenital defect. Comparative biology has extended the holoprosencephaly network via the inclusion of gene mutations from multiple signaling pathways known to be required for anterior midline formation. It has also clarified aspects of holoprosencephaly causation, showing that it arises when a deleterious variant is present within a permissive genome, and that environmental factors, as well as embryonic stochasticity, influence the phenotypic outcome of the variant. More than two decades of research can now be distilled into a framework of embryonic and genetic causation. This framework means we are poised to move beyond our current understanding of variants in signaling pathway molecules. The challenges now at the forefront of holoprosencephaly research include deciphering how the mutation of genes involved in basic cell processes can also cause holoprosencephaly, determining the important constituents of the holoprosencephaly permissive genome, and identifying environmental compounds that promote holoprosencephaly. This article is categorized under: Congenital Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology Congenital Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Kristen S Barratt
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kyle A Drover
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zoe M Thomas
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ruth M Arkell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
18
|
Lo HF, Hong M, Krauss RS. Concepts in Multifactorial Etiology of Developmental Disorders: Gene-Gene and Gene-Environment Interactions in Holoprosencephaly. Front Cell Dev Biol 2022; 9:795194. [PMID: 35004690 PMCID: PMC8727999 DOI: 10.3389/fcell.2021.795194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Many common developmental disorders are thought to arise from a complex set of genetic and environmental risk factors. These factors interact with each other to affect the strength and duration of key developmental signaling pathways, thereby increasing the possibility that they fail to achieve the thresholds required for normal embryonic patterning. One such disorder, holoprosencephaly (HPE), serves as a useful model system in understanding various forms of multifactorial etiology. Genomic analysis of HPE cases, epidemiology, and mechanistic studies of animal models have illuminated multiple potential ways that risk factors interact to produce adverse developmental outcomes. Among these are: 1) interactions between driver and modifier genes; 2) oligogenic inheritance, wherein each parent provides predisposing variants in one or multiple distinct loci; 3) interactions between genetic susceptibilities and environmental risk factors that may be insufficient on their own; and 4) interactions of multiple genetic variants with multiple non-genetic risk factors. These studies combine to provide concepts that illuminate HPE and are also applicable to additional disorders with complex etiology, including neural tube defects, congenital heart defects, and oro-facial clefting.
Collapse
Affiliation(s)
- Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
19
|
Mecklenburg N, Kowalczyk I, Witte F, Görne J, Laier A, Mamo TM, Gonschior H, Lehmann M, Richter M, Sporbert A, Purfürst B, Hübner N, Hammes A. Identification of disease-relevant modulators of the SHH pathway in the developing brain. Development 2021; 148:272000. [PMID: 34463328 DOI: 10.1242/dev.199307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Pathogenic gene variants in humans that affect the sonic hedgehog (SHH) pathway lead to severe brain malformations with variable penetrance due to unknown modifier genes. To identify such modifiers, we established novel congenic mouse models. LRP2-deficient C57BL/6N mice suffer from heart outflow tract defects and holoprosencephaly caused by impaired SHH activity. These defects are fully rescued on a FVB/N background, indicating a strong influence of modifier genes. Applying comparative transcriptomics, we identified Pttg1 and Ulk4 as candidate modifiers upregulated in the rescue strain. Functional analyses showed that ULK4 and PTTG1, both microtubule-associated proteins, are positive regulators of SHH signaling, rendering the pathway more resilient to disturbances. In addition, we characterized ULK4 and PTTG1 as previously unidentified components of primary cilia in the neuroepithelium. The identification of genes that powerfully modulate the penetrance of genetic disturbances affecting the brain and heart is likely relevant to understanding the variability in human congenital disorders.
Collapse
Affiliation(s)
- Nora Mecklenburg
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Izabela Kowalczyk
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Franziska Witte
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Jessica Görne
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Alena Laier
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Tamrat M Mamo
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Hannes Gonschior
- Cellular Imaging, Light Microscopy, Leibniz-Research Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Martin Lehmann
- Cellular Imaging, Light Microscopy, Leibniz-Research Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Matthias Richter
- Advanced Light Microscopy Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anje Sporbert
- Advanced Light Microscopy Technology Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Bettina Purfürst
- Electron microscopy technology platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany.,Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Annette Hammes
- Disorders of the Nervous System, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| |
Collapse
|
20
|
de Castro VF, Mattos D, de Carvalho FM, Cavalcanti DP, Duenas-Roque MM, Llerena J, Cosentino VR, Honjo RS, Leite JCL, Sanseverino MT, de Souza MPA, Bernardi P, Bolognese AM, Santana da Silva LC, Barbero P, Correia PS, Bueno LSM, Savastano CP, Orioli IM. New SHH and Known SIX3 Variants in a Series of Latin American Patients with Holoprosencephaly. Mol Syndromol 2021; 12:219-233. [PMID: 34421500 DOI: 10.1159/000515044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
Holoprosencephaly (HPE) is the failure of the embryonic forebrain to develop into 2 hemispheres promoting midline cerebral and facial defects. The wide phenotypic variability and causal heterogeneity make genetic counseling difficult. Heterozygous variants with incomplete penetrance and variable expressivity in the SHH, SIX3, ZIC2, and TGIF1 genes explain ∼25% of the known causes of nonchromosomal HPE. We studied these 4 genes and clinically described 27 Latin American families presenting with nonchromosomal HPE. Three new SHH variants and a third known SIX3 likely pathogenic variant found by Sanger sequencing explained 15% of our cases. Genotype-phenotype correlation in these 4 families and published families with identical or similar driver gene, mutated domain, conservation of residue in other species, and the type of variant explain the pathogenicity but not the phenotypic variability. Nine patients, including 2 with SHH pathogenic variants, presented benign variants of the SHH, SIX3, ZIC2, and TGIF1 genes with potential alteration of splicing, a causal proposition in need of further studies. Finding more families with the same SIX3 variant may allow further identification of genetic or environmental modifiers explaining its variable phenotypic expression.
Collapse
Affiliation(s)
- Viviane Freitas de Castro
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Daniel Mattos
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Flavia Martinez de Carvalho
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Laboratorio Epidemiol. Malformações Congênitas, IOC/FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Milagros M Duenas-Roque
- ECLAMC at Servicio de Genética, Hospital Nacional Edgardo Rebagliati Martins/EsSalud, Lima, Peru
| | - Juan Llerena
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Centro de Genética Médica, IFF/FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | - Pricila Bernardi
- Núcleo de Genética Clínica, Departamento de Clínica Médica/UFSC, Florianópolis, Brazil
| | - Ana Maria Bolognese
- Departamento de Ortodontia, Faculdade de Odontologia/UFRJ, Rio de Janeiro, Brazil
| | - Luiz Carlos Santana da Silva
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,Laboratório de Erros Inatos de Metabolismo, Instituto de Ciências Biológicas/UFP, Belém, Brazil
| | - Pablo Barbero
- RENAC, Centro Nacional de Genética Médica Dr. Eduardo E. Castilla/MS, Buenos Aires, Argentina
| | | | | | | | - Iêda Maria Orioli
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| |
Collapse
|
21
|
Costantini A, Valta H, Suomi AM, Mäkitie O, Taylan F. Oligogenic Inheritance of Monoallelic TRIP11, FKBP10, NEK1, TBX5, and NBAS Variants Leading to a Phenotype Similar to Odontochondrodysplasia. Front Genet 2021; 12:680838. [PMID: 34149817 PMCID: PMC8206634 DOI: 10.3389/fgene.2021.680838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal dysplasias are often well characterized, and only a minority of the cases remain unsolved after a thorough analysis of pathogenic variants in over 400 genes that are presently known to cause monogenic skeletal diseases. Here, we describe an 11-year-old Finnish girl, born to unrelated healthy parents, who had severe short stature and a phenotype similar to odontochondrodysplasia (ODCD), a monogenic skeletal dysplasia caused by biallelic TRIP11 variants. The family had previously lost a fetus due to severe skeletal dysplasia. Exome sequencing and bioinformatic analysis revealed an oligogenic inheritance of a heterozygous nonsense mutation in TRIP11 and four likely pathogenic missense variants in FKBP10, TBX5, NEK1, and NBAS in the index patient. Interestingly, all these genes except TBX5 are known to cause skeletal dysplasia in an autosomal recessive manner. In contrast, the fetus was found homozygous for the TRIP11 mutation, and achondrogenesis type IA diagnosis was, thus, molecularly confirmed, indicating two different skeletal dysplasia forms in the family. To the best of our knowledge, this is the first report of an oligogenic inheritance model of a skeletal dysplasia in a Finnish family. Our findings may have implications for genetic counseling and for understanding the yet unsolved cases of rare skeletal dysplasias.
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helena Valta
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne-Maarit Suomi
- Department of Pediatrics, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Folkhälsan Institute of Genetics, and Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Remec ZI, Trebusak Podkrajsek K, Repic Lampret B, Kovac J, Groselj U, Tesovnik T, Battelino T, Debeljak M. Next-Generation Sequencing in Newborn Screening: A Review of Current State. Front Genet 2021; 12:662254. [PMID: 34122514 PMCID: PMC8188483 DOI: 10.3389/fgene.2021.662254] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022] Open
Abstract
Newborn screening was first introduced at the beginning of the 1960s with the successful implementation of the first phenylketonuria screening programs. Early expansion of the included disorders was slow because each additional disorder screened required a separate test. Subsequently, the technological advancements of biochemical methodology enabled the scaling-up of newborn screening, most notably with the implementation of tandem mass spectrometry. In recent years, we have witnessed a remarkable progression of high-throughput sequencing technologies, which has resulted in a continuous decrease of both cost and time required for genetic analysis. This has enabled more widespread use of the massive multiparallel sequencing. Genomic sequencing is now frequently used in clinical applications, and its implementation in newborn screening has been intensively advocated. The expansion of newborn screening has raised many clinical, ethical, legal, psychological, sociological, and technological concerns over time. This review provides an overview of the current state of next-generation sequencing regarding newborn screening including current recommendations and potential challenges for the use of such technologies in newborn screening.
Collapse
Affiliation(s)
- Ziga I. Remec
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katarina Trebusak Podkrajsek
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| | - Barbka Repic Lampret
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovac
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Urh Groselj
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Chair of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tine Tesovnik
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Chair of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marusa Debeljak
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
23
|
Au KS, Hebert L, Hillman P, Baker C, Brown MR, Kim DK, Soldano K, Garrett M, Ashley-Koch A, Lee S, Gleeson J, Hixson JE, Morrison AC, Northrup H. Human myelomeningocele risk and ultra-rare deleterious variants in genes associated with cilium, WNT-signaling, ECM, cytoskeleton and cell migration. Sci Rep 2021; 11:3639. [PMID: 33574475 PMCID: PMC7878900 DOI: 10.1038/s41598-021-83058-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Myelomeningocele (MMC) affects one in 1000 newborns annually worldwide and each surviving child faces tremendous lifetime medical and caregiving burdens. Both genetic and environmental factors contribute to disease risk but the mechanism is unclear. This study examined 506 MMC subjects for ultra-rare deleterious variants (URDVs, absent in gnomAD v2.1.1 controls that have Combined Annotation Dependent Depletion score ≥ 20) in candidate genes either known to cause abnormal neural tube closure in animals or previously associated with human MMC in the current study cohort. Approximately 70% of the study subjects carried one to nine URDVs among 302 candidate genes. Half of the study subjects carried heterozygous URDVs in multiple genes involved in the structure and/or function of cilium, cytoskeleton, extracellular matrix, WNT signaling, and/or cell migration. Another 20% of the study subjects carried heterozygous URDVs in candidate genes associated with gene transcription regulation, folate metabolism, or glucose metabolism. Presence of URDVs in the candidate genes involving these biological function groups may elevate the risk of developing myelomeningocele in the study cohort.
Collapse
Affiliation(s)
- K S Au
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - L Hebert
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - P Hillman
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - C Baker
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - M R Brown
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - D-K Kim
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - K Soldano
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - M Garrett
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - A Ashley-Koch
- Department of Medicine, Duke University Medical Center, Durham, NC, 27701, USA
| | - S Lee
- Department of Neurosciences and Pediatrics, University of California-San Diego, La Jolla, CA, 92093, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, 92025, USA
| | - J Gleeson
- Department of Neurosciences and Pediatrics, University of California-San Diego, La Jolla, CA, 92093, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, 92025, USA
| | - J E Hixson
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - A C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center At Houston, Houston, TX, 77030, USA
| | - H Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
24
|
Abstract
Pituitary stalk interruption syndrome (PSIS) is a distinct developmental defect of the pituitary gland identified by magnetic resonance imaging and characterized by a thin, interrupted, attenuated or absent pituitary stalk, hypoplasia or aplasia of the adenohypophysis, and an ectopic posterior pituitary. The precise etiology of PSIS still remains elusive or incompletely confirmed in most cases. Adverse perinatal events, including breech delivery and hypoxia, were initially proposed as the underlying mechanism affecting the hypothalamic-pituitary axis. Nevertheless, recent findings have uncovered a wide variety of PSIS-associated molecular defects in genes involved in pituitary development, holoprosencephaly (HPE), neural development, and other important cellular processes such as cilia function. The application of whole exome sequencing (WES) in relatively large cohorts has identified an expanded pool of potential candidate genes, mostly related to the Wnt, Notch, and sonic hedgehog signaling pathways that regulate pituitary growth and development during embryogenesis. Importantly, WES has revealed coexisting pathogenic variants in a significant number of patients; therefore, pointing to a multigenic origin and inheritance pattern of PSIS. The disorder is characterized by inter- and intrafamilial variability and incomplete or variable penetrance. Overall, PSIS is currently viewed as a mild form of an expanded HPE spectrum. The wide and complex clinical manifestations include evolving pituitary hormone deficiencies (with variable timing of onset and progression) and extrapituitary malformations. Severe and life-threatening symptomatology is observed in a subset of patients with complete pituitary hormone deficiency during the neonatal period. Nevertheless, most patients are referred later in childhood for growth retardation. Prompt and appropriate hormone substitution therapy constitutes the cornerstone of treatment. Further studies are needed to uncover the etiopathogenesis of PSIS.
Collapse
Affiliation(s)
- Antonis Voutetakis
- Department of Pediatrics, School of Medicine, Democritus University of Thrace, Alexandroupolis, Thrace, Greece.
| |
Collapse
|
25
|
Kim A, Le Douce J, Diab F, Ferovova M, Dubourg C, Odent S, Dupé V, David V, Diambra L, Watrin E, de Tayrac M. Synonymous variants in holoprosencephaly alter codon usage and impact the Sonic Hedgehog protein. Brain 2020; 143:2027-2038. [PMID: 32542401 DOI: 10.1093/brain/awaa152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/04/2020] [Accepted: 03/21/2020] [Indexed: 11/13/2022] Open
Abstract
Synonymous single nucleotide variants (sSNVs) have been implicated in various genetic disorders through alterations of pre-mRNA splicing, mRNA structure and miRNA regulation. However, their impact on synonymous codon usage and protein translation remains to be elucidated in clinical context. Here, we explore the functional impact of sSNVs in the Sonic Hedgehog (SHH) gene, identified in patients affected by holoprosencephaly, a congenital brain defect resulting from incomplete forebrain cleavage. We identified eight sSNVs in SHH, selectively enriched in holoprosencephaly patients as compared to healthy individuals, and systematically assessed their effect at both transcriptional and translational levels using a series of in silico and in vitro approaches. Although no evidence of impact of these sSNVs on splicing, mRNA structure or miRNA regulation was found, five sSNVs introduced significant changes in codon usage and were predicted to impact protein translation. Cell assays demonstrated that these five sSNVs are associated with a significantly reduced amount of the resulting protein, ranging from 5% to 23%. Inhibition of the proteasome rescued the protein levels for four out of five sSNVs, confirming their impact on protein stability and folding. Remarkably, we found a significant correlation between experimental values of protein reduction and computational measures of codon usage, indicating the relevance of in silico models in predicting the impact of sSNVs on translation. Considering the critical role of SHH in brain development, our findings highlight the clinical relevance of sSNVs in holoprosencephaly and underline the importance of investigating their impact on translation in human pathologies.
Collapse
Affiliation(s)
- Artem Kim
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France
| | - Jérôme Le Douce
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France
| | - Farah Diab
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France
| | - Monika Ferovova
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France
| | - Christèle Dubourg
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Sylvie Odent
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France.,Service de Génétique Clinique, CHU, Rennes, France
| | - Valérie Dupé
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France
| | - Véronique David
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Luis Diambra
- CREG, CONICET-Universidad Nacional de La Plata, La Plata, CP 1900, Argentina
| | - Erwan Watrin
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France
| | - Marie de Tayrac
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, F-35000 Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| |
Collapse
|
26
|
Andreu-Cervera A, Catala M, Schneider-Maunoury S. Cilia, ciliopathies and hedgehog-related forebrain developmental disorders. Neurobiol Dis 2020; 150:105236. [PMID: 33383187 DOI: 10.1016/j.nbd.2020.105236] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
Development of the forebrain critically depends on the Sonic Hedgehog (Shh) signaling pathway, as illustrated in humans by the frequent perturbation of this pathway in holoprosencephaly, a condition defined as a defect in the formation of midline structures of the forebrain and face. The Shh pathway requires functional primary cilia, microtubule-based organelles present on virtually every cell and acting as cellular antennae to receive and transduce diverse chemical, mechanical or light signals. The dysfunction of cilia in humans leads to inherited diseases called ciliopathies, which often affect many organs and show diverse manifestations including forebrain malformations for the most severe forms. The purpose of this review is to provide the reader with a framework to understand the developmental origin of the forebrain defects observed in severe ciliopathies with respect to perturbations of the Shh pathway. We propose that many of these defects can be interpreted as an imbalance in the ratio of activator to repressor forms of the Gli transcription factors, which are effectors of the Shh pathway. We also discuss the complexity of ciliopathies and their relationships with forebrain disorders such as holoprosencephaly or malformations of cortical development, and emphasize the need for a closer examination of forebrain defects in ciliopathies, not only through the lens of animal models but also taking advantage of the increasing potential of the research on human tissues and organoids.
Collapse
Affiliation(s)
- Abraham Andreu-Cervera
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France; Instituto de Neurociencias, Universidad Miguel Hernández - CSIC, Campus de San Juan; Avda. Ramón y Cajal s/n, 03550 Alicante, Spain
| | - Martin Catala
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France.
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS) UMR7622, Institut national pour la Santé et la Recherche Médicale (Inserm) U1156, Institut de Biologie Paris Seine - Laboratoire de Biologie du Développement (IBPS-LBD), 9 Quai Saint-Bernard, 75005 Paris, France.
| |
Collapse
|
27
|
Diaz C, Puelles L. Developmental Genes and Malformations in the Hypothalamus. Front Neuroanat 2020; 14:607111. [PMID: 33324176 PMCID: PMC7726113 DOI: 10.3389/fnana.2020.607111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
The hypothalamus is a heterogeneous rostral forebrain region that regulates physiological processes essential for survival, energy metabolism, and reproduction, mainly mediated by the pituitary gland. In the updated prosomeric model, the hypothalamus represents the rostralmost forebrain, composed of two segmental regions (terminal and peduncular hypothalamus), which extend respectively into the non-evaginated preoptic telencephalon and the evaginated pallio-subpallial telencephalon. Complex genetic cascades of transcription factors and signaling molecules rule their development. Alterations of some of these molecular mechanisms acting during forebrain development are associated with more or less severe hypothalamic and pituitary dysfunctions, which may be associated with brain malformations such as holoprosencephaly or septo-optic dysplasia. Studies on transgenic mice with mutated genes encoding critical transcription factors implicated in hypothalamic-pituitary development are contributing to understanding the high clinical complexity of these pathologies. In this review article, we will analyze first the complex molecular genoarchitecture of the hypothalamus resulting from the activity of previous morphogenetic signaling centers and secondly some malformations related to alterations in genes implicated in the development of the hypothalamus.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Albacete, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, Murcia, Spain
| |
Collapse
|
28
|
Jacquemin V, Antoine M, Duerinckx S, Massart A, Desir J, Perazzolo C, Cassart M, Thomas D, Segers V, Lecomte S, Abramowicz M, Pirson I. TrkA mediates effect of novel KIDINS220 mutation in human brain ventriculomegaly. Hum Mol Genet 2020; 29:3757-3764. [PMID: 33205811 DOI: 10.1093/hmg/ddaa245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
Congenital hydrocephalus is a potentially devastating, highly heterogeneous condition whose genetic subset remains incompletely known. We here report a consanguineous family where three fetuses presented with brain ventriculomegaly and limb contractures and shared a very rare homozygous variant of KIDINS220, consisting of an in-frame deletion of three amino acids adjacent to the fourth transmembrane domain. Fetal brain imaging and autopsy showed major ventriculomegaly, reduced brain mass, and with no histomorphologic abnormalities. We demonstrate that the binding of KIDINS220 to TrkA is diminished by the deletion mutation. This family is the second that associates a KIDINS220 genetic variant with human ventriculomegaly and limb contractures, validating causality of the gene and indicating TrkA as a likely mediator of the phenotype.
Collapse
Affiliation(s)
| | - Mathieu Antoine
- IRIBHM, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Sarah Duerinckx
- IRIBHM, Université Libre de Bruxelles, 1070 Brussels, Belgium.,Neurology Department, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Annick Massart
- IRIBHM, Université Libre de Bruxelles, 1070 Brussels, Belgium.,Department of Nephrology, Hôpital Universitaire d'Anvers, 2650 Edegem, Belgium
| | - Julie Desir
- Human Genetics Center, Institute of Pathology and Genetics, 6041 Charleroi, Belgium
| | | | - Marie Cassart
- Department of Gynecology and Obstetrics, Hôpitaux Iris Sud, 1050 Brussels, Belgium
| | - Dominique Thomas
- Department of Gynecology and Obstetrics, Hôpitaux Iris Sud, 1050 Brussels, Belgium
| | - Valérie Segers
- Department of Anatomopathology, CHU Brugmann, 1020 Brussels, Belgium
| | - Sophie Lecomte
- Department of Anatomopathology, CHU Brugmann, 1020 Brussels, Belgium
| | - Marc Abramowicz
- IRIBHM, Université Libre de Bruxelles, 1070 Brussels, Belgium.,Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Isabelle Pirson
- IRIBHM, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
29
|
Addissie YA, Troia A, Wong ZC, Everson JL, Kozel BA, Muenke M, Lipinski RJ, Malecki KMC, Kruszka P. Identifying environmental risk factors and gene-environment interactions in holoprosencephaly. Birth Defects Res 2020; 113:63-76. [PMID: 33111505 DOI: 10.1002/bdr2.1834] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Holoprosencephaly is the most common malformation of the forebrain (1 in 250 embryos) with severe consequences for fetal and child development. This study evaluates nongenetic factors associated with holoprosencephaly risk, severity, and gene-environment interactions. METHODS For this retrospective case control study, we developed an online questionnaire focusing on exposures to common and rare toxins/toxicants before and during pregnancy, nutritional factors, maternal health history, and demographic factors. Patients with holoprosencephaly were primarily ascertained from our ongoing genetic and clinical studies of holoprosencephaly. Controls included children with Williams-Beuren syndrome (WBS) ascertained through online advertisements in a WBD support group and fliers. RESULTS Difference in odds of exposures between cases and controls as well as within cases with varying holoprosencephaly severity were studied. Cases included children born with holoprosencephaly (n = 92) and the control group consisted of children with WBS (n = 56). Pregnancy associated risk associated with holoprosencephaly included maternal pregestational diabetes (9.2% of cases and 0 controls, p = .02), higher alcohol consumption (adjusted odds ratio [aOR], 1.73; 95% CI, 0.88-15.71), and exposure to consumer products such as aerosols or sprays including hair sprays (aOR, 2.46; 95% CI, 0.89-7.19). Significant gene-environment interactions were identified including for consumption of cheese (p < .05) and espresso drinks (p = .03). CONCLUSION The study identifies modifiable risk factors and gene-environment interactions that should be considered in future prevention of holoprosencephaly. Studies with larger HPE cohorts will be needed to confirm these findings.
Collapse
Affiliation(s)
- Yonit A Addissie
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Angela Troia
- Cardiovascular & Pulmonary Branch, National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Zoe C Wong
- Cardiovascular & Pulmonary Branch, National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Beth A Kozel
- Cardiovascular & Pulmonary Branch, National Heart, Lung, and Blood Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristen M C Malecki
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Hamdi-Rozé H, Ware M, Guyodo H, Rizzo A, Ratié L, Rupin M, Carré W, Kim A, Odent S, Dubourg C, David V, de Tayrac M, Dupé V. Disrupted Hypothalamo-Pituitary Axis in Association With Reduced SHH Underlies the Pathogenesis of NOTCH-Deficiency. J Clin Endocrinol Metab 2020; 105:5836893. [PMID: 32403133 DOI: 10.1210/clinem/dgaa249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022]
Abstract
CONTEXT In human, Sonic hedgehog (SHH) haploinsufficiency is the predominant cause of holoprosencephaly, a structural malformation of the forebrain midline characterized by phenotypic heterogeneity and incomplete penetrance. The NOTCH signaling pathway has recently been associated with holoprosencephaly in humans, but the precise mechanism involving NOTCH signaling during early brain development remains unknown. OBJECTIVE The aim of this study was to evaluate the relationship between SHH and NOTCH signaling to determine the mechanism by which NOTCH dysfunction could cause midline malformations of the forebrain. DESIGN In this study, we have used a chemical inhibition approach in the chick model and a genetic approach in the mouse model. We also reported results obtained from the clinical diagnosis of a cohort composed of 141 holoprosencephaly patients. RESULTS We demonstrated that inhibition of NOTCH signaling in chick embryos as well as in mouse embryos induced a specific downregulation of SHH in the anterior hypothalamus. Our data in the mouse also revealed that the pituitary gland was the most sensitive tissue to Shh insufficiency and that haploinsufficiency of the SHH and NOTCH signaling pathways synergized to produce a malformed pituitary gland. Analysis of a large holoprosencephaly cohort revealed that some patients possessed multiple heterozygous mutations in several regulators of both pathways. CONCLUSIONS These results provided new insights into molecular mechanisms underlying the extreme phenotypic variability observed in human holoprosencephaly. They showed how haploinsufficiency of the SHH and NOTCH activity could contribute to specific congenital hypopituitarism that was associated with a sella turcica defect.
Collapse
Affiliation(s)
- Houda Hamdi-Rozé
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Michelle Ware
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Hélène Guyodo
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Aurélie Rizzo
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Leslie Ratié
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Maïlys Rupin
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Wilfrid Carré
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Artem Kim
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Sylvie Odent
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Clinique, CHU, Rennes, France
| | - Christèle Dubourg
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Véronique David
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| | - Marie de Tayrac
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
- Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Valérie Dupé
- Univ Rennes, CNRS, IGDR - Institut de Génétique et Développement de Rennes - UMR6290, Rennes, France
| |
Collapse
|
31
|
Sisodiya SM. Precision medicine and therapies of the future. Epilepsia 2020; 62 Suppl 2:S90-S105. [PMID: 32776321 PMCID: PMC8432144 DOI: 10.1111/epi.16539] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
Abstract
Precision medicine in the epilepsies has gathered much attention, especially with gene discovery pushing forward new understanding of disease biology. Several targeted treatments are emerging, some with considerable sophistication and individual‐level tailoring. There have been rare achievements in improving short‐term outcomes in a few very select patients with epilepsy. The prospects for further targeted, repurposed, or novel treatments seem promising. Along with much‐needed success, difficulties are also arising. Precision treatments do not always work, and sometimes are inaccessible or do not yet exist. Failures of precision medicine may not find their way to broader scrutiny. Precision medicine is not a new concept: It has been boosted by genetics and is often focused on genetically determined epilepsies, typically considered to be driven in an individual by a single genetic variant. Often the mechanisms generating the full clinical phenotype from such a perceived single cause are incompletely understood. The impact of additional genetic variation and other factors that might influence the clinical presentation represent complexities that are not usually considered. Precision success and precision failure are usually equally incompletely explained. There is a need for more comprehensive evaluation and a more rigorous framework, bringing together information that is both necessary and sufficient to explain clinical presentation and clinical responses to precision treatment in a precision approach that considers the full picture not only of the effects of a single variant, but also of its genomic and other measurable environment, within the context of the whole person. As we may be on the brink of a treatment revolution, progress must be considered and reasoned: One possible framework is proposed for the evaluation of precision treatments.
Collapse
Affiliation(s)
- Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK
| |
Collapse
|
32
|
Kerr K, McAneney H, Smyth LJ, Bailie C, McKee S, McKnight AJ. A scoping review and proposed workflow for multi-omic rare disease research. Orphanet J Rare Dis 2020; 15:107. [PMID: 32345347 PMCID: PMC7189570 DOI: 10.1186/s13023-020-01376-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Patients with rare diseases face unique challenges in obtaining a diagnosis, appropriate medical care and access to support services. Whole genome and exome sequencing have increased identification of causal variants compared to single gene testing alone, with diagnostic rates of approximately 50% for inherited diseases, however integrated multi-omic analysis may further increase diagnostic yield. Additionally, multi-omic analysis can aid the explanation of genotypic and phenotypic heterogeneity, which may not be evident from single omic analyses. MAIN BODY This scoping review took a systematic approach to comprehensively search the electronic databases MEDLINE, EMBASE, PubMed, Web of Science, Scopus, Google Scholar, and the grey literature databases OpenGrey / GreyLit for journal articles pertaining to multi-omics and rare disease, written in English and published prior to the 30th December 2018. Additionally, The Cancer Genome Atlas publications were searched for relevant studies and forward citation searching / screening of reference lists was performed to identify further eligible articles. Following title, abstract and full text screening, 66 articles were found to be eligible for inclusion in this review. Of these 42 (64%) were studies of multi-omics and rare cancer, two (3%) were studies of multi-omics and a pre-cancerous condition, and 22 (33.3%) were studies of non-cancerous rare diseases. The average age of participants (where known) across studies was 39.4 years. There has been a significant increase in the number of multi-omic studies in recent years, with 66.7% of included studies conducted since 2016 and 33% since 2018. Fourteen combinations of multi-omic analyses for rare disease research were returned spanning genomics, epigenomics, transcriptomics, proteomics, phenomics and metabolomics. CONCLUSIONS This scoping review emphasises the value of multi-omic analysis for rare disease research in several ways compared to single omic analysis, ranging from the provision of a diagnosis, identification of prognostic biomarkers, distinct molecular subtypes (particularly for rare cancers), and identification of novel therapeutic targets. Moving forward there is a critical need for collaboration of multi-omic rare disease studies to increase the potential to generate robust outcomes and development of standardised biorepository collection and reporting structures for multi-omic studies.
Collapse
Affiliation(s)
- Katie Kerr
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Helen McAneney
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Laura J Smyth
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Caitlin Bailie
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland
| | - Shane McKee
- Regional Genetics Centre, Belfast City Hospital, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB, Northern Ireland
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland.
- Regional Genetics Centre, Belfast City Hospital, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB, Northern Ireland.
| |
Collapse
|
33
|
Daly T, Roberts A, Yang E, Mochida GH, Bodamer O. Holoprosencephaly in Kabuki syndrome. Am J Med Genet A 2019; 182:441-445. [PMID: 31846209 DOI: 10.1002/ajmg.a.61454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023]
Abstract
Kabuki syndrome is a rare, multi-systemic disorder of chromatin regulation due to mutations in either KMT2D or KDM6A that encode a H3K4 methyltransferase and an H3K27 demethylase, respectively. The associated clinical phenotype is a direct result of temporal and spatial changes in gene expression in various tissues including the brain. Although mild to moderate intellectual disability is frequently recognized in individuals with Kabuki syndrome, the identification of brain anomalies, mostly involving the hippocampus and related structures remains an exception. Recently, the first two cases with alobar holoprosencephaly and mutations in KMT2D have been reported in the medical literature. We identified a de novo, pathogenic KMT2D variant (c.6295C > T; p.R2099X) using trio whole-exome sequencing in a 2-year-old female with lobar holoprosencephaly, microcephaly and cranio-facial features of Kabuki syndrome. This report expands the spectrum of brain anomalies associated with Kabuki syndrome underscoring the important role of histone modification for early brain development.
Collapse
Affiliation(s)
- Tara Daly
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Abra Roberts
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA
| | - Ganeshwaran H Mochida
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts.,Broad Institute of Harvard University and MIT, Cambridge, Massachusetts
| |
Collapse
|
34
|
A de novo variant in RAC3 causes severe global developmental delay and a middle interhemispheric variant of holoprosencephaly. J Hum Genet 2019; 64:1127-1132. [DOI: 10.1038/s10038-019-0656-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 11/09/2022]
|
35
|
Richieri-Costa A, Zechi-Ceide RM, Candido-Souza RM, Monteiro RAC, Tonello C, de Freitas ML, Kokitsu-Nakata NM, Vendramini-Pittoli S, Mazzeu JF, Overes M, Ali-Amin R, van Slegtenhorst M, Hoefsloot LH, Jehee FS. Holoprosencephaly, orofacial cleft, and frontonaso-orbital encephaloceles: Genetic evaluation of a possible new syndrome. Am J Med Genet A 2019; 179:2170-2177. [PMID: 31353810 DOI: 10.1002/ajmg.a.61305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 11/06/2022]
Abstract
Here we report on a Brazilian child who presented semilobar holoprosencephaly, frontonasal encephaloceles and bilateral cleft lip and palate. Malformations also included agenesis of the corpus callosum, abnormal cortical gyres, dilation of the aqueduct, bilateral endolymphatic sac, bilateral cystic cocci-vestibular malformation, and a cribriform defect. The 3D TC craniofacial images showed abnormal frontonasal transition region, with a bone bifurcation, and partial agenesis of nasal bone. The trunk and upper and lower limbs were normal. To our knowledge, this rare association of holoprocensephaly with frontonaso-orbital encephaloceles without limb anomalies has never been reported before. Karyotype was normal. SNP-array showed no copy-number alterations but revealed 25% of regions of homozygosity (ROH) with normal copy number, indicating a high coefficient of inbreeding, which significantly increases the risk for an autosomal recessive disorder. Whole exome sequencing analysis did not reveal any pathogenic or likely pathogenic variants. We discuss the possible influence of two variants of uncertain significance found within the patient's ROHs. First, a missense p.(Gly394Ser) in PCSK9, a gene involved in the regulation of plasma low-density lipoprotein cholesterol. Second, an inframe duplication p.(Ala75_Ala81dup) in SP8, a zinc-finger transcription factor that regulates signaling centers during craniofacial development. Further studies and/or the identification of other patients with a similar phenotype will help elucidate the genetic etiology of this complex case.
Collapse
Affiliation(s)
- Antonio Richieri-Costa
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, São Paulo, Brazil
| | - Roseli M Zechi-Ceide
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, São Paulo, Brazil
| | - Rosana M Candido-Souza
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, São Paulo, Brazil
| | - Rejane A C Monteiro
- Institute of Education and Research, Santa Casa Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | - Cristiano Tonello
- Craniofacial Team Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, São Paulo, Brazil
| | - Mariana L de Freitas
- Institute of Education and Research, Santa Casa Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | - Nancy M Kokitsu-Nakata
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, São Paulo, Brazil
| | - Siulan Vendramini-Pittoli
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies (HRCA), University of São Paulo, Bauru, São Paulo, Brazil
| | - Juliana F Mazzeu
- Faculty of Medicine, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Madelief Overes
- Department of Clinical Genetics, Erasmus MC, Rotterdam, CN, The Netherlands
| | - Roza Ali-Amin
- Department of Clinical Genetics, Erasmus MC, Rotterdam, CN, The Netherlands
| | | | - Lies H Hoefsloot
- Department of Clinical Genetics, Erasmus MC, Rotterdam, CN, The Netherlands
| | - Fernanda S Jehee
- Institute of Education and Research, Santa Casa Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil.,Department of Clinical Genetics, Erasmus MC, Rotterdam, CN, The Netherlands
| |
Collapse
|
36
|
Tekendo-Ngongang C, Kruszka P, Martinez AF, Muenke M. Novel heterozygous variants in KMT2D associated with holoprosencephaly. Clin Genet 2019; 96:266-270. [PMID: 31282990 DOI: 10.1111/cge.13598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/14/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
Lysine methyltransferase 2D (KMT2D; OMIM 602113) encodes a histone methyltransferase involved in transcriptional regulation of the beta-globin and estrogen receptor as part of a large protein complex known as activating signal cointegrator-2-containing complex (ASCOM). Heterozygous germline mutations in the KMT2D gene are known to cause Kabuki syndrome (OMIM 147920), a developmental multisystem disorder. Neither holoprosencephaly nor other defects in human forebrain development have been previously associated with Kabuki syndrome. Here we report two patients diagnosed with alobar holoprosencephaly in their antenatal period with de novo monoallelic KMT2D variants identified by trio-based exome sequencing. The first patient was found to have a stop-gain variant c.12565G>T (p.Gly4189*), while the second patient had a missense variant c.5A>G (p.Asp2Gly). Phenotyping of each patient did not reveal any age-related feature of Kabuki syndrome. These two cases represent the first report on association between KMT2D and holoprosencephaly.
Collapse
Affiliation(s)
- Cedrik Tekendo-Ngongang
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Maroilley T, Tarailo-Graovac M. Uncovering Missing Heritability in Rare Diseases. Genes (Basel) 2019; 10:E275. [PMID: 30987386 PMCID: PMC6523881 DOI: 10.3390/genes10040275] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The problem of 'missing heritability' affects both common and rare diseases hindering: discovery, diagnosis, and patient care. The 'missing heritability' concept has been mainly associated with common and complex diseases where promising modern technological advances, like genome-wide association studies (GWAS), were unable to uncover the complete genetic mechanism of the disease/trait. Although rare diseases (RDs) have low prevalence individually, collectively they are common. Furthermore, multi-level genetic and phenotypic complexity when combined with the individual rarity of these conditions poses an important challenge in the quest to identify causative genetic changes in RD patients. In recent years, high throughput sequencing has accelerated discovery and diagnosis in RDs. However, despite the several-fold increase (from ~10% using traditional to ~40% using genome-wide genetic testing) in finding genetic causes of these diseases in RD patients, as is the case in common diseases-the majority of RDs are also facing the 'missing heritability' problem. This review outlines the key role of high throughput sequencing in uncovering genetics behind RDs, with a particular focus on genome sequencing. We review current advances and challenges of sequencing technologies, bioinformatics approaches, and resources.
Collapse
Affiliation(s)
- Tatiana Maroilley
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
38
|
Zhu J, Wang C, Gao X, Zhu J, Wang L, Cao S, Wu Q, Qiao S, Zhang Z, Li L. Comparative effects of mercury chloride and methylmercury exposure on early neurodevelopment in zebrafish larvae. RSC Adv 2019; 9:10766-10775. [PMID: 35515286 PMCID: PMC9062475 DOI: 10.1039/c9ra00770a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/31/2019] [Indexed: 12/21/2022] Open
Abstract
Mercury (Hg) is a ubiquitous environmental toxicant with important public health implications. Hg causes neurotoxicity through astrocytes, Ca2+, neurotransmitters, mitochondrial damage, elevations of reactive oxygen species and post-translational modifications. However, the similarities and differences between the neurotoxic mechanisms caused by different chemical forms of Hg remain unclear. Zebrafish embryos were exposed to methylmercury (MeHgCl) or mercury chloride (HgCl2) (0, 4, 40, 400 nM) up for 96 h. HgCl2 exposure could significantly decrease survival rate, body length and eye size, delay the hatching period, induce tail bending and reduce the locomotor activity, and these effects were aggravated in the MeHgCl group. The compounds could increase the number of apoptotic cells in the brain and downregulate the expression of Shha, Ngn1 and Nrd, which contribute to early nervous development. The underlying mechanisms were investigated by metabolomics data. Galactose metabolism, tyrosine metabolism and starch and sucrose metabolism pathways were disturbed after HgCl2 or MeHgCl exposure. In addition, the levels of three neurotransmitters including tyrosine, dopamine and tryptophan were reduced after HgCl2 or MeHgCl exposure. Oxidative stress is related to metabolite changes, such as changes in the putrescine, niacinamide and uric acid contents in the HgCl2 group, and squalene in the MeHgCl group. These data indicated that downregulation of these genes and abnormal metabolic profile and pathways contribute to the neurotoxicity of HgCl2 and MeHgCl.
Collapse
Affiliation(s)
- Jun Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing Jiangsu 211166 P. R. China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404
| | - Chundan Wang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing Jiangsu 211166 P. R. China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404
| | - Xingsu Gao
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing Jiangsu 211166 P. R. China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404
| | - Jiansheng Zhu
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing Jiangsu 211166 P. R. China
| | - Li Wang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing Jiangsu 211166 P. R. China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404
| | - Shuyuan Cao
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing Jiangsu 211166 P. R. China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing Jiangsu 211166 P. R. China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404
| | - Shanlei Qiao
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing Jiangsu 211166 P. R. China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing Jiangsu 211166 P. R. China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing Jiangsu 211166 P. R. China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404
| |
Collapse
|
39
|
Targeted panel sequencing establishes the implication of planar cell polarity pathway and involves new candidate genes in neural tube defect disorders. Hum Genet 2019; 138:363-374. [DOI: 10.1007/s00439-019-01993-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/26/2019] [Indexed: 01/18/2023]
|
40
|
The Ciliopathy Gene Ftm/Rpgrip1l Controls Mouse Forebrain Patterning via Region-Specific Modulation of Hedgehog/Gli Signaling. J Neurosci 2019; 39:2398-2415. [PMID: 30692221 PMCID: PMC6435827 DOI: 10.1523/jneurosci.2199-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/22/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Primary cilia are essential for CNS development. In the mouse, they play a critical role in patterning the spinal cord and telencephalon via the regulation of Hedgehog/Gli signaling. However, despite the frequent disruption of this signaling pathway in human forebrain malformations, the role of primary cilia in forebrain morphogenesis has been little investigated outside the telencephalon. Here we studied development of the diencephalon, hypothalamus and eyes in mutant mice in which the Ftm/Rpgrip1l ciliopathy gene is disrupted. At the end of gestation, Ftm−/− fetuses displayed anophthalmia, a reduction of the ventral hypothalamus and a disorganization of diencephalic nuclei and axonal tracts. In Ftm−/− embryos, we found that the ventral forebrain structures and the rostral thalamus were missing. Optic vesicles formed but lacked the optic cups. In Ftm−/− embryos, Sonic hedgehog (Shh) expression was virtually lost in the ventral forebrain but maintained in the zona limitans intrathalamica (ZLI), the mid-diencephalic organizer. Gli activity was severely downregulated but not lost in the ventral forebrain and in regions adjacent to the Shh-expressing ZLI. Reintroduction of the repressor form of Gli3 into the Ftm−/− background restored optic cup formation. Our data thus uncover a complex role of cilia in development of the diencephalon, hypothalamus and eyes via the region-specific control of the ratio of activator and repressor forms of the Gli transcription factors. They call for a closer examination of forebrain defects in severe ciliopathies and for a search for ciliopathy genes as modifiers in other human conditions with forebrain defects. SIGNIFICANCE STATEMENT The Hedgehog (Hh) signaling pathway is essential for proper forebrain development as illustrated by a human condition called holoprosencephaly. The Hh pathway relies on primary cilia, cellular organelles that receive and transduce extracellular signals and whose dysfunctions lead to rare inherited diseases called ciliopathies. To date, the role of cilia in the forebrain has been poorly studied outside the telencephalon. In this paper we study the role of the Ftm/Rpgrip1l ciliopathy gene in mouse forebrain development. We uncover complex functions of primary cilia in forebrain morphogenesis through region-specific modulation of the Hh pathway. Our data call for further examination of forebrain defects in ciliopathies and for a search for ciliopathy genes as modifiers in human conditions affecting forebrain development.
Collapse
|