1
|
Gambardella A, Liu Y, Bennett MF, Green TE, Damiano JA, Fortunato F, Coleman MJ, Cherfils J, Barnier J, Gecz J, Bahlo M, Berkovic SF, Hildebrand MS. PAK3 pathogenic variant associated with sleep-related hypermotor epilepsy in a family with parental mosaicism. Epilepsia Open 2025; 10:593-601. [PMID: 39806575 PMCID: PMC12014923 DOI: 10.1002/epi4.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Protein-activated kinases mediate spine morphogenesis and synaptic plasticity. PAK3 is part of the p21-activated kinases (PAKs) family of Ras-signaling serine/threonine kinases. Pathogenic variants in the X-linked gene PAK3 have been described in patients with neurodevelopmental syndromes. We analyzed an Italian family with sleep-related hypermotor epilepsy, intellectual disability, psychiatric and behavioral problems, and dysmorphic facial features. A novel PAK3 c.342_344del (p.Lys114del) inframe deletion was detected in the family. Protein structure analysis supported deleterious impact of p.Lys114 deletion through loss or partial loss of autoinhibition of PAK3 protein kinase activity. The male proband had drug-resistant hypermotor seizures and moderate intellectual disability. His brother had drug-responsive hypermotor seizures and mild intellectual disability. Both brothers were hemizygous and had psychiatric and behavioral problems as well as dysmorphic facial features. Their mother had never had seizures but was shown to be mosaic for the PAK3 pathogenic variant. She had normal intellect but did have short stature and dysmorphic facial features similar to her sons. This is the first reported association of a PAK3 pathogenic variant with sleep-related hypermotor epilepsy. PAK3 testing should be considered in families with suspected X-linked sleep-related hypermotor epilepsy and intellectual disability, including for mosaicism in mildly affected females. PLAIN LANGUAGE SUMMARY: We studied an Italian family with sleep-related hypermotor epilepsy, intellectual disability, psychiatric and behavioral problems, and dysmorphic facial features. A novel PAK3 c.342_344del (p.Lys114del) inframe deletion was detected in the family. Protein structure analysis supported deleterious impact of p.Lys114 deletion through loss or partial loss of autoinhibition of PAK3 protein kinase activity. This is the first reported association of a PAK3 pathogenic variant with sleep-related hypermotor epilepsy. PAK3 testing should be considered in families with suspected X-linked sleep-related hypermotor epilepsy and intellectual disability, including for mosaicism in mildly affected females.
Collapse
Affiliation(s)
- Antonio Gambardella
- Institute of Neurology, Department of Medical and Surgical SciencesMagna Graecia UniversityCatanzaroItaly
| | - Yu‐Chi Liu
- Epilepsy Research Centre, Department of MedicineThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Mark F. Bennett
- Epilepsy Research Centre, Department of MedicineThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Timothy E. Green
- Epilepsy Research Centre, Department of MedicineThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - John A. Damiano
- Epilepsy Research Centre, Department of MedicineThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Francesco Fortunato
- Institute of Neurology, Department of Medical and Surgical SciencesMagna Graecia UniversityCatanzaroItaly
| | - Matthew J. Coleman
- Epilepsy Research Centre, Department of MedicineThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Neuroscience GroupMurdoch Children's Research Institute, Royal Children's HospitalParkvilleVictoriaAustralia
| | - Jacqueline Cherfils
- Université Paris‐Saclay, Ecole Normale Supérieure Paris‐Saclay CNRSGif‐sur‐YvetteFrance
| | - Jean‐Vianney Barnier
- Institut des Neurosciences Paris Saclay, Université Paris‐Saclay, CNRS SaclayParisFrance
| | - Jozef Gecz
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Neurogenetics Research ProgramSouth Australian Health and Medical Research InstituteAdelaideAustralia
| | - Melanie Bahlo
- Population Health and Immunity DivisionThe Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of MedicineThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of MedicineThe University of Melbourne, Austin HealthHeidelbergVictoriaAustralia
- Neuroscience GroupMurdoch Children's Research Institute, Royal Children's HospitalParkvilleVictoriaAustralia
| |
Collapse
|
2
|
Kim JE, Wang SH, Lee DS, Kim TH, Kang TC. Neuronal PLPP/CIN exaggerates the immune response of hippocampal microglia to LPS challenge dependent on PAK1-NF-κB-COX-2 signaling pathway. Brain Res 2025; 1849:149345. [PMID: 39581524 DOI: 10.1016/j.brainres.2024.149345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Recently, we have reported that pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates neurofibromin 2 (NF2, also known as merlin) at serine (S) 10 site. Since NF2 inhibits p21-activated kinase 1 (PAK1)-mediated nuclear factor-κB (NF-κB) activation, in the present study, we investigated the role of PLPP/CIN-mediated NF2 S10 dephosphorylation in lipopolysaccharide (LPS)-induced neuroinflammation and explored its related signaling pathways in the mouse hippocampus. PLPP/CIN overexpression increased NF2 S10 dephosphorylation and PAK1 S204 autophosphorylation under physiological condition, which were reversed by PLPP/CIN deletion. Following LPS injection, PLPP/CIN overexpression exacerbated microglial activation, although microglial PLPP/CIN expression was undetectable. In addition, PLPP/CIN overexpression enhanced PAK1 and NF-κB phosphorylations, and upregulated cyclooxygenase-2 (COX-2) and prostaglandin E synthase 2 (PTGES2) expressions in CA1 neurons. PLPP/CIN overexpression also augmented microglial interleukin-1β induction. PLPP/CIN ablation and 1,1'-dithiodi-2-naphthtol (IPA-3, a PAK1 inhibitor) pretreatment ameliorated these LPS-induced neuroinflammatory responses. These findings indicate that PLPP/CIN-mediated NF2 S10 dephosphorylation may facilitate PAK1-NF-κB-COX-2-PTGES2 signaling pathway in CA1 neurons, which would subsequently exaggerate immune response of microglia following LPS treatment. Therefore, our findings suggest that this PLPP/CIN-mediated neuron-microglia interaction may play an important role in the pathogenesis of inflammation-related neurological diseases.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Su Hyeon Wang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
3
|
Méndez-Albelo NM, Sandoval SO, Xu Z, Zhao X. An in-depth review of the function of RNA-binding protein FXR1 in neurodevelopment. Cell Tissue Res 2024; 398:63-77. [PMID: 39155323 PMCID: PMC11976896 DOI: 10.1007/s00441-024-03912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
FMR1 autosomal homolog 1 (FXR1) is an RNA-binding protein that belongs to the Fragile X-related protein (FXR) family. FXR1 is critical for development, as its loss of function is intolerant in humans and results in neonatal death in mice. Although FXR1 is expressed widely including the brain, functional studies on FXR1 have been mostly performed in cancer cells. Limited studies have demonstrated the importance of FXR1 in the brain. In this review, we will focus on the roles of FXR1 in brain development and pathogenesis of brain disorders. We will summarize the current knowledge in FXR1 in the context of neural biology, including structural features, isoform diversity and nomenclature, expression patterns, post-translational modifications, regulatory mechanisms, and molecular functions. Overall, FXR1 emerges as an important regulator of RNA metabolism in the brain, with strong implications in neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhiyan Xu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
4
|
Viou L, Atkins M, Rousseau V, Launay P, Masson J, Pace C, Murakami F, Barnier JV, Métin C. PAK3 activation promotes the tangential to radial migration switch of cortical interneurons by increasing leading process dynamics and disrupting cell polarity. Mol Psychiatry 2024; 29:2296-2307. [PMID: 38454080 PMCID: PMC11412908 DOI: 10.1038/s41380-024-02483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Mutations of PAK3, a p21-activated kinase, are associated in humans with cognitive deficits suggestive of defective cortical circuits and with frequent brain structural abnormalities. Most human variants no longer exhibit kinase activity. Since GABAergic interneurons express PAK3 as they migrate within the cortex, we here examined the role of PAK3 kinase activity in the regulation of cortical interneuron migration. During the embryonic development, cortical interneurons migrate a long distance tangentially and then re-orient radially to settle in the cortical plate, where they contribute to cortical circuits. We showed that interneurons expressing a constitutively kinase active PAK3 variant (PAK3-ca) extended shorter leading processes and exhibited unstable polarity. In the upper cortical layers, they entered the cortical plate and extended radially oriented processes. In the deep cortical layers, they exhibited erratic non-processive migration movements and accumulated in the deep pathway. Pharmacological inhibition of PAK3 kinase inhibited the radial migration switch of interneurons to the cortical plate and reduced their accumulation in the deep cortical layers. Interneurons expressing a kinase dead PAK3 variant (PAK3-kd) developed branched leading processes, maintained the same polarity during migration and exhibited processive and tangentially oriented movements in the cortex. These results reveal that PAK3 kinase activity, by promoting leading process shortening and cell polarity changes, inhibits the tangential processive migration of interneurons and favors their radial re- orientation and targeting to the cortical plate. They suggest that patients expressing PAK3 variants with impaired kinase activity likely present alterations in the cortical targeting of their GABAergic interneurons.
Collapse
Affiliation(s)
- Lucie Viou
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Melody Atkins
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Pierre Launay
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Justine Masson
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Clarisse Pace
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France
| | - Fujio Murakami
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka, 565-0871, Japan
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Christine Métin
- INSERM UMR-S 1270; Institut du Fer à Moulin, Sorbonne Université, F-75005, Paris, France.
| |
Collapse
|
5
|
Baudouin L, Adès N, Kanté K, Bachelin C, Hmidan H, Deboux C, Panic R, Ben Messaoud R, Velut Y, Hamada S, Pionneau C, Duarte K, Poëa-Guyon S, Barnier JV, Nait Oumesmar B, Bouslama-Oueghlani L. Antagonistic actions of PAK1 and NF2/Merlin drive myelin membrane expansion in oligodendrocytes. Glia 2024; 72:1518-1540. [PMID: 38794866 DOI: 10.1002/glia.24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lucas Baudouin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Noémie Adès
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Kadia Kanté
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Corinne Bachelin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Hatem Hmidan
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Al-Quds University, Faculty of Medicine, Jerusalem, Palestine
| | - Cyrille Deboux
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Radmila Panic
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Rémy Ben Messaoud
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yoan Velut
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Soumia Hamada
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Kévin Duarte
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Brahim Nait Oumesmar
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lamia Bouslama-Oueghlani
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
6
|
Voglewede MM, Ozsen EN, Ivak N, Bernabucci M, Tang R, Sun M, Pang ZP, Zhang H. Loss of the polarity protein Par3 promotes dendritic spine neoteny and enhances learning and memory. iScience 2024; 27:110308. [PMID: 39045101 PMCID: PMC11263792 DOI: 10.1016/j.isci.2024.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The Par3 polarity protein is critical for subcellular compartmentalization in different developmental processes. Variants of PARD3, encoding PAR3, are associated with intelligence and neurodevelopmental disorders. However, the role of Par3 in glutamatergic synapse formation and cognitive functions in vivo remains unknown. Here, we show that forebrain-specific Par3 conditional knockout leads to increased long, thin dendritic spines in vivo. In addition, we observed a decrease in the amplitude of miniature excitatory postsynaptic currents. Surprisingly, loss of Par3 enhances hippocampal-dependent spatial learning and memory and repetitive behavior. Phosphoproteomic analysis revealed proteins regulating cytoskeletal dynamics are significantly dysregulated downstream of Par3. Mechanistically, we found Par3 deletion causes increased Rac1 activation and dysregulated microtubule dynamics through CAMSAP2. Together, our data reveal an unexpected role for Par3 as a molecular gatekeeper in regulating the pool of immature dendritic spines, a rate-limiting step of learning and memory, through modulating Rac1 activation and microtubule dynamics in vivo.
Collapse
Affiliation(s)
- Mikayla M. Voglewede
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Elif Naz Ozsen
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Noah Ivak
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Matteo Bernabucci
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ruizhe Tang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Miao Sun
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Wang Y, Kim B, Gong S, Park J, Zhu M, Wong EM, Park AY, Chernoff J, Guo F. Control of OPC proliferation and repopulation by the intellectual disability gene PAK1 under homeostatic and demyelinating conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591153. [PMID: 38746444 PMCID: PMC11092442 DOI: 10.1101/2024.04.26.591153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Appropriate proliferation and repopulation of oligodendrocyte progenitor cells (OPCs) determine successful (re)myelination in homeostatic and demyelinating brains. Activating mutations in p21-activated kinase 1 (PAK1) cause intellectual disability, neurodevelopmental abnormality, and white matter anomaly in children. It remains unclear if and how PAK1 regulates oligodendroglial development. Here, we report that PAK1 controls proliferation and regeneration of OPCs. Unlike differentiating oligodendrocytes, OPCs display high PAK1 activity which maintains them in a proliferative state by modulating PDGFRa-mediated mitogenic signaling. PAK1-deficient or kinase-inhibited OPCs reduce their proliferation capacity and population expansion. Mice carrying OPC-specific PAK1 deletion or kinase inhibition are populated with fewer OPCs in the homeostatic and demyelinated CNS than control mice. Together, our findings suggest that kinase-activating PAK1 mutations stall OPCs in a progenitor state, impacting timely oligodendroglial differentiation in the CNS of affected children and that PAK1 is a potential molecular target for replenishing OPCs in demyelinating lesions.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| | - Bokyung Kim
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| | - Shuaishuai Gong
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| | - Joohyun Park
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| | - Meina Zhu
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| | - Evelyn M. Wong
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| | - Audrey Y. Park
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| | - Jonathan Chernoff
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Fuzheng Guo
- Department of Neurology, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817
| |
Collapse
|
8
|
Pei J, Zhang J, Cong Q. Computational analysis of protein-protein interactions of cancer drivers in renal cell carcinoma. FEBS Open Bio 2024; 14:112-126. [PMID: 37964489 PMCID: PMC10761929 DOI: 10.1002/2211-5463.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer with rising cases in recent years. Extensive research has identified various cancer driver proteins associated with different subtypes of RCC. Most RCC drivers are encoded by tumor suppressor genes and exhibit enrichment in functional categories such as protein degradation, chromatin remodeling, and transcription. To further our understanding of RCC, we utilized powerful deep-learning methods based on AlphaFold to predict protein-protein interactions (PPIs) involving RCC drivers. We predicted high-confidence complexes formed by various RCC drivers, including TCEB1, KMT2C/D and KDM6A of the COMPASS-related complexes, TSC1 of the MTOR pathway, and TRRAP. These predictions provide valuable structural insights into the interaction interfaces, some of which are promising targets for cancer drug design, such as the NRF2-MAFK interface. Cancer somatic missense mutations from large datasets of genome sequencing of RCCs were mapped to the interfaces of predicted and experimental structures of PPIs involving RCC drivers, and their effects on the binding affinity were evaluated. We observed more than 100 cancer somatic mutations affecting the binding affinity of complexes formed by key RCC drivers such as VHL and TCEB1. These findings emphasize the importance of these mutations in RCC pathogenesis and potentially offer new avenues for targeted therapies.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
9
|
Scorrano G, D'Onofrio G, Accogli A, Severino M, Buchert R, Kotzaeridou U, Iapadre G, Farello G, Iacomino M, Dono F, Di Francesco L, Fiorile MF, La Bella S, Corsello A, Calì E, Di Rosa G, Gitto E, Verrotti A, Fortuna S, Soler MA, Chiarelli F, Oehl-Jaschkowitz B, Haack TB, Zara F, Striano P, Salpietro V. A PAK1 Mutational Hotspot Within the Regulatory CRIPaK Domain is Associated With Severe Neurodevelopmental Disorders in Children. Pediatr Neurol 2023; 149:84-92. [PMID: 37820543 DOI: 10.1016/j.pediatrneurol.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND P-21-activated kinases (PAKs) are protein serine/threonine kinases, part of the RAS/mitogen-activated protein kinase pathway. PAK1 is highly expressed in the central nervous system and crucially involved in neuronal migration and brain developmental processes. Recently, de novo heterozygous missense variants in PAK1 have been identified as an ultrarare cause of pediatric neurodevelopmental disorders. METHODS We report a series of children affected with postnatal macrocephaly, neurodevelopmental impairment, and drug-resistant epilepsy. Repeated electroencephalographic (EEG) and video-EEG evaluations were performed over a two- to 10-year period during follow-up to delineate electroclinical histories. Genetic sequencing studies and computational evaluation of the identified variants were performed in our patient cohort. RESULTS We identified by whole-exome sequencing three novel de novo variants in PAK1 (NM_001128620: c.427A>G, p.Met143Val; c.428T>C, p.Met143Thr; c.428T>A, p.Met143Lys) as the underlying cause of the disease in our families. The three variants affected the same highly conserved Met143 residue within the cysteine-rich inhibitor of PAK1 (CRIPaK) domain, which was identified before as a PAK1 inhibitor target. Computational studies suggested a defective autoinhibition presumably due to impaired PAK1 autoregulation as a result of the recurrent substitution. CONCLUSIONS We delineated the electroclinical phenotypes of PAK1-related neurological disorders and highlight a novel mutational hotspot that may involve defective autoinhibition of the PAK1 protein. The three novel variants affecting the same hotspot residue within the CRIPaK domain highlight potentially impaired PAK1-CRIPaK interaction as a novel disease mechanism. These findings shed light on possible future treatments targeted at the CRIPaK domain, to modulate PAK1 activity and function.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Chieti, Italy; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gianluca D'Onofrio
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Andrea Accogli
- Department of Medical Genetics, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Giulia Iapadre
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Farello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genova, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Ludovica Di Francesco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Saverio La Bella
- Department of Pediatrics, University of Chieti-Pescara, Chieti, Italy
| | - Antonio Corsello
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Elisa Calì
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | | | - Sara Fortuna
- Computational Modelling of Nanoscale and Biophysical Systems Laboratory (CONCEPT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Miguel A Soler
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | | | | | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy; Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
10
|
Zheng M, Chen L, Fu J, Yang X, Chen S, Fu W, Li Y, Zhang S. Cdc42 Regulates the Expression of Cytoskeleton and Microtubule Network Proteins to Promote Invasion and Metastasis of Progeny Cells Derived from CoCl 2-induced Polyploid Giant Cancer Cells. J Cancer 2023; 14:1920-1934. [PMID: 37476197 PMCID: PMC10355212 DOI: 10.7150/jca.85032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/10/2023] [Indexed: 07/22/2023] Open
Abstract
Purpose: Our previous studies have shown that CoCl2 can induce the formation of polyploid giant cancer cells (PGCCs) and PGCCs could produce progeny cells via asymmetric division. In this study, the molecular mechanism by which PGCCs generate progeny cells with high invasion and migration abilities was explored. Methods: In this study, PGCCs induced by CoCl2 produced progeny cells via asymmetric division, which was observed dynamically using laser scanning confocal microscopy. Cell cycle in LoVo and Hct116 before and after CoCl2 treatment was analyzed by flow cytometry. Cell function experiments, co-immunoprecipitation, mass spectrometry analysis, ML141 treatment, western blotting, and siRNA transfection experiments were used to demonstrate that Cdc42/PAK1 was involved in the regulation of cytoskeleton expression. The proliferation, migration, and invasion abilities of PGCCs and progeny cells were compared in PGCCs and progeny cells with and without inhibiting the expression of Cdc42 and PAK1. Results: G2/M phase arrest appeared in CoCl2-treated LoVo and Hct116 cells. After CoCl2 treatment, an increased expression of Cdc42 and PAK1 led to a decrease in the expression of stathmin and an increase in the expression of phosphorylated stathmin, which is located in the nucleus of PGCCs and progeny cells. PTPN14 negatively regulates the expression of PAK1 and p38MAPK. Low levels of PTPN14 expression, a downstream regulatory protein of stathmin, endows progeny tumor cells generated by PGCCs with the ability to invade and metastasize. The expression of PKA1α, cathepsin B, and D increased in CoCl2-treated cells compared with that in the control cells, associated with the infiltration and migration of PGCCs with their progeny cells. Conclusion: CoCl2-induced overexpression of Cdc42 plays a critical role in increasing the infiltration and migration abilities of PGCCs and progeny cells by regulating cytoskeleton protein expression.
Collapse
Affiliation(s)
- Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121, P.R. China
- State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, 300071, P.R. China
| | - Lankai Chen
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Junjie Fu
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121, P.R. China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Shuo Chen
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Wenzheng Fu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121, P.R. China
| |
Collapse
|
11
|
Carbonell AU, Freire-Cobo C, Deyneko IV, Dobariya S, Erdjument-Bromage H, Clipperton-Allen AE, Page DT, Neubert TA, Jordan BA. Comparing synaptic proteomes across five mouse models for autism reveals converging molecular similarities including deficits in oxidative phosphorylation and Rho GTPase signaling. Front Aging Neurosci 2023; 15:1152562. [PMID: 37255534 PMCID: PMC10225639 DOI: 10.3389/fnagi.2023.1152562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
Specific and effective treatments for autism spectrum disorder (ASD) are lacking due to a poor understanding of disease mechanisms. Here we test the idea that similarities between diverse ASD mouse models are caused by deficits in common molecular pathways at neuronal synapses. To do this, we leverage the availability of multiple genetic models of ASD that exhibit shared synaptic and behavioral deficits and use quantitative mass spectrometry with isobaric tandem mass tagging (TMT) to compare their hippocampal synaptic proteomes. Comparative analyses of mouse models for Fragile X syndrome (Fmr1 knockout), cortical dysplasia focal epilepsy syndrome (Cntnap2 knockout), PTEN hamartoma tumor syndrome (Pten haploinsufficiency), ANKS1B syndrome (Anks1b haploinsufficiency), and idiopathic autism (BTBR+) revealed several common altered cellular and molecular pathways at the synapse, including changes in oxidative phosphorylation, and Rho family small GTPase signaling. Functional validation of one of these aberrant pathways, Rac1 signaling, confirms that the ANKS1B model displays altered Rac1 activity counter to that observed in other models, as predicted by the bioinformatic analyses. Overall similarity analyses reveal clusters of synaptic profiles, which may form the basis for molecular subtypes that explain genetic heterogeneity in ASD despite a common clinical diagnosis. Our results suggest that ASD-linked susceptibility genes ultimately converge on common signaling pathways regulating synaptic function and propose that these points of convergence are key to understanding the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Abigail U. Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carmen Freire-Cobo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ilana V. Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Saunil Dobariya
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Amy E. Clipperton-Allen
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Damon T. Page
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Thomas A. Neubert
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Bryen A. Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
12
|
Kim JE, Lee DS, Kim TH, Park H, Kim MJ, Kang TC. PLPP/CIN-mediated NF2 S10 dephosphorylation distinctly regulates kainate-induced seizure susceptibility and neuronal death through PAK1-NF-κB-COX-2-PTGES2 signaling pathway. J Neuroinflammation 2023; 20:99. [PMID: 37118736 PMCID: PMC10141957 DOI: 10.1186/s12974-023-02788-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Pyridoxal-5'-phosphate phosphatase/chronophin (PLPP/CIN) selectively dephosphorylates serine (S) 10 site on neurofibromin 2 (NF2, also known as merlin (moesin-ezrin-radixin-like protein) or schwannomin). p21-activated kinase 1 (PAK1) is a serine/threonine protein kinase, which is involved in synaptic activity and plasticity in neurons. NF2 and PAK1 reciprocally regulate each other in a positive feedback manner. Thus, the aim of the present study is to investigate the effects of PLPP/CIN-mediated NF2 S10 dephosphorylation on PAK1-related signaling pathways under physiological and neuroinflammatory conditions, which are largely unknown. METHODS After kainate (KA) injection in wild-type, PLPP/CIN-/- and PLPP/CINTg mice, seizure susceptibility, PAK1 S204 autophosphorylation, nuclear factor-κB (NF-κB) p65 S276 phosphorylation, cyclooxygenase-2 (COX-2) upregulation, prostaglandin E synthase 2 (PTGES2) induction and neuronal damage were measured. The effects of 1,1'-dithiodi-2-naphthtol (IPA-3, a selective inhibitor of PAK1) pretreatment on these responses to KA were also validated. RESULTS PLPP/CIN overexpression increased PAK1 S204 autophosphorylation concomitant with the enhanced NF2 S10 dephosphorylation in hippocampal neurons under physiological condition. Following KA treatment, PLPP/CIN overexpression delayed the seizure on-set and accelerated PAK1 S204 phosphorylation, NF-κB p65 S276 phosphorylation, COX-2 upregulation and PTGES2 induction, which were ameliorated by PLPP/CIN deletion or IPA-3. Furthermore, IPA-3 pretreatment shortened the latency of seizure on-set without affecting seizure severity (intensity) and ameliorated CA3 neuronal death induced by KA. CONCLUSIONS These findings indicate that PLPP/CIN may regulate seizure susceptibility (the latency of seizure on-set) and CA3 neuronal death in response to KA through NF2-PAK1-NF-κB-COX-2-PTGES2 signaling pathway.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Min-Ju Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do, 24252, South Korea.
| |
Collapse
|
13
|
Nussinov R, Yavuz BR, Arici MK, Demirel HC, Zhang M, Liu Y, Tsai CJ, Jang H, Tuncbag N. Neurodevelopmental disorders, like cancer, are connected to impaired chromatin remodelers, PI3K/mTOR, and PAK1-regulated MAPK. Biophys Rev 2023; 15:163-181. [PMID: 37124926 PMCID: PMC10133437 DOI: 10.1007/s12551-023-01054-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) and cancer share proteins, pathways, and mutations. Their clinical symptoms are different. However, individuals with NDDs have higher probabilities of eventually developing cancer. Here, we review the literature and ask how the shared features can lead to different medical conditions and why having an NDD first can increase the chances of malignancy. To explore these vital questions, we focus on dysregulated PI3K/mTOR, a major brain cell growth pathway in differentiation, and MAPK, a critical pathway in proliferation, a hallmark of cancer. Differentiation is governed by chromatin organization, making aberrant chromatin remodelers highly likely agents in NDDs. Dysregulated chromatin organization and accessibility influence the lineage of specific cell brain types at specific embryonic development stages. PAK1, with pivotal roles in brain development and in cancer, also regulates MAPK. We review, clarify, and connect dysregulated pathways with dysregulated proliferation and differentiation in cancer and NDDs and highlight PAK1 role in brain development and MAPK regulation. Exactly how PAK1 activation controls brain development, and why specific chromatin remodeler components, e.g., BAF170 encoded by SMARCC2 in autism, await clarification.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Bengi Ruken Yavuz
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - M Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Habibe Cansu Demirel
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
- School of Medicine, Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
14
|
Wang N, Li Y, Zhou X, Wang X, Yang G. Comprehensive analysis identifies ARHGEF6 as a potential prognostic and immunological biomarker in lung adenocarcinoma. Comput Biol Med 2023; 153:106448. [PMID: 36586227 DOI: 10.1016/j.compbiomed.2022.106448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lung adenocarcinoma (LUAD), the most common histological type in lung cancer, is one of leading cancers with considerable morbidity/mortality worldwide. Treating LUAD remains an outstanding challenge due to the lack of early diagnosis and the poor therapeutic effects. Rac/Cdc42 guanine nucleotide exchange factor 6 (ARHGEF6), one of cytoskeletal regulators, exerts crucial biological functions in T cell migration. The potential biological role of ARHGEF6 in LUAD has yet to be established. Using multiple bioinformatics tools and statistical methods, we discovered that the mRNA and protein expression level of ARHGEF6 was significantly downregulated in tumor tissues comparing to normal controls. Moreover, ARHGEF6 presented high diagnostic value in LUAD patients (AUC = 0.949), and the patients with low ARHGEF6 expression had more somatic mutations and poor T stage, N stage, clinical prognosis. Experimental validation indicated that ARHGEF6 was low expressed in A549 and PC-9 cells comparing to the normal lung epithelial cells. The overexpression of ARHGEF6 remarkably attenuated the abilities of cell proliferation and colony formation. Furthermore, the immune landscape analysis in TME revealed that ARHGEF6 expression was positively associated with immune cell infiltration and immune checkpoints. Single-cell transcriptome analysis indicated that ARHGEF6 expression was also distributed in immune cell types in TME based on TISCH database. Additionally, differentially expressed genes (DEGs) and functional enrichment analyses uncovered that ARHGEF6 was involved in T cell activation. Finally, LUAD samples were classified two clusters based on DEGs for subgroups analysis. In summary, this study comprehensively uncovered that ARHGEF6 could be identified as a potential prognostic and immunological biomarker in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ning Wang
- The Third Central Hospital of Tianjin, Tianjin, 300170, China.
| | - Yuanyuan Li
- Department of Oncology, The Third Central Hospital of Tianjin, Tianjin, 300170, China
| | - Xue Zhou
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, 300350, China
| | - Xue Wang
- Department of Respiratory Medicine, The Third Central Hospital of Tianjin, Tianjin, 300170, China
| | - Guoyue Yang
- The Third Central Hospital of Tianjin, Tianjin, 300170, China
| |
Collapse
|
15
|
Bonnet M, Roche F, Fagotto-Kaufmann C, Gazdagh G, Truong I, Comunale F, Barbosa S, Bonhomme M, Nafati N, Hunt D, Rodriguez MP, Chaudhry A, Shears D, Madruga M, Vansenne F, Curie A, Kajava AV, Baralle D, Fassier C, Debant A, Schmidt S. Pathogenic TRIO variants associated with neurodevelopmental disorders perturb the molecular regulation of TRIO and axon pathfinding in vivo. Mol Psychiatry 2023; 28:1527-1544. [PMID: 36717740 DOI: 10.1038/s41380-023-01963-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023]
Abstract
The RhoGEF TRIO is known to play a major role in neuronal development by controlling actin cytoskeleton remodeling, primarily through the activation of the RAC1 GTPase. Numerous de novo mutations in the TRIO gene have been identified in individuals with neurodevelopmental disorders (NDDs). We have previously established the first phenotype/genotype correlation in TRIO-associated diseases, with striking correlation between the clinical features of the individuals and the opposite modulation of RAC1 activity by TRIO variants targeting different domains. The mutations hyperactivating RAC1 are of particular interest, as they are recurrently found in patients and are associated with a severe form of NDD and macrocephaly, indicating their importance in the etiology of the disease. Yet, it remains unknown how these pathogenic TRIO variants disrupt TRIO activity at a molecular level and how they affect neurodevelopmental processes such as axon outgrowth or guidance. Here we report an additional cohort of individuals carrying a pathogenic TRIO variant that reinforces our initial phenotype/genotype correlation. More importantly, by performing conformation predictions coupled to biochemical validation, we propose a model whereby TRIO is inhibited by an intramolecular fold and NDD-associated variants relieve this inhibition, leading to RAC1 hyperactivation. Moreover, we show that in cultured primary neurons and in the zebrafish developmental model, these gain-of-function variants differentially affect axon outgrowth and branching in vitro and in vivo, as compared to loss-of-function TRIO variants. In summary, by combining clinical, molecular, cellular and in vivo data, we provide compelling new evidence for the pathogenicity of novel genetic variants targeting the TRIO gene in NDDs. We report a novel mechanism whereby the fine-tuned regulation of TRIO activity is critical for proper neuronal development and is disrupted by pathogenic mutations.
Collapse
Affiliation(s)
- Maxime Bonnet
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Fiona Roche
- Institut de la Vision, Sorbonne University, CNRS, INSERM, Paris, France
| | - Christine Fagotto-Kaufmann
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Gabriella Gazdagh
- Faculty of Medicine, University of Southampton, Southampton, SO16 5YA, UK.,Wessex Clinical Genetics Service, University Hospital Southampton National Health Service Foundation Trust, Southampton, SO16 5YA, UK
| | - Iona Truong
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France.,Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Franck Comunale
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Sonia Barbosa
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Marion Bonhomme
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Nicolas Nafati
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, 34293, Montpellier, France
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, SO16 5YA, UK
| | | | - Ayeshah Chaudhry
- Department of Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Marcos Madruga
- Hospital Viamed Santa Ángela De la Cruz, Sevilla, 41014, Spain
| | - Fleur Vansenne
- Department of Clinical Genetics, University Medical Center, Groningen, 9713 GZ, Groningen, The Netherlands
| | - Aurore Curie
- Reference Center for Intellectual Disability from rare causes, Department of Child Neurology, Woman Mother and Child Hospital, Hospices Civils de Lyon, Lyon Neuroscience Research Centre, CNRS UMR5292, INSERM U1028, Université de Lyon, Bron, France
| | - Andrey V Kajava
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Diana Baralle
- Faculty of Medicine, University of Southampton, Southampton, SO16 5YA, UK
| | - Coralie Fassier
- Institut de la Vision, Sorbonne University, CNRS, INSERM, Paris, France
| | - Anne Debant
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France.
| | - Susanne Schmidt
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
16
|
Zhuang J, Xie M, Yao J, Fu W, Zeng S, Jiang Y, Wang Y, Xie Y, Wang G, Chen C. A de novo PAK1 likely pathogenic variant and a de novo terminal 1q microdeletion in a Chinese girl with global developmental delay, severe intellectual disability, and seizures. BMC Med Genomics 2023; 16:3. [PMID: 36624491 PMCID: PMC9830755 DOI: 10.1186/s12920-023-01433-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Pathogenic PAK1 variants were described to be causative of neurodevelopmental disorder with macrocephaly, seizures, and speech delay. Herein, we present a de novo PAK1 variant combine with a de novo terminal 1q microdeletion in a Chinese pediatric patient, aiming to provide more insights into the underlying genotype-phenotype relationship. METHODS Enrolled in this study was a 6-year-old girl with clinical features of global developmental delay, severe intellectual disability, speech delay, and seizures from Quanzhou region of China. Karyotype and chromosomal microarray analysis (CMA) were performed to detect chromosome abnormalities in this family. Whole exome sequencing (WES) was performed to investigate additional genetic variants in this family. RESULTS No chromosomal abnormalities were elicited from the entire family by karyotype analysis. Further familial CMA results revealed that the patient had a de novo 2.7-Mb microdeletion (arr[GRCh37] 1q44(246,454,321_249,224,684) × 1]) in 1q44 region, which contains 14 OMIM genes, but did not overlap the reported smallest region of overlap (SRO) responsible for the clinical features in 1q43q44 deletion syndrome. In addition, WES result demonstrated a de novo NM_002576: c.251C > G (p.T84R) variant in PAK1 gene in the patient, which was interpreted as a likely pathogenic variant. CONCLUSION In this study, we identify a novel PAK1 variant associated with a terminal 1q microdeletion in a patient with neurodevelopmental disorder. In addition, we believe that the main clinical features may ascribe to the pathogenic variant in PAK1 gene in the patient.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, 362000 People’s Republic of China
| | - Meihua Xie
- Prenatal Diagnosis Center, Yueyang Central Hospital, Yueyang, 414000 People’s Republic of China
| | - Jianfeng Yao
- Department of Women Healthcare, Quanzhou Women’s and Children’s Hospital, Quanzhou, 362000 People’s Republic of China
| | - Wanyu Fu
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, 362000 People’s Republic of China
| | - Shuhong Zeng
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, 362000 People’s Republic of China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, 362000 People’s Republic of China
| | - Yuanbai Wang
- Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, 362000 People’s Republic of China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guanghzou, 510150, People's Republic of China. .,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China.
| | - Gaoxiong Wang
- Quanzhou Women's and Children's Hospital, Quanzhou, 362000, People's Republic of China.
| | - Chunnuan Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, People's Republic of China.
| |
Collapse
|
17
|
Dobrigna M, Poëa-Guyon S, Rousseau V, Vincent A, Toutain A, Barnier JV. The molecular basis of p21-activated kinase-associated neurodevelopmental disorders: From genotype to phenotype. Front Neurosci 2023; 17:1123784. [PMID: 36937657 PMCID: PMC10017488 DOI: 10.3389/fnins.2023.1123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Although the identification of numerous genes involved in neurodevelopmental disorders (NDDs) has reshaped our understanding of their etiology, there are still major obstacles in the way of developing therapeutic solutions for intellectual disability (ID) and other NDDs. These include extensive clinical and genetic heterogeneity, rarity of recurrent pathogenic variants, and comorbidity with other psychiatric traits. Moreover, a large intragenic mutational landscape is at play in some NDDs, leading to a broad range of clinical symptoms. Such diversity of symptoms is due to the different effects DNA variations have on protein functions and their impacts on downstream biological processes. The type of functional alterations, such as loss or gain of function, and interference with signaling pathways, has yet to be correlated with clinical symptoms for most genes. This review aims at discussing our current understanding of how the molecular changes of group I p21-activated kinases (PAK1, 2 and 3), which are essential actors of brain development and function; contribute to a broad clinical spectrum of NDDs. Identifying differences in PAK structure, regulation and spatio-temporal expression may help understanding the specific functions of each group I PAK. Deciphering how each variation type affects these parameters will help uncover the mechanisms underlying mutation pathogenicity. This is a prerequisite for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Manon Dobrigna
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Aline Vincent
- Department of Genetics, EA7450 BioTARGen, University Hospital of Caen, Caen, France
| | - Annick Toutain
- Department of Genetics, University Hospital of Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
- *Correspondence: Jean-Vianney Barnier,
| |
Collapse
|
18
|
Scala M, Nishikawa M, Ito H, Tabata H, Khan T, Accogli A, Davids L, Ruiz A, Chiurazzi P, Cericola G, Schulte B, Monaghan KG, Begtrup A, Torella A, Pinelli M, Denommé-Pichon AS, Vitobello A, Racine C, Mancardi MM, Kiss C, Guerin A, Wu W, Gabau Vila E, Mak BC, Martinez-Agosto JA, Gorin MB, Duz B, Bayram Y, Carvalho CMB, Vengoechea JE, Chitayat D, Tan TY, Callewaert B, Kruse B, Bird LM, Faivre L, Zollino M, Biskup S, Striano P, Nigro V, Severino M, Capra V, Costain G, Nagata KI. Variant-specific changes in RAC3 function disrupt corticogenesis in neurodevelopmental phenotypes. Brain 2022; 145:3308-3327. [PMID: 35851598 PMCID: PMC9473360 DOI: 10.1093/brain/awac106] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/01/2022] [Accepted: 03/13/2022] [Indexed: 01/17/2023] Open
Abstract
Variants in RAC3, encoding a small GTPase RAC3 which is critical for the regulation of actin cytoskeleton and intracellular signal transduction, are associated with a rare neurodevelopmental disorder with structural brain anomalies and facial dysmorphism. We investigated a cohort of 10 unrelated participants presenting with global psychomotor delay, hypotonia, behavioural disturbances, stereotyped movements, dysmorphic features, seizures and musculoskeletal abnormalities. MRI of brain revealed a complex pattern of variable brain malformations, including callosal abnormalities, white matter thinning, grey matter heterotopia, polymicrogyria/dysgyria, brainstem anomalies and cerebellar dysplasia. These patients harboured eight distinct de novo RAC3 variants, including six novel variants (NM_005052.3): c.34G > C p.G12R, c.179G > A p.G60D, c.186_188delGGA p.E62del, c.187G > A p.D63N, c.191A > G p.Y64C and c.348G > C p.K116N. We then examined the pathophysiological significance of these novel and previously reported pathogenic variants p.P29L, p.P34R, p.A59G, p.Q61L and p.E62K. In vitro analyses revealed that all tested RAC3 variants were biochemically and biologically active to variable extent, and exhibited a spectrum of different affinities to downstream effectors including p21-activated kinase 1. We then focused on the four variants p.Q61L, p.E62del, p.D63N and p.Y64C in the Switch II region, which is essential for the biochemical activity of small GTPases and also a variation hot spot common to other Rho family genes, RAC1 and CDC42. Acute expression of the four variants in embryonic mouse brain using in utero electroporation caused defects in cortical neuron morphology and migration ending up with cluster formation during corticogenesis. Notably, defective migration by p.E62del, p.D63N and p.Y64C were rescued by a dominant negative version of p21-activated kinase 1. Our results indicate that RAC3 variants result in morphological and functional defects in cortical neurons during brain development through variant-specific mechanisms, eventually leading to heterogeneous neurodevelopmental phenotypes.
Collapse
Affiliation(s)
| | | | | | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Tayyaba Khan
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Laura Davids
- Department of Human Genetics, Emory Healthcare, Atlanta, GA 30322, USA
| | - Anna Ruiz
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de, Barcelona, Sabadell, Spain
| | - Pietro Chiurazzi
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica Sacro Cuore, Rome, Italy,Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriella Cericola
- Neuropediatric Department, Helios-Klinikum Hildesheim, Hildesheim, Germany
| | | | | | | | - Annalaura Torella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Michele Pinelli
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Anne Sophie Denommé-Pichon
- INSERM UMR1231 Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France,Laboratoire de Génétique Moléculaire, UF Innovation en diagnostic génomique des maladies rares, Plateau Technique de Biologie, CHU de Dijon Bourgogne, Dijon, France,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon Bourgogne, Dijon, France
| | - Antonio Vitobello
- INSERM UMR1231 Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France,Laboratoire de Génétique Moléculaire, UF Innovation en diagnostic génomique des maladies rares, Plateau Technique de Biologie, CHU de Dijon Bourgogne, Dijon, France
| | - Caroline Racine
- Laboratoire de Génétique Moléculaire, UF Innovation en diagnostic génomique des maladies rares, Plateau Technique de Biologie, CHU de Dijon Bourgogne, Dijon, France,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon Bourgogne, Dijon, France
| | - Maria Margherita Mancardi
- Unit of Child Neuropsychiatry, Department of Medical and Surgical Neuroscience and Rehabilitation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Courtney Kiss
- Division of Medical Genetics, Department of Pediatrics, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Andrea Guerin
- Division of Medical Genetics, Department of Pediatrics, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Wendy Wu
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada,Queen’s University, Kingston, ON, Canada
| | - Elisabeth Gabau Vila
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de, Barcelona, Sabadell, Spain
| | - Bryan C Mak
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA,Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Michael B Gorin
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA,Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles 90095, CA, USA,Brain Research Institute, UCLA, Los Angeles 90095, CA, USA
| | - Bugrahan Duz
- Haseki Training and Research Hospital, Istanbul, Turkey
| | - Yavuz Bayram
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claudia M B Carvalho
- Pacific Northwest Research Institute, Seattle, WA 98122, USA,Baylor College of Medicine, Houston, TX 77030, USA
| | | | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada,Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, and Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Gent, Belgium
| | - Bernd Kruse
- Neuropediatric Department, Helios-Klinikum Hildesheim, Hildesheim, Germany
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA,Genetics/Dysmorphology, Rady Children’s Hospital San Diego, San Diego, CA, USA
| | - Laurence Faivre
- INSERM UMR1231 Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon Bourgogne, Dijon, France
| | - Marcella Zollino
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica Sacro Cuore, Rome, Italy,Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Saskia Biskup
- Praxis für Humangenetik, Tübingen, Germany,CeGaT GmbH, Tübingen, Germany
| | | | | | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy,Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Valeria Capra
- Correspondence may also be addressed to: Valeria Capra Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy E-mail:
| | - Gregory Costain
- Correspondence may also be addressed to: Gregory Costain Division of Clinical and Metabolic Genetics Department of Pediatrics The Hospital for Sick Children Toronto, Ontario, Canada E-mail:
| | - Koh ichi Nagata
- Correspondence to: Koh-ichi Nagata Department of Molecular Neurobiology Institute for Developmental Research Aichi Human Service Center, 713-8 Kamiya Kasugai, Aichi 480-0392, Japan E-mail:
| |
Collapse
|
19
|
Nishikawa M, Ito H, Tabata H, Ueda H, Nagata KI. Impaired Function of PLEKHG2, a Rho-Guanine Nucleotide-Exchange Factor, Disrupts Corticogenesis in Neurodevelopmental Phenotypes. Cells 2022; 11:cells11040696. [PMID: 35203342 PMCID: PMC8870177 DOI: 10.3390/cells11040696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Homozygosity of the p.Arg204Trp variation in the Pleckstrin homology and RhoGEF domain containing G2 (PLEKHG2) gene, which encodes a Rho family-specific guanine nucleotide-exchange factor, is responsible for microcephaly with intellectual disability. However, the role of PLEKHG2 during neurodevelopment remains unknown. In this study, we analyzed mouse Plekhg2 function during cortical development, both in vitro and in vivo. The p.Arg200Trp variant in mouse (Plekhg2-RW), which corresponds to the p.Arg204Trp variant in humans, showed decreased guanine nucleotide-exchange activity for Rac1, Rac3, and Cdc42. Acute knockdown of Plekhg2 using in utero electroporation-mediated gene transfer did not affect the migration of excitatory neurons during corticogenesis. On the other hand, silencing Plekhg2 expression delayed dendritic arbor formation at postnatal day 7 (P7), perhaps because of impaired Rac/Cdc42 and p21-activated kinase 1 signaling pathways. This phenotype was rescued by expressing an RNAi-resistant version of wildtype Plekhg2, but not of Plekhg2-RW. Axon pathfinding was also impaired in vitro and in vivo in Plekhg2-deficient cortical neurons. At P14, knockdown of Plekhg2 was observed to cause defects in dendritic spine morphology formation. Collectively, these results strongly suggest that PLEKHG2 has essential roles in the maturation of axon, dendrites, and spines. Moreover, impairment of PLEKHG2 function is most likely to cause defects in neuronal functions that lead to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan;
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +81-568-88-0811
| |
Collapse
|
20
|
Phosphoproteomic of the acetylcholine pathway enables discovery of the PKC-β-PIX-Rac1-PAK cascade as a stimulatory signal for aversive learning. Mol Psychiatry 2022; 27:3479-3492. [PMID: 35665767 PMCID: PMC9708603 DOI: 10.1038/s41380-022-01643-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022]
Abstract
Acetylcholine is a neuromodulator critical for learning and memory. The cholinesterase inhibitor donepezil increases brain acetylcholine levels and improves Alzheimer's disease (AD)-associated learning disabilities. Acetylcholine activates striatal/nucleus accumbens dopamine receptor D2-expressing medium spiny neurons (D2R-MSNs), which regulate aversive learning through muscarinic receptor M1 (M1R). However, how acetylcholine stimulates learning beyond M1Rs remains unresolved. Here, we found that acetylcholine stimulated protein kinase C (PKC) in mouse striatal/nucleus accumbens. Our original kinase-oriented phosphoproteomic analysis revealed 116 PKC substrate candidates, including Rac1 activator β-PIX. Acetylcholine induced β-PIX phosphorylation and activation, thereby stimulating Rac1 effector p21-activated kinase (PAK). Aversive stimulus activated the M1R-PKC-PAK pathway in mouse D2R-MSNs. D2R-MSN-specific expression of PAK mutants by the Cre-Flex system regulated dendritic spine structural plasticity and aversive learning. Donepezil induced PAK activation in both accumbal D2R-MSNs and in the CA1 region of the hippocampus and enhanced D2R-MSN-mediated aversive learning. These findings demonstrate that acetylcholine stimulates M1R-PKC-β-PIX-Rac1-PAK signaling in D2R-MSNs for aversive learning and imply the cascade's therapeutic potential for AD as aversive learning is used to preliminarily screen AD drugs.
Collapse
|
21
|
Nawaz MS, Einarsson G, Bustamante M, Gisladottir RS, Walters GB, Jonsdottir GA, Skuladottir AT, Bjornsdottir G, Magnusson SH, Asbjornsdottir B, Unnsteinsdottir U, Sigurdsson E, Jonsson PV, Palmadottir VK, Gudjonsson SA, Halldorsson GH, Ferkingstad E, Jonsdottir I, Thorleifsson G, Holm H, Thorsteinsdottir U, Sulem P, Gudbjartsson DF, Stefansson H, Thorgeirsson TE, Ulfarsson MO, Stefansson K. Thirty novel sequence variants impacting human intracranial volume. Brain Commun 2022; 4:fcac271. [PMID: 36415660 PMCID: PMC9677475 DOI: 10.1093/braincomms/fcac271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 11/14/2022] Open
Abstract
Intracranial volume, measured through magnetic resonance imaging and/or estimated from head circumference, is heritable and correlates with cognitive traits and several neurological disorders. We performed a genome-wide association study meta-analysis of intracranial volume (n = 79 174) and found 64 associating sequence variants explaining 5.0% of its variance. We used coding variation, transcript and protein levels, to uncover 12 genes likely mediating the effect of these variants, including GLI3 and CDK6 that affect cranial synostosis and microcephaly, respectively. Intracranial volume correlates genetically with volumes of cortical and sub-cortical regions, cognition, learning, neonatal and neurological traits. Parkinson's disease cases have greater and attention deficit hyperactivity disorder cases smaller intracranial volume than controls. Our Mendelian randomization studies indicate that intracranial volume associated variants either increase the risk of Parkinson's disease and decrease the risk of attention deficit hyperactivity disorder and neuroticism or correlate closely with a confounder.
Collapse
Affiliation(s)
- Muhammad Sulaman Nawaz
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | | | | | - Rosa S Gisladottir
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,School of Humanities, University of Iceland, Saemundargata 2, 102 Reykjavik, Iceland
| | - G Bragi Walters
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | | | | | | | | | | | | | - Engilbert Sigurdsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland.,Department of Psychiatry, Landspitali-National University Hospital, Hringbraut 101, 101 Reykjavik, Iceland
| | - Palmi V Jonsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland.,Department of Geriatric Medicine, Landspitali University Hospital, Hringbraut 101, 101 Reykjavik, Iceland
| | - Vala Kolbrun Palmadottir
- Department of Internal Medicine, Landspitali University Hospital, Hringbraut 101, 101 Reykjavik, Iceland
| | | | - Gisli H Halldorsson
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Taeknigardur, Dunhagi 5, 107 Reykjavik, Iceland
| | - Egil Ferkingstad
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland
| | | | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland
| | | | - Patrick Sulem
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland
| | | | | | | | - Magnus O Ulfarsson
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Electrical and Computer Engineering, University of Iceland, Taeknigardur, Dunhagi 5, 107 Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Sturlugata 8, 102 Reykjavik, Iceland.,Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| |
Collapse
|
22
|
Wang Y, Guo F. Group I PAKs in myelin formation and repair of the central nervous system: what, when, and how. Biol Rev Camb Philos Soc 2021; 97:615-639. [PMID: 34811887 DOI: 10.1111/brv.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
p21-activated kinases (PAKs) are a family of cell division control protein 42/ras-related C3 botulinum toxin substrate 1 (Cdc42/Rac1)-activated serine/threonine kinases. Group I PAKs (PAK1-3) have distinct activation mechanisms from group II PAKs (PAK4-6) and are the focus of this review. In transformed cancer cells, PAKs regulate a variety of cellular processes and molecular pathways which are also important for myelin formation and repair in the central nervous system (CNS). De novo mutations in group I PAKs are frequently seen in children with neurodevelopmental defects and white matter anomalies. Group I PAKs regulate virtually every aspect of neuronal development and function. Yet their functions in CNS myelination and remyelination remain incompletely defined. Herein, we highlight the current understanding of PAKs in regulating cellular and molecular pathways and discuss the status of PAK-regulated pathways in oligodendrocyte development. We point out outstanding questions and future directions in the research field of group I PAKs and oligodendrocyte development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| | - Fuzheng Guo
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| |
Collapse
|
23
|
Liaci C, Camera M, Caslini G, Rando S, Contino S, Romano V, Merlo GR. Neuronal Cytoskeleton in Intellectual Disability: From Systems Biology and Modeling to Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22116167. [PMID: 34200511 PMCID: PMC8201358 DOI: 10.3390/ijms22116167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a pathological condition characterized by limited intellectual functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharmacological therapies are currently available. More than 1000 genes have been found mutated in ID patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction. Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from the molecular level and moving toward higher levels of organization, i.e., cell compartment and functions, circuits, cognition, and behavior. Thus, cytoskeleton alterations that have an impact on cell processes such as neuronal migration, neuritogenesis, and synaptic plasticity rebound on the overall establishment of an effective network and consequently on the cognitive phenotype. Systems biology (SB) approaches are more focused on the overall interconnected network rather than on individual genes, thus encouraging the design of therapies that aim to correct common dysregulated biological processes. This review summarizes current knowledge about cytoskeleton control in neurons and its relevance for the ID pathogenesis, exploiting in silico modeling and translating the implications of those findings into biomedical research.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Mattia Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Giovanni Caslini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Simona Rando
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Salvatore Contino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy;
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
- Correspondence: ; Tel.: +39-0116706449; Fax: +39-0116706432
| |
Collapse
|
24
|
Voigtmann F, Wolf P, Landgraf K, Stein R, Kratzsch J, Schmitz S, Abou Jamra R, Blüher M, Meiler J, Beck-Sickinger AG, Kiess W, Körner A. Identification of a novel leptin receptor (LEPR) variant and proof of functional relevance directing treatment decisions in patients with morbid obesity. Metabolism 2021; 116:154438. [PMID: 33221380 DOI: 10.1016/j.metabol.2020.154438] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Deficiency in the leptin-leptin receptor (LEPR) axis leads to severe, and potentially treatable, obesity in humans. To guide clinical decision-making, the functional relevance of variants in the LEPR gene needs to be carefully investigated. CASES AND METHODS We characterized the functional impact of LEPR variants identified in two patients with severe early-onset obesity (1: compound heterozygous for the novel variant p.Tyr411del and p.Trp664Arg; 2: heterozygous for p.Arg612His) by investigating leptin-mediated signaling, leptin binding, receptor expression on cell surfaces, and receptor dimerization and activation for either wild-type and/or mutant LEPR. RESULTS Leptin-induced STAT3-phosphorylation was blunted the novel p.Tyr411del or the p.Trp664Arg variant and mildly reduced with the p.Arg612His variant. Computational structure prediction suggested impaired leptin binding for all three LEPR variants. Experimentally, reduced leptin binding of all mutant proteins was due to diminished LEPR expression on the cell surface, with the p.Trp664Arg mutations being the most affected. Considering the heterozygosity in our patients, we assessed the heterodimerization capacity with the wild-type LEPR, which was retained for the p.Tyr411del and p.Arg612His variants. Finally, mimicking (compound) heterozygosity, we confirmed abolished STAT3-phosphorylation for the variant combination [p.Tyr411del + p.Trp664Arg] as found in patient 1, whereas it was retained for [p.Arg612His + wilde type] as found in patient 2. CONCLUSIONS The novel p.Tyr411del mutation causes complete loss of function alone (and combined with p.Trp664Arg) and is likely the cause for the early onset obesity, qualifying the patient for pharmacologic treatment. Heterozygosity for the p.Arg612His variant, however, appears unlikely to be solely responsible for the phenotype.
Collapse
Affiliation(s)
- Franziska Voigtmann
- Center of Pediatric Research Leipzig, University Hospital for Children & Adolescents, Medical Faculty, University of Leipzig, Germany
| | - Philipp Wolf
- Institute of Biochemistry, Faculty of Life Sciences, Pharmacy and Psychology, University of Leipzig, Germany
| | - Kathrin Landgraf
- Center of Pediatric Research Leipzig, University Hospital for Children & Adolescents, Medical Faculty, University of Leipzig, Germany
| | - Robert Stein
- Center of Pediatric Research Leipzig, University Hospital for Children & Adolescents, Medical Faculty, University of Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnosis, University Medical Center Leipzig, Medical Faculty, University of Leipzig, Germany
| | - Samuel Schmitz
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, TN, USA
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Medical Faculty, University of Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig, Germany
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, TN, USA; Institute of Drug Discovery, Medical Faculty, University of Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Pharmacy and Psychology, University of Leipzig, Germany
| | - Wieland Kiess
- Center of Pediatric Research Leipzig, University Hospital for Children & Adolescents, Medical Faculty, University of Leipzig, Germany
| | - Antje Körner
- Center of Pediatric Research Leipzig, University Hospital for Children & Adolescents, Medical Faculty, University of Leipzig, Germany.
| |
Collapse
|
25
|
Nourbakhsh K, Yadav S. Kinase Signaling in Dendritic Development and Disease. Front Cell Neurosci 2021; 15:624648. [PMID: 33642997 PMCID: PMC7902504 DOI: 10.3389/fncel.2021.624648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Dendrites undergo extensive growth and remodeling during their lifetime. Specification of neurites into dendrites is followed by their arborization, maturation, and functional integration into synaptic networks. Each of these distinct developmental processes is spatially and temporally controlled in an exquisite fashion. Protein kinases through their highly specific substrate phosphorylation regulate dendritic growth and plasticity. Perturbation of kinase function results in aberrant dendritic growth and synaptic function. Not surprisingly, kinase dysfunction is strongly associated with neurodevelopmental and psychiatric disorders. Herein, we review, (a) key kinase pathways that regulate dendrite structure, function and plasticity, (b) how aberrant kinase signaling contributes to dendritic dysfunction in neurological disorders and (c) emergent technologies that can be applied to dissect the role of protein kinases in dendritic structure and function.
Collapse
Affiliation(s)
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
26
|
Zhang K, Wang Y, Fan T, Zeng C, Sun ZS. The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein Cell 2020; 13:6-25. [PMID: 33306168 PMCID: PMC8776968 DOI: 10.1007/s13238-020-00812-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
The serine/threonine p21-activated kinases (PAKs), as main effectors of the Rho GTPases Cdc42 and Rac, represent a group of important molecular switches linking the complex cytoskeletal networks to broad neural activity. PAKs show wide expression in the brain, but they differ in specific cell types, brain regions, and developmental stages. PAKs play an essential and differential role in controlling neural cytoskeletal remodeling and are related to the development and fate of neurons as well as the structural and functional plasticity of dendritic spines. PAK-mediated actin signaling and interacting functional networks represent a common pathway frequently affected in multiple neurodevelopmental and neurodegenerative disorders. Considering specific small-molecule agonists and inhibitors for PAKs have been developed in cancer treatment, comprehensive knowledge about the role of PAKs in neural cytoskeletal remodeling will promote our understanding of the complex mechanisms underlying neurological diseases, which may also represent potential therapeutic targets of these diseases.
Collapse
Affiliation(s)
- Kaifan Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tianda Fan
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Cheng Zeng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China. .,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
27
|
Verma A, Najahi-Missaoui W, Cummings BS, Somanath PR. Sterically stabilized liposomes targeting P21 (RAC1) activated kinase-1 and secreted phospholipase A 2 suppress prostate cancer growth and metastasis. Oncol Lett 2020; 20:179. [PMID: 32934746 PMCID: PMC7471734 DOI: 10.3892/ol.2020.12040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Metastatic prostate cancer (PCa) has a very high mortality rate in men, in Western countries and lacks reliable treatment. The advanced-stage PCa cells overexpress P21 (RAC1) activated kinase-1 (PAK1) and secreted phospholipase A2 (sPLA2) suggesting the potential utility of pharmacologically targeting these molecules to treat metastatic PCa. The small molecule, inhibitor targeting PAK1 activation-3 (IPA3) is a highly specific allosteric inhibitor of PAK1; however, it is metabolically unstable once in the plasma thus, limiting its utility as a chemotherapeutic agent. In the present study, the efficacy and specificity of IPA3 were combined with the stability and the sPLA2-targeted delivery method of two sterically stabilized liposomes [sterically stabilized long-circulating liposomes (SSL)-IPA3 and sPLA2 responsive liposomes (SPRL)-IPA3, respectively] to inhibit PCa growth and metastasis. It was found that twice-a-week administration of either SSL-IPA3 or SPRL-IPA3 for 3 weeks effectively suppressed the growth of PC-3 cell tumor xenografts implanted in athymic nude mice. Both drug formulations also inhibited the metastasis of intravenously administered murine RM1 PCa cells to the lungs of C57BL/6 mice. Whereas the twice-a-week administration of SSL-IPA3 significantly inhibited the spontaneous PCa metastasis to the lungs in Transgenic Adenocarcinoma of the Mouse Prostate mice, the administration of free IPA3 had no significant therapeutic benefit. The results present two novel IPA3 encapsulated liposomes to treat metastatic PCa.
Collapse
Affiliation(s)
- Arti Verma
- Program in Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA
| | - Wided Najahi-Missaoui
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Brian S. Cummings
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Augusta, GA 30602, USA
| | - Payaningal R. Somanath
- Program in Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA
- Department of Medicine and Cancer Center, Augusta University, Augusta, GA 30602, USA
| |
Collapse
|
28
|
Comprehensive Analysis of RNA-Seq Gene Expression Profiling of Brain Transcriptomes Reveals Novel Genes, Regulators, and Pathways in Autism Spectrum Disorder. Brain Sci 2020; 10:brainsci10100747. [PMID: 33080834 PMCID: PMC7603078 DOI: 10.3390/brainsci10100747] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with deficits in social communication ability and repetitive behavior. The pathophysiological events involved in the brain of this complex disease are still unclear. METHODS In this study, we aimed to profile the gene expression signatures of brain cortex of ASD patients, by using two publicly available RNA-seq studies, in order to discover new ASD-related genes. RESULTS We detected 1567 differentially expressed genes (DEGs) by meta-analysis, where 1194 were upregulated and 373 were downregulated genes. Several ASD-related genes previously reported were also identified. Our meta-analysis identified 235 new DEGs that were not detected using the individual RNA-seq studies used. Some of those genes, including seven DEGs (PAK1, DNAH17, DOCK8, DAPP1, PCDHAC2, and ERBIN, SLC7A7), have been confirmed in previous reports to be associated with ASD. Gene Ontology (GO) and pathways analysis showed several molecular pathways enriched by the DEGs, namely, osteoclast differentiation, TNF signaling pathway, complement and coagulation cascade. Topological analysis of protein-protein interaction of the ASD brain cortex revealed proteomics hub gene signatures: MYC, TP53, HDAC1, CDK2, BAG3, CDKN1A, GABARAPL1, EZH2, VIM, and TRAF1. We also identified the transcriptional factors (TFs) regulating DEGs, namely, FOXC1, GATA2, YY1, FOXL1, USF2, NFIC, NFKB1, E2F1, TFAP2A, HINFP. CONCLUSION Novel core genes and molecular signatures involved with ASD were identified by our meta-analysis.
Collapse
|
29
|
When phenotype does not match genotype: importance of "real-time" refining of phenotypic information for exome data interpretation. Genet Med 2020; 23:215-221. [PMID: 32801363 DOI: 10.1038/s41436-020-00938-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Clinical data provided to genetic testing laboratories are frequently scarce. Our purpose was to evaluate clinical scenarios where phenotypic refinement in proband's family members might impact exome data interpretation. METHODS Of 614 exomes, 209 were diagnostic and included in this study. Phenotypic information was gathered by the variant interpretation team from genetic counseling letters and images. If a discrepancy between reported clinical findings and presumably disease-causing variant segregation was observed, referring clinicians were contacted for phenotypic clarification. RESULTS In 16/209 (7.7%) cases, phenotypic refinement was important due to (1) lack of cosegregation of disease-causing variant with the reported phenotype; (2) identification of different disorders with overlapping symptoms in the same family; (3) similar features in proband and family members, but molecular cause identified in proband only; and (4) previously unrecognized maternal condition causative of child's phenotype. As a result of phenotypic clarification, in 12/16 (75%) cases definition of affected versus unaffected status in one of the family members has changed, and in one case variant classification has changed. CONCLUSION Detailed description of phenotypes in family members including differences in clinical presentations, even if subtle, are important in exome interpretation and should be communicated to the variant interpretation team.
Collapse
|
30
|
Barbosa S, Greville-Heygate S, Bonnet M, Godwin A, Fagotto-Kaufmann C, Kajava AV, Laouteouet D, Mawby R, Wai HA, Dingemans AJ, Hehir-Kwa J, Willems M, Capri Y, Mehta SG, Cox H, Goudie D, Vansenne F, Turnpenny P, Vincent M, Cogné B, Lesca G, Hertecant J, Rodriguez D, Keren B, Burglen L, Gérard M, Putoux A, Cantagrel V, Siquier-Pernet K, Rio M, Banka S, Sarkar A, Steeves M, Parker M, Clement E, Moutton S, Tran Mau-Them F, Piton A, de Vries BB, Guille M, Debant A, Schmidt S, Baralle D, Baralle D. Opposite Modulation of RAC1 by Mutations in TRIO Is Associated with Distinct, Domain-Specific Neurodevelopmental Disorders. Am J Hum Genet 2020; 106:338-355. [PMID: 32109419 PMCID: PMC7058823 DOI: 10.1016/j.ajhg.2020.01.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD). Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO. The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1. Although all individuals in this cohort present with developmental delay and a neuro-behavioral phenotype, individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do most individuals with GEFD1 variants, who display milder ID and microcephaly. Functional studies show that the spectrin and GEFD1 variants cause a TRIO-mediated hyper- or hypo-activation of RAC1, respectively, and we observe a striking correlation between RAC1 activation levels and the head size of the affected individuals. In addition, truncations in TRIO GEFD1 in the vertebrate model X. tropicalis induce defects that are concordant with the human phenotype. This work demonstrates distinct clinical and molecular disorders clustering in the GEFD1 and seventh spectrin repeat domains and highlights the importance of tight control of TRIO-RAC1 signaling in neuronal development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Diana Baralle
- Wessex Clinical Genetics, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 5YA, UK; Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| |
Collapse
|